EP0911425B1 - Method for thermally coating surfaces - Google Patents
Method for thermally coating surfaces Download PDFInfo
- Publication number
- EP0911425B1 EP0911425B1 EP98120104A EP98120104A EP0911425B1 EP 0911425 B1 EP0911425 B1 EP 0911425B1 EP 98120104 A EP98120104 A EP 98120104A EP 98120104 A EP98120104 A EP 98120104A EP 0911425 B1 EP0911425 B1 EP 0911425B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- spraying
- process according
- powder particles
- gas jet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
Definitions
- the invention relates to a method for coating substrate materials thermal spraying, a powdered filler material using a gas is passed onto the surface of the substrate material to be coated without the powder particles of the filler material are melted in the gas jet.
- Thermal spraying for coating is known as autogenous as process variants Flame spraying or high speed flame spraying, arc spraying, plasma spraying, detonation spraying and laser spraying.
- Thermal spray processes are essentially characterized in that they enable evenly applied coatings.
- Coatings can be applied by varying the spray materials can be adapted to different requirements.
- the spray materials can be processed in the form of wires, rods or powder. With thermal In addition, thermal post-treatment can be provided for spraying.
- Air In the cold gas process according to the prior art (EP 0 484 533 B1) is used as the gas Air, helium or a mixture of air and helium are used.
- Air the powder particles reach a speed of 300 to 600 m / s when in use from helium to a speed of 1000 to 1200 m / s and when using a Air / helium mixture to a speed in the range of 300 to 1200 m / s accelerated.
- the particle speed can also be in the range between 300 and 1200 m / s can be controlled by heating the gas from 30 to 400 ° C.
- the gas is used at a pressure of about 5 to about 20 bar. It will be a powder with a particle size of 1 to 50 microns used.
- the cold gas process has compared to conventional thermal processes Spraying a number of advantages.
- the thermal action and force action The surface of the substrate material is reduced, causing unwanted changes the material properties of the substrate material prevented or at least can be significantly reduced. Likewise, changes in the Structure of the substrate material can be prevented.
- EP 911 424 A1 with the same seniority describes a method of manufacture of composite bodies by means of thermal spraying.
- EP 911 426 A1 with the same seniority describes a method of manufacture of self-supporting molded parts using thermal spraying.
- WO 95 07 768 A describes a special coating process by formation a mixture of particles and gas flow as suspension and acceleration the resulting two-phase flow to supersonic speed coating substrate for producing a coating while changing the physico-chemical properties of the coating material.
- the mixture from particles and gas is a pseudo-liquid particle-gas suspension.
- the process is based on a change in the physico-chemical properties of the coating material.
- the carrier gas is compressed Air used.
- both inert gases used because of the purity of the layer as well as gas mixtures can be.
- CH 658 045 A describes in connection with the manufacture of glass molds for hollow glass production machines after blasting treatment with corundum Creation of a protective layer from an alloy by plasma spraying or Flame spraying without melting. This process enables in particular Contrary to cold spraying and hot spraying with melting that Manufacture of glass molds that are used and damaged after Glass production can be repaired by subsequent thermal spraying.
- the object of the present invention is the method mentioned at the outset further training, and to improve the quality of the coatings and / or to increase the applicability and performance of the cold gas spray process.
- the powder Gas carrying filler material is a nitrogen-containing, oxygen-free gas or Contains carbon dioxide or mixtures thereof.
- Gas containing nitrogen in the context of the present invention is nitrogen or to understand a gas mixture containing nitrogen.
- gases are called gases which are free of are elemental oxygen, this indication referring to technical purities related, so contaminations of elemental oxygen are allowed.
- the statement that the powder particles of the filler material did not melt in the gas jet in the context of the present invention should also mean that the particles in the gas jet are essentially not melted. This can be done ensure that the temperature of the gas jet is below the Melting point of the powder particles of the filler material. But even at temperatures of the gas jet from 100 K to 200 K above the melting point of the Powder particles of the filler material can due to the extremely short residence time Particles in the gas jet melt or melt in the range of milliseconds the powder particles can be prevented.
- the importance of higher gas temperatures or the advantage of heating the gas is that in hotter gases the speed of sound is higher and therefore also the particle speed becomes comparatively larger.
- the Coatings produced according to the invention adhere very well to a very wide variety Substrate materials, for example on metal, metal alloys, ceramics, glass, Plastics and composites.
- the manufactured with the inventive method Coatings are of high quality and have an extremely low level Porosity and have extremely smooth spray surfaces, so that usually a rework is unnecessary.
- the gases used according to the invention have a sufficient density and speed of sound to achieve the required high speeds to be able to guarantee the powder particles.
- the gas can contain inert and / or reactive gases.
- the method according to the invention enables with these gases the production of very dense and particularly uniform coatings, which are also characterized by their hardness and strength.
- the coatings produced according to the invention are extremely small Oxide levels. They have no or at least no pronounced texture, i.e. it there is no preferred orientation of the individual grains or crystals.
- the substrate will furthermore not heated by a flame or a plasma, so that none or only extremely small changes to the substrate and no distortion of workpieces due to thermal stress.
