EP0892990A1 - Semiconductor component with a split floating gate - Google Patents
Semiconductor component with a split floating gateInfo
- Publication number
- EP0892990A1 EP0892990A1 EP97923733A EP97923733A EP0892990A1 EP 0892990 A1 EP0892990 A1 EP 0892990A1 EP 97923733 A EP97923733 A EP 97923733A EP 97923733 A EP97923733 A EP 97923733A EP 0892990 A1 EP0892990 A1 EP 0892990A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tunnel
- gate electrode
- dielectric
- gate
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
- H10D30/681—Floating-gate IGFETs having only two programming levels
- H10D30/683—Floating-gate IGFETs having only two programming levels programmed by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
- H10D30/6891—Floating-gate IGFETs characterised by the shapes, relative sizes or dispositions of the floating gate electrode
Definitions
- the invention relates to a semiconductor component with a first and a second doped region of a first line type, which are arranged in a semiconductor substrate of a second line type, and with a channel region in the semiconductor substrate between the two doped regions, in particular it relates to EEPROM memory cells.
- EEPROM cells electrically erasable and programmable read only memories
- FLOTOX cell type floating gate tunnel oxide
- microcontroller environment embedded memories
- shrinkability of the tunnel window with the associated electrical connection area buried channel. This limit is primarily determined by the properties of the device, as described below and in the application “Semiconductor component with adjustable current gain based on a tunnel current-controlled avalanche breakdown” by the same applicant and filing date.
- an EEPROM cell of the FLOTOX type is shown schematically.
- a p-doped semiconductor substrate 1 there are two n-doped regions 2, 3 as source and drain.
- a floating gate 6 is arranged on the intermediate substrate surface and is separated from the substrate by a gate dielectric 7 or a tunnel dielectric 8.
- the floating gate is “connected” to the drain via the tunnel dielectric (so-called tunnel window) and via an n-doped region 4 referred to as buried channel.
- the region below the gate oxide of the memory transistor, the so-called channel region 5, is weakly p-doped.
- the gate dielectric 7 not only covers the channel region 5, but also an edge region 4 'of the
- a control gate 9 with a connection 10 is arranged above the floating gate 6.
- the following voltages are set for programming:
- Usable floating electrons can get from the floating gate through the potential barrier in the oxide into the conduction band of the oxide and then into the substrate, this is shown as a band diagram in FIG. They absorb enough energy to generate electron-hole pairs in the substrate. (Holes tend to run along the upper edge of the valence band to a higher potential - i.e. upwards in the drawing, since this corresponds to a lower potential for holes.)
- FIG. 3 shows the potential curve along the interface perpendicular to the drawing plane of FIG. 2 (that is, along the axis III-III 'in FIG. 1) with a large lateral extent of the edge region 4' for different values of U bU ri ⁇ d Channel.
- the pn junction between buried channel 4 (n-doped) and substrate (p-doped) is polarized in the reverse direction at the voltages mentioned. This leads to a large potential gradient.
- a small potential barrier Pb is formed in both the conduction and valence bands, since the potential at the interface depends on the thickness of the dielectric above: the hole potential in the tunnel oxide region is higher than in the gate oxide region.
- the hole potential drop Pa to the p-area only sets with the drop in concentration. Endowment. If the height of this potential barrier is always (for holes) above the buried channel potential, holes cannot escape from the buried channel region 4. 4: If the lateral extent of the edge region 4 'under the gate dielectric 7 is not sufficient, the hole potential drop Pa starts earlier. The barrier Pb lies in the falling branch and falls below the buried channel level. Therefore, the holes generated by the tunnel electrons can escape from the area under the tunnel dielectric 8 and pass through the hole potential gradient to the channel area 5. Holes are no longer kept in the buried channel area. Additional electron-hole pairs are generated by impact ionization.
- Charge multiplication occurs so that the current from buried channel 4 to channel region 5, ie into substrate 1, is many orders of magnitude (10 4 to 10 6 ) above the tunnel current.
- the charge pump for generating the programming voltage cannot supply this current.
- the cells cannot be programmed by a few milliseconds in the required time.
- the parasitic current generated by the charge multiplication also loads the tunnel oxide and thus reduces the cyclical strength.
- the height of the potential barrier is of crucial importance for the programming process and the electrical reliability of the component. It can be set: by the lateral extension of the edge region 4 '- by the thickness ratio of tunnel dielectric to gate dielectric by the lateral doping profile around the gate oxide tunnel oxide edge.
- a high lateral out-diffusion of the n-doping element (mostly phosphorus) is necessary. This can be achieved by a high implantation dose.
- the distance between the gate oxide and tunnel oxide edge to the source region must be large enough so that the channel length of the storage chertransistor is not too short due to the lateral diffusion.
- a high buried channel concentration also has an unfavorable effect on the quality of the tunnel oxide.
- the sufficient extent of the edge region 4 ' is usually ensured by using two different masks to define the buried channel 4 and the tunnel window, that is to say the implantation mask for the buried channel has a larger opening than the etching mask for the tunnel window.
- Another way to avoid avalanche breakdown is a large thickness ratio of gate to tunnel dielectric (> 4). If this ratio is to be reduced, the lateral shrink boundaries of the component are encountered.
- the object of the invention is therefore to create an EPROM with a small footprint and high electrical reliability. This object is achieved by a semiconductor component with the features of patent claim 1. Further training is the subject of subclaims.
- the potential barrier Pb which prevents avalanche breakdown can be set by locally increasing the layer thickness of the gate dielectric at the transition from tunnel dielectric to gate dielectric.
