EP0878561B1 - Process and apparatus for the regeneration of tin plating solutions - Google Patents
Process and apparatus for the regeneration of tin plating solutions Download PDFInfo
- Publication number
- EP0878561B1 EP0878561B1 EP98107584A EP98107584A EP0878561B1 EP 0878561 B1 EP0878561 B1 EP 0878561B1 EP 98107584 A EP98107584 A EP 98107584A EP 98107584 A EP98107584 A EP 98107584A EP 0878561 B1 EP0878561 B1 EP 0878561B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- chamber
- cathode
- tin
- solution
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 46
- 230000008929 regeneration Effects 0.000 title claims description 37
- 238000011069 regeneration method Methods 0.000 title claims description 37
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 title claims description 32
- 238000007747 plating Methods 0.000 title 1
- 239000010949 copper Substances 0.000 claims description 46
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 38
- 229910052802 copper Inorganic materials 0.000 claims description 38
- 238000005868 electrolysis reaction Methods 0.000 claims description 20
- 239000012528 membrane Substances 0.000 claims description 18
- 239000003638 chemical reducing agent Substances 0.000 claims description 11
- 229910001432 tin ion Inorganic materials 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 8
- 239000008139 complexing agent Substances 0.000 claims description 7
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 6
- 229910001431 copper ion Inorganic materials 0.000 claims description 6
- 150000001450 anions Chemical class 0.000 claims description 5
- 150000001768 cations Chemical class 0.000 claims description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 claims 1
- 230000000717 retained effect Effects 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- 235000011149 sulphuric acid Nutrition 0.000 claims 1
- 239000001117 sulphuric acid Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 description 65
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000005341 cation exchange Methods 0.000 description 8
- 238000010790 dilution Methods 0.000 description 7
- 239000012895 dilution Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000003011 anion exchange membrane Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003411 electrode reaction Methods 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000003014 ion exchange membrane Substances 0.000 description 4
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000011010 flushing procedure Methods 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- -1 tetrafluoroborate anion Chemical class 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010405 anode material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 150000004699 copper complex Chemical class 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229940021013 electrolyte solution Drugs 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000008237 rinsing water Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1617—Purification and regeneration of coating baths
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/16—Regeneration of process solutions
- C25D21/22—Regeneration of process solutions by ion-exchange
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S204/00—Chemistry: electrical and wave energy
- Y10S204/13—Purification and treatment of electroplating baths and plating wastes
Definitions
- the invention relates to a method and an apparatus for regenerating used tinning solutions.
- the external tinning of copper workpieces using an aqueous tinning solution is a common process in surface coating technology. It is used, for example, for the internal tinning of copper pipes or tinning of circuit boards for integrated circuits application.
- the tinning solution contains aqueous dissolved tin ions which, due to a chemical reduction using a suitable reducing agent on the copper be deposited. This takes place on the surface of the copper workpieces Exchange between the metals takes place through one in the tinning solution contained complexing agent is made possible.
- Hypophosphite is the main reducing agent used, thiourea is mostly used as a complexing agent.
- the used tinning solution then contains tin and copper ions, free and complexing agent bound to the copper ions, used and unused Reducing agents and, if appropriate, further constituents or in terms of process technology conditional contamination.
- the DE 27 42 718 A1 proposed to first remove the tin ions by means of electrolysis and then the foreign metal ions in a cation exchanger remove.
- DE 43 10 366 C1 counts a method and a device for regeneration from aqueous, external currentless coating solutions for metal coating using metal ions and a reducing agent to the prior art Technology.
- a combination of an ion exchange process with the Electrode reactions of the electrolysis made.
- the process takes place in an at least four-chamber electrolysis cell. It electrolytic regeneration is achieved by reducing the amount generated in the process Orthophosphite in a cathode chamber to hypophosphite and through Electrodialytic provision of counter ion-free resharpening chemicals.
- the present invention comes in, the object of which is a method and to show a device that allow the accumulating interference component Separate copper by cathodic deposition and at the same time to supply the consumable component tin, so that the Service life or service life of tinning solutions that operate without external power for copper workpieces can be significantly extended.
- the essence of the invention is the measure of tinning solution used regenerate strong dilution.
- a combination of Electrode reactions of electrolysis with transport processes in ion exchange membranes performed.
- copper is depleted by cathodic deposition from a dilution of the tinning solution and Enrichment of tin by anodic dissolution and transport through a cation exchange membrane.
