[go: up one dir, main page]

EP0895593A1 - Sensor element and process for producing the same - Google Patents

Sensor element and process for producing the same

Info

Publication number
EP0895593A1
EP0895593A1 EP97949979A EP97949979A EP0895593A1 EP 0895593 A1 EP0895593 A1 EP 0895593A1 EP 97949979 A EP97949979 A EP 97949979A EP 97949979 A EP97949979 A EP 97949979A EP 0895593 A1 EP0895593 A1 EP 0895593A1
Authority
EP
European Patent Office
Prior art keywords
sensor element
crystalline
metallic material
glass
insulation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97949979A
Other languages
German (de)
French (fr)
Inventor
Hans-Martin Wiedenmann
Harald Neumann
Karl-Heinz Heussner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0895593A1 publication Critical patent/EP0895593A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure

Definitions

  • the invention is based on a sensor element and a method for its production according to the preamble of the main claim. From DE-OS 43 42 731 a gas sensor with a tubular sensor element in the so-called.
  • Known finger design in which a conductor track running on the outside of the tubular sensor element is covered by an electrically insulating layer which is formed from a mixture of a crystalline, non-metallic material and a glass-forming material, with a glaze filled with the crystalline, non-metallic material when heated arises.
  • DE-PS 29 07 032 discloses a planar sensor element for determining the oxygen content in gases, in which a measuring cell is connected to a resistance heating element via an Al2O3 insulation layer.
  • the ceramic heater insulation consisting of A1 2 0 3 is electrically insulating and is used to compensate for the different
  • the gas sensor according to the invention with the characterizing features of claim 1 has the advantage that the insulation layer is gas-tight, good electrical insulation, good adhesive strength with the insulation layer
  • Solid electrolyte ceramic and has good thermal conductivity.
  • the good adhesive strength results in particular from the fact that the sintering shrinkage of the material of the insulation layer corresponds approximately to the sintering shrinkage of the material of the solid electrolyte ceramic.
  • the sintering temperature can be reduced from approximately 1600 ° C to up to 1250 ° C.
  • the melting temperature of the glass-forming material used is the limit for the sintering temperature, so that a glaze filled with the crystalline, non-metallic material, for example Al 2 O 3, forms.
  • a particularly suitable insulation layer is achieved with a proportion of crystalline, non-metallic material of 60% by weight and a proportion of glass-forming material of 40% by weight in the raw material mixture.
  • FIG. 1 shows a cross section through the exhaust-side part of a sensor element and
  • FIG. 2 shows an exploded view of the layer system of the sensor element according to FIG. 1.
  • the platelet-shaped sensor element 10 shown in FIGS. 1 and 2 has an electrochemical measuring cell 12 and a heating element 13.
  • the measuring cell 12 has, for example, a first solid electrolyte foil 21 with a large surface 22 on the measuring gas side and a large surface 23 on the reference gas side, and a second solid electrolyte foil 25 with a reference channel 26 integrated therein.
  • Large area 22 has a measuring electrode 31 with a conductor track 32 and a first connection contact 33.
  • a reference electrode 35 with a conductor track 36 is located on the reference gas-side large surface 23 of the first solid electrolyte film 21.
  • a via 38 is also provided in the first solid electrolyte film 21, through which the conductor track 36
  • Reference electrode 35 is guided to the large surface 22 on the measuring gas side.
  • a second connection contact 39 on the large surface 22, which is connected to the via 38 and thus forms the contact point for the reference electrode 35.
  • the measuring electrode 31 is covered with a porous protective layer 28.
  • the heating element 14 has, for example, a carrier film 41 with an outer large area 43 and an inner large area 43 ', which in the present exemplary embodiment consists of the material of the two solid electrolyte films 21, 25.
  • An outer insulation layer 42 is applied to the inner large surface 43 'of the carrier film 41.
  • On the outer insulation layer 42 there is a resistance heater 44 with a meandering heating conductor 45 and with two connecting conductors 46.
  • the outer insulation layer 42 and the carrier film 41 each have two heater through-contacts 48 which run in alignment with one another and which run from the two connecting conductors 46 to the outer large surface 43 of the carrier film 41 lead.
  • two heater connection contacts 49 are arranged, which are connected to the heater through-contacts 48.
  • An inner insulation layer 50 is located on the resistance heater 44.
  • the large area of the inner insulation layer 50 is connected to the large area of the second solid electrolyte film 25.
  • the heating element 14 is thermally coupled to the measuring cell 12 via the inner insulation layer 50.
  • Carrier film 41 consist, for example, of ZrC> 2 partially stabilized with 5 mol% Y2O3.
  • the electrodes 31, 35, the conductor tracks 32, 36, the plated-through holes 38 and the connection contacts 33, 39 consist, for example, of a platinum cermet.