- the tunnel electrode and channel gate electrode are therefore separated at least on their surface facing the tunnel dielectric or the gate dielectric by an insulation structure which is arranged on the gate dielectric. The dimensions and the position of this insulation structure determine the potential barrier.
- the insulation structure can be arranged above an edge region of the buried channel, preferably covering it completely and reaching the pn junction, it can also extend over a part of the channel region, that is to say covering the pn junction.
- the tunnel electrode and the channel gate electrode can be connected to one another outside the insulation web, for example on their surface facing away from the tunnel dielectric or the gate dielectric. This connection can have the same layer thickness as the electrodes.
- the insulation web can, however, also completely separate the two electrodes from one another, an external connection of the two gates is then preferably provided.
- the layer thicknesses of the gate dielectric and tunnel dielectric can be chosen freely and are not critical with regard to avoiding an avalanche breakdown. Both dielectrics can also have the same layer thickness, which simplifies the manufacturing process.
- the tunnel gate electrode and the channel gate electrode can be produced from the same conductive layer, the insulation structure preferably being generated beforehand. Alternatively, they can be produced from layers applied one after the other, the insulation web can then be formed by a spacer.
- FIG. 1 shows a cross section through a semiconductor substrate with a known EEPROM memory cell
- FIG. 2 - 4 the potential profile in the semiconductor substrate along predetermined axes
- FIG. 5 a cross section through a semiconductor substrate with a memory cell according to the invention
- FIG. 6 a further embodiment of the invention
- 7 shows a cross section through a semiconductor substrate, on which a manufacturing method is illustrated.
- a p-doped silicon semiconductor substrate 11 contains a first n-doped region 14, which is usually referred to as a buried channel, and a second n-doped region 12. The substrate region between these doped regions referred to as channel area 15.
- a gate oxide 17 covers the surface of the channel region 15, a tunnel oxide 18 partially covers the surface of the buried channel 14;
- a gate electrode is arranged as a floating gate above these dielectrics. In this respect, the memory cell corresponds to that in FIG. 1.
- an insulation structure 22 is provided at the transition from the tunnel to the gate dielectric, which is arranged above the edge region 14 'of the buried channel and represents a local thickening of the gate dielectric, so that the necessary potential barrier is achieved. It separates the gate electrode into a tunnel gate electrode 19 above the tunnel oxide 18 and into a channel gate electrode 20 above the gate oxide.
- the tunnel and gate electrodes are not completely separated, but are connected to one another above the insulation web.
- the layer thicknesses of tunnel and gate oxide are the same and are around 8 mm.
- a control gate (24) with a connection 25 is arranged in isolation, the gates are covered on all sides with an insulating layer 23.
- the buried channel region 14 can be connected directly or via an n-doped region (drain) 13.
- This arrangement could, for example, be used with FLOTOX and flash type EEPROMs.
- FIG. 6 shows, as a further embodiment, a memory cell in which the insulation structure 22 completely divides the floating gate into tunnel gate 19 and channel gate 20.
- the two gates can be connected to one another in an externally conductive manner by further interconnects.
- the tunnel oxide 18 is, for example, approximately half as thick as the gate oxide 17.
- the reference numbers are chosen as in FIG. 5.
- FIG. 7 explains a simple method for producing the floating gate of a flash or a FLO-TOX cell shown in FIG. 6.
- the gate oxide 17 is produced on the silicon substrate 11 using known methods, on which a first conductive layer 30, for example a polysilicon layer, is applied.
- the polysilicon layer becomes corresponding to the channel gate electrode 20 structured, and using conventional methods, an isolating spacer is produced which represents the isolating web 22.
- the Buried Channel 14 is implanted using a photo mask. Possibly. If the gate oxide is removed - the same photomask as used for the buried channel implantation can be used - and a tunnel oxide 18 is applied, then a second conductive layer 31 (preferably polysilicon) is deposited. This is structured in accordance with the floating gate 19, 20.
- the further process steps (implantations, gate insulation, etc.) can be carried out in a known manner.
- the floating gate produced in this way consists of a tunnel gate electrode 19, which consists of the second conductive layer 31, and a channel gate electrode 20, which is composed of both conductive layers 30, 31. Both electrodes are connected to one another via the second conductive layer 31.
- such a method can be used to produce an arrangement in which the channel gate electrode 20 consists of the second conductive layer 31 and the tunnel electrode 19 is composed of two conductive layers 30, 31.
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
Beschreibungdescription
Halbleiterbauelement mit einem geteilten Floating GateSemiconductor device with a split floating gate
Die Erfindung betrifft ein Halbleiterbauelement mit einem er¬ sten und einem zweiten dotierten Gebiet eines ersten Lei- tungstyps, welche in einem Halbleitersubstrat eines zweiten Leitungstyps angeordnet sind, und mit einem Kanalgebiet im Halbleitersubstrat zwischen den beiden dotierten Gebieten, insbesondere betrifft sie EEPROM-Speicherzellen.The invention relates to a semiconductor component with a first and a second doped region of a first line type, which are arranged in a semiconductor substrate of a second line type, and with a channel region in the semiconductor substrate between the two doped regions, in particular it relates to EEPROM memory cells.