- the invention adopts the knowledge that in a regeneration solution, in which the tinning solution used in the tinning process is strong is present diluted, the separation ratios compared to the original concentrated Reverse tinning solution and prefer copper from the thermodynamic deposits disadvantaged copper complex. This can cause the interference component Copper depleted and the tin component required for the process can be supplied by anodic dissolution.
- the regeneration solution is fed to an electrolysis cell, which has a cathode chamber with an inserted cathode, a middle chamber and one with a Anolyte-filled anode chamber with anode incorporated.
- the cathode chamber is separated from the middle chamber by an anion exchange membrane, whereas a cation exchange membrane between the anode chamber and the middle chamber is incorporated.
- the regeneration solution first reaches the cathode chamber and remains there with the deposition of copper on the cathode.
- the dwell time depends on the total amount of metal supplied. Then will the copper-depleted regeneration solution is directed into the middle chamber, where a tin enrichment from the anolyte of the anode chamber through the cathode exchange membrane penetrated tin ions.
- the prepared regeneration solution is expediently used in the tinning process returned where they also the water losses occurring there through evaporation balances.
- the regeneration solution consists of a 5 to 50% dilution of the tinning solution. Being particularly advantageous considered a concentration range between 10 to 15%.
- the electrolyte concentration preferably has 10 to 15% of the process solution then passed into the cathode chamber of the electrolytic cell.
- the copper ions contained in the regeneration solution are deposited cathodically. To a small extent, they are also in the regeneration solution contained tin ions cathodically deposited with.
- the ions of the reducing agent can diffuse through the ion exchange membranes into the middle chamber, in which the regeneration solution of the previous regeneration cycle is located. This is already depleted in copper.
- the regeneration solution transferred to the central chamber in which the tin enrichment takes place.
- tin ions which are anodically dissolved in the anode chamber, by diffusion from the anode chamber through the cation exchange membrane in the middle chamber.
- the anions of the reducing agent are through the cation exchange membrane prevented from passing into the anode chamber, so that they remain in the middle chamber.
- the regenerated solution is used in the tinning process returned and refreshes the tinning solution. This will the service life and useful life of the tinning solution are significantly extended.
- tetrafluoroboric acid or methanesulfonic acid can also be used as the anolyte be, as provided for in claim 6.
- the temperature in the electrolytic cell between 10 ° C and 60 ° C.
- Cathodic depletion starts best Copper and tin enrichment in a temperature range between 30 ° C and 40 ° C.
- the regeneration solution is moved in the electrolysis cell as claimed in claim 9 provides. This can be done, for example, by pumping from chamber to chamber take place or by stirring in the chambers. This causes polarization effects avoided in the chambers, especially on the membrane surfaces.
- the temperature of the Electrolysis cell can be controlled (claim 10).
- the method according to the invention can be used both in continuous cycle operation as well as in batch operation.
- the regeneration solution can either run quasi continuously in two cycles the cathode chamber or middle chamber of the three-chamber membrane electrolysis led or there may be a portion of the tinning solution diluted in the batch Cell regenerated and then returned to the tinning solution.
- the cathode material preferably consists of copper or stainless steel 11).
- the anode material consists of tin. This is a requirement for that Tin enrichment during the regeneration process.
- the prepared regeneration solution is the same this out. If necessary, a needs-based process-dependent correction can be made or adjustment of the regeneration solution. In this way is also a cheaper water cycle management by the inventive method reached.
- Electrolytic cells in stacks one after the other (series connection) or in parallel next to each other (Parallel connection). This creates a high capacity provided for the processing of used tinning solutions.
- the example concerns a tinning electrolyte for tinning without external current the fluoroborate-based with the complexing agent thiourea and the reducing agent Hypophosphite is built up.
- the invention results in that in the regeneration solution in the tinning solution is present in the specified dilution, electrode kinetic effects (Breakdown reaction, exchange current density, overvoltage) an increasingly important Play role, so that preferred despite the unfavorable potential conditions Copper can be deposited.
- FIG. 1 The course of the regeneration process of a tinning solution is illustrated in FIG. 1.
- the reaction equilibria, redox potentials that are important for the system and complex stability constants can be found in the table above.
- FIG. 1 in FIG. 1 is a system for tinning copper workpieces without external current referred to by means of an aqueous tinning solution.
- the copper workpieces are made in one Rinsing process cleaned.
- the flushing process is with SP, the water supply through the Arrow marked W.
- the tinning solution is carried out by electrolyte extraction towed portion diluted by the rinse water.
- the rinse water to a 10 to 15% dilution the process solution concentrated.
- the regeneration solution produced in this way becomes a three-chamber electrolysis cell 2 forwarded.