  • a platinum cermet is also used as the material for the resistance heater, the ohmic resistance of the supply lines 46 being chosen to be lower than for the heating conductor 45.
  • composition can vary as follows:
  • Powder mixture 20 to 70 wt.%
  • Solvent 20 to 70 wt.%
  • Plasticizer 1 to 15 wt.%
  • Binder 1 to 15 wt.%.
  • Hexanol for example, is used as solvent, phthalate, for example, as plasticizer, and polyvinyl butyral, for example, is used as binder.
  • the raw material components are in suitable
  • the powder mixture consists, for example, of Al2O3 (alumina) with a specific sintering activity and of a glass-forming material, for example an alkaline earth silicate glass.
  • a glass-forming material for example an alkaline earth silicate glass.
  • Ba-Al silicate for example, is used as the alkaline earth silicate glass.
  • the barium can be replaced by strontium up to 30 atomic%.
  • the alkaline earth silicate glass can be introduced as a pre-melted glass frit or as a glass phase-raw material mixture.
  • the material mixture may contain electrically conductive impurities up to a maximum of 1% by weight. This applies in particular to Na 2 0, K 2 0, Fe 2 0 3 , Ti0 2 , Cu 2 0 or the like semiconducting oxides. Most of time the content of electrically conductive impurities in the commercially available raw materials is below 0.2% by weight
  • the alumina was selected so that at a sintering temperature which is necessary during the sintering of the powder mixture to form a glaze filled with the alumina, the alumina alone has a sintering activity which leads to a relative sintered density of at least 95%.
  • Such an alumina is present according to the following table with the alumina B and C. The table shows the actual sintering density pg in g / cm 3 and the relative sintering density Ps / Pth ⁇ n ⁇ ⁇ for three different clays A, B and C.
  • Mg spinel, forsterite or a mixture of these substances can also be used as the crystalline, non-metallic material. It is also conceivable to add further crystalline materials such as Mg spinel, forsterite or a mixture of these substances to the powder mixture with the clays B or C. These crystalline however, non-metallic materials must have a sintering activity which leads to a relative sintering density of at least 95%.
  • composition of the powder mixture is composition of the powder mixture:
  • the powder mixture is in a ball mill with 90%
  • AI2O3 grinding balls homogenized for two hours and ground. Then an aqueous slip is prepared with 500g raw material mixture of alumina and Ba-Al-silicate glass, 500ml distilled water and 25ml 10% aqueous polyvinyl alcohol solution. The slip is ground in a ball mill with 90% Al2O3 grinding balls with a grinding time of 1.5 hours.
  • This example differs from the powder mixture in Example 1 in that instead of the 40th
  • % Ba-Al silicate glass powder the following composition is selected:
  • composition of the powder mixture differs from example 1 in that the following constituents are used instead of the Ba-Al-silicate glass powder: 40% by weight of a calcine from: 11% by weight of kaolin, 34% by weight of quartz (99% SiO 2 ) 55% by weight BaC0 3 (chemically pure)
  • the components are ground in a ball mill with 90% Al 2 O 3 grinding balls for two hours and calcined as bulk in corundum capsules in an oxidizing atmosphere at 1000 ° C. for two hours and then ground again as mentioned.
  • composition of the powder mixture differs from Example 1 and Example 3 as follows: 70% by weight of alumina and 30% by weight of calcine, insulation resistance> 1 M ⁇
  • composition corresponds to Example 7, with the alumina containing the following components: 99.3% A1 2 0 3 , 0.3% Na 2 0, specific surface area 2.5 m 2 / g, insulation resistance> 300 k ⁇
  • composition corresponds to Example 3, but instead of the alumina with the following components: 60% by weight of Mg spinel powder (MgO * Al 2 0 3 ) with ⁇ 0.5% by weight of free MgO and ⁇ 0.1% by weight Na2 ⁇ , specific surface 8 m 2 / g, insulation resistance> 1 M ⁇
  • the prepared paste is first applied to the unsintered ceramic carrier film 41 by means of screen printing.
  • the resistance heater 44 is then also screen-printed by means of a cermet paste known per se.
  • the plated-through holes 48 which were previously recessed in the insulation layer 42 and introduced into the carrier film 41, are carried out.
  • the inner insulation layer 50 is now also applied using screen printing technology.
  • the layer thicknesses of the insulation layers 42, 50 which have to be present after sintering are set by a corresponding number of screen printing steps and / or by a suitable choice of screen printing parameters and paste properties (viscosity etc.).
  • the outer insulation layer 42 has a layer thickness of 18 ⁇ m and the inner insulation layer 50 also has a layer thickness of 18 ⁇ m.
  • the heating element 41 thus produced is now laminated together with the measuring cell 12, which is produced in a similar manner by means of printing technology, and then co-sintered in a sintering process at approximately 1400 ° C.
  • Sintering temperature sinter the ceramic and metallic components of the layer system.
  • the insulation paste is formed by melting the glass-forming material and sintering the crystalline components to form the gas-tight electrical insulation layers 42 and 50.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