EEPROM-Zellen (electrically erasable and programmable read only memories) spielen eine immer wichtigere Rolle unter den Speichertypen. Beispielsweise werden für Chipkartenanwendun- gen Speicherblöcke vom FLOTOX Zelltyp (floating gate tunnel oxide) eingesetzt, die in eine Mikrokontroller-Umgebung inte¬ griert sind (embedded Memories) . Dabei besteht ein Bedarf an immer kleineren Zellen. Ein begrenzender Faktor ist die Shrinkbarkeit des Tunnelfensters mit dem dazugehörigen elek- triεchen Anschlußgebiet (Buried Channel) . Diese Grenze ist in erster Linie durch die Eigenschaften des Devices bestimmt, wie im folgenden und in der Anmeldung „Halbleiterbauelement mit einstellbarer, auf einem tunnelstromgesteuerten Lawinen- durchbruch basierender Stromverstäkung" desselben Anmelbers und Anmeldetages beschrieben ist.EEPROM cells (electrically erasable and programmable read only memories) play an increasingly important role among memory types. For example, memory blocks of the FLOTOX cell type (floating gate tunnel oxide) are used for chip card applications and are integrated in a microcontroller environment (embedded memories). There is a need for ever smaller cells. A limiting factor is the shrinkability of the tunnel window with the associated electrical connection area (buried channel). This limit is primarily determined by the properties of the device, as described below and in the application “Semiconductor component with adjustable current gain based on a tunnel current-controlled avalanche breakdown” by the same applicant and filing date.
In Fig. 1 ist eine EEPROM-Zelle vom FLOTOX Typ schematisch dargestellt. In einem p-dotierten Halbleitersubstrat 1 befin¬ den sich zwei n-dotierte Gebiete 2, 3 als Source und Drain. Auf der dazwischen liegenden Substratoberfläche ist ein Floa¬ ting Gate 6 angeordnet, das durch ein Gatedielektrikum 7 bzw. ein Tunneldielektrikum 8 vom Substrat getrennt ist. Das Floa¬ ting Gate ist über das Tunneldielektrikum (sog. Tunnelfen- ster) und über ein als Buried Channel bezeichnetes n-dotier- tes Gebiet 4 an das Drain „angeschlossen". Der Bereich unter dem Gateoxid des Speichertransistors, das sog. Kanalgebiet 5, ist schwach p dotiert. Das Gatedielektrikum 7 bedeckt nicht nur das Kanalgebiet 5, sondern auch einen Randbereich 4' desIn Fig. 1, an EEPROM cell of the FLOTOX type is shown schematically. In a p-doped semiconductor substrate 1 there are two n-doped regions 2, 3 as source and drain. A floating gate 6 is arranged on the intermediate substrate surface and is separated from the substrate by a gate dielectric 7 or a tunnel dielectric 8. The floating gate is “connected” to the drain via the tunnel dielectric (so-called tunnel window) and via an n-doped region 4 referred to as buried channel. The region below the gate oxide of the memory transistor, the so-called channel region 5, is weakly p-doped. The gate dielectric 7 not only covers the channel region 5, but also an edge region 4 'of the
Buried Channel 4. Über dem Floating Gate 6 ist ein Control Gate 9 mit einem Anschluß 10 angeordnet. Zum Programmieren werden in etwa folgende Spannungen eingestellt:Buried Channel 4. A control gate 9 with a connection 10 is arranged above the floating gate 6. The following voltages are set for programming:
Ucontrolgate = ovUcontrolgate = ov
UDrain = +15VU Dr ain = + 15V
Usource floatend Elektronen können dabei aus dem Floating-Gate durch die Po¬ tentialbarriere im Oxid ins Leitungsband des Oxids und dann ins Substrat gelangen, dies ist als Bänderdiagramm in Fig.2 dargestellt. Dabei nehmen sie genug Energie auf, um im Substrat Elektron-Lochpaare zu erzeugen. (Löcher haben die Tendenz, an der Oberkante des Valenzbandes entlang zu höherem Potential - also in der Zeichnung nach oben - zu laufen, da dies einem für Löcher niedrigeren Potential entspricht.)Usable floating electrons can get from the floating gate through the potential barrier in the oxide into the conduction band of the oxide and then into the substrate, this is shown as a band diagram in FIG. They absorb enough energy to generate electron-hole pairs in the substrate. (Holes tend to run along the upper edge of the valence band to a higher potential - i.e. upwards in the drawing, since this corresponds to a lower potential for holes.)
