EP0908665B1 - Gas container for measuring - Google Patents
Gas container for measuring Download PDFInfo
- Publication number
- EP0908665B1 EP0908665B1 EP98117220A EP98117220A EP0908665B1 EP 0908665 B1 EP0908665 B1 EP 0908665B1 EP 98117220 A EP98117220 A EP 98117220A EP 98117220 A EP98117220 A EP 98117220A EP 0908665 B1 EP0908665 B1 EP 0908665B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- pressure
- compressed
- measurement
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/02—Special adaptations of indicating, measuring, or monitoring equipment
- F17C13/025—Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/02—Special adaptations of indicating, measuring, or monitoring equipment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/02—Special adaptations of indicating, measuring, or monitoring equipment
- F17C13/026—Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0109—Shape cylindrical with exteriorly curved end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/03—Orientation
- F17C2201/032—Orientation with substantially vertical main axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/056—Small (<1 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/058—Size portable (<30 l)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/01—Mounting arrangements
- F17C2205/0123—Mounting arrangements characterised by number of vessels
- F17C2205/013—Two or more vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0323—Valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/035—High pressure (>10 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/036—Very high pressure (>80 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0135—Pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0157—Compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/04—Methods for emptying or filling
- F17C2227/044—Methods for emptying or filling by purging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/04—Methods for emptying or filling
- F17C2227/045—Methods for emptying or filling by vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/043—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/0439—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/0447—Composition; Humidity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0486—Indicating or measuring characterised by the location
- F17C2250/0491—Parameters measured at or inside the vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0486—Indicating or measuring characterised by the location
- F17C2250/0495—Indicating or measuring characterised by the location the indicated parameter is a converted measured parameter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/02—Improving properties related to fluid or fluid transfer
- F17C2260/024—Improving metering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/02—Mixing fluids
- F17C2265/025—Mixing fluids different fluids
Definitions
- the invention relates to a compressed gas container with one or more openings for connection of sensors.
- the manometric method is based on the measurement of the pressure change after addition of the individual gas components.
- the gas components are successively filled up to a defined pressure in the compressed gas cylinder, wherein the pressure increase in a filling step is at least several bar.
- Gas mixtures with a component in the trace range are prepared by means of mother mixtures, which are presented in the compressed gas cylinder in overpressure and filled with the main component to the final pressure.
- the pressure measurement was previously in front of the compressed gas cylinder in the gas line. Due to pressure drops at constrictions in the gas line, especially at the gas cylinder valve, the measured pressure may differ significantly from the pressure in the gas cylinder (when applying an overpressure or a negative pressure). Precise pressure measurement during gas filling is therefore not possible with the desired reliability.
- the invention has for its object to provide conditions for accurate pressure measurement when filling gases in compressed gas tank and in the production of gas mixtures in pressurized gas containers.
- the compressed gas container is preferably a compressed gas cylinder, for. B. a commercial compressed gas cylinder with 50, 40, 20, 10, 5, 2, 1 or 0.5 liter bottle volume, which is provided with one or more openings adjacent to the opening for the cylinder valve. The openings are used to hold z. B. valves, temperature sensors adapters, pressure sensors or pressure gauges.
- Compressed gas containers according to the invention in particular compressed gas cylinders and pressure cans, are referred to below as measuring containers.
- Compressed gas cylinders are usually not provided with additional openings (eg holes) for safety reasons.
- the modification of compressed gas containers according to the invention in consideration of safety precautions or safety requirements is acceptable for measurement purposes.
- the use of modified gas cylinders under appropriate security arrangements is possible.
- the measuring container is advantageously connected in parallel with other compressed gas containers. It is particularly advantageous if the measuring container is produced from a pressurized gas container which corresponds to the compressed gas containers connected in parallel. If the containers are of the same type, then the same conditions prevail in the measuring container as in the compressed gas containers of the gas filling.
- the measuring container can be easily integrated into a filling level.
- the measuring container is suitable, for example, for measuring pressure and / or temperature. Through several openings with connections for temperature sensors, which extend into the compressed gas cylinder and z. B. are arranged along the longitudinal axis, z. B. a temperature gradient that may occur during gas filling, are determined. Temperature sensors (eg thermocouples) are used for. As for the detection of temperature profiles on or in the bottle. In particular, the gas temperature can be measured directly.
- Openings can also be used for guest extraction for analysis purposes, eg. B. in conjunction with high-pressure metering valves or shut-off valves.
- the local gas composition can be determined, in particular for testing the homogeneity of gas mixtures or for determining gas layers in the gas mixture production.
- Gas composition can be determined from sampled gas samples or online. Analytical methods are z. As mass spectrometry or infrared spectroscopy, in particular FT-IR spectroscopy.
- the openings may also be used to receive probes for examining the inner surface of pressurized gas containers (eg, endoscope, spectroscopic surface investigations, gas analysis by mass spectrometry). For example, adsorption and desorption processes for quality control can be detected (eg, change in gas composition by mass spectrometry).
- probes for examining the inner surface of pressurized gas containers eg, endoscope, spectroscopic surface investigations, gas analysis by mass spectrometry.
- adsorption and desorption processes for quality control can be detected (eg, change in gas composition by mass spectrometry).
- the openings in the compressed gas container wall are provided with a thread, for.
- a thread for example, tapered threads such as NPT 1/16 inch to NPT 1 ⁇ 4 inch. 1/16 and 1/4 inch thread can z. B. be mounted at least 5 mm wall thickness. Threaded openings are particularly suitable for use in high pressure applications. Brazed or welded connections are generally used in the low pressure range (eg in thin-walled containers such as pressure cans).
- the measuring container can be used particularly advantageously for precise pressure measurement in manometric processes for the production of gas mixtures.
- Gasdosieruben with partial pressure measurement z.
- the measuring container with pressure measuring ensures accurate and transferable readings for the compressed gas tank in the gas filling.
- the partial pressure of the minor component in the compressed gas containers must be precisely determined.
- the vacuum measuring tubes are arranged at the filling levels relatively close to the suction of the vacuum pumps.
- Overpressure gauges are usually in the filling piping system.
- the pressure in the compressed gas cylinder is not measured with sufficient accuracy.
- the parallel connected to the filling gas cylinders measuring container (“dummy bottle"), which is preferably equipped with one or more gasartuncontactingen Absoluttikmeßröhren and thus reflects the real pressure in each gas cylinder.
- the measuring container can be shut off from the filling gas line or it can be a shut-off valve between the measuring container and meter attached, which is closed as soon as the allowable Meß réelle Symposium is exceeded. It may be advantageous to use several measuring container, z. B. a measuring container for measurement in the low pressure region and a measuring container in the middle and high pressure area.
- the normally used vacuum measuring tubes, z. B. Thermovac, Pirani or Penning measuring tubes have a strong gasartvideoe pressure measurement due to the measuring principle.
- the pressure gauge is not linear in these meters. In connection with the measuring container measuring systems are preferred, which allow a gasartunmultie, absolute pressure measurement.
- a gas-independent, absolute pressure measurement can (eg device called 600 Barocel ® from Edwards, USA; measuring ranges.: Mbar 0-10, 0-100, 0-1000), for example, pressure gauges as Kapazticiansmanometem respectively.