A platelike sensor element (10), in particular for determining the oxygen content of exhaust fumes of internal combustion engines, has at least one measurement cell (12) with an oxygen ion conducting solid electrolyte and a heating element (14). The measurement cell (12) and the heating element (14) are joined together by an electrically insulating layer (50) made of at least one crystalline, non-metallic material and of at least one vitreous material. A glazing filled with the crystalline, non-metallic material is formed when the sensor element (10) is sintered.

Description

Sensorelement und Verfahren zu dessen HerstellungSensor element and method for its production
Stand der TechnikState of the art
Die Erfindung geht aus von einem Sensorelement und einem Verfahren zu dessen Herstellung nach der Gattung des Hauptanspruchs . Aus der DE-OS 43 42 731 ist ein Gassensor mit einem rohrförmigen Sensorelement in der sog.The invention is based on a sensor element and a method for its production according to the preamble of the main claim. From DE-OS 43 42 731 a gas sensor with a tubular sensor element in the so-called.
Fingerbauform bekannt, bei dem eine auf der Außenseite des rohrförmigen Sensorelements verlaufende Leiterbahn mittels einer elektrisch isolierenden Schicht abgedeckt ist, die aus einem Gemisch eines kristallinen, nichtmetallischen Materials und eines glasbildenden Materials gebildet ist, wobei beim Erhitzen eine mit dem kristallinen, nichtmetallischen Material gefüllte Glasur entsteht.Known finger design, in which a conductor track running on the outside of the tubular sensor element is covered by an electrically insulating layer which is formed from a mixture of a crystalline, non-metallic material and a glass-forming material, with a glaze filled with the crystalline, non-metallic material when heated arises.
Ferner ist beispielsweise aus der DE-PS 29 07 032 (US 4 294 679) ein planares Sensorelement zur Bestimmung des Sauerstoffgehaltes in Gasen bekannt, bei dem eine Meßzelle über eine AI2O3-Isolationsschicht mit einem Widerstandsheizelement in Verbindung steht. Die aus A1203 bestehende keramische Heizerisolation ist elektrisch isolierend und wird zur Kompensation der unterschiedlichenFurthermore, DE-PS 29 07 032 (US 4,294,679), for example, discloses a planar sensor element for determining the oxygen content in gases, in which a measuring cell is connected to a resistance heating element via an Al2O3 insulation layer. The ceramic heater insulation consisting of A1 2 0 3 is electrically insulating and is used to compensate for the different
Sinterschwindungen und der unterschiedlichen thermischen Ausdehnungskoeffizienten von AI2O3 und der angrenzenden ZrÜ2 -Festelektrolytschicht porös gesintert eingesetzt. Dies hat jedoch den Nachteil, daß durch die poröse Isolationsschicht gasförmige und flüssige Komponenten aus dem Abgas in die Referenzatmosphäre diffundieren und dadurch das Meßsignal beeinträchtigen. Außerdem können Bestandteile des Abgases an den Widerstandsheizer gelangen und diesen schädigen.Sintering shrinkage and the different thermal Expansion coefficients of AI2O3 and the adjacent ZrÜ2 solid electrolyte layer are used sintered porous. However, this has the disadvantage that gaseous and liquid components diffuse from the exhaust gas into the reference atmosphere through the porous insulation layer and thereby impair the measurement signal. In addition, components of the exhaust gas can reach the resistance heater and damage it.
Vorteile der ErfindungAdvantages of the invention
Der erfindungsgemäße Gassensor mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, daß die Isolationsschicht gasdicht ist, ein gutes elektrisches Isolationsvermögen, eine gute Haftfestigkeit mit derThe gas sensor according to the invention with the characterizing features of claim 1 has the advantage that the insulation layer is gas-tight, good electrical insulation, good adhesive strength with the
Festelektrolytkeramik und eine gute Wärmeleitfähigkeit aufweist. Die gute Haftfestigkeit resultiert insbesondere daraus, daß die Sinterschwindung des Materials der Isolationsschicht annähernd der Sinterschwindung des Materials der Festelektrolytkeramik entspricht. DieSolid electrolyte ceramic and has good thermal conductivity. The good adhesive strength results in particular from the fact that the sintering shrinkage of the material of the insulation layer corresponds approximately to the sintering shrinkage of the material of the solid electrolyte ceramic. The
Druckspannungen, die in der Isolationsschicht aufgrund der unterschiedlichen thermischen Ausdehnungskoeffizienten der Isolationsschicht und der Festelektrolytfolie entstehen, werden durch die plastische Verformung aufgrund des Erweichungsverhaltens der Glasphase teilweise abgebaut und auf die Grenzfläche zur Festelektrolytkeramik gleichmäßig verteilt. Dadurch werden rißauslösende lokale Spannungsspitzen vollständig vermieden. Die verwendeten Gläser weisen dabei einen Erweichungsbeginn bei Temperaturen unter der Sintertemperatur von 1250° C auf. Das bei dem Verfahren zur Herstellung des Sensorelements verwendete Pulvergemisch hat sich als besonders geeignet herausgestellt. Die mit dem Pulvergemisch hergestellte Paste eignet sich besonders zum Siebdrucken der gasdichten Isolationsschichten. Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des erfindungsgemäßen Sensors und des erfindungsgemäßen Verfahrens möglich. Besonders gute Eigenschaften hinsichtlich Gasdichtheit, elektrischer Isolationswirkung, Festigkeit und Wärmeleitung werden erzielt, wenn als kristallines, nichtmetallisches Material AI2O3 mit einer Kornfeinheit von d5Q < 0,40 μm verwendet wird. Die Gasdichtheit der Isolationsschicht wird zusätzlich verbessert, wenn eine Enge der Kornverteilung von dgg < 1 μm eingestellt wird. Mit dieser Kornfeinheit und Kornverteilung wurde eine Gasdichtheit erreicht, die um den Faktor 2- bis mehr als das 4- fache höher ist als bei herkömmlichen keramischen Schichten. Mit d5Q ist dabei die mittlere Korngröße bezogen auf den Massenanteil bezeichnet; dgg bezeichnet die Korngröße, bei der 90% feiner oder gleich sind, bezogen auf den Massenanteil. Durch die Wahl der Kornfeinheit und Kornverteilung gemäß den Materialien B und C der nachfolgenden Tabelle läßt sich die Sintertemperatur von etwa 1600° C auf bis zu 1250° C absenken. Als Grenze für die Sintertemperatur gilt dabei die Schmelztemperatur des verwendeten glasbildenden Materials, damit sich eine mit dem kristallinen, nichtmetallischen Material, beispielsweise AI2O3, gefüllte Glasur ausbildet. Eine für dieCompressive stresses that arise in the insulation layer due to the different thermal expansion coefficients of the insulation layer and the solid electrolyte film are partially reduced by the plastic deformation due to the softening behavior of the glass phase and evenly distributed over the interface to the solid electrolyte ceramic. This completely eliminates local stress peaks that trigger cracks. The glasses used begin to soften at temperatures below the sintering