In Fig.3 ist der Potentialverlauf entlang der Grenzfläche senkrecht zur Zeichenebene der Fig.2 (also entlang der Achse III - III' in Fig 1) bei großer lateraler Ausdehnung des Randbereichs 4 ' für verschiedenen Werte von UbUriβd Channel gezeigt. Der pn-Übergang zwischen Buried-Channel 4 (n- dotiert) und Substrat (p-dotiert) ist bei den genannten Spannungen in Sperrichtung gepolt. Dies führt zu einem starken Potentialgefälle. Am Obergang Tunnel-zu- Gatedielektrikum bildet sich sowohl im Leitungs- als auch im Valenzband noch eine kleine Potentialbarriere Pb aus, da das Potential an der Grenzfläche von der Dicke des überliegenden Dielektrikum abhängt: das Löcherpotential im Tunneloxidgebiet ist höher als im Gateoxidgebiet. Der Löcherpotentialabfall Pa zum p-Gebiet setzt erst mit dem Konzentrationsabfall der . Dotierung ein. Wenn die Höhe dieser Potentialbarriere immer (für Löcher) über dem Buried Channel-Potential liegt, können Löcher nicht aus dem Buried-Channel-Gebiet 4 entweichen. Fig 4: Ist die laterale Ausdehnung des Randbereichs 4' unter dem Gatedielektrikum 7 nicht ausreichend, setzt der Löcherpo¬ tentialabfall Pa früher ein. Die Barriere Pb liegt im abfal- lenden Ast und fällt unter das Buried-Channel-Niveau ab.Daher können die durch die Tunnelelektronen erzeugten Löcher aus dem Gebiet unter demTunneldielektrikum 8 entweichen und das Löcherpotentialgefälle zum Kanalgebiet 5 hin durchlaufen. Lö¬ cher werden nun nicht mehr im Buried-Channel-Gebiet gehalten. Dabei werden durch Stoßionisation weitere Elektron-Lochpaare erzeugt. Es kommt zu einer Ladungsmultiplikation, so daß der Strom vom Buried Channel 4 zum Kanalgebiet 5, d.h. ins Substrat 1, um viele Größenordnungen (104 bis 106) über dem Tunnelstrom liegt. Die Ladungspumpe zur Erzeugung der Pro- grammierspannung kann diesen Strom nicht liefern. Die Zellen können nicht in der erforderlichen Zeit von einigen Millise¬ kunden programmiert werden. Der durch die Ladungmultiplika¬ tion erzeugte parasitäre Strom belastet außerdem das Tunnel- oxid und reduziert damit die Zykelfestigkeit.FIG. 3 shows the potential curve along the interface perpendicular to the drawing plane of FIG. 2 (that is, along the axis III-III 'in FIG. 1) with a large lateral extent of the edge region 4' for different values of U bU riβd Channel. The pn junction between buried channel 4 (n-doped) and substrate (p-doped) is polarized in the reverse direction at the voltages mentioned. This leads to a large potential gradient. At the tunnel-to-gate dielectric transition, a small potential barrier Pb is formed in both the conduction and valence bands, since the potential at the interface depends on the thickness of the dielectric above: the hole potential in the tunnel oxide region is higher than in the gate oxide region. The hole potential drop Pa to the p-area only sets with the drop in concentration. Endowment. If the height of this potential barrier is always (for holes) above the buried channel potential, holes cannot escape from the buried channel region 4. 4: If the lateral extent of the edge region 4 'under the gate dielectric 7 is not sufficient, the hole potential drop Pa starts earlier. The barrier Pb lies in the falling branch and falls below the buried channel level. Therefore, the holes generated by the tunnel electrons can escape from the area under the tunnel dielectric 8 and pass through the hole potential gradient to the channel area 5. Holes are no longer kept in the buried channel area. Additional electron-hole pairs are generated by impact ionization. Charge multiplication occurs so that the current from buried channel 4 to channel region 5, ie into substrate 1, is many orders of magnitude (10 4 to 10 6 ) above the tunnel current. The charge pump for generating the programming voltage cannot supply this current. The cells cannot be programmed by a few milliseconds in the required time. The parasitic current generated by the charge multiplication also loads the tunnel oxide and thus reduces the cyclical strength.
Die Höhe der Potentialbarriere ist von entscheidender Bedeu¬ tung für den Programmiervorgang und die elektrische Zuverläs¬ sigkeit des Bauelementes. Sie kann eingestellt werden: durch die laterale Ausdehnung des Randbereichs 4 ' - durch das Dickenverhältnis Tunneldielektrikum zu Gate¬ dielektrikum durch das laterale Dotierprofil um die Gatoxid-Tunnel- oxidkante.The height of the potential barrier is of crucial importance for the programming process and the electrical reliability of the component. It can be set: by the lateral extension of the edge region 4 '- by the thickness ratio of tunnel dielectric to gate dielectric by the lateral doping profile around the gate oxide tunnel oxide edge.
Um einen ausreichende Ausdehnung des Randbereichs 4' unter dem Gatedielektrikum 7 zu erhalten, ist eine hohe laterale Ausdiffusion des n-dotierenden Elements (meist Phosphor) not¬ wendig. Dies ist durch eine hohe Implantationsdosis zu errei¬ chen. Der Abstand Gatoxid-Tunneloxidkante zum Source-Gebiet muß entsprechend groß sein, damit die Kanallänge des Spei- chertransistors durch die laterale Diffusion nicht zu kurz wird. Eine hohe Buried-Channel-Konzentration wirkt sich au¬ ßerdem ungünstig auf die Qualität des Tunneloxids aus. Weiter wird die ausreichende Ausdehnung des Randbereichs 4' meist dadurch sichergestellt, daß zur Definition des Buried Chan¬ nels 4 und des Tunnelfensters zwei verschiedenen Masken ver¬ wendet, die Implantationsmaske für den Buried Channel also ein größere Öffnung aufweist als die Ätzmaske für das Tunnel¬ fenster.In order to obtain a sufficient expansion of the edge area 4 'under the gate dielectric 7, a high lateral out-diffusion of the n-doping element (mostly phosphorus) is necessary. This can be achieved by a high implantation dose. The distance between the gate oxide and tunnel oxide edge to the source region must be large enough so that the channel length of the storage chertransistor is not too short due to the lateral diffusion. A high buried channel concentration also has an unfavorable effect on the quality of the tunnel oxide. Furthermore, the sufficient extent of the edge region 4 'is usually ensured by using two different masks to define the buried channel 4 and the tunnel window, that is to say the implantation mask for the buried channel has a larger opening than the etching mask for the tunnel window.
Ein anderer Weg zur Vermeidung des Lawinendurchbruchs ist ein großes Dickenverhältnis von Gate- zu Tunneldielektrikum (> 4) . Soll diese Verhältnis verkleinert werden, stößt man an die lateralen Shrink-Grenzen des Bauelements.Another way to avoid avalanche breakdown is a large thickness ratio of gate to tunnel dielectric (> 4). If this ratio is to be reduced, the lateral shrink boundaries of the component are encountered.