- the input pressure deflects a thin diaphragm welded radially in the housing with respect to a fixed electrode, in which case both electrodes form a capacitor. This leads to a change in capacitance, which is directly proportional to the pressure after electronic signal processing via the control and display electronics.
- the output signal is a linear DC voltage.
- the reference electrode is located in a reference ultra-high vacuum chamber, which is stable for a long time due to chemical getters.
- Gas-independent measuring tubes for capacitive measurement are available for pressures of, for example, 0.0001 mbar to 1000 mbar.
- the measuring container advantageously contains a connection an external Evakuier mecanickeit for faster calibration of vacuum measuring tubes:
- the connection is mounted for example on the side of the wall of a compressed gas cylinder.
- the use of the measuring container is advantageous in all manometric processes for the preparation of gas mixtures, in particular in the pressure measurement in processes for the preparation of gas mixtures in compressed gas tanks, where in at least one step initially a pressure of a gas is roughly specified (coarse pressure) and then a smaller precise pressure (Fine pressure) is set in the gas cylinder by means of a vacuum.
- the fine pressure is for example in the range of 0.0001 to 1000 mbar at 15 ° C.
- the use of the measuring container is particularly advantageous in the preparation of a gas mixture having a main component and a minor component, which in a small concentration, for. B. in the trace range, is present.
- the filling and metering is advantageously carried out first with the gas component to be produced in the Gas mixture in the lowest concentration is present (minor component), since the first metering step can be performed in the process with the greatest accuracy.
- the rinsed, conditioned and evacuated compressed gas container is filled with the first gas component.
- the filling with the first gas component is initially up to a coarse pressure which is greater than the actual metering pressure, by which the amount of the gas component is determined.
- the coarse pressure is generally at a pressure in the range of 0.1 to 10 bar, preferably in the range of 0.1 to 5 bar and more preferably in the range of 0.8 to 1.5 bar, depending on the Feintik to be set.
- the fine pressure and the coarse pressure should be so far apart that a dosage can be performed well by vacuum. This is for example given when the fine pressure is about 10 percent below the value of the coarse pressure.
- the fine pressure is below 100 millibars, especially below 10 millibars, the change in pressure upon application of the vacuum is slow, so that the desired value of the fine pressure can be set very accurately.
- the adjustment of the fine pressure can be facilitated by throttling (valve) in the vacuum line.
- the metering of other gas components is additive as in conventional manometric processes by filling up to a predetermined metering pressure.
- the filling with the proportionally largest gas component (main component) is advantageously carried out as a last step, while this gas component is filled up to the last metering pressure, which is the filling pressure of the pressure vessel with the finished gas mixture.
- the measuring container also permits a direct gas metering (additive gas metering) in a vacuum (that is to say at a pressure below one bar) on account of the precise pressure measurement.
- Conditioning and filling of the compressed gas containers with the gas components can take place simultaneously with several compressed gas containers (eg 1 to 100 compressed gas containers) at the filling level. It is possible to dispense with the storage of mother mixtures and complicated gravimetric dosing so that gas mixtures with gas components of low concentration can be prepared directly.
- a compressed gas cylinder which has been thermally conditioned and filled with a preserving gas (eg nitrogen gas) at a pressure of up to 3 bar, is brought to an internal pressure of about atmospheric pressure by releasing gas. Subsequently, the compressed gas cylinder is evacuated with a vacuum pump (eg oil-free membrane pump) to a pressure of about 10 millibars. This corresponds to a pressure reduction of about 2 orders of magnitude.
- the evacuated compressed gas cylinder is flooded with the gas of the secondary component to be fed to a pressure in the range of 800 to about 1000 millibar.
- the rinsing as well as the subsequent steps are preferably carried out at room temperature (20 to 25 ° C).
- the compressed gas cylinder is now filled with the gas of the minor component at about atmospheric pressure and the inner surface is brought into equilibrium with the gas of the minor component.
- the compressed gas cylinder is thus conditioned.
- the actual metering of the secondary component takes place by evacuation (removal of gas) to the desired fine pressure, which corresponds to the partial pressure of the secondary component in the finished, compressed gas mixture.
- the required pressure can be determined theoretically (eg using a gas equation such as ideal gas law or using a calculation model) or empirically (eg based on gas analyzes). If the fine pressure of the secondary component is set, the dosing of the secondary component is completed. In this way, minor components z. B. be submitted very accurately between 10 -4 and 1000 millibar.
- the main component of the gas mixture is now on the final pressure (filling pressure) in the compressed gas cylinder, for example, 200 bar, pressed. This can be done by means of a compressor or by connecting a reservoir of a gas supply (gas of the main component) at a higher pressure (eg 350 bar). The filling with the main component can also be controlled gravimetrically.
- the figure shows schematically a measuring container 1 with examples of measuring devices 2 (2a, 2b, 2c and 2d: temperature sensor) and 3 (3a, 3b: gas line with shut-off valve and pressure gauge, eg manometer), gas sampling device 4 and connecting piece 7.
- Der Measuring container is arranged parallel to a second compressed gas container 5 (or further compressed gas containers).
- the Temperature sensors 2a to 2d are arranged, for example, in a row for the measurement of the temperature profile along the measuring points.
- the Temperaturmeßrefers can z. B. in the longitudinal direction (here vertical) a compressed gas cylinder or circular (horizontal here) may be arranged.
- the pressure measuring devices 3a and 3b are advantageously provided with a shut-off valve.
- a capacitance gauge for the vacuum measurement and a pressure gauge for higher pressure ranges can be connected.
- the gas sampling point 4 is used for taking gas samples for analysis or on-line connection of analysis equipment (eg mass spectrometer or IR spectrometer).
- the connecting piece 7 is preferably used for separate evacuation of the measuring container for calibration of Vakuummeßtechnikn.
- Measuring container 1 and compressed gas container 5 are connected via a line to a vacuum pump 6 (arrows show the direction of the gas flow when vacuum is applied) and / or a gas source 6 (eg compressor with storage gas containers).
- Another object of the invention is a method for filling compressed gas containers with gas or the production of gas mixtures in compressed gas containers, wherein a physical or chemical examination is carried out by means of a measuring container.
- Physical investigations are z. B. pressure or temperature measurement. Chemical investigations are z. B. Analyzes to determine the gas composition, which may include physical methods. As a chemical analysis also analyzes by infrared spectroscopy or mass spectrometry are considered.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Sampling And Sample Adjustment (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
Die Erfindung betrifft einen Druckgasbehälter mit einer oder mehreren Öffnungen zum Anschluß von Meßfühlern.The invention relates to a compressed gas container with one or more openings for connection of sensors.
Gasgemische werden am häufigsten mittels des manometrischen Verfahrens hergestellt. Diese Verfahren wird in dem Sonderdruck 23/94 aus Berichte aus Technik und Wissenschaft 69/1993 "Prüfgase - Präzisionsgemische zum Kalibrieren von Meßgeräten" von Dr. K. Wilde und K. Studtrucker, Firma Linde - Technische Gase, beschrieben.Gas mixtures are most often produced by the manometric method. This method is described in Special Issue 23/94 from Reports from Technology and Science 69/1993 "Test gases - precision mixtures for calibrating measuring instruments" by Dr. med. K. Wilde and K. Studtrucker, Linde - Technical Gases.