- Helium can advantageously be added to the gas.
- the proportion of helium in the total gas can be up to 90 vol .-%.
- a helium content of 10 to is preferred 50 vol .-% observed in the gas mixture.
- the gas jet can be heated to a temperature in the range between 30 and 800 ° C are, all known powdery spray materials are used can.
- the invention is particularly suitable for wettable powders made of metals, metal alloys, Hard materials, ceramics and / or plastics.
- the temperature of the gas jet selected between 300 and 500 ° C. These gas temperatures are particularly suitable for the use of reactive gases or reactive Gas constituents. As reactive gases or gas components are in particular to mention nitrogenous gases.
- a gas jet with a pressure of 5 to 50 bar used.
- gas pressures in the range from 21 to 50 bar.
- Excellent spray results were achieved, for example, with gas pressures of around 35 achieved in cash.
- the high pressure gas supply can, for example, by the in the German patent application DE 197 16 414.5 methods described there or described gas supply system can be ensured.
- the powder particles can run at a speed accelerated from 300 to 1600 m / s. Suitable in the process according to the invention speeds of the powder particles between 1000 and 1600 m / s, particularly preferably speeds of the powder particles between 1250 and 1600 m / s, because in this case the energy transfer in the form of kinetic Energy is particularly high.
- the powders used in the process according to the invention preferably have Particle sizes from 1 to 100 ⁇ m.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating By Spraying Or Casting (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Beschichten von Substratwerkstoffen durch thermisches Spritzen, wobei ein pulverförmiger Zusatzwerkstoff mittels eines Gases auf die zu beschichtende Oberfläche des Substratwerkstoffes geleitet wird, ohne daß die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl geschmolzen werden.The invention relates to a method for coating substrate materials thermal spraying, a powdered filler material using a gas is passed onto the surface of the substrate material to be coated without the powder particles of the filler material are melted in the gas jet.
Das thermische Spritzen zum Beschichten kennt als Verfahrensvarianten das autogene Flammspritzen oder das Hochgeschwindigkeits-Flammspritzen, das Lichtbogenspritzen, das Plasmaspritzen, das Detonationsspritzen und das Laserspritzen.Thermal spraying for coating is known as autogenous as process variants Flame spraying or high speed flame spraying, arc spraying, plasma spraying, detonation spraying and laser spraying.
Thermische Spritzverfahren werden in allgemeiner Form beispielsweise in
- Übersicht und Einführung in das "Thermische Spritzen", Peter Heinrich, Linde-Berichte aus Technik und Wissenschaft, 52/1982, Seiten 29 bis 37, oder
- Thermisches Spritzen - Fakten und Stand der Technik, Peter Heinrich, Jahrbuch Oberflächentechnik 1992, Band 48, 1991, Seiten 304 bis 327, Metall-Verlag GmbH,
- Overview and introduction to "thermal spraying" , Peter Heinrich, Linde reports from technology and science, 52/1982, pages 29 to 37, or
- Thermal spraying - facts and state of the art, Peter Heinrich, yearbook surface technology 1992, volume 48, 1991, pages 304 to 327, Metall-Verlag GmbH,
Thermische Spritzverfahren zeichnen sich im wesentlichen dadurch aus, daß sie gleichmäßig aufgetragene Beschichtungen ermöglichen. Durch thermische Spritzverfahren aufgetragene Beschichtungen können durch Variation der Spritzmaterialien an unterschiedliche Anforderungen angepaßt werden. Die Spritzmaterialien können dabei in Form von Drähten, Stäben oder als Pulver verarbeitet werden. Beim thermischen Spritzen kann zusätzlich eine thermische Nachbehandlung vorgesehen sein.Thermal spray processes are essentially characterized in that they enable evenly applied coatings. By thermal spraying Coatings can be applied by varying the spray materials can be adapted to different requirements. The spray materials can can be processed in the form of wires, rods or powder. With thermal In addition, thermal post-treatment can be provided for spraying.
In jüngerer Zeit wurde darüber hinaus ein weiteres thermisches Spritzverfahren entwickelt, welches auch als Kaltgasspritzen bezeichnet wird. Es handelt sich dabei um eine Art Weiterentwicklung des Hochgeschwindigkeits-Flammspritzens mit Pulver. Dieses Verfahren ist beispielsweise in der europäischen Patentschrift EP 0 484 533 B1 beschrieben. Beim Kaltgasspritzen kommt ein Zusatzwerkstoff in Pulverform zum Einsatz. Die Pulverpartikel werden beim Kaltgasspritzen jedoch nicht im Gasstrahl geschmolzen. Vielmehr liegt die Temperatur des Gasstrahles unterhalb des Schmelzpunktes der Zusatzwerkstoffpulverpartikel (EP 0 484 533 B1). Im Kaltgasspritzverfahren wird also ein im Vergleich zu den herkömmlichen Spritzverfahren "kaltes" bzw. ein vergleichsweise kälteres Gas verwendet. Gleichwohl wird das Gas aber ebenso wie in den herkömmlichen Verfahren erwärmt, aber in der Regel lediglich auf Temperaturen unterhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes.In addition, a further thermal spray process has recently been developed, which is also known as cold gas spraying. It is about a kind of further development of high-speed flame spraying with powder. This method is described, for example, in European patent EP 0 484 533 B1 described. A filler material in powder form is used for cold gas spraying Commitment. However, the powder particles are not melted in a gas jet during cold gas spraying. Rather, the temperature of the gas jet is below the melting point the filler material powder particle (EP 0 484 533 B1). In the cold gas spray process is a "cold" or "cold" used a comparatively colder gas. Nonetheless, the gas does the same as heated in the conventional methods, but usually only at temperatures below the melting point of the powder particles of the filler material.