Aufgabe der Erfindung ist daher die Schaffung eines EPROMs mit einem geringen Platzbedarf und einer hohen elektrischen Zuverlässigkeit. Diese Aufgabe wird durch ein Halbleiterbau¬ element mit den Merkmalen des Patentanspruchs 1 gelöst. Wei- terbildungen sind Gegenstand von Unteransprüchen.The object of the invention is therefore to create an EPROM with a small footprint and high electrical reliability. This object is achieved by a semiconductor component with the features of patent claim 1. Further training is the subject of subclaims.
Bei der Erfindung kann die den Lawinendurchbruch verhindernde Potentialbarriere Pb dadurch eingestellt werden, daß am Über¬ gang von Tunneldielektrikum zu Gatedielektrikum die Schicht- dicke des Gatedielektrikums lokal erhöht wird. Tunnelelek¬ trode und Kanalgateelektrode sind also mindestens an ihrer dem Tunneldielektrikum bzw. dem Gatedielektrikum zugewandten Oberfläche durch eine Isolationsstruktur, die auf dem Gate¬ dielektrikum angeordnet ist, getrennt. Die Dimensionen und die Lage dieser Isolationsstruktur bestimmen die Potential¬ barriere. Die Isolationsstruktur kann oberhalb eines Randbe- reichs des Buried Channel angeordnet sein, wobei er diesen vorzugsweise vollständig überdeckt und an den pn-Übergang heranreicht, er kann sich auch über einen Teil des Kanalge- bietes erstrecken, also den pn-Übergang überdecken. Tunnelelektrode und Kanalgateelektrode können außerhalb des Isolationsteges, bspw. an ihrer dem Tunneldielektrikum bzw. dem Gatedielektrikum abgewandten Oberfläche, miteinander ver¬ bunden sein. Diese Verbindung kann dieselbe Schichtdicke auf¬ weisen wie die Elektroden. Der Isolationssteg kann aber auch beide Elektroden vollständig voneinander trennen, vorzugs¬ weise ist dann eine externe Verbindung der beiden Gates vor¬ gesehen.In the case of the invention, the potential barrier Pb which prevents avalanche breakdown can be set by locally increasing the layer thickness of the gate dielectric at the transition from tunnel dielectric to gate dielectric. The tunnel electrode and channel gate electrode are therefore separated at least on their surface facing the tunnel dielectric or the gate dielectric by an insulation structure which is arranged on the gate dielectric. The dimensions and the position of this insulation structure determine the potential barrier. The insulation structure can be arranged above an edge region of the buried channel, preferably covering it completely and reaching the pn junction, it can also extend over a part of the channel region, that is to say covering the pn junction. The tunnel electrode and the channel gate electrode can be connected to one another outside the insulation web, for example on their surface facing away from the tunnel dielectric or the gate dielectric. This connection can have the same layer thickness as the electrodes. The insulation web can, however, also completely separate the two electrodes from one another, an external connection of the two gates is then preferably provided.
Da durch die Isolationsstruktur die Potentialbarriere erzielt wird, können die Schichtdicken von Gatedielektrikum und Tun¬ neldielektrikum frei gewählt werden und sind im Hinblick auf die Vermeidung eines Lawinendurchbruchs unkritisch. Beide Dielektrika können auch die gleiche Schichtdicke aufweisen, wodurch das Hergestellungsverfahren vereinfacht wird.Since the isolation barrier achieves the potential barrier, the layer thicknesses of the gate dielectric and tunnel dielectric can be chosen freely and are not critical with regard to avoiding an avalanche breakdown. Both dielectrics can also have the same layer thickness, which simplifies the manufacturing process.
Tunnelgateelektrode und Kanalgateelektrode können aus dersel¬ ben leitenden Schicht hergestellt werden, wobei vorzugsweise vorher die Isolationsstruktur erzeugt wird. Alternativ können sie aus nacheinander aufgebrachten Schichten hergestellt wer¬ den, der Isolationsteg kann dann durch einen Spacer gebildet werden.The tunnel gate electrode and the channel gate electrode can be produced from the same conductive layer, the insulation structure preferably being generated beforehand. Alternatively, they can be produced from layers applied one after the other, the insulation web can then be formed by a spacer.
Die Erfindung wird im folgenden anhand von Ausführungsbei- spielen, die in den Zeichnungen dargestellt sind, näher er¬ läutert. Es zeigenThe invention is explained in more detail below on the basis of exemplary embodiments which are illustrated in the drawings. Show it
Fig 1: einen Querschnitt durch ein Halbleitersubstrat mit ei- ner bekannten EEPROM-Speicherzelle,1 shows a cross section through a semiconductor substrate with a known EEPROM memory cell,
Fig 2 - 4: den Potentialverlauf im Halbleitersubstrat entlang vorgegebener Achsen, Fig 5: einen Querschnitt durch ein Halbleitersubstrat mit ei¬ ner Speicherzelle gemäß der Erfindung, Fig 6: eine weitere Ausführungsform der Erfindung, Fig 7: einen Querschnitt durch ein Halbleitersubstrat, an dem ein Herstellverfahren verdeutlicht wird.2 - 4: the potential profile in the semiconductor substrate along predetermined axes, FIG. 5: a cross section through a semiconductor substrate with a memory cell according to the invention, FIG. 6: a further embodiment of the invention, 7 shows a cross section through a semiconductor substrate, on which a manufacturing method is illustrated.