Das manometrische Verfahren beruht auf der Messung der Druckänderung nach Zugabe der einzelnen Gaskomponenten. Um die gewünschte Zusammensetzung der Gasmischung zu erreichen, werden die Gaskomponenten nacheinander bis zu einem definierten Druck in die Druckgasflasche gefüllt, wobei die Druckerhöhung bei einem Füllschritt wenigstens mehrere bar beträgt. Gasgemische mit einer Komponente im Spurenbereich werden mittels Muttergemischen hergestellt, welche in der Druckgasflasche im Überdruck vorgelegt und mit der Hauptkomponente bis zum Endruck aufgefüllt werden. Die Druckmessung erfolgte bisher vor der Druckgasflasche im Gasleitungsweg. Aufgrund von Druckabfällen bei Verengungen im Gasleitungsweg, insbesondere am Gasflaschenventil, kann der gemessene Druck von dem Druck in der Gasflasche erheblich abweichen (bei Anlegen von einem Überdruck oder einem Unterdruck). Eine präzise Druckmessung während der Gasabfüllung ist daher nicht mit der gewünschten Zuverlässigkeit möglich.The manometric method is based on the measurement of the pressure change after addition of the individual gas components. In order to achieve the desired composition of the gas mixture, the gas components are successively filled up to a defined pressure in the compressed gas cylinder, wherein the pressure increase in a filling step is at least several bar. Gas mixtures with a component in the trace range are prepared by means of mother mixtures, which are presented in the compressed gas cylinder in overpressure and filled with the main component to the final pressure. The pressure measurement was previously in front of the compressed gas cylinder in the gas line. Due to pressure drops at constrictions in the gas line, especially at the gas cylinder valve, the measured pressure may differ significantly from the pressure in the gas cylinder (when applying an overpressure or a negative pressure). Precise pressure measurement during gas filling is therefore not possible with the desired reliability.
Aus der US 3,593,735, welche als nächstliegender Stand der Technik angesehen wird und dem einleitenden Teil von Anspruch 1 entspricht, ist ein Verfahren zur Mischung von Gasen bekannt, bei dem in einem Mischtank Helium und Sauerstoff gemischt werden um ein Atemgas für einen Taucher bereitzustellen. Die Mischung erfolgt durch zwei ineinander verlegte Spiralen, die perforierte Wände aufweisen und die von jeweils einem der Gase durchströmt werden. Der Mischtank weist zudem Anschlüsse für Messgeräte auf.From US 3,593,735, which is considered to be the closest prior art and corresponds to the introductory part of claim 1, a method of mixing gases is known in which helium and oxygen are mixed in a mixing tank to provide a breathing gas for a diver. The mixture is made by two nested spirals, which have perforated walls and which are flowed through by one of the gases. The mixing tank also has connections for measuring instruments.
Der Erfindung liegt die Aufgabe zugrunde, Voraussetzungen für eine genaue Druckmessung beim Abfüllen von Gasen in Druckgasbehälter und bei der Herstellung von Gasgemischen in Druckgasbehältern zu schaffen.The invention has for its object to provide conditions for accurate pressure measurement when filling gases in compressed gas tank and in the production of gas mixtures in pressurized gas containers.
Gelöst wurde die Aufgabe durch einen Druckgasbehälter mit den Merkmalen von Anspruch 1.The problem was solved by a compressed gas container with the features of claim 1.
Der Druckgasbehälter ist vorzugsweise eine Druckgasflasche, z. B. eine handelsübliche Druckgasflasche mit 50, 40, 20, 10, 5, 2, 1 oder 0,5 Liter Flaschenvolumen, die mit einer oder mehreren Öffnungen neben der Öffnung für das Flaschenventil versehen ist. Die Öffnungen dienen zur Aufnahme von z. B. Ventilen, Temperaturfühlern Adaptern, Druckaufnehmem oder Manometern.The compressed gas container is preferably a compressed gas cylinder, for. B. a commercial compressed gas cylinder with 50, 40, 20, 10, 5, 2, 1 or 0.5 liter bottle volume, which is provided with one or more openings adjacent to the opening for the cylinder valve. The openings are used to hold z. B. valves, temperature sensors adapters, pressure sensors or pressure gauges.
Erfindungsgemäße Druckgasbehälter, insbesondere Druckgasflaschen und Druckdosen, werden im folgenden als Meßbehälter bezeichnet.Compressed gas containers according to the invention, in particular compressed gas cylinders and pressure cans, are referred to below as measuring containers.
Druckgasflaschen werden gewöhnlich aus Sicherheitsgründen nicht mit zusätzlichen Öffnungen (z. B. Bohrungen) versehen. Die Modifizierung von Druckgasbehältern gemäß der Erfindung unter Beachtung von Sicherheitsvorkehrungen bzw. Sicherheitsanforderungen ist zu Meßzwecken vertretbar. Beispielsweise ist der Einsatz von modifizierten Druckgasflaschen im Niederdruckbereich, d. h. bis zu 1 bar, oder im Druckbereich von 1 bis 6 bar ohne größere Gefahr möglich. Auch im Hochdruckbereich, z. B. 10 bis 350 bar, ist der Einsatz von modifizierten Druckgasflaschen unter entsprechenden Sicherheitsvorkehrungen möglich.Compressed gas cylinders are usually not provided with additional openings (eg holes) for safety reasons. The modification of compressed gas containers according to the invention in consideration of safety precautions or safety requirements is acceptable for measurement purposes. For example, the use of modified compressed gas cylinders in the low pressure area, d. H. up to 1 bar, or in the pressure range of 1 to 6 bar without major danger possible. Also in the high pressure area, z. B. 10 to 350 bar, the use of modified gas cylinders under appropriate security arrangements is possible.
Der Meßbehälter wird in der Anwendung (z. B. zur Druckmessung) vorteilhaft parallel zu anderen Druckgasbehältern angeschlossen. Besonders vorteilhaft ist, wenn der Meßbehälter aus einem Druckgasbehälter hergestellt wird, der den paralell angeschlossenen Druckgasbehältern entspricht. Bei Gleichartigkeit der Behälter herrschen dann in dem Meßbehälter die gleichen Bedingungen wie in den Druckgasbehältern der Gasabfüllung. Der Meßbehälter ist problemlos in einen Abfüllstand integrierbar.In the application (eg for pressure measurement), the measuring container is advantageously connected in parallel with other compressed gas containers. It is particularly advantageous if the measuring container is produced from a pressurized gas container which corresponds to the compressed gas containers connected in parallel. If the containers are of the same type, then the same conditions prevail in the measuring container as in the compressed gas containers of the gas filling. The measuring container can be easily integrated into a filling level.