Im Kaltgasverfahren nach dem Stand der Technik (EP 0 484 533 B1) wird als Gas Luft, Helium oder ein Gemisch aus Luft und Helium eingesetzt. Beim Einsatz von Luft werden die Pulverpartikel auf eine Geschwindigkeit von 300 bis 600 m/s, beim Einsatz von Helium auf eine Geschwindigkeit von 1000 bis 1200 m/s und beim Einsatz eines Luft/Helium-Gemisches auf eine Geschwindigkeit im Bereich von 300 bis 1200 m/s beschleunigt. Die Partikelgeschwindigkeit kann auch im Bereich zwischen 300 und 1200 m/s durch Erhitzen des Gases von 30 bis 400 °C gesteuert werden. Das Gas wird mit einem Druck von etwa 5 bis etwa 20 bar eingesetzt. Es wird ein Pulver mit einer Partikelgröße von 1 bis 50 µm verwendet.In the cold gas process according to the prior art (EP 0 484 533 B1) is used as the gas Air, helium or a mixture of air and helium are used. When using air the powder particles reach a speed of 300 to 600 m / s when in use from helium to a speed of 1000 to 1200 m / s and when using a Air / helium mixture to a speed in the range of 300 to 1200 m / s accelerated. The particle speed can also be in the range between 300 and 1200 m / s can be controlled by heating the gas from 30 to 400 ° C. The gas is used at a pressure of about 5 to about 20 bar. It will be a powder with a particle size of 1 to 50 microns used.
Das Kaltgasverfahren besitzt gegenüber herkömmlichen Verfahren des thermischen Spritzens eine Reihe von Vorteilen. Die thermische Einwirkung und Kraftwirkung auf die Oberfläche des Substratwerkstoffes ist verringert, wodurch ungewollte Veränderungen der Materialeigenschaften des Substratwerkstoffes verhindert oder zumindest merklich verringert werden können. Ebenso können weitgehend Änderungen in der Struktur des Substratwerkstoffs unterbunden werden.The cold gas process has compared to conventional thermal processes Spraying a number of advantages. The thermal action and force action The surface of the substrate material is reduced, causing unwanted changes the material properties of the substrate material prevented or at least can be significantly reduced. Likewise, changes in the Structure of the substrate material can be prevented.
Die EP 911 424 A 1 mit gleichem Zeitrang beschreibt ein Verfahren zur Herstellung von Verbundkörpem mittels thermischen Spritzens.EP 911 424 A1 with the same seniority describes a method of manufacture of composite bodies by means of thermal spraying.
Die EP 911 426 A1 mit gleichem Zeitrang beschreibt ein Verfahren zur Herstellung von selbsttragenden Formteilen mittels thermischen Spritzens.EP 911 426 A1 with the same seniority describes a method of manufacture of self-supporting molded parts using thermal spraying.
Die WO 95 07 768 A beschreibt ein spezielles Beschichtungsverfahren durch Bilden einer Mischung aus Teilchen und Gasströmung als Suspension und Beschleunigen der resultierenden zweiphasigen Strömung auf Überschallgeschwindigkeit auf ein zu beschichtendes Substrat zur Erzeugung einer Beschichtung unter Veränderung der physikalisch-chemischen Eigenschaften des Beschichtungswerkstoffes. Die Mischung aus Teilchen und Gas ist eine pseudo-flüssige Teilchen-Gas-Suspension. Das Verfahren baut auf einer Veränderung der physikalisch-chemischen Eigenschaften des Beschichtungswerkstoffes auf. Als Trägergas wird grundsätzlich komprimierte Luft verwendet. Zusätzlich ist ohne nähere Spezifizierung angegeben, dass sowohl inerte Gase wegen der Reinheit der Schicht als auch Gasmischungen verwendet werden können.WO 95 07 768 A describes a special coating process by formation a mixture of particles and gas flow as suspension and acceleration the resulting two-phase flow to supersonic speed coating substrate for producing a coating while changing the physico-chemical properties of the coating material. The mixture from particles and gas is a pseudo-liquid particle-gas suspension. The The process is based on a change in the physico-chemical properties of the coating material. Basically, the carrier gas is compressed Air used. In addition, it is stated without further specification that both inert gases used because of the purity of the layer as well as gas mixtures can be.