temperature of 1250 ° C. The powder mixture used in the method for producing the sensor element has proven to be particularly suitable. The paste made with the powder mixture is particularly suitable for screen printing the gas-tight insulation layers. Advantageous further developments and improvements of the sensor according to the invention and of the method according to the invention are possible through the measures listed in the subclaims. Particularly good properties with regard to gas tightness, electrical insulation, strength and heat conduction are achieved if AI2O3 with a grain size of d5 Q <0.40 μm is used as the crystalline, non-metallic material. The gas tightness of the insulation layer is additionally improved if a narrowing of the grain distribution of dgg <1 μm is set. With this grain size and grain distribution, a gas tightness was achieved, which is a factor of 2 to more than 4 times higher than that of conventional ceramic layers. D5 Q denotes the average grain size based on the mass fraction; dgg denotes the grain size at which 90% are finer or the same, based on the mass fraction. By selecting the grain size and grain distribution according to materials B and C in the table below, the sintering temperature can be reduced from approximately 1600 ° C to up to 1250 ° C. The melting temperature of the glass-forming material used is the limit for the sintering temperature, so that a glaze filled with the crystalline, non-metallic material, for example Al 2 O 3, forms. One for them
Heizerisolation besonders geeignete Isolationsschicht wird erreicht mit einem Anteil an kristallinen, nichtmetallischen Material von 60 Gew.% und einem Anteil von glasbildendem Material von 40 Gew.% in der Rohstoffmischung. ZeichnungA particularly suitable insulation layer is achieved with a proportion of crystalline, non-metallic material of 60% by weight and a proportion of glass-forming material of 40% by weight in the raw material mixture. drawing
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert . Es zeigen Figur 1 einen Querschnitt durch den abgasseitigen Teil eines Sensorelements und Figur 2 eine Explosionsdarstellung des Schichtsystems des Sensorelements nach Figur 1.An embodiment of the invention is shown in the drawing and explained in more detail in the following description. 1 shows a cross section through the exhaust-side part of a sensor element and FIG. 2 shows an exploded view of the layer system of the sensor element according to FIG. 1.
AusführungsbeispielEmbodiment
Das in den Figuren 1 und 2 dargestellte plättchenförmige Sensorelement 10 weist eine elektrochemische Meßzelle 12 und ein Heizelement 13 auf. Die Meßzelle 12 hat beispielsweise eine erste Festelektrolytfolie 21 mit einer meßgasseitigen Großfläche 22 und einer referenzgasseitigen Großfläche 23 sowie eine zweite Festelektrolytfolie 25 mit einem darin integrierten Referenzkanal 26. Auf der meßgasseitigen . Großfläche 22 ist eine Meßelektrode 31 mit einer Leiterbahn 32 und einem ersten Anschlußkontakt 33 angeordnet. Auf der referenzgasseitigen Großfläche 23 der ersten Festelektrolytfolie 21 befindet sich eine Referenzelektrode 35 mit einer Leiterbahn 36. In der ersten Festelektrolytfolie 21 ist ferner eine Durchkontaktierung 38 vorgesehen, durch die die Leiterbahn 36 derThe platelet-shaped sensor element 10 shown in FIGS. 1 and 2 has an electrochemical measuring cell 12 and a heating element 13. The measuring cell 12 has, for example, a first solid electrolyte foil 21 with a large surface 22 on the measuring gas side and a large surface 23 on the reference gas side, and a second solid electrolyte foil 25 with a reference channel 26 integrated therein. Large area 22 has a measuring electrode 31 with a conductor track 32 and a first connection contact 33. A reference electrode 35 with a conductor track 36 is located on the reference gas-side large surface 23 of the first solid electrolyte film 21. A via 38 is also provided in the first solid electrolyte film 21, through which the conductor track 36
Referenzelektrode 35 an die meßgasseitige Großfläche 22 geführt ist. Neben dem ersten Anschlußkontakt 33 befindet sich auf der Großfläche 22 ein zweiter Anschlußkontakt 39, der mit der Durchkontaktierung 38 verbunden ist und somit die Kontaktstelle für die Referenzelektrode 35 bildet. Die Meßelektrode 31 ist mit einer porösen Schutzschicht 28 abgedeckt . Das Heizelement 14 hat beispielsweise eine Trägerfolie 41 mit einer äußeren Großfläche 43 und einer inneren Großfläche 43 ' , die im vorliegenden Ausführungsbeispiel aus dem Material der beiden Festelektrolytfolien 21, 25 besteht. Auf die innere Großfläche 43' der Trägerfolie 41 ist eine äußere Isolationsschicht 42 aufgetragen. Auf der äußeren Isolationsschicht 42 befindet sich ein Widerstandsheizer 44 mit einem mäanderförmigen Heizleiter 45 und mit zwei Anschlußleitern 46. Die äußere Isolationsschicht 42 und die Trägerfolie 41 haben jeweils zwei fluchtend zueinander verlaufende Heizerdurchkontaktierungen 48, die von den beiden Anschlußleitern 46 zur äußeren Großfläche 43 der Trägerfolie 41 führen. Auf der äußeren Großfläche 43 der Trägerfolie 41 sind zwei Heizeranschlußkontakte 49 angeordnet, die mit den Heizerdurchkontaktierungen 48 verbunden sind.Reference electrode 35 is guided to the large surface 22 on the measuring gas side. In addition to the first connection contact 33, there is a second connection contact 39 on the large surface 22, which is connected to the via 38 and thus forms the contact point for the reference electrode 35. The measuring electrode 31 is covered with a porous protective layer 28. The heating element 14 has, for example, a carrier film 41 with an outer large area 43 and an inner large area 43 ', which in the present exemplary embodiment consists of the material of the two solid electrolyte films 21, 25. An outer insulation layer 42 is applied to the inner large surface 43 'of the carrier film 41. On the outer insulation layer 42 there is a resistance heater 44 with a meandering heating conductor 45 and with two connecting conductors 46. The outer insulation layer 42 and the carrier film 41 each have two heater through-contacts 48 which run in alignment with one another and which run from the two connecting conductors 46 to the outer large surface 43 of the carrier film 41 lead. On the outer large surface 43 of the carrier film 41, two heater connection contacts 49 are arranged, which are connected to the heater through-contacts 48.
Auf dem Widerstandsheizer 44 befindet sich eine innere Isolationsschicht 50. Die Großfläche der inneren Isolationschicht 50 ist mit der Großfläche der zweiten Festelektrolytfolie 25 verbunden. Dadurch ist das Heizelement 14 über die innere Isolationsschicht 50 mit der Meßzelle 12 thermisch gekoppelt verbunden.An inner insulation layer 50 is located on the resistance heater 44. The large area of the inner insulation layer 50 is connected to the large area of the second solid electrolyte film 25. As a result, the heating element 14 is thermally coupled to the measuring cell 12 via the inner insulation layer 50.