Der Meßbehälter eignet sich beispielsweise zur Messung von Druck und/oder Temperatur. Durch mehrere Öffnungen mit Anschlüssen für Temperaturfühler, die in die Druckgasflasche hineinreichen und z. B. entlang der Längsachse angeordnet sind, kann z. B. ein Temperaturgradient, der bei der Gasabfüllung entstehen kann, ermittelt werden. Temperaturmeßfühler (z. B. Thermoelemente) dienen z. B. zur Erfassung von Temperaturprofilen an oder in der Flasche. Insbesondere kann die Gastemperatur direkt gemessen werden.The measuring container is suitable, for example, for measuring pressure and / or temperature. Through several openings with connections for temperature sensors, which extend into the compressed gas cylinder and z. B. are arranged along the longitudinal axis, z. B. a temperature gradient that may occur during gas filling, are determined. Temperature sensors (eg thermocouples) are used for. As for the detection of temperature profiles on or in the bottle. In particular, the gas temperature can be measured directly.
Öffnungen können auch zur Gastentnahme für Analysezwecke eingesetzt werden, z. B. in Verbindung mit Hochdruckdosierventilen oder Absperrventilen. Anhand mehrerer Öffnungen, z. B. entlang der Längsachse des Druckgasbehälters, kann die örtliche Gaszusammensetzung bestimmt werden, insbesondere zur Prüfung der Homogenität von Gasgemischen oder zur Ermittlung von Gasschichtungen bei der Gasgemischherstellung. Die Gaszusammenensetzung kann anhand von entnommenen Gasproben oder online ermittelt werden. Analyseverfahren sind z. B. Massenspektrometrie oder Infrarotspektroskopie, insbesondere FT-IR-Spektroskopie.Openings can also be used for guest extraction for analysis purposes, eg. B. in conjunction with high-pressure metering valves or shut-off valves. On the basis of several openings, z. B. along the longitudinal axis of the gas cylinder, the local gas composition can be determined, in particular for testing the homogeneity of gas mixtures or for determining gas layers in the gas mixture production. Gas composition can be determined from sampled gas samples or online. Analytical methods are z. As mass spectrometry or infrared spectroscopy, in particular FT-IR spectroscopy.
Die Öffnungen können auch zur Aufnahme von Sonden zur Untersuchung der Innenoberfläche von Druckgasbehältern dienen (z. B. Endoskop; spektroskopische Oberflächenuntersuchungen; Gasanalysen mittels Massenspektrometrie). Beispielsweise können Adsorptions- und Desorptionsvorgänge zur Qualitätskontrolle erfaßt werden (z. B. Änderung der Gaszusammensetzung anhand Massenspektrometrie).The openings may also be used to receive probes for examining the inner surface of pressurized gas containers (eg, endoscope, spectroscopic surface investigations, gas analysis by mass spectrometry). For example, adsorption and desorption processes for quality control can be detected (eg, change in gas composition by mass spectrometry).
Bevorzugt sind die Öffnungen in der Druckgasbehälterwand mit einem Gewinde versehen, z. B. konische Gewinde wie NPT 1/16 Zoll bis NPT ¼ Zoll. 1/16 und ¼ Zoll-Gewinde können z. B. bei mindestens 5 mm Wanddicke angebracht werden. Gewindeöffnungen sind für den Einsatz im Hochdruckbereich besonders geeignet. Gelötete oder geschweißte Anschlüsse werden im allgemeinen im Niederdruckbereich (z. B. bei dünnwandigen Behältern wie Druckdosen) eingesetzt.Preferably, the openings in the compressed gas container wall are provided with a thread, for. For example, tapered threads such as NPT 1/16 inch to NPT ¼ inch. 1/16 and 1/4 inch thread can z. B. be mounted at least 5 mm wall thickness. Threaded openings are particularly suitable for use in high pressure applications. Brazed or welded connections are generally used in the low pressure range (eg in thin-walled containers such as pressure cans).
Der Meßbehälter ist besonders vorteilhaft einsetzbar für eine präzise Druckmessung bei manometrischen Verfahren zur Herstellung von Gasgemischen. Insbesondere bei Gasdosierverfahren mit Partialdruckmessung, z. B. für Drücke unterhalb von 1000 mbar, sorgt der Meßbehälter mit Druckmeßeinrichtung für exakte und übertragbare Meßwerte für die Druckgasbehälter bei der Gasabfüllung. Beispielsweise muß bei der direkten Herstellung von Prüfgasgemischen mit einer Nebenkomponente im Spurenbereich muß der Partialdruck der Nebenkomponente in den Druckgasbehältern präzise bestimmt werden.The measuring container can be used particularly advantageously for precise pressure measurement in manometric processes for the production of gas mixtures. In particular, in Gasdosierverfahren with partial pressure measurement, z. As for pressures below 1000 mbar, the measuring container with pressure measuring ensures accurate and transferable readings for the compressed gas tank in the gas filling. For example, in the direct production of test gas mixtures with a secondary component in the trace range, the partial pressure of the minor component in the compressed gas containers must be precisely determined.
Üblicherweise sind die Vakuummeßröhren an den Abfüllständen relativ nahe im Ansaugbereich der Vakuumpumpen angeordnet. (Überdruckmeßgeräte befinden sich in der Regel im Abfüllrohrleitungssystem). Hierbei wird der Druck in der Druckgasflasche nicht ausreichend genau gemessen. Dieses Problem wird mit dem parallel zu den Füll-Druckgasflaschen angeschlossenen Meßbehälter ("Dummy-Flasche") gelöst, der bevorzugt mit einer oder mehreren gasartunabhängigen Absolutdruckmeßröhren ausgerüstet ist und damit den realen Druck in jeder Druckgasflasche wiedergibt. Zum Schutz der Vakuumeßröhren bei der Herstellung von Hochdruckgasgemischen kann entweder der Meßbehälter von der Abfüll-Gasleitung abgesperrt werden oder es kann ein Absperrventil zwischen Meßbehälter und Meßgerät angebracht werden, das geschlossen wird, sobald der zulässige Meßdruckbereich überschritten wird. Es kann von Vorteil sein, mehrere Meßbehälter einzusetzen, z. B. ein Meßbehälter zur Messung im Niederdruckbereich und ein Meßbehälter im Mittel- und Hochdruckbereich.Usually, the vacuum measuring tubes are arranged at the filling levels relatively close to the suction of the vacuum pumps. (Overpressure gauges are usually in the filling piping system). In this case, the pressure in the compressed gas cylinder is not measured with sufficient accuracy. This problem is solved with the parallel connected to the filling gas cylinders measuring container ("dummy bottle"), which is preferably equipped with one or more gasartunabhängigen Absolutdruckmeßröhren and thus reflects the real pressure in each gas cylinder. To protect the vacuum tubes in the production of high-pressure gas mixtures either the measuring container can be shut off from the filling gas line or it can be a shut-off valve between the measuring container and meter attached, which is closed as soon as the allowable Meßdruckbereich is exceeded. It may be advantageous to use several measuring container, z. B. a measuring container for measurement in the low pressure region and a measuring container in the middle and high pressure area.