Die CH 658 045 A beschreibt im Zusammenhang mit der Herstellung von Glasformen für Hohlglaserzeugungsmaschinen nach einer Strahlbehandlung mit Korund das Erzeugen einer Schutzschicht aus einer Legierung durch Plasmaspritzen oder Flammspritzen ohne Einschmelzen. Dieses Verfahren ermöglicht gerade im Gegensatz zu Kaltspritzverfahren und Warmspritzverfahren mit Einschmelzen das Herstellen von Glasformen, die nach Beanspruchung und Beschädigung bei der Glasherstellung durch nachträgliches thermisches Spritzen repariert werden können.CH 658 045 A describes in connection with the manufacture of glass molds for hollow glass production machines after blasting treatment with corundum Creation of a protective layer from an alloy by plasma spraying or Flame spraying without melting. This process enables in particular Contrary to cold spraying and hot spraying with melting that Manufacture of glass molds that are used and damaged after Glass production can be repaired by subsequent thermal spraying.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, das eingangs genannte Verfahren weiterzubilden, und die Qualität der Beschichtungen zu verbessem und/oder die Anwendbarkeit und Leistungsfähigkeit des Kaltgaspritzverfahrens zu vergrößern.The object of the present invention is the method mentioned at the outset further training, and to improve the quality of the coatings and / or to increase the applicability and performance of the cold gas spray process.
Die gestellte Aufgabe wird dadurch gelöst, daß das den pulverförmigen Zusatzwerkstoff tragende Gas ein Stickstoff enthaltendes, sauerstofffreies Gas oder Kohlendioxid oder Mischungen davon enthält.The task is solved in that the powder Gas carrying filler material is a nitrogen-containing, oxygen-free gas or Contains carbon dioxide or mixtures thereof.
Unter Stickstoff enthaltendes Gas sind im Rahmen der vorliegenden Erfindung Stickstoff oder ein Stickstoff enthaltendes Gasgemisch zu verstehen. Als sauerstofffreie Gase werden im Rahmen der vorliegenden Erfindung Gase bezeichnet, die frei von elementarem Sauerstoff sind, wobei sich diese Angabe auf technische Reinheiten bezieht, also Verunreinigungen von elementarem Sauerstoff zugelassen sind.Gas containing nitrogen in the context of the present invention is nitrogen or to understand a gas mixture containing nitrogen. As oxygen free In the context of the present invention, gases are called gases which are free of are elemental oxygen, this indication referring to technical purities related, so contaminations of elemental oxygen are allowed.
Die Angabe, daß die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl nicht geschmolzen werden, soll im Rahmen der vorliegenden Erfindung auch bedeuten, daß die Partikel im Gasstrahl im wesentlichen nicht angeschmolzen werden. Dies kann dadurch sichergestellt werden, daß die Temperatur des Gasstrahles unterhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes liegt. Aber selbst bei Temperaturen des Gasstrahles von 100 K bis zu 200 K oberhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes kann aufgrund der extrem kurzen Verweilzeit der Partikel im Gasstrahl im Bereich von Millisekunden ein Schmelzen oder auch ein Anschmelzen der Pulverpartikel verhindert werden. Die Bedeutung der höheren Gastemperaturen bzw. der Vorteil der Erwärmung des Gases liegt darin, daß in heißeren Gasen die Schallgeschwindigkeit höher ist und dadurch auch die Partikelgeschwindigkeit vergleichsweise größer wird.The statement that the powder particles of the filler material did not melt in the gas jet in the context of the present invention should also mean that the particles in the gas jet are essentially not melted. This can be done ensure that the temperature of the gas jet is below the Melting point of the powder particles of the filler material. But even at temperatures of the gas jet from 100 K to 200 K above the melting point of the Powder particles of the filler material can due to the extremely short residence time Particles in the gas jet melt or melt in the range of milliseconds the powder particles can be prevented. The importance of higher gas temperatures or the advantage of heating the gas is that in hotter gases the speed of sound is higher and therefore also the particle speed becomes comparatively larger.