Die beiden Festelektrolytfolien 21 und 25 sowie dieThe two solid electrolyte foils 21 and 25 and the
Trägerfolie 41 bestehen beispielsweise aus mit 5 Mol. % Y2O3 teilstabilisiertem ZrC>2. Die Elektroden 31, 35 die Leiterbahnen 32, 36 die Durchkontaktierungen 38 sowie die Anschlußkontakte 33, 39 bestehen beispielsweise aus einem Platin-Cermet . Als Material für den Widerstandsheizer wird im vorliegenden Ausführungsbeispiel ebenfalls ein Platin- Cermet verwendet, wobei der ohm'sche Widerstand der Zuleitungen 46 geringer gewählt wird als für den Heizleiter 45. Zur Herstellung der Isolationsschichten 42 und 50 wird eine Siebdruckpaste mit folgender Zusammensetzung hergestellt:Carrier film 41 consist, for example, of ZrC> 2 partially stabilized with 5 mol% Y2O3. The electrodes 31, 35, the conductor tracks 32, 36, the plated-through holes 38 and the connection contacts 33, 39 consist, for example, of a platinum cermet. In the present exemplary embodiment, a platinum cermet is also used as the material for the resistance heater, the ohmic resistance of the supply lines 46 being chosen to be lower than for the heating conductor 45. To produce the insulation layers 42 and 50, a screen printing paste with the following composition is produced:
50 Gew. % Pulvergemisch, 40 Gew. % organisches Lösungsmittel 5 Gew. % organischer Weichmacher 5 Gew. % organischer Binder.50% by weight powder mixture, 40% by weight organic solvent 5% by weight organic plasticizer 5% by weight organic binder.
Die Zusammensetzung kann dabei folgendermaßen variieren:The composition can vary as follows:
Pulvergemisch: 20 bis 70 Gew. % Lösungsmittel: 20 bis 70 Gew. % Weichmacher: 1 bis 15 Gew. % Binder: 1 bis 15 Gew. %.Powder mixture: 20 to 70 wt.% Solvent: 20 to 70 wt.% Plasticizer: 1 to 15 wt.% Binder: 1 to 15 wt.%.
Als Lösungsmittel wird beispielsweise Hexanol, als Weichmachen wird beispeilsweise Phthalat und als Binder wird beispielsweise Polyvinylbutyral verwendet.Hexanol, for example, is used as solvent, phthalate, for example, as plasticizer, and polyvinyl butyral, for example, is used as binder.
Die Rohstoffkomponenten werden in geeignetenThe raw material components are in suitable
Mischaggregaten, wie zum Beispiel Kugelmühle, Dreiwalzwerk, homogenisiert, so daß eine siebdruckfähige Paste entsteht.Mixing units, such as ball mill, three-roll mill, homogenized, so that a paste that can be screen-printed is produced.
Das Pulvergemisch besteht beispielsweise aus AI2O3 (Tonerde) mit einer spezifischen Sinteraktivität und aus einem glasbildenden Material, beispielsweise einem Erdalkalisilikatglas. Als Erdalkalisilikatglas wird beispielsweise Ba-Al-Silikat eingesetzt. Das Barium kann bis zu 30 Atom % durch Strontium ersetzt werden.The powder mixture consists, for example, of Al2O3 (alumina) with a specific sintering activity and of a glass-forming material, for example an alkaline earth silicate glass. Ba-Al silicate, for example, is used as the alkaline earth silicate glass. The barium can be replaced by strontium up to 30 atomic%.
Das Erdalkalisilikatglas kann als vorgeschmolzene Glasfritte oder als Glasphase-Rohstoffmischung eingebracht werden. Das Materialgemisch darf elektrisch leitende Verunreinigungen bis zu maximal 1 Gew.% enthalten. Dies betrifft besonders Na20, K20, Fe203 , Ti02 , Cu20 o.a. halbleitende Oxide. Meist liegt der Gehalt an elektrisch leitenden Verunreinigungen in den handelsüblichen Rohstoffen unter 0,2 Gew.%The alkaline earth silicate glass can be introduced as a pre-melted glass frit or as a glass phase-raw material mixture. The material mixture may contain electrically conductive impurities up to a maximum of 1% by weight. This applies in particular to Na 2 0, K 2 0, Fe 2 0 3 , Ti0 2 , Cu 2 0 or the like semiconducting oxides. Most of time the content of electrically conductive impurities in the commercially available raw materials is below 0.2% by weight
Die Tonerde wurde so ausgewählt, daß bei einer Sintertemperatur, die beim Sintern des Pulvergemisches zur Ausbildung einer mit der Tonerde gefüllten Glasur notwendig ist, die Tonerde für sich alleine eine Sinteraktivität aufweist, die zu einer relativen Sinterdichte von mindestens 95 % führt. Eine derartige Tonerde liegt gemäß der nachfolgenden Tabelle mit den Tonerden B und C vor. Die Tabelle zeigt die tatsächliche Sinterdichte pg in g/cm3 und die relative Sinterdichte Ps/Pth ^n ^ ^ur drei verschiedene Tonerden A, B und C.The alumina was selected so that at a sintering temperature which is necessary during the sintering of the powder mixture to form a glaze filled with the alumina, the alumina alone has a sintering activity which leads to a relative sintered density of at least 95%. Such an alumina is present according to the following table with the alumina B and C. The table shows the actual sintering density pg in g / cm 3 and the relative sintering density Ps / Pth ^ n ^ ^ for three different clays A, B and C.
Als kristallines, nichtmetallisches Material können neben den Tonerden B oder C auch Mg-Spinell, Forsterit oder ein Gemisch dieser Stoffe verwendet werden. Es ist auch denkbar dem Pulvergemische mit den Tonerden B oder C weitere kristalline Materialien wie Mg-Spinell, Forsterit, oder ein Gemisch dieser Stoffe zuzusetzen. Diese kristallinen, nichtmetallischen Materialien müssen jedoch eine Sinteraktivität aufweisen, die zu einer relativen Sinterdichte von wenigstens 95 % führt.In addition to clays B or C, Mg spinel, forsterite or a mixture of these substances can also be used as the crystalline, non-metallic material. It is also conceivable to add further crystalline materials such as Mg spinel, forsterite or a mixture of these substances to the powder mixture with the clays B or C. These crystalline however, non-metallic materials must have a sintering activity which leads to a relative sintering density of at least 95%.
Beispiel 1:Example 1:
Zusammensetzung der Pulvermischung:Composition of the powder mixture:
60 Gew.% Tonerde B oder C (siehe Tabelle), 40 Gew.% Ba-Al- Silikat-Glaspulver (53 Gew.% BaO, 5 Gew.% Al203, 42 Gew.% SiC>2, spezifische Oberfläche 5 m /g) , Isolationswiderstand > 1 MΩ,60% by weight of alumina B or C (see table), 40% by weight of Ba-Al-silicate glass powder (53% by weight of BaO, 5% by weight of Al 2 0 3 , 42% by weight of SiC> 2, specific surface area 5 m / g), insulation resistance> 1 MΩ,
Das Pulvergemisch wird in einer Kugelmühle mit 90 %The powder mixture is in a ball mill with 90%
AI2O3 -Mahlkugeln zwei Stunden homogenisiert und aufgemahlen. Danach wird ein wassriger Schlicker angesetzt mit 500g Rohstoff-Mischung aus Tonerde und Ba-Al-Silikatglas, 500ml destilliertem Wasser und 25ml 10%-iger wassriger Polyvinylal- kohol-Lösung. Der Schlicker wird in einer Kugelmühle mit 90 % AI2O3 -Mahlkugeln bei einer Mahldauer von 1,5 Stunden ge- mahlen.AI2O3 grinding balls homogenized for two hours and ground. Then an aqueous slip is prepared with 500g raw material mixture of alumina and Ba-Al-silicate glass, 500ml distilled water and 25ml 10% aqueous polyvinyl alcohol solution. The slip is ground in a ball mill with 90% Al2O3 grinding balls with a grinding time of 1.5 hours.