- the electrolytic cell comprises a cathode chamber 3, one Middle chamber 4 and an anode chamber 5.
- cathode chamber 3 there is a cathode 6 made of copper, in the anode chamber 5 is an anode 7 made of tin. Between anode 7 and cathode 6 a potential difference is created.
- the cathode chamber 3 is through an anion exchange membrane 8 and the anode chamber 5 through a cation exchange membrane 9 from the middle chamber 4 Cut.
- the regeneration solution is first fed into the cathode chamber 3 (arrow P1).
- the interfering component copper is then cathodically deposited from the thiourea complex at a current density of 0.4 to 0.6 A / dm 2 and thus removed from the system.
- anions such as the tetrafluoroborate anion and the hypophosphite anion can pass through the anion exchange membrane 8 into the middle chamber 4.
- the regenerated solution can be used in the tinning process be returned (arrow P3). This can also be used in the tinning process occurring evaporation losses can be compensated.
- the in Evaporation occurring during the tinning process is indicated by the arrows V. If a need correction (arrow BK) of the prepared diluted solution made to the process engineering requirements of the tinning solution become.
- the respective electrolyte solutions in the three reaction chambers are moved so that polarization effects in the reaction chambers 3, 4, 5, in particular on the membrane surfaces, are avoided.
- the movement in the cathode chamber 3 and in the middle chamber 4 is indicated by the arrows B1 and B2.
- the movement B1, B2 can take place, for example, by stirring.
- the anolyte (H 2 SO 4 ) in the anode chamber 5 is conducted in a separate circuit. This is indicated by arrow B3.
- the combination of electrode reactions of electrolysis with transport processes in ion exchange membranes thus enables a selective separation of the Interfering component copper from a diluted tinning solution with simultaneous Enrichment of tin via anodic dissolution and transport of the tin ions through the cation exchange membrane.
- the regenerated solution is in the tinning solution of the tinning process. This will make the Service life or the useful life of the tinning solution significantly extended.
- Electrolytic cells 2 in stacks one after the other (series connection) or in parallel next to each other (Parallel connection) are connected. In this way, each Capacity designed for the processing of tinning solutions reached.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Electrolytic Production Of Metals (AREA)
- Chemically Coating (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Regenerieren von verbrauchten Verzinnungslösungen.The invention relates to a method and an apparatus for regenerating used tinning solutions.
Die außenstromlose Verzinnung von Kupferwerkstücken mittels einer wäßrigen Verzinnungslösung ist ein gängiges Verfahren in der Oberflächenbeschichtungstechnik. Es findet beispielsweise bei der Innenverzinnung von kupferrohren oder der Verzinnung von Platinen für integrierte Schaltkreise Anwendung.The external tinning of copper workpieces using an aqueous tinning solution is a common process in surface coating technology. It is used, for example, for the internal tinning of copper pipes or tinning of circuit boards for integrated circuits application.
Die Verzinnungslösung enthält wäßrig gelöste Zinnionen, welche aufgrund einer chemischen Reduktion mittels eines geeigneten Reduktionsmittels auf dem Kupfer abgeschieden werden. Hierbei findet an der Oberfläche der Kupferwerkstücke ein Austausch zwischen den Metallen statt, der durch einen in der Verzinnungslösung enthaltenen Komplexbildner ermöglicht wird. Als Reduktionsmittel wird vor allem Hypophosphit eingesetzt, als Komplexbildner findet meist Thioharnstoff Anwendung.The tinning solution contains aqueous dissolved tin ions which, due to a chemical reduction using a suitable reducing agent on the copper be deposited. This takes place on the surface of the copper workpieces Exchange between the metals takes place through one in the tinning solution contained complexing agent is made possible. Hypophosphite is the main reducing agent used, thiourea is mostly used as a complexing agent.
Durch die Herabsetzung des Redoxpotentials von Kupfer in der komplexgebundenen Form, geht Kupfer in Lösung und Zinn scheidet sich auf der Oberfläche des Kupferwerkstücks ab. Da bei chemischen Reaktionen keine freien Elektronen auftreten, ist die Oxidation eines Reaktionspartners stets von der Reduktion eines anderen begleitet. By reducing the redox potential of copper in the complex-bound Form, copper goes into solution and tin separates on the surface of the copper workpiece from. Since there are no free electrons in chemical reactions the oxidation of one reactant is always accompanied by the reduction of another.