Überraschenderweise hat sich gezeigt, daß durch den Einsatz von unterschiedlichen Gasen zum Beschleunigen und Tragen des pulverförmigen Zusatzwerkstoffes die Flexibilität und Wirksamkeit des Verfahrens wesentlich vergrößert werden kann. Die erfindungsgemäß hergestellten Beschichtungen haften sehr gut auf den verschiedensten Substratwerkstoffen, beispielsweise auf Metall, Metallegierungen, Keramik, Glas, Kunststoffe und Verbundwerkstoffe. Die mit dem erfindungsgemäßen Verfahren hergestellten Beschichtungen sind von hoher Güte, weisen eine außerordentlich geringe Porosität auf und besitzen extrem glatte Spritzoberflächen, so daß sich in der Regel eine Nacharbeitung erübrigt. Die erfindungsgemäß eingesetzten Gase besitzen eine ausreichende Dichte und Schallgeschwindigkeit, um die erforderlichen hohen Geschwindigkeiten der Pulverpartikel gewährleisten zu können. Das Gas kann dabei inerte und/oder reaktive Gase enthalten. Das erfindungsgemäße Verfahren ermöglicht mit diesen Gasen die Herstellung von sehr dichten und besonders gleichmäßigen Beschichtungen, welche sich außerdem durch ihre Härte und Festigkeit auszeichnen. Die erfindungsgemäß hergestellten Beschichtungen weisen extrem geringe Oxidgehalte auf. Sie besitzen keine oder zumindest keine ausgeprägte Textur, d.h. es gibt keine Vorzugsorientierung der einzelnen Kömer oder Kristalle. Das Substrat wird femer nicht durch eine Flamme oder ein Plasma erwärmt, so daß keine oder nur extrem geringe Veränderungen am Substrat und auch kein Verzug von Werkstücken durch Wärmespannungen auftreten.Surprisingly, it has been shown that the use of different Gases to accelerate and carry the powdered filler material Flexibility and effectiveness of the process can be increased significantly. The Coatings produced according to the invention adhere very well to a very wide variety Substrate materials, for example on metal, metal alloys, ceramics, glass, Plastics and composites. The manufactured with the inventive method Coatings are of high quality and have an extremely low level Porosity and have extremely smooth spray surfaces, so that usually a rework is unnecessary. The gases used according to the invention have a sufficient density and speed of sound to achieve the required high speeds to be able to guarantee the powder particles. The gas can contain inert and / or reactive gases. The method according to the invention enables with these gases the production of very dense and particularly uniform coatings, which are also characterized by their hardness and strength. The coatings produced according to the invention are extremely small Oxide levels. They have no or at least no pronounced texture, i.e. it there is no preferred orientation of the individual grains or crystals. The substrate will furthermore not heated by a flame or a plasma, so that none or only extremely small changes to the substrate and no distortion of workpieces due to thermal stress.
Mit Vorteil kann dem Gas Helium zugemischt werden. Der Anteil des Helium am Gesamtgas kann bis zu 90 Vol.-% betragen. Bevorzugt wird ein Heliumanteil von 10 bis 50 Vol.-% im Gasgemisch eingehalten.Helium can advantageously be added to the gas. The proportion of helium in the total gas can be up to 90 vol .-%. A helium content of 10 to is preferred 50 vol .-% observed in the gas mixture.
Der Gasstrahl kann auf eine Temperatur im Bereich zwischen 30 und 800 °C erwärmt werden, wobei alle bekannten pulverförmigen Spritzmaterialien eingesetzt werden können. Die Erfindung eignet sich insbesondere für Spritzpulver aus Metallen, Metalllegierungen, Hartstoffen, Keramiken und/oder Kunststoffen.The gas jet can be heated to a temperature in the range between 30 and 800 ° C are, all known powdery spray materials are used can. The invention is particularly suitable for wettable powders made of metals, metal alloys, Hard materials, ceramics and / or plastics.
In Ausgestaltung des erfindungsgemäßen Verfahrens wird die Temperatur des Gasstrahles im Bereich zwischen 300 und 500 °C gewählt. Diese Gastemperaturen eignen sich insbesondere für den Einsatz von reaktiven Gasen oder reaktiven Gasbestandteilen. Als reaktive Gase oder Gasbestandteile sind insbesondere stickstoffhaltige Gase zu erwähnen.In an embodiment of the method according to the invention, the temperature of the gas jet selected between 300 and 500 ° C. These gas temperatures are particularly suitable for the use of reactive gases or reactive Gas constituents. As reactive gases or gas components are in particular to mention nitrogenous gases.
In Weiterbildung der Erfindung wird ein Gasstrahl mit einem Druck von 5 bis 50 bar eingesetzt. Vor allem das Arbeiten mit höheren Gasdrücken bringt zusätzliche Vorteile, da die Energieübertragung in Form von kinetischer Energie erhöht wird. Im erfindungsgemäßen Verfahren eignen sich Gasdrücke im Bereich von 21 bis 50 bar. Hervorragende Spritzergebnisse wurden beispielsweise mit Gasdrücken von etwa 35 bar erzielt. Die Hochdruckgasversorgung kann beispielsweise durch das in der deutschen Patentanmeldung DE 197 16 414.5 beschriebene Verfahren bzw. die dort beschriebene Gasversorgungsanlage sichergestellt werden.In a further development of the invention, a gas jet with a pressure of 5 to 50 bar used. Above all, working with higher gas pressures brings additional Advantages because the energy transfer in the form of kinetic energy is increased. in the Processes according to the invention are suitable for gas pressures in the range from 21 to 50 bar. Excellent spray results were achieved, for example, with gas pressures of around 35 achieved in cash. The high pressure gas supply can, for example, by the in the German patent application DE 197 16 414.5 methods described there or described gas supply system can be ensured.
Im erfindungsgemäßen Verfahren können die Pulverpartikel auf eine Geschwindigkeit von 300 bis 1600 m/s beschleunigt werden. Im erfindungsgemäßen Verfahren eignen sich dabei insbesondere Geschwindigkeiten der Pulverpartikel zwischen 1000 und 1600 m/s, besonders bevorzugt Geschwindigkeiten der Pulverpartikel zwischen 1250 und 1600 m/s, da in diesem Fall die Energieübertragung in Form von kinetischer Energie besonders hoch ausfällt.In the process according to the invention, the powder particles can run at a speed accelerated from 300 to 1600 m / s. Suitable in the process according to the invention speeds of the powder particles between 1000 and 1600 m / s, particularly preferably speeds of the powder particles between 1250 and 1600 m / s, because in this case the energy transfer in the form of kinetic Energy is particularly high.