Beispiel 2 :Example 2:
Dieses Beispiel unterscheidet sich gegenüber der Pulvermischung in Beispiel 1 dadurch, daß anstelle der 40This example differs from the powder mixture in Example 1 in that instead of the 40th
Gew.% Ba-Al-Silikat-Glaspulver folgende Zusammensetzung gewählt wird:% Ba-Al silicate glass powder, the following composition is selected:
38 Gew.% Ba-Al-Silikat-Glaspulver,38% by weight Ba-Al-silicate glass powder,
1 Gew.% Kaolin, 1 Gew.% Bariumkarbonat (BaC03, chemisch rein),1% by weight kaolin, 1% by weight barium carbonate (BaC0 3 , chemically pure),
Isolationswiderstand > 1 MΩ, Beispiel 3 :Insulation resistance> 1 MΩ, Example 3:
Die Zusammensetzung der Pulvermischung unterscheidet sich gegenüber dem Beispiel 1 dadurch, daß anstelle des Ba-Al-Silikat-Glaspulvers folgende Bestandteile eingesetzt werden: 40 Gew.% eines Kalzinats aus: 11 Gew.% Kaolin, 34 Gew.% Quarz (99% Si02) 55 Gew.% BaC03 (chemisch rein)The composition of the powder mixture differs from example 1 in that the following constituents are used instead of the Ba-Al-silicate glass powder: 40% by weight of a calcine from: 11% by weight of kaolin, 34% by weight of quartz (99% SiO 2 ) 55% by weight BaC0 3 (chemically pure)
Die Bestandteile werden in einer Kugelmühle mit 90 % AI2O3 -Mahlkugeln zwei Stunden aufgemahlen und als Schüttgut in Korundkapseln in oxididierender Atmosphäre bei 1000°C zwei Stunden kalziniert und anschließend erneut wie erwähnt aufgemahlen.The components are ground in a ball mill with 90% Al 2 O 3 grinding balls for two hours and calcined as bulk in corundum capsules in an oxidizing atmosphere at 1000 ° C. for two hours and then ground again as mentioned.
Isolationswiderstand > 1 MΩInsulation resistance> 1 MΩ
Beispiel 4 :Example 4:
Die Zusammensetzung der Pulvermischung unterscheidet sich gegenüber Beispiel 1 und Beispiel 3 wie folgt: 70 Gew.% Tonerde und 30 Gew.% Kalzinat, Isolationswiderstand > 1 MΩThe composition of the powder mixture differs from Example 1 and Example 3 as follows: 70% by weight of alumina and 30% by weight of calcine, insulation resistance> 1 MΩ
Beispiel 5:Example 5:
Wie Beispiel 4, jedoch anstelle der Tonerde mit: 70 Gew.% partiell stabilisiertes Zr02 mit 3,5 Gew.% MgO (35 % monoklin) , spezifische Oberfläche 7m2/g, Isolationswiderstand > 60 kΩ Beispiel 6 :As example 4, but instead of the alumina with: 70% by weight partially stabilized Zr0 2 with 3.5% by weight MgO (35% monoclinic), specific surface 7m 2 / g, insulation resistance> 60 kΩ Example 6:
Wie Beispiel 3, jedoch mit: 50 Gew.% Tonerde, 50 Gew.% Kalzinat,As example 3, but with: 50% by weight of clay, 50% by weight of calcine,
Isolationswiderstand > 1 MΩInsulation resistance> 1 MΩ
Beispiel 7 :Example 7:
Wie Beispiel 3, jedoch mit: 85 Gew.% Tonerde, 15 Gew.% Kalzinat, Isolationswiderstand > 500 kΩLike example 3, but with: 85% by weight of alumina, 15% by weight of calcine, insulation resistance> 500 kΩ
Beispiel 8 :Example 8:
Die Zusammensetzung entspricht Beispiel 7, wobei die Tonerde hierbei folgende Bestandteile enthält: 99,3 % A1203, 0,3 % Na20, spezifische Oberfläche 2,5 m2/g, Isolationswiderstand > 300 kΩThe composition corresponds to Example 7, with the alumina containing the following components: 99.3% A1 2 0 3 , 0.3% Na 2 0, specific surface area 2.5 m 2 / g, insulation resistance> 300 kΩ
Beispiel 9 :Example 9:
Die Zusammensetzung entspricht dem Beispiel 3, jedoch anstelle der Tonerde mit folgenden Bestandteilen: 60 Gew.% Mg-Spinell-Pulver (MgO * Al203) mit < 0,5 Gew.% freies MgO und < 0,1 Gew.% Na2θ, spezifische Oberfläche 8 m2/g, Isolationswiderstand > 1 MΩThe composition corresponds to Example 3, but instead of the alumina with the following components: 60% by weight of Mg spinel powder (MgO * Al 2 0 3 ) with <0.5% by weight of free MgO and <0.1% by weight Na2θ, specific surface 8 m 2 / g, insulation resistance> 1 MΩ
Zur Herstellung des Schichtsystem für das Sensorelement 10 gemäß Figur 1 und 2 wird zunächst die aufbereitete Paste mittels Siebdruck auf die ungesinterte keramische Trägerfolie 41 aufgebracht. Auf die Isolationsschicht 42 wird sodann der Widerstandsheizer 44 mittels einer an sich bekannten Cermet-Paste ebenfalls im Siebdruck aufgedruckt. Dabei werden gleichzeitig die Durchkontaktierungen 48, die vorher in der Isolationsschicht 42 ausgespart und in die Trägerfolie 41 eingebracht wurden, ausgeführt. Auf denTo produce the layer system for the sensor element 10 according to FIGS. 1 and 2, the prepared paste is first applied to the unsintered ceramic carrier film 41 by means of screen printing. On the insulation layer 42 the resistance heater 44 is then also screen-printed by means of a cermet paste known per se. At the same time, the plated-through holes 48, which were previously recessed in the insulation layer 42 and introduced into the carrier film 41, are carried out. On the
Widerstandsheizer 44 wird nun die innere Isolationsschicht 50 ebenfalls in Siebdrucktechnik aufgetragen. Die Schichtdicken der Isolationsschichten 42, 50, die nach dem Sintern vorzuliegen haben, werden durch eine entsprechende Anzahl von Siebdruckschritten und/oder durch geeignte Wahl der Siebdruckparameter und Pasteneigenschaften (Viskosität u.a.) eingestellt. Im vorliegenden Ausführungsbeispiel weist im gesinterten Zustand die äußere Isolationschicht 42 eine Schichtdicke von 18 μm und die innere Isoolationsschicht 50 eine Schichtdicke von ebenfalls 18 μm auf.Resistance heater 44, the inner insulation layer 50 is now also applied using screen printing technology. The layer thicknesses of the insulation layers 42, 50 which have to be present after sintering are set by a corresponding number of screen printing steps and / or by a suitable choice of screen printing parameters and paste properties (viscosity etc.). In the present exemplary embodiment, in the sintered state, the outer insulation layer 42 has a layer thickness of 18 μm and the inner insulation layer 50 also has a layer thickness of 18 μm.
Das somit hergestellte Heizelement 41 wird nun mit der Meßzelle 12, die in ähnlicher Weise mittels Drucktechnik hergestellt wird, zusammenlaminiert und anschließend in einem Sinterprozeß bei ca. 1400° C ko-gesintert . Bei derThe heating element 41 thus produced is now laminated together with the measuring cell 12, which is produced in a similar manner by means of printing technology, and then co-sintered in a sintering process at approximately 1400 ° C. In the
Sintertemperatur versintern die keramischen und metallischen Bestandteile des Schichtsystems. Dabei entsteht aus der Isolations-Paste durch Aufschmelzen des glasbildenden Materials und versintern der kristallinen Bestandteile die gasdichte elektrische Isolationsschichten 42 und 50. Sintering temperature sinter the ceramic and metallic components of the layer system. The insulation paste is formed by melting the glass-forming material and sintering the crystalline components to form the gas-tight electrical insulation layers 42 and 50.