Fig 5: In einem p-dotierten Silizium-Halbleitersubstrat 11 befinden sich ein erstes n-dotiertes Gebiet 14, das üblicher¬ weise als buried Channel bezeichnet wird, und ein zweites n- dotiertes Gebiet 12. Das Substratgebiet zwischen diesen do- tierten Gebieten wird als Kanalgebiet 15 bezeichnet. Ein Ga¬ teoxid 17 bedeckt die Oberfläche des Kanalgebietes 15, ein Tunneloxid 18 bedeckt teilweise die Oberfläche des Buried Channel 14; über diesen Dielektrika ist eine Gateelektrode als Floating Gate angeordnet. Insoweit entspricht die Spei- cherzelle derjenigen in Figur 1.5: A p-doped silicon semiconductor substrate 11 contains a first n-doped region 14, which is usually referred to as a buried channel, and a second n-doped region 12. The substrate region between these doped regions referred to as channel area 15. A gate oxide 17 covers the surface of the channel region 15, a tunnel oxide 18 partially covers the surface of the buried channel 14; A gate electrode is arranged as a floating gate above these dielectrics. In this respect, the memory cell corresponds to that in FIG. 1.
Gemäß der Erfindung ist eine Isolationsstruktur 22 am Über¬ gang vom Tunnel- zum Gatedielektrikum vorgesehen, die ober¬ halb des Randbereichs 14' des Buried Channel angeordnet ist und eine lokale Verdickung des Gatedielektrikums darstellt, so daß die notwendige Potentialbarriere erzielt wird. Er trennt die Gateelektrode in ein Tunnelgateelektrode 19 ober¬ halb des Tunneloxids 18 und in eine Kanalgateelektrode 20 oberhalb des Gateoxids. In diesem Beispiel werden Tunnel- und Gateelektrode nicht vollständig getrennt , sondern sind ober¬ halb des Isolationssteges miteinander verbunden. Die Schicht- dicken von Tunnel- und Gateoxid sind gleich groß und betragen etwa 8 mm.According to the invention, an insulation structure 22 is provided at the transition from the tunnel to the gate dielectric, which is arranged above the edge region 14 'of the buried channel and represents a local thickening of the gate dielectric, so that the necessary potential barrier is achieved. It separates the gate electrode into a tunnel gate electrode 19 above the tunnel oxide 18 and into a channel gate electrode 20 above the gate oxide. In this example, the tunnel and gate electrodes are not completely separated, but are connected to one another above the insulation web. The layer thicknesses of tunnel and gate oxide are the same and are around 8 mm.
Der übrige Aufbau entspricht dem einer bekannten EEPROM-The rest of the structure corresponds to that of a known EEPROM
Zelle: oberhalb des Floating Gate 19, 20 ist isoliert dazu ein Control Gate (24) mit einem Anschluß 25 angeordnet, die Gates sind allseits mit einer Isolierschicht 23 bedeckt. Das Buried Channel-Gebiet 14 iεt direkt oder über ein n-dotiertes Gebiet (Drain) 13 anschließbar. Diese Anordnung könnte z.B. bei EEPROM's vom FLOTOX und Flashtyp eingesetzt werden. Beim Löschen einer Flash-Zelle <u Source=+8v und U CG = ~8V) tunneln Elektronen aus dem Floa- tinggate in das Sourcegebiet. Ohne die Isolationsstruktur gäbe es keine (oder bei verschiedenen Dicken von Tunneloxid und Gateoxid die Gefahr einer nicht ausreichenden) Potential¬ barriere. Bei jedem Löschvorgang werden eine Ladungsmultipli¬ kation in Gang gesetzt und heiße Ladungsträger erzeugt. Da- durch wird das dünne Tuneloxid (bzw. Gateoxid) gestreßt und die Anzahl der Schreib-Löschzyklen beträchtlich reduziert.Cell: Above the floating gate 19, 20, a control gate (24) with a connection 25 is arranged in isolation, the gates are covered on all sides with an insulating layer 23. The buried channel region 14 can be connected directly or via an n-doped region (drain) 13. This arrangement could, for example, be used with FLOTOX and flash type EEPROMs. When a flash cell is deleted ( < u S ource = + 8v and U CG = ~ 8V) , electrons tunnel from the floating gate into the source area. Without the insulation structure, there would be no potential barrier (or, with different thicknesses of tunnel oxide and gate oxide, the risk of an insufficient). With each extinguishing process, a charge multiplication is started and hot charge carriers are generated. This stresses the thin tunel oxide (or gate oxide) and considerably reduces the number of write-erase cycles.
Bei FLOTOX-Zellen kann eine Isolierung anstelle des Übergangs vom Tunneldielektrikum zum Gatedielektrikum bei kurzgeschlos- senen Elektroden eingesetzt werden. Wie eingangs erläutert, kann die Ausdiffusion des ersten dotierten Gebietes (Buried Channel) dadurch stark reduziert werden, wodurch kleinere Zellen realisiert werden können.With FLOTOX cells, insulation can be used instead of the transition from the tunnel dielectric to the gate dielectric with short-circuited electrodes. As explained at the beginning, the outdiffusion of the first doped region (buried channel) can thereby be greatly reduced, as a result of which smaller cells can be realized.
Fig 6 zeigt als weitere Ausführungsform eine Speicherzelle, bei der die Isolationsstruktur 22 das Floating Gate vollstän¬ dig in Tunnelgate 19 und Kanalgate 20 aufteilt. Die beiden Gates können durch weitere Leitbahnen extern leitend mitein¬ ander verbunden werden. Das Tunneloxid 18 ist bspw. etwa halb so dick wie das Gateoxid 17. Die Bezugsziffern sind wie in Fig. 5 gewählt.6 shows, as a further embodiment, a memory cell in which the insulation structure 22 completely divides the floating gate into tunnel gate 19 and channel gate 20. The two gates can be connected to one another in an externally conductive manner by further interconnects. The tunnel oxide 18 is, for example, approximately half as thick as the gate oxide 17. The reference numbers are chosen as in FIG. 5.