Die im erfindungsgemäßen Verfahren eingesetzten Pulver besitzen bevorzugt Partikelgrößen von 1 bis 100 µm.The powders used in the process according to the invention preferably have Particle sizes from 1 to 100 µm.
Zur Durchführung des erfindungsgemäßen Verfahrens können alle geeigneten Vorrichtungen eingesetzt werden. Insbesondere gilt dies für die in der EP 0 484 533 B1 beschriebene Vorrichtung.All suitable devices can be used to carry out the method according to the invention be used. This applies in particular to those in EP 0 484 533 B1 described device.
Claims (7)
- Process for coating substrate materials by thermal spraying, in which a pulverulent additive is guided by means of a gas onto that surface of the substrate material which is to be coated without the powder particles of the additive being melted in the gas jet, characterized in that the gas contains nitrogen-containing, oxygen-free gas, carbon dioxide or mixtures thereof.
- Process according to Claim 1, characterized in that helium is admixed with the gas.
- Process according to one of Claims 1 or 2, characterized in that the temperature of the gas jet is in the range between 30 and 800°C.
- Process according to Claim 3, characterized in that the temperature of the gas jet is in the range between 300 and 500°C.
- Process according to one of Claims 1 to 4, characterized in that the gas jet is at a pressure of from 5 to 50 bar.
- Process according to one of Claims 1 to 5, characterized in that the powder particles are accelerated to a velocity of 300 to 1 600 m/s.
- Process according to Claim 6, characterized in that the powder particles are accelerated to a velocity of between 1 000 and 1 600 m/s.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19747386A DE19747386A1 (en) | 1997-10-27 | 1997-10-27 | Process for the thermal coating of substrate materials |
DE19747386 | 1997-10-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0911425A1 EP0911425A1 (en) | 1999-04-28 |
EP0911425B1 true EP0911425B1 (en) | 2003-01-22 |
Family
ID=7846743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98120104A Revoked EP0911425B1 (en) | 1997-10-27 | 1998-10-23 | Method for thermally coating surfaces |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0911425B1 (en) |
DE (2) | DE19747386A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112004001910B4 (en) * | 2003-10-08 | 2011-07-21 | Miba Gleitlager Gmbh | Overlay |
DE102011052120A1 (en) | 2011-07-25 | 2013-01-31 | Eckart Gmbh | Use of specially coated, powdery coating materials and coating methods using such coating materials |
WO2013014213A2 (en) | 2011-07-25 | 2013-01-31 | Eckart Gmbh | Methods for substrate coating and use of additive-containing powdered coating materials in such methods |
DE102011052121A1 (en) | 2011-07-25 | 2013-01-31 | Eckart Gmbh | Coating process using special powder coating materials and use of such coating materials |
DE102011052119A1 (en) | 2011-07-25 | 2013-01-31 | Eckart Gmbh | Coating method of particle-containing powdery coating material used for automobile component, involves performing flame spraying, high-speed flame spraying, thermal plasma spraying and/or non-thermal plasma spraying method |
EP2959992A1 (en) | 2014-06-26 | 2015-12-30 | Eckart GmbH | Method for producing a particulate-containing aerosol |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19747385A1 (en) * | 1997-10-27 | 1999-04-29 | Linde Ag | Manufacture of molded parts |
DE19747384A1 (en) * | 1997-10-27 | 1999-04-29 | Linde Ag | Manufacture of composite bodies |
JP3468739B2 (en) * | 1999-12-27 | 2003-11-17 | 新東ブレーター株式会社 | Method for attaching metal having high corrosion resistance and low contact resistance to carbon to fuel cell separator |
DE10203884A1 (en) * | 2002-01-31 | 2003-08-14 | Flumesys Gmbh Fluidmes Und Sys | Thermal spraying apparatus and method |
DE10224780A1 (en) * | 2002-06-04 | 2003-12-18 | Linde Ag | High-velocity cold gas particle-spraying process for forming coating on workpiece, is carried out below atmospheric pressure |
DE10309018B3 (en) * | 2003-03-01 | 2004-09-30 | Newspray Gmbh | Method of making cookware for an induction cooker |
WO2006032522A1 (en) * | 2004-09-25 | 2006-03-30 | Abb Technology Ag | Method for producing an arc-erosion resistant coating and corresponding shield for vacuum arcing chambers |
DE102005043484B4 (en) | 2005-09-13 | 2007-09-20 | Abb Technology Ag | Vacuum interrupter chamber |
DE102006008027B3 (en) * | 2006-02-16 | 2007-09-06 | Siemens Ag | Component with a nano-scale structure elements having layer and method for producing this layer |
DE102006047101B4 (en) | 2006-09-28 | 2010-04-01 | Siemens Ag | Method for feeding particles of a layer material into a cold gas spraying process |
DE102007017753A1 (en) * | 2007-04-16 | 2008-10-23 | Innovaris Gmbh & Co. Kg | Production of large components by kinetic cold gas compacting of material particles |