Die überlicherweise eingesetzten Vakuummeßröhren, z. B. Thermovac, Pirani- oder Penning-Meßröhren besitzen aufgrund des Meßprinzips eine stark gasartabhängige Druckmessung. Hinzu kommt, daß die Druckanzeige bei diesen Meßgeräten nicht linear ist. In Verbindung mit dem Meßbehälter werden Meßsysteme bevorzugt, die eine gasartunabhängige, absolute Druckmessung erlauben.The normally used vacuum measuring tubes, z. B. Thermovac, Pirani or Penning measuring tubes have a strong gasartabhängige pressure measurement due to the measuring principle. In addition, the pressure gauge is not linear in these meters. In connection with the measuring container measuring systems are preferred, which allow a gasartunabhängige, absolute pressure measurement.
Eine gasartunabhängige, absolute Druckmessung kann beispielsweise mit Druckmeßgeräten wie Kapazitätsmanometem (z. B. Gerät mit der Bezeichnung 600 Barocel® der Firma Edwards, USA; Meßbereiche: 0-10, 0-100, 0-1000 mbar) erfolgen. Bei diesen Kapazitätsmanometem lenkt der Eingangsdruck eine dünne, radial im Gehäuse eingeschweißte Membrane gegenüber einer festen Elektrode aus, dabei bilden beide Elektroden einen Kondensator. Dies führt zu einer Kapazitätsänderung, die nach elektronischer Signalverarbeitung über die Steuer- und Anzeigeelektronik direkt proportional zum Druck ist. Als Ausgangssignal wird eine lineare Gleichspannung geliefert. Die Bezugselektrode befindet sich in einem Referenz-Ultra-Hochvakuumraum, der durch chemische Getter langzeitstabil ist.A gas-independent, absolute pressure measurement can (eg device called 600 Barocel ® from Edwards, USA; measuring ranges.: Mbar 0-10, 0-100, 0-1000), for example, pressure gauges as Kapazitätsmanometem respectively. In this capacitance manometer, the input pressure deflects a thin diaphragm welded radially in the housing with respect to a fixed electrode, in which case both electrodes form a capacitor. This leads to a change in capacitance, which is directly proportional to the pressure after electronic signal processing via the control and display electronics. The output signal is a linear DC voltage. The reference electrode is located in a reference ultra-high vacuum chamber, which is stable for a long time due to chemical getters.
Gasartunabhängige Meßröhren zur kapazitive Messung sind für Drücke von beispielsweise 0,0001 mbar bis 1000 mbar erhältlich.Gas-independent measuring tubes for capacitive measurement are available for pressures of, for example, 0.0001 mbar to 1000 mbar.
Der Meßbehälter enthält vorteilhaft einen Anschluß eine externe Evakuiermöglichkeit zum schnelleren Kalibrieren von Vakuum-Meßröhren: Der Anschluß wird beispielsweise seitlich an Wand einer Druckgasflasche angebracht.The measuring container advantageously contains a connection an external Evakuiermöglichkeit for faster calibration of vacuum measuring tubes: The connection is mounted for example on the side of the wall of a compressed gas cylinder.
Der Einsatz der Meßbehälter ist vorteilhaft bei allen manometrischen Verfahren zur Herstellung von Gasgemischen, insbesondere bei der Druckmessung bei Verfahren zur Herstellung von Gasgemischen in Druckgasbehältern, wo in mindestens einem Schritt zunächst ein Druck eines Gases grob vorgegeben wird (Grobdruck) und dann ein kleinerer präziser Druck (Feindruck) in dem Druckgasbehälter mit Hilfe eines Vakuums eingestellt wird.The use of the measuring container is advantageous in all manometric processes for the preparation of gas mixtures, in particular in the pressure measurement in processes for the preparation of gas mixtures in compressed gas tanks, where in at least one step initially a pressure of a gas is roughly specified (coarse pressure) and then a smaller precise pressure (Fine pressure) is set in the gas cylinder by means of a vacuum.
Der Feindruck liegt beispielsweise im Bereich von 0,0001 bis 1000 mbar bei 15 °C.The fine pressure is for example in the range of 0.0001 to 1000 mbar at 15 ° C.
Der Einsatz des Meßbehälters ist besonders von Vorteil bei der Herstellung eines Gasgemisches mit einer Hauptkomponente und einer Nebenkomponente, die in kleiner Konzentration, z. B. im Spurenbereich, vorliegt.The use of the measuring container is particularly advantageous in the preparation of a gas mixture having a main component and a minor component, which in a small concentration, for. B. in the trace range, is present.
Bei der Herstellung binärer Gasgemische erfolgt die Befüllung und Dosierung vorteilhaft zuerst mit der Gaskomponente, die in dem herzustellenden Gasgemisch in der geringsten Konzentration vorliegt (Nebenkomponente), da der erste Dosierschritt in dem Verfahren mit der größten Genauigkeit ausgeführt werden kann.In the preparation of binary gas mixtures, the filling and metering is advantageously carried out first with the gas component to be produced in the Gas mixture in the lowest concentration is present (minor component), since the first metering step can be performed in the process with the greatest accuracy.
Der gespülte, konditionierte und evakuierte Druckgasbehälter wird mit der ersten Gaskomponente befüllt. Hier zeigt sich der Vorteil der Verwendung der ersten Gaskomponente als Gas für das Spülen und die Konditionierung des Druckgasbehälters: der Druckgasbehälter braucht zur ersten Dosierung nicht evakuiert zu werden. Sollte sich das Spülen mit der ersten Gaskomponente aus wirtschaftlichen Gründen verbieten, so wäre es von Vorteil, wenn wenigstens der Spülschritt des letzten Spülvorganges mit der ersten Gaskomponente erfolgt. Die Befüllung mit der ersten Gaskomponente erfolgt zunächst bis zu einem Grobdruck, der größer ist als der eigentliche Dosierdruck, durch den die Menge der Gaskomponente bestimmt wird. Der Grobdruck liegt im allgemeinen bei einem Druck im Bereich von 0,1 bis 10 bar, bevorzugt im Bereich von 0,1 bis 5 bar und besonders bevorzugt im Bereich von 0,8 bis 1,5 bar, je nach einzustellendem Feindruck. Der Feindruck und der Grobdruck sollten so weit auseinanderliegen, daß eine Dosierung mittels Vakuum gut durchgeführt werden kann. Das ist beispielsweise gegeben, wenn der Feindruck etwa 10 Prozent unter dem Wert des Grobdruckes liegt. Besonders wenn der Feindruck unter 100 millibar, insbesondere unter 10 millibar, liegt, erfolgt die Änderung des Druckes bei Anlegen des Vakuums langsam, so daß der gewünschte Wert des Feindruckes sehr genau eingestellt werden kann. Bei Feindrücken über 10 millibar kann die Einstellung des Feindruckes durch eine Drosselung (Ventil) in der Vakuumleitung erleichtert werden. Die Dosierung von weiteren Gaskomponenten erfolgt additiv wie bei üblichen manometrischen Verfahren durch Befüllung bis zu einem vorgegebenen Dosierdruck. Die Befüllung mit der anteilig größten Gaskomponente (Hauptkomponente) wird vorteilhaft als letzter Schritt durchgeführt, dabei wird diese Gaskomponente bis zu dem letzten Dosierdruck, das ist der Fülldruck des Druckbehälters mit dem fertigen Gasgemisch, aufgefüllt.The rinsed, conditioned and evacuated compressed gas container is filled with the first gas component. This shows the advantage of using the first gas component as a gas for purging and the conditioning of the gas cylinder: the gas cylinder need not be evacuated for the first dose. Should rinsing with the first gas component be prohibited for economic reasons, it would be advantageous if at least the rinsing step of the last rinsing process takes place with the first gas component. The filling with the first gas component is initially up to a coarse pressure which is greater than the actual metering pressure, by which the amount of the gas component is determined. The coarse pressure is generally at a pressure in the range of 0.1 to 10 bar, preferably in the range of 0.1 to 5 bar and more preferably in the range of 0.8 to 1.5 bar, depending on the Feindruck to be set. The fine pressure and the coarse pressure should be so far apart that a dosage can be performed well by vacuum. This is for example given when the fine pressure is about 10 percent below the value of the coarse pressure. Especially when the fine pressure is below 100 millibars, especially below 10 millibars, the change in pressure upon application of the vacuum is slow, so that the desired value of the fine pressure can be set very accurately. For spikes above 10 millibar, the adjustment of the fine pressure can be facilitated by throttling (valve) in the vacuum line. The metering of other gas components is additive as in conventional manometric processes by filling up to a predetermined metering pressure. The filling with the proportionally largest gas component (main component) is advantageously carried out as a last step, while this gas component is filled up to the last metering pressure, which is the filling pressure of the pressure vessel with the finished gas mixture.