Fig 7 erläutert eine einfaches Verfahren zur Herstellung des in Fig 6 gezeigten Floating Gate einer Flash- oder einer FLO- TOX-Zelle.FIG. 7 explains a simple method for producing the floating gate of a flash or a FLO-TOX cell shown in FIG. 6.
Auf dem Siliziumsubstrat 11 wird das Gateoxid 17 mit bekann¬ ten Verfahren erzeugt, darauf wird eine erste leitende Schicht 30, bspw. eine Polysiliziumschicht, aufgebracht. Die Polysiliziumschicht wird entsprechend der Kanalgateelektrode 20 strukturiert, und mit gängigen Verfahren wird ein isolie¬ render Spacer hergestellt, der den Isolationssteg 22 dar¬ stellt. Nun wird mit Hilfe einer Fotomaske der Buried Channel 14 implantiert. Ggf. wird das Gateoxid abgelöst - dazu kann dieselbe Fotomaske wie für die Buried-Channel-Implantation eingesetzt werden - und ein Tunneloxid 18 aufgebracht, dann erfolgt die Abscheidung einer zweiten leitenden Schicht 31 (vorzugsweise Polysilizium) . Diese wird entsprechend des Floating Gate 19, 20 strukturiert. Die weiteren Verfahrens- schritte (Implantationen, Isolierung des Gate etc.) können in bekannter Weise erfolgen.The gate oxide 17 is produced on the silicon substrate 11 using known methods, on which a first conductive layer 30, for example a polysilicon layer, is applied. The polysilicon layer becomes corresponding to the channel gate electrode 20 structured, and using conventional methods, an isolating spacer is produced which represents the isolating web 22. Now the Buried Channel 14 is implanted using a photo mask. Possibly. If the gate oxide is removed - the same photomask as used for the buried channel implantation can be used - and a tunnel oxide 18 is applied, then a second conductive layer 31 (preferably polysilicon) is deposited. This is structured in accordance with the floating gate 19, 20. The further process steps (implantations, gate insulation, etc.) can be carried out in a known manner.
Das derart hergestellte Floating Gate besteht aus einer Tun¬ nelgateelektrode 19, die aus der zweiten leitenden Schicht 31 besteht, und einer Kanalgateelektrode 20, die sich aus beiden leitenden Schichten 30, 31 zusammensetzt. Beide Elektroden sind über die zweite leitende Schicht 31 miteinander verbun¬ den.The floating gate produced in this way consists of a tunnel gate electrode 19, which consists of the second conductive layer 31, and a channel gate electrode 20, which is composed of both conductive layers 30, 31. Both electrodes are connected to one another via the second conductive layer 31.
Analog kann mit einem derartigen Verfahren eine Anordnung hergestellt werden, bei der die Kanalgateelektrode 20 aus der zweiten leitenden Schicht 31 besteht und die Tunnelelektrode 19 sich aus beiden leitenden Schichten 30, 31 zusammensetzt. Analogously, such a method can be used to produce an arrangement in which the channel gate electrode 20 consists of the second conductive layer 31 and the tunnel electrode 19 is composed of two conductive layers 30, 31.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19614011A DE19614011C2 (en) | 1996-04-09 | 1996-04-09 | Semiconductor component in which the tunnel gate electrode and the channel gate electrode are interrupted by an insulation structure at the interface with the tunnel dielectric or gate dielectric |
DE19614011 | 1996-04-09 | ||
PCT/DE1997/000722 WO1997038446A1 (en) | 1996-04-09 | 1997-04-09 | Semiconductor component with a split floating gate |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0892990A1 true EP0892990A1 (en) | 1999-01-27 |
Family
ID=7790802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97923733A Withdrawn EP0892990A1 (en) | 1996-04-09 | 1997-04-09 | Semiconductor component with a split floating gate |
Country Status (7)
Country | Link |
---|---|
US (1) | US6177702B1 (en) |
EP (1) | EP0892990A1 (en) |
JP (1) | JP3732522B2 (en) |
KR (1) | KR100349519B1 (en) |
DE (1) | DE19614011C2 (en) |
TW (1) | TW339476B (en) |
WO (1) | WO1997038446A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040232476A1 (en) * | 2003-05-20 | 2004-11-25 | Kang Sung-Taeg | EEPROM cell structures having non-uniform channel-dielectric thickness and methods of making the same |
KR100604850B1 (en) * | 2003-05-20 | 2006-07-31 | 삼성전자주식회사 | EEPROM cell structures having non-uniform channel dielectric thickness and methods of making the same |
US7256449B2 (en) * | 2003-05-20 | 2007-08-14 | Samsung Electronics, Co., Ltd. | EEPROM device for increasing a coupling ratio and fabrication method thereof |
KR101334844B1 (en) * | 2011-12-29 | 2013-12-05 | 주식회사 동부하이텍 | Single poly eeprom and method for fabricating the same |
US8735271B2 (en) | 2012-08-24 | 2014-05-27 | International Business Machines Corporation | Gate tunable tunnel diode |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58121680A (en) * | 1982-01-12 | 1983-07-20 | Mitsubishi Electric Corp | Semiconductor nonvolatile memory device |
EP0204498A3 (en) * | 1985-05-29 | 1988-09-21 | Advanced Micro Devices, Inc. | Improved eeprom cell and method of fabrication |
JPH05226662A (en) * | 1992-02-18 | 1993-09-03 | Matsushita Electron Corp | Semiconductor storage device |
JP3233998B2 (en) * | 1992-08-28 | 2001-12-04 | 株式会社東芝 | Manufacturing method of nonvolatile semiconductor memory device |