DE102008006495A1 (en) | 2008-01-29 | 2009-07-30 | Behr-Hella Thermocontrol Gmbh | Circuit carrier i.e. standard flame retardant four printed circuit board, for air-conditioning system of motor vehicle, has copper thick film increasing current feed properties and applied on copper thin film by thermal spraying of metal |
DE102008009106B4 (en) | 2008-02-14 | 2010-04-08 | Behr-Hella Thermocontrol Gmbh | Printed circuit board for electrical circuits |
DE102010022597A1 (en) | 2010-05-31 | 2011-12-01 | Siemens Aktiengesellschaft | Method for producing a layer by means of cold gas spraying and use of such a layer |
WO2013020863A1 (en) | 2011-08-09 | 2013-02-14 | Saint-Gobain Glass France | Electrical contact composites and method for producing electrical contact composites |
DE102011084724A1 (en) * | 2011-10-18 | 2013-04-18 | Robert Bosch Gmbh | Method for producing a magnetic separation for a solenoid valve |
FR2983874B1 (en) | 2011-12-12 | 2014-02-21 | Air Liquide | METHOD FOR SURFACE COATING BY PROJECTING PARTICLES USING A CRYOGENIC VECTOR FLUID |
DE102012212682A1 (en) * | 2012-07-19 | 2014-01-23 | Siemens Aktiengesellschaft | Method for cold gas spraying with a carrier gas |
DE102012023212B3 (en) | 2012-11-28 | 2014-01-30 | Wieland-Werke Ag | Electrically conductive component with improved adhesion and process for its production, and for producing a composite material |
DE102012023210A1 (en) | 2012-11-28 | 2014-05-28 | Wieland-Werke Ag | Copper strip for the production of printed circuit boards |
DE102015102908A1 (en) * | 2015-03-02 | 2016-09-08 | Schuler Pressen Gmbh | Process for manufacturing a molded part, molding, tool and press with a tool |
DE102020127874A1 (en) | 2019-11-08 | 2021-05-12 | Additive Space Gmbh | Method of making a container |
EP4340540A1 (en) | 2022-09-13 | 2024-03-20 | Saint-Gobain Glass France | Method for producing a vehicle window with electrically conductive spray layer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0911424A1 (en) * | 1997-10-27 | 1999-04-28 | Linde Aktiengesellschaft | Making of composite materials |
EP0911426A1 (en) * | 1997-10-27 | 1999-04-28 | Linde Aktiengesellschaft | Production of mouldings |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2003167A (en) * | 1931-01-09 | 1935-05-28 | Gen Electric | Apparatus for fusing powdered materials |
DE876787C (en) * | 1949-04-07 | 1953-05-18 | Deutsche Edelstahlwerke Ag | Method for generating a metallic spray jet |
GB882582A (en) * | 1957-10-02 | 1961-11-15 | William Edward Ballard | Improvements in or relating to methods for applying coatings of substances to surfaces |
NL254841A (en) * | 1959-08-14 | 1900-01-01 | ||
DE2646554C3 (en) * | 1976-10-15 | 1980-01-10 | Castolin S.A., Lausanne (Schweiz) | Powder welding process for coating metallic materials |
US4256779A (en) * | 1978-11-03 | 1981-03-17 | United Technologies Corporation | Plasma spray method and apparatus |
CH658045A5 (en) * | 1982-05-12 | 1986-10-15 | Castolin Sa | Process for the production of glass moulds for machines for the production of hollow glass |
DE3806177A1 (en) * | 1988-02-26 | 1989-09-07 | Siemens Ag | METHOD FOR APPLYING LAYERS OF HIGH-TEMPERATURE SUPRAL-CONDUCTIVE MATERIAL TO SUBSTRATES |
WO1991019016A1 (en) * | 1990-05-19 | 1991-12-12 | Institut Teoreticheskoi I Prikladnoi Mekhaniki Sibirskogo Otdelenia Akademii Nauk Sssr | Method and device for coating |
EP0667810A1 (en) * | 1993-09-15 | 1995-08-23 | Societe Europeenne De Propulsion | Method for the production of composite materials or coatings and system for implementing it |
DE4413306C1 (en) * | 1994-04-16 | 1995-10-19 | Daimler Benz Aerospace Ag | Reinforcing a construction component |
DE4427262C1 (en) * | 1994-07-30 | 1995-03-23 | Mtu Muenchen Gmbh | Process and apparatus for flame spraying |
DE19520885C2 (en) * | 1995-06-08 | 1999-05-20 | Daimler Benz Ag | Process for the thermal spraying of layers of metal alloys or metals and its use |
-
1997
- 1997-10-27 DE DE19747386A patent/DE19747386A1/en not_active Withdrawn
-
1998
- 1998-10-23 EP EP98120104A patent/EP0911425B1/en not_active Revoked
- 1998-10-23 DE DE59806988T patent/DE59806988D1/en not_active Revoked
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0911424A1 (en) * | 1997-10-27 | 1999-04-28 | Linde Aktiengesellschaft | Making of composite materials |
EP0911426A1 (en) * | 1997-10-27 | 1999-04-28 | Linde Aktiengesellschaft | Production of mouldings |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112004001910B4 (en) * | 2003-10-08 | 2011-07-21 | Miba Gleitlager Gmbh | Overlay |
DE102011052120A1 (en) | 2011-07-25 | 2013-01-31 | Eckart Gmbh | Use of specially coated, powdery coating materials and coating methods using such coating materials |
WO2013014213A2 (en) | 2011-07-25 | 2013-01-31 | Eckart Gmbh | Methods for substrate coating and use of additive-containing powdered coating materials in such methods |
DE102011052121A1 (en) | 2011-07-25 | 2013-01-31 | Eckart Gmbh | Coating process using special powder coating materials and use of such coating materials |
WO2013014211A2 (en) | 2011-07-25 | 2013-01-31 | Eckart Gmbh | Use of specially coated powdered coating materials and coating methods using such coating materials |