Claims

Ansprüche Expectations
1. Sensorelement, insbesondere zur Bestimmung des Sauerstoffgehaltes in Abgasen von Verbrennungsmotoren, mit mindestens einer Meßzelle und mindestens einem Heizelement, wobei die Meßzelle und das Heizelement mittels einer elektrischen Isolationsschicht miteinander verbunden sind, dadurch gekennzeichnet, daß das Material der Isolationsschicht (50) aus mindestens einem kristallinen, nichtmetallischen Material und mindestens einem glasbildenden Material besteht, so daß beim Sintern des Sensorelements (10) sich eine mit dem kristallinen, nichtmetallischen Material gefüllte Glasur ausbildet.1. Sensor element, in particular for determining the oxygen content in exhaust gases from internal combustion engines, with at least one measuring cell and at least one heating element, the measuring cell and the heating element being connected to one another by means of an electrical insulation layer, characterized in that the material of the insulation layer (50) consists of at least consists of a crystalline, non-metallic material and at least one glass-forming material, so that a glaze filled with the crystalline, non-metallic material forms when the sensor element (10) is sintered.
2. Sensorelement nach Anspruch 1, dadurch gekennzeichnet, daß das kristalline, nichtmetallische Material AI2O3, Mg- Spinell, Forsterit oder ein Gemisch dieser Stoffe ist.2. Sensor element according to claim 1, characterized in that the crystalline, non-metallic material is Al2O3, Mg spinel, forsterite or a mixture of these substances.
3. Sensorelement nach Anspruch 1, dadurch gekennzeichnet, daß das glasbildende Material ein Erdalkalisilikatglas ist.3. Sensor element according to claim 1, characterized in that the glass-forming material is an alkaline earth silicate glass.
4. Sensorelement nach Anspruch 3, dadurch gekennzeichnet, daß das Erdalkalisilikatglas ein Barium-Aluminium- Silikatglas ist. 4. Sensor element according to claim 3, characterized in that the alkaline earth silicate glass is a barium aluminum silicate glass.
5. Sensorelement nach Anspruch 4, dadurch gekennzeichnet, daß bis zu 30 Atomprozent Barium durch Strontium substituiert sind.5. Sensor element according to claim 4, characterized in that up to 30 atomic percent barium are substituted by strontium.
6. Sensorelement nach Anspruch 1, dadurch gekennzeichnet, daß der Festelektrolytkörper der Meßzelle (12) aus teilstabilisierten Zrθ2 besteht.6. Sensor element according to claim 1, characterized in that the solid electrolyte body of the measuring cell (12) consists of partially stabilized Zrθ2.
7. Sensorelement nach Anspruch 1, dadurch gekennzeichnet, daß in der Rohstoffmischung das kristalline, nichtmetallische Material mindestens 50 Gew.% bezogen auf die Feststoffanteile beträgt.7. Sensor element according to claim 1, characterized in that in the raw material mixture, the crystalline, non-metallic material is at least 50% by weight based on the solids content.
8. Verfahren zur Herstellung eines Sensorelements nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zur Herstellung der Isolationsschicht (50) eine Paste aus 20 bis 70 Gew. % einer Pulvermischung, 20 bis 70 Gew. % Lösungsmittel, 1 bis 15 Gew. % Weichmacher, 1 bis 15 Gew. % Binder erzeugt wird, wobei die Pulvermischung aus einem kristallinen, nichtmetallisches Material und einem glasbildenden Material gebildet wird, daß die Paste auf eine mit einem Widerstandsheizer versehene Trägerfolie zur Erzeugung der Isolationsschicht aufgedruckt wird, daß ein das Heizelement und die Meßzelle enthaltendes Schichtsystem erzeugt wird und daß das Schichtsystem bei einer Temperatur gesintert wird, die mindestens der Schmelztemperatur des glasbildenden Materials entspricht.8. A method for producing a sensor element according to one of the preceding claims, characterized in that for the production of the insulation layer (50) a paste of 20 to 70 wt.% Of a powder mixture, 20 to 70 wt.% Solvent, 1 to 15 wt.% Plasticizer, 1 to 15 wt.% Binder is generated, the powder mixture being formed from a crystalline, non-metallic material and a glass-forming material, that the paste is printed onto a carrier film provided with a resistance heater to produce the insulation layer, that the heating element and the layer system containing the measuring cell is generated and that the layer system is sintered at a temperature which corresponds at least to the melting temperature of the glass-forming material.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das kristallinen, nichtmetallisches Material in der9. The method according to claim 8, characterized in that the crystalline, non-metallic material in the
Pulvermischen mit mindestens 50 Gew. % eingesetzt wird.Powder mixing with at least 50% by weight is used.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das Pulver des kristallinen, nichtmetallischen Materials mit einer Feinheit des Korns von d5Q < 0,40μm eingesetzt wird. 10. The method according to claim 8, characterized in that the powder of the crystalline, non-metallic material is used with a grain size of d5 Q <0.40μm.
11. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das Pulver des kristallinen, nichtmetallischen Materials mit einer Enge der Kornverteilung von dgg < 0,50μm eingesetzt wird.11. The method according to claim 8, characterized in that the powder of the crystalline, non-metallic material is used with a narrowness of the grain distribution of dgg <0.50μm.
12. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Sintertemperatur 1250° C beträgt. 12. The method according to claim 8, characterized in that the sintering temperature is 1250 ° C.
EP97949979A 1997-01-13 1997-11-29 Sensor element and process for producing the same Withdrawn EP0895593A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19700700A DE19700700C2 (en) 1997-01-13 1997-01-13 Sensor element and method for its production
DE19700700 1997-01-13
PCT/DE1997/002792 WO1998030894A1 (en) 1997-01-13 1997-11-29 Sensor element and process for producing the same

Publications (1)

Publication Number Publication Date
EP0895593A1 true EP0895593A1 (en) 1999-02-10

Family

ID=7817147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97949979A Withdrawn EP0895593A1 (en) 1997-01-13 1997-11-29 Sensor element and process for producing the same

Country Status (6)