Bei herzustellenden Gasgemischen mit mehreren Nebenkomponenten mit kleinen Partialdrücken erlaubt der Meßbehälter aufgrund der präzisen Druckmessung auch eine direkte Gasdosierung (additive Gasdosierung) im Vakuum (d. h. bei einem Druck unter einem bar).In the case of gas mixtures to be prepared with several secondary components with small partial pressures, the measuring container also permits a direct gas metering (additive gas metering) in a vacuum (that is to say at a pressure below one bar) on account of the precise pressure measurement.
Mit der Gasdosierung mittels Vakuum oder additiven Gasdosierung im Vakuum und einer präzisen Druckbestimmung mittels des Meßbehälters ist es nunmehr möglich, kostengünstig und unter geringem, zeitlich akzeptablem Aufwand Gasgemische, insbesondere mit einer oder mehreren Nebenkomponenten im Konzentrationsbereich zwischen 10 ppb und 5000 ppm, insbesondere im Bereich zwischen 10 ppb und 100 ppm, sehr exakt zudosieren.With the gas metering by means of vacuum or additive gas metering in a vacuum and a precise pressure determination by means of the measuring container, it is now possible, cost and with little time acceptable expense gas mixtures, especially with one or more minor components in the concentration range between 10 ppb and 5000 ppm, especially in the range between 10 ppb and 100 ppm, very precisely metered.
Konditionierung und Befüllung der Druckgasbehälter mit den Gaskomponenten können gleichzeitig mit mehreren Druckgasbehältern (z. B. 1 bis 100 Druckgasbehälter) am Abfüllstand erfolgen. Auf die Bevorratung von Muttergemischen sowie auf aufwendige gravimetrische Dosierungen kann verzichtet werden, so daß Gasgemische mit Gaskomponenten geringer Konzentration direkt hergestellt werden können.Conditioning and filling of the compressed gas containers with the gas components can take place simultaneously with several compressed gas containers (eg 1 to 100 compressed gas containers) at the filling level. It is possible to dispense with the storage of mother mixtures and complicated gravimetric dosing so that gas mixtures with gas components of low concentration can be prepared directly.
Es wird die Herstellung eines binären Gasgemisches (Gasgemisch aus Haupt- und Nebenkomponente) im folgenden als Beispiel beschrieben.The preparation of a binary gas mixture (gas mixture of main and secondary components) is described below as an example.
Eine Druckgasflasche, die thermisch konditioniert und mit einem Druck bis zu 3 bar mit einem Konservierungsgas (z. B. Stickstoffgas) befüllt wurde, wird durch Ablassen von Gas auf einen Innendruck von etwa Atmosphärendruck gebracht. Anschließend wird die Druckgasflasche mit einer Vakuumpumpe (z. B. ölfreie Membranpumpe) auf einen Druck von etwa 10 millibar evakuiert. Das entspricht einer Drucksenkung um ca. 2 Zehnerpotenzen. Die evakuierte Druckgasflasche wird mit dem Gas der einzuspeisenden Nebenkomponente bis auf einen Druck im Bereich von 800 bis etwa 1000 millibar geflutet. Zum Spülen der Druckgasflasche mit der Nebenkomponente wird das Evakuieren und Fluten mit dem Gas der Nebenkomponente zweimal, dreimal oder mehrmals durchgeführt, je nach der Anforderung an die Reinheit und je nach Zusammensetzung des Gasgemisches. Das Spülen wie auch die nachfolgenden Schritte erfolgen bevorzugt bei Raumtemperatur (20 bis 25° C). Die Druckgasflasche ist nun mit dem Gas der Nebenkomponente etwa bei Atmosphärendruck gefüllt und die innere Oberfläche mit dem Gas der Nebenkomponente in ein Gleichgewicht gebracht. Die Druckgasflasche ist damit konditioniert. Die eigentliche Dosierung der Nebenkomponente erfolgt durch Evakuieren (Entnahme von Gas) auf den gewünschten Feindruck, der dem Partialdruck der Nebenkomponente in dem fertigen, komprimierten Gasgemisch entspricht. Der notwendige Druck kann theoretisch (z. B. anhand einer Gasgleichung wie ideales Gasgesetz oder anhand eines Berechnungsmodells) oder empirisch (z. B. anhand von Gasanalysen) ermittelt werden. Ist der Feindruck der Nebenkomponente eingestellt, so ist die Dosierung der Nebenkomponente abgeschlossen. Auf diese Weise können Nebenkomponenten z. B. zwischen 10-4 und 1000 millibar sehr exakt vorgelegt werden. Die Hauptkomponente des Gasgemisches wird nun auf den Enddruck (Fülldruck) in der Druckgasflasche, beispielsweise 200 bar, aufgedrückt. Dies kann mittels eines Kompressors oder durch Anschluß eines Vorratsbehälters einer Gasversorgung (Gas der Hauptkomponente) mit höherem Druck (z. B. 350 bar) erfolgen. Das Auffüllen mit der Hauptkomponente kann auch gravimetrisch kontrolliert werden.A compressed gas cylinder, which has been thermally conditioned and filled with a preserving gas (eg nitrogen gas) at a pressure of up to 3 bar, is brought to an internal pressure of about atmospheric pressure by releasing gas. Subsequently, the compressed gas cylinder is evacuated with a vacuum pump (eg oil-free membrane pump) to a pressure of about 10 millibars. This corresponds to a pressure reduction of about 2 orders of magnitude. The evacuated compressed gas cylinder is flooded with the gas of the secondary component to be fed to a pressure in the range of 800 to about 1000 millibar. For flushing the compressed gas cylinder with the minor component is the evacuation and flooding with the gas of the minor component twice, three times or carried out several times, depending on the requirement for purity and depending on the composition of the gas mixture. The rinsing as well as the subsequent steps are preferably carried out at room temperature (20 to 25 ° C). The compressed gas cylinder is now filled with the gas of the minor component at about atmospheric pressure and the inner surface is brought into equilibrium with the gas of the minor component. The compressed gas cylinder is thus conditioned. The actual metering of the secondary component takes place by evacuation (removal of gas) to the desired fine pressure, which corresponds to the partial pressure of the secondary component in the finished, compressed gas mixture. The required pressure can be determined theoretically (eg using a gas equation such as ideal gas law or using a calculation model) or empirically (eg based on gas analyzes). If the fine pressure of the secondary component is set, the dosing of the secondary component is completed. In this way, minor components z. B. be submitted very accurately between 10 -4 and 1000 millibar. The main component of the gas mixture is now on the final pressure (filling pressure) in the compressed gas cylinder, for example, 200 bar, pressed. This can be done by means of a compressor or by connecting a reservoir of a gas supply (gas of the main component) at a higher pressure (eg 350 bar). The filling with the main component can also be controlled gravimetrically.