WO2013014214A2 (en) | 2011-07-25 | 2013-01-31 | Eckart Gmbh | Coating method using special powdered coating materials and use of such coating materials |
DE102011052119A1 (en) | 2011-07-25 | 2013-01-31 | Eckart Gmbh | Coating method of particle-containing powdery coating material used for automobile component, involves performing flame spraying, high-speed flame spraying, thermal plasma spraying and/or non-thermal plasma spraying method |
US9580787B2 (en) | 2011-07-25 | 2017-02-28 | Eckart Gmbh | Coating method using special powdered coating materials and use of such coating materials |
EP2959992A1 (en) | 2014-06-26 | 2015-12-30 | Eckart GmbH | Method for producing a particulate-containing aerosol |
Also Published As
Publication number | Publication date |
---|---|
DE19747386A1 (en) | 1999-04-29 |
DE59806988D1 (en) | 2003-02-27 |
EP0911425A1 (en) | 1999-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0911425B1 (en) | Method for thermally coating surfaces | |
EP0911426B1 (en) | Production of mouldings | |
US7479299B2 (en) | Methods of forming high strength coatings | |
CA2263919C (en) | Method for hardfacing a metal surface | |
DE69210146T2 (en) | Process for producing a non-porous, hard layer | |
DE1924071B1 (en) | Metallic coating for nickel and cobalt-based alloys and use of the metallic coating for gas turbine machine parts | |
DE10224780A1 (en) | High-velocity cold gas particle-spraying process for forming coating on workpiece, is carried out below atmospheric pressure | |
JP2006265732A (en) | Applying bond coat to engine components using cold spray | |
KR20060063639A (en) | Vacuum cold spray method | |
JP2006176880A (en) | Cold spray process and apparatus | |
EP0915184A1 (en) | Process for producing a ceramic layer on a metallic substrate | |
WO2013014214A2 (en) | Coating method using special powdered coating materials and use of such coating materials | |
DE60016466T2 (en) | A method of producing low density components comprising a polymer matrix or metal matrix substrate and a ceramic and / or metal-ceramic coating, and the low density and high surface strength components therewith | |
EP1317995A1 (en) | Method and apparatus for smoothing the surface of a gas turbine airfoil | |
US20110129379A1 (en) | Method for manufacturing massive components made of intermetallic materials | |
EP2009132A1 (en) | Method for manufacturing a functional layer, coating material, method for its manufacture and functional layer | |
EP0924315B1 (en) | Production of hot gas for thermal spraying | |
EP2100864A1 (en) | Method for producing friction surfaces or friction layers of a carbon-ceramic brake disk and a carbon-ceramic brake disk equipped with same | |
EP0911424B1 (en) | Making of self-supporting composite materials | |
Voyer et al. | Development of cold gas sprayed coatings | |
EP0911423B1 (en) | Method for joining workpieces | |
US20070098913A1 (en) | Method for coating turbine engine components with metal alloys using high velocity mixed elemental metals | |
DE19520885C2 (en) | Process for the thermal spraying of layers of metal alloys or metals and its use | |
EP2617868B1 (en) | Method and device for thermal spraying | |
EP0990711B1 (en) | Treatment of surfaces before thermally spray coating them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB LI |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19990914 |
|
AKX | Designation fees paid |
Free format text: CH DE FR GB LI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LINDE TECHNISCHE GASE GMBH |
|
17Q | First examination report despatched |
Effective date: 20001012 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LINDE GAS AG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LINDE AG |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59806988 Country of ref document: DE Date of ref document: 20030227 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030411 |
|
ET | Fr: translation filed | ||
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR Effective date: 20030802 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
RDAD | Information modified related to despatch of communication that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSCREV1 |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: LINDE AKTIENGESELLSCHAFT Free format text: LINDE AG#ABRAHAM-LINCOLN-STRASSE 21#65189 WIESBADEN (DE) -TRANSFER TO- LINDE AKTIENGESELLSCHAFT#LEOPOLDSTRASSE 252#80807 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: LINDE AG |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20101020 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20101020 Year of fee payment: 13 Ref country code: CH Payment date: 20101012 Year of fee payment: 13 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20101020 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
27W | Patent revoked |
Effective date: 20110124 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20110124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20030122 Ref country code: CH Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20030122 |