Country Link
US (1) US6350357B1 (en)
EP (1) EP0895593A1 (en)
JP (1) JP4080002B2 (en)
KR (1) KR100464466B1 (en)
DE (1) DE19700700C2 (en)
WO (1) WO1998030894A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19833087A1 (en) * 1998-07-23 2000-01-27 Bosch Gmbh Robert Gas sensor for vehicle engine; has measuring electrode comprising platinum base with sintered porous layer and noble metal covering layer, applied in galvanic bath
DE19834276A1 (en) * 1998-07-30 2000-02-10 Bosch Gmbh Robert Flue gas probe
DE19910444C2 (en) * 1999-03-10 2001-01-25 Bosch Gmbh Robert Temperature sensor
DE19946343B4 (en) * 1999-09-28 2007-03-29 Robert Bosch Gmbh Method for producing a planar sensor element
DE10004959C1 (en) * 2000-02-04 2001-10-04 Bosch Gmbh Robert Electrochemical gas sensor for the analysis of an internal combustion motor exhaust gas has an electrode between solid electrolyte film layers with the gas channel passing through them without pinching or interruption
JP4421756B2 (en) * 2000-09-29 2010-02-24 日本特殊陶業株式会社 Manufacturing method of laminated gas sensor element
JP4721593B2 (en) * 2001-09-27 2011-07-13 京セラ株式会社 Oxygen sensor
US6984298B2 (en) * 2002-01-09 2006-01-10 Delphi Technologies, Inc. Gas sensor having an insulating layer
DE10212018A1 (en) * 2002-03-19 2003-10-02 Bosch Gmbh Robert Insulation material and gas sensor
DE10222791B4 (en) * 2002-05-23 2004-07-01 Robert Bosch Gmbh heater
JP4313027B2 (en) * 2002-11-12 2009-08-12 日本碍子株式会社 Gas sensor
US20090101502A1 (en) * 2003-02-10 2009-04-23 Robert Bosch Gmbh Thermal Shock Resistant Gas Sensor Element
US8906214B2 (en) * 2003-02-10 2014-12-09 Robert Bosch Gmbh Contamination-resistant gas sensor element
US7211180B2 (en) * 2003-02-10 2007-05-01 Robert Bosch Corporation Contamination-resistant gas sensor element
DE10337573B4 (en) * 2003-08-14 2006-02-09 Robert Bosch Gmbh sensor element
JP2006222068A (en) * 2005-01-14 2006-08-24 Denso Corp Ceramic heater and its manufacturing method
US9297791B2 (en) 2012-12-20 2016-03-29 Robert Bosch Gmbh Gas sensor with thermal shock protection
DE102013211796A1 (en) * 2013-06-21 2014-12-24 Robert Bosch Gmbh Sensor element with conductor track and feedthrough
KR101603310B1 (en) * 2014-03-25 2016-03-14 주식회사 코멧네트워크 METHOD OF PRODUCING NOx SENSOR ELEMENT WITH IMPROVED INSULATION PROPERTY
KR101603312B1 (en) * 2015-09-30 2016-03-14 주식회사 코멧네트워크 NOx SENSOR ELEMENT WITH IMPROVED INSULATION PROPERTY
DE102015222108A1 (en) * 2015-11-10 2017-05-11 Robert Bosch Gmbh Sensor element and method for producing a sensor element
JP7366868B2 (en) 2020-09-09 2023-10-23 日立建機株式会社 Grid box for electric drive vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798693A (en) * 1984-04-26 1989-01-17 Ngk Insulators, Ltd. Method of manufacturing an electrochemical device
US5228975A (en) * 1989-11-25 1993-07-20 Ngk Spark Plug Co., Ltd. Gas sensor having hermetic and electrically insulating seal in housing
US5554269A (en) * 1995-04-11 1996-09-10 Gas Research Institute Nox sensor using electrochemical reactions and differential pulse voltammetry (DPV)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2907032C2 (en) * 1979-02-23 1984-06-20 Robert Bosch Gmbh, 7000 Stuttgart Polarographic oxygen sensor for gases, in particular for exhaust gases from internal combustion engines
DE2928496A1 (en) * 1979-07-14 1981-01-29 Bosch Gmbh Robert ELECTROCHEMICAL PROBE FOR DETERMINING THE OXYGEN CONTENT IN GASES
JPH03158751A (en) 1989-11-16 1991-07-08 Matsushita Electric Ind Co Ltd Gas sensor element
JP2989961B2 (en) * 1991-05-27 1999-12-13 株式会社デンソー Oxygen concentration detector for intake pipe
JP3324195B2 (en) * 1993-04-13 2002-09-17 株式会社デンソー Manufacturing method of oxygen sensor
GB2294330B (en) 1993-07-27 1997-08-06 Bosch Gmbh Robert Electrochemical measuring probe with a sensor element arranged in a floating manner, and process for its manufacture
DE4342731B4 (en) * 1993-07-27 2004-09-09 Robert Bosch Gmbh Electrochemical sensor with a potential-free sensor element and method for its production
DE4415980A1 (en) * 1994-05-06 1995-11-09 Bosch Gmbh Robert Device for temperature measurement on an oxygen probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798693A (en) * 1984-04-26 1989-01-17 Ngk Insulators, Ltd. Method of manufacturing an electrochemical device
US5228975A (en) * 1989-11-25 1993-07-20 Ngk Spark Plug Co., Ltd. Gas sensor having hermetic and electrically insulating seal in housing
US5554269A (en) * 1995-04-11 1996-09-10 Gas Research Institute Nox sensor using electrochemical reactions and differential pulse voltammetry (DPV)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9830894A1 *

Also Published As

Publication number Publication date
JP2000507359A (en) 2000-06-13
KR100464466B1 (en) 2005-05-09
WO1998030894A1 (en) 1998-07-16
US6350357B1 (en) 2002-02-26
KR20000064570A (en) 2000-11-06
DE19700700C2 (en) 2000-01-20
DE19700700A1 (en) 1998-07-16
JP4080002B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
DE19700700C2 (en) Sensor element and method for its production
DE3733192C1 (en) PTC temperature sensor and method for producing PTC temperature sensor elements for the PTC temperature sensor
EP0391900B1 (en) Ntc temperature-sensing device and process for producing ntc temperature-sensing elements
EP1101103B1 (en) Exhaust gas sensor in which the insulation layer separating the heater from the solid electrolyte is formed by sintering a material containing al2o3 charged with a pore forming material
DE4338539A1 (en) Method of making ceramic heating elements
WO2000042402A1 (en) Platinum temperature sensor and its method of production
DE2908916C2 (en) Resistance sensor for detecting the oxygen content in gases, in particular in exhaust gases from internal combustion engines, and a method for producing the same
WO1995004273A1 (en) Electrochemical measurement sensor with a potential-free sensor element and process for producing the same
DE112022001724T5 (en) OXYGEN SENSOR ELEMENT AND METHOD FOR PRODUCING IT
DE69125121T2 (en) Ceramic substrate for electronic circuit and method for its production
DE3628572C2 (en)
DE4439883A1 (en) Insulation layer system for electrical isolation of circuits
EP3309800B1 (en) Method for producing a layer structure using a paste based on a resistance alloy
DE3726479C2 (en) Process for the production of electrically insulating regions or layers in or on solid electrolyte substrates which conduct O · 2 ·· - · ions and composition for carrying out the process
EP0683895B1 (en) Insulating layer system for gavanically separating circuits
WO1996021147A1 (en) Electrochemical sensor probe with an electrically neutral sensor element
DE19937163A1 (en) Screen-printing paste used to make flat ceramic components for lambda sensors used especially in vehicles, includes magnesium titanate or its mixture with spinel, forsterite or magnesia
DE10041554C2 (en) Laminate with an insulation layer
DE19545590C2 (en) Co-sintered cermet layer on a ceramic body and a process for its production
DE102014206958A1 (en) Sensor element for detecting at least one property of a sample gas in a sample gas space and method for producing the same
DE102013205037A1 (en) Sensor element and exhaust gas sensor comprising a sensor element
WO2001075408A1 (en) Sensor element, in particular a temperature sensor
EP1129050B1 (en) Paste for screenprinting electric structures onto carrier substrates
WO2017080901A1 (en) Sensor element and method for producing a sensor element
DE10302519B3 (en) Ceramic layer system for gas sensor elements, has two oxide ceramic layers separated by electrically insulating intermediate layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19990118

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEUSSNER, KARL-HEINZ

Inventor name: NEUMANN, HARALD

Inventor name: WIEDENMANN, HANS-MARTIN

17Q First examination report despatched

Effective date: 20060804

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080603