Beispiel für ein binäres Gasgemisch:
- 1.) Nebenkomponente: Sauerstoff, Feindruck: 10 mbar
- 2.) Hauptkomponente: Stickstoff, Dosierdruck= Fülldruck: 200 bar
- 3.) Ergebnis: Gasgemisch von 0,005 vol.-% (50 ppm) Sauerstoff in Stickstoff.
- 1.) secondary component: oxygen, fine pressure: 10 mbar
- 2.) Main component: nitrogen, dosing pressure = filling pressure: 200 bar
- 3.) Result: Gas mixture of 0.005 vol.% (50 ppm) of oxygen in nitrogen.
Die Figur zeigt schematisch einen Meßbehälter 1 mit Beispielen von Meßeinrichtungen 2 (2a, 2b, 2c und 2d: Temperaturfühler) und 3 (3a, 3b: Gasleitung mit Absperrventil und Druckmeßgerät, z. B. Manometer), Gasentnahmeeinrichtung 4 und Anschlußstutzen 7. Der Meßbehälter ist parallel zu einem zweiten Druckgasbehälter 5 (oder weiteren Druckgasbehältern) angeordnet. Die Temperaturfühler 2a bis 2d sind zum Beispiel in einer Reihe angeordnet für die Messung des Temperaturprofils entlang der Meßpunkte. Die Temperaturmeßpunkte können z. B. in Längsrichtung (hier vertikal) einer Druckgasflasche oder kreisförmig (hier horizontal) angeordnet sein. Die Druckmeßeinrichtungen 3a und 3b sind vorteilhaft mit einem Absperrventil versehen. Als Druckmeßgeräte können beispielsweise ein Kapazitätsmanometer für die Vakuummessung und ein Manometer für höhere Druckbereiche angeschlossen sein. Die Gasentnahmestelle 4 dient zur Entnahme von Gasproben zur Analyse oder zum on-line Anschluß von Analysegeräten (z. B. Massenspektrometer oder IR-Spektrometer). Der Anschlußstutzen 7 dient vorzugsweise zur separaten Evakuierung des Meßbehälters zur Kalibrierung von Vakuummeßgeräten. Meßbehälter 1 und Druckgasbehälter 5 sind über eine Leitung mit einer Vakuumpumpe 6 (Pfeile zeigen die Richtung des Gasflusses bei Anlegen von Vakuum) und/oder einer Gasquelle 6 (z. B. Kompressor mit Vorratsgasbehältern).The figure shows schematically a measuring container 1 with examples of measuring devices 2 (2a, 2b, 2c and 2d: temperature sensor) and 3 (3a, 3b: gas line with shut-off valve and pressure gauge, eg manometer), gas sampling device 4 and connecting
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Befüllung von Druckgasbehältern mit Gas oder der Herstellung von Gasgemischen in Druckgasbehältern, wobei eine physikalische oder chemische Untersuchung mittels eines Meßbehälters erfolgt.Another object of the invention is a method for filling compressed gas containers with gas or the production of gas mixtures in compressed gas containers, wherein a physical or chemical examination is carried out by means of a measuring container.
Physikalische Untersuchungen sind z. B. Druck- oder Temperaturmessung. Chemische Untersuchungen sind z. B. Analysen zur Ermittlung der Gaszusammensetzung, die physikalische Methoden beinhalten können. Als chemische Untersuchungen werden auch Analysen mittels Infrarotspektroskopie oder Massenspektrometrie angesehen.Physical investigations are z. B. pressure or temperature measurement. Chemical investigations are z. B. Analyzes to determine the gas composition, which may include physical methods. As a chemical analysis also analyzes by infrared spectroscopy or mass spectrometry are considered.
Claims (6)
- Method for filling at least one compressed-gas container with a gas mixture, a measurement vessel being formed which has a valve opening and, next to the valve opening, one or more openings, a gas mixture being produced which comprises a first gas component and at least one further gas component in the at least one compressed-gas container, and the at least one opening serving for connecting measurement devices for a physical or chemical test, characterized in that the measurement vessel is connected in parallel to the at least one compressed-gas container.
- Method according to Claim 1, in which the at least one opening serves for connecting a sensor, measurement instrument or analysis instrument or for removing samples or for accommodating a probe, and/or for connecting one or more thermal elements, one or more vacuum measurement instruments or one or more pressure measurement instruments, and/or for fastening or positioning one or more sensors or probes in the interior of the compressed-gas container.
- Method according to Claim 1 or 2, in which one or more supplementary gas components are metered so directly that their concentration lies in a concentration range between 10 ppb and 5000 ppm, in particular in a concentration range between 10 ppb and 100 ppm.
- Method according to one of the preceding claims, in which the gas is metered by means of vacuum or additively.
- Method according to one of the preceding claims, in which a gas component which is largest in proportional terms is filled into the compressed-gas container last.