US5859455A (en) * | 1992-12-31 | 1999-01-12 | Yu; Shih-Chiang | Non-volatile semiconductor memory cell with control gate and floating gate and select gate located above the channel |
DE69428658T2 (en) * | 1993-11-30 | 2002-06-20 | Kabushiki Kaisha Toshiba, Kawasaki | Nonvolatile semiconductor memory device and manufacturing method |
US5404037A (en) * | 1994-03-17 | 1995-04-04 | National Semiconductor Corporation | EEPROM cell with the drain diffusion region self-aligned to the tunnel oxide region |
US5429960A (en) * | 1994-11-28 | 1995-07-04 | United Microelectronics Corporation | Method of making flash EEPROM memory |
KR0142604B1 (en) * | 1995-03-22 | 1998-07-01 | 김주용 | Flash Y pyrom cell and manufacturing method thereof |
DE69630107D1 (en) * | 1996-04-15 | 2003-10-30 | St Microelectronics Srl | FLASH-EPROM integrated with an EEPROM |
US5840607A (en) * | 1996-10-11 | 1998-11-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming undoped/in-situ doped/undoped polysilicon sandwich for floating gate application |
US5889700A (en) * | 1997-05-05 | 1999-03-30 | National Semiconductor Corporation | High density EEPROM array using self-aligned control gate and floating gate for both access transistor and memory cell and method of operating same |
-
1996
- 1996-04-09 DE DE19614011A patent/DE19614011C2/en not_active Expired - Lifetime
-
1997
- 1997-04-07 TW TW086104354A patent/TW339476B/en not_active IP Right Cessation
- 1997-04-09 JP JP53575297A patent/JP3732522B2/en not_active Expired - Fee Related
- 1997-04-09 KR KR1019980708016A patent/KR100349519B1/en not_active IP Right Cessation
- 1997-04-09 EP EP97923733A patent/EP0892990A1/en not_active Withdrawn
- 1997-04-09 WO PCT/DE1997/000722 patent/WO1997038446A1/en not_active Application Discontinuation
-
1998
- 1998-10-09 US US09/169,774 patent/US6177702B1/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO9738446A1 * |
Also Published As
Publication number | Publication date |
---|---|
KR20000005304A (en) | 2000-01-25 |
US6177702B1 (en) | 2001-01-23 |
JP2001508938A (en) | 2001-07-03 |
DE19614011A1 (en) | 1997-10-16 |
TW339476B (en) | 1998-09-01 |
WO1997038446A1 (en) | 1997-10-16 |
JP3732522B2 (en) | 2006-01-05 |
KR100349519B1 (en) | 2002-12-18 |
DE19614011C2 (en) | 2002-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4241457B4 (en) | Poly-silicon P-type floating gate for use with a semiconductor device transistor element and flash E2PROM fabricated therefrom | |
DE19617632C2 (en) | Method of manufacturing a non-volatile memory cell | |
DE3037431C2 (en) | ||
DE2853736C2 (en) | Field effect arrangement | |
DE19747776C2 (en) | Flash semiconductor memory with stack gate and method for its production | |
DE69018328T2 (en) | Use of an electrically programmable MOS cell as a fuse. | |
DE2838937A1 (en) | ROM STORAGE ARRANGEMENT WITH FIELD EFFECT TRANSISTORS | |
DE2547828B2 (en) | Process for the production of a memory element with a double gate insulated gate field effect transistor | |
DE10353387A1 (en) | Power transistor arrangement and method for its production | |
DE3485822T2 (en) | SEMICONDUCTOR STORAGE DEVICE WITH FLOATING GATE ELECTRODE. | |
DE19620032C2 (en) | Semiconductor device with compensation implantation and manufacturing process | |
DE69622115T2 (en) | Improvements to or related to non-volatile memory arrays | |
DE68905622T2 (en) | FLOATING GATE EEPROM MEMORY WITH A TRANSISTOR FOR SOURCE LINE SELECTION. | |
DE102005030845B4 (en) | Non-volatile NAND type semiconductor memory devices with trenches and method of forming the same | |
DE2432352B2 (en) | MNOS semiconductor memory element | |
DE102004009521B4 (en) | High-voltage PMOS transistor, mask for manufacturing a tub and method for manufacturing a high-voltage PMOS transistor | |
DE69326749T2 (en) | Non-volatile memory with protective diode | |
DE69121775T2 (en) | Erasable programmable memory array | |
DE102007013848A1 (en) | Semiconductor component i.e. MOSFET, has floating doped regions electrically connected with field plates and formed complementary to drift distance, where field plates are coupled with field plates voltage limiting structure | |
DE69517268T2 (en) | Self-aligning flash memory cell with buried channel transition and stacked gate | |
DE112010004414T5 (en) | SOI-CMOS-STRUCTURE WITH PROGRAMMABLE POTENTIAL-FREE BACKPLATE | |
DE19614011C2 (en) | Semiconductor component in which the tunnel gate electrode and the channel gate electrode are interrupted by an insulation structure at the interface with the tunnel dielectric or gate dielectric | |
DE19614010C2 (en) | Semiconductor component with adjustable current amplification based on a tunnel current controlled avalanche breakdown and method for its production | |
DE102005047056B3 (en) | Power semiconductor element and production process has field electrode structure with at least two first field electrodes and a second field electrode in a second direction with dielectric separation between them | |
DE69330401T2 (en) | EEPROM cell with double polysilicon layer and its manufacturing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19981005 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IE IT NL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: INFINEON TECHNOLOGIES AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20060419 |