- Method according to one of the preceding claims, in which a temperature gradient or a gas composition is defined or a pressure measurement is carried out or a homogeneity of the gas mixture is tested or a gas stratification during the production of the mixture is determined.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19744559 | 1997-10-09 | ||
DE19744559A DE19744559C2 (en) | 1997-10-09 | 1997-10-09 | Meßgasbehälter |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0908665A2 EP0908665A2 (en) | 1999-04-14 |
EP0908665A3 EP0908665A3 (en) | 1999-09-01 |
EP0908665B1 true EP0908665B1 (en) | 2006-11-02 |
Family
ID=7845022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98117220A Expired - Lifetime EP0908665B1 (en) | 1997-10-09 | 1998-09-11 | Gas container for measuring |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0908665B1 (en) |
AT (1) | ATE344419T1 (en) |
DE (2) | DE19744559C2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19915779B4 (en) * | 1999-04-08 | 2007-10-31 | Air Liquide Deutschland Gmbh | Filling level for the production of precision gas mixtures |
DE19959102A1 (en) * | 1999-12-08 | 2001-06-21 | Messer Griesheim Gmbh | Inside inspection of gas bottles |
FR2884592B1 (en) * | 2005-04-13 | 2007-08-03 | Air Liquide | METHOD FOR CONTROLLING THE FILLING OF GAS BOTTLES |
DE102006016554A1 (en) * | 2006-04-07 | 2007-10-11 | L'Air Liquide, S.A. a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude | Method for filling at least one compressed gas container with at least one gas, intermediate piece for connecting to an opening of a compressed gas container and compressed gas cylinder fitting |
DE102008015395A1 (en) * | 2008-03-20 | 2009-09-24 | L'Air Liquide, S.A. pour l'Etude et l'Exploitation des Procédés Georges Claude | Gas mixture e.g. tertiary gas mixture, producing method, involves determining pressure in gas container and flow technically connecting storage container with gas container until pressure in gas container reaches predetermined value |
CN103041724B (en) * | 2012-12-13 | 2014-10-08 | 西南化工研究设计院有限公司 | Novel air distributing device in static volume method and air distributing method |
CN112344211A (en) * | 2020-11-26 | 2021-02-09 | 中国特种设备检测研究院 | Long tube trailer monitoring system |
CN112881105B (en) * | 2021-01-28 | 2023-09-12 | 江苏普朗睿恩生物科技有限公司 | Indoor soil microorganism breathes continuous measuring device |
JP2024018196A (en) * | 2022-07-29 | 2024-02-08 | トヨタ自動車株式会社 | Hydrogen filling method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1708712U (en) * | 1954-12-03 | 1955-10-13 | Mannessmann Ag | TRANSPORT CONTAINER FOR LIQUID GASES. |
FR1159016A (en) * | 1956-10-08 | 1958-06-23 | Gas cylinder | |
FR1352976A (en) * | 1963-01-09 | 1964-02-21 | Commissariat Energie Atomique | Improvements made to the means of obtaining and regulating temperatures, in particular low temperatures, in an enclosure |
FR2302479A1 (en) * | 1975-02-25 | 1976-09-24 | Air Liquide | DEVICE FOR THE CONTROLLED DISTRIBUTION OF CRYOGENIC FLUID |
AT394460B (en) * | 1989-09-11 | 1992-04-10 | Sitte Hellmuth | DEVICE FOR REFILLING LIQUID NITROGEN |
US5370269A (en) * | 1990-09-17 | 1994-12-06 | Applied Chemical Solutions | Process and apparatus for precise volumetric diluting/mixing of chemicals |
US5388720A (en) * | 1994-04-15 | 1995-02-14 | Essef Corporation | Flanged diffuser and air cell retainer for pressure vessel |
-
1997
- 1997-10-09 DE DE19744559A patent/DE19744559C2/en not_active Expired - Lifetime
-
1998
- 1998-09-11 AT AT98117220T patent/ATE344419T1/en not_active IP Right Cessation
- 1998-09-11 EP EP98117220A patent/EP0908665B1/en not_active Expired - Lifetime
- 1998-09-11 DE DE59813783T patent/DE59813783D1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ATE344419T1 (en) | 2006-11-15 |
EP0908665A2 (en) | 1999-04-14 |
DE59813783D1 (en) | 2006-12-14 |
DE19744559C2 (en) | 2003-03-27 |
DE19744559A1 (en) | 1999-04-15 |
EP0908665A3 (en) | 1999-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4847493A (en) | Calibration of a mass spectrometer | |
EP3198251B1 (en) | Device and method for calibrating a film chamber for leak detection | |
DE19915779B4 (en) | Filling level for the production of precision gas mixtures | |
EP1240492B1 (en) | Method and device for the determination of the gas permeability of a container | |
EP2005057B1 (en) | Method for filling at least one compressed gas tank with at least one gas | |
EP0908665B1 (en) | Gas container for measuring | |
WO2017108754A1 (en) | Gross leak measurement in an incompressible test item in a film chamber | |
DE19652832A1 (en) | Leakage measuring system for measuring volume leaking from object | |
EP2914944B1 (en) | Method for testing a leak tightness testing system | |
DE3900836A1 (en) | METHOD FOR MEASURING THE CONTROL CROSS-SECTIONAL AREA OF A NOZZLE | |
DE2514146C2 (en) | Automatic CO &darr; 2 &darr; level meter | |
DE19704868C1 (en) | Producing gas mixtures in pressurised gas containers | |
WO2013127642A1 (en) | Device and method for calorimetrically measuring sorption processes | |
DE4013373C1 (en) | Pneumatic method ascertaining vol. of hollow chamber - subjecting sample to pressure corresp. to atmos. for comparison with reference vol. in reference vessel | |
DE19535832C1 (en) | Method and device for detecting a light tracer gas | |
DE3505490A1 (en) | Oxygen analysis instrument and method for determining the oxygen proportion in gas-tight packaging | |
CH689148A5 (en) | The method and measuring device for measuring the oxygen permeability of a test object. | |
DE10149219B4 (en) | Method for partial pressure calibration of quadrupole mass spectrometers and calibration device thereto | |
DE1923683C3 (en) | Method and device for determining the volume of an irregular material | |
DE3409985A1 (en) | Apparatus for flooding a porous material sample with an amount of a gas, in particular for determination of the specific surface area | |
WO2025021251A1 (en) | Device for manometric gas-sorption analysis and for determining the solid density, and method using the device | |
EP4160164A1 (en) | Method and system for calibrating a flow meter | |
EP1790965A1 (en) | Method for providing the gases dissolved in liquids from high-voltage systems for external analysis and device for carrying out this method | |
WO2021233720A1 (en) | Method for detecting the gas exchange between the interior of a large housing and the exterior environment thereof | |
WO2008071415A1 (en) | Arrangement and a method for controlling drying processes for the production of semiconductor components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE FR GB IT LI |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 6F 17C 13/02 A, 6F 17C 13/00 B, 6F 17C 1/00 B |
|
17P | Request for examination filed |
Effective date: 20000301 |
|
AKX | Designation fees paid |
Free format text: AT BE CH DE FR GB IT LI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MESSER GRIESHEIM GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AIR LIQUIDE DEUTSCHLAND GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AIR LIQUIDE DEUTSCHLAND GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AIR LIQUIDE DEUTSCHLAND GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MESSER GROUP GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MESSER GROUP GMBH Owner name: AIR LIQUIDE DEUTSCHLAND GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MESSER GROUP GMBH Owner name: AIR LIQUIDE DEUTSCHLAND GMBH |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 20061102 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59813783 Country of ref document: DE Date of ref document: 20061214 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070208 |
|
EN | Fr: translation not filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070803 |
|
BERE | Be: lapsed |
Owner name: MESSER GROUP G.M.B.H. Effective date: 20070930 Owner name: AIR LIQUIDE DEUTSCHLAND G.M.B.H. Effective date: 20070930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070615 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061102 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070911 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170928 Year of fee payment: 20 Ref country code: GB Payment date: 20170921 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59813783 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20180910 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20180910 |