Mit dem Prozeß der außenstromlosen Verzinnung ist folglich eine Anreicherung von Kupfer und eine Abreicherung von Zinn in der Verzinnungslösung verbunden. Im konventionellen Betrieb muß daher Zinn und Komplexbildner nachdosiert werden, bis eine Kupfergrenzkonzentration erreicht ist, bei der die Lösung unbrauchbar ist und ausgetauscht werden muß. Desweiteren muß von Zeit zu Zeit Reduktionsmittel nachdosiert werden, da sich dieses verbraucht, wenn nach dem Erreichen einer vollständigen Zinnschicht noch weiteres Metall abgeschieden werden soll.With the process of electroless tinning is therefore an enrichment of Copper and a depletion of tin in the tinning solution. in the conventional operation must therefore be replenished with tin and complexing agents, until a copper limit concentration is reached at which the solution is unusable and needs to be replaced. Furthermore, reducing agents must be used from time to time can be replenished, as this is used up if after reaching one additional metal is to be deposited over the complete tin layer.
Die verbrauchte Verzinnungslösung enthält dann Zinn- und Kupferionen, freien und an die Kupferionen gebundenen Komplexbildner, verbrauchtes und unverbrauchtes Reduktionsmittel und gegebenenfalls weitere Bestandteile oder prozeßtechnisch bedingte Verunreinigungen.The used tinning solution then contains tin and copper ions, free and complexing agent bound to the copper ions, used and unused Reducing agents and, if appropriate, further constituents or in terms of process technology conditional contamination.
Zur Regenerierung eines galvanischen Verzinnungselektrolyten wird durch die DE 27 42 718 A1 vorgeschlagen, zuerst die Zinnionen mittels Elektrolyse zu entfernen und dann im Anschluß die Fremdmetallionen in einem Kationenaustauscher zu entfernen.For the regeneration of a galvanic tinning electrolyte, the DE 27 42 718 A1 proposed to first remove the tin ions by means of electrolysis and then the foreign metal ions in a cation exchanger remove.
Durch die DE 43 10 366 C1 zählt ein Verfahren und eine Vorrichtung zum Regenerieren von wäßrigen, außenstromlos arbeitenden Beschichtungslösungen zur Metallbeschichtung mittels Metallionen und eines Reduktionsmittels zum Stand der Technik. Hierbei wird eine Kombination eines lonenaustauscher-Prozesses mit den Elektrodenreaktionen der Elektrolyse vorgenommen.DE 43 10 366 C1 counts a method and a device for regeneration from aqueous, external currentless coating solutions for metal coating using metal ions and a reducing agent to the prior art Technology. Here a combination of an ion exchange process with the Electrode reactions of the electrolysis made.
Der Vorgang findet in einer mindestens vierkammerigen Elektrolysezelle statt. Es wird eine elektrolytische Regeneration erreicht durch Reduktion von im Prozeß entstehendem Orthophosphit in einer Kathodenkammer zu Hypophosphit und durch elektrodialytische Bereitstellung von gegenionenfreien Nachschärfchemikalien. The process takes place in an at least four-chamber electrolysis cell. It electrolytic regeneration is achieved by reducing the amount generated in the process Orthophosphite in a cathode chamber to hypophosphite and through Electrodialytic provision of counter ion-free resharpening chemicals.
Eine elektrolytische Regeneration von außenstromlos arbeitenden Verzinnungslösungen konnte bislang nicht erfolgreich praktiziert werden, da bereits die thermodynamischen Potentiale des komplexgebundenen Kupfers und des Zinns gegen eine Kupferabscheidung sprechen.An electrolytic regeneration of tinning solutions that operate without external current could not be practiced successfully because the thermodynamic Potentials of complex-bound copper and tin against one Speak copper deposition.
Hier setzt die vorliegende Erfindung ein, deren Aufgabe es ist, ein Verfahren und eine Vorrichtung aufzuzeigen, welche es ermöglichen, die sich anreichernde Störkomponente Kupfer durch kathodische Abscheidung abzutrennen und gleichzeitig die sich verbrauchende Komponente Zinn nachzuliefern, so daß hierdurch die Nutzungsdauer bzw. Standzeit von außenstromlos arbeitenden Verzinnungslösungen für Kupferwerkstücke deutlich verlängert werden kann.This is where the present invention comes in, the object of which is a method and to show a device that allow the accumulating interference component Separate copper by cathodic deposition and at the same time to supply the consumable component tin, so that the Service life or service life of tinning solutions that operate without external power for copper workpieces can be significantly extended.
Die Lösung des verfahrensmäßigen Teils dieser Aufgabe besteht in den Merkmalen
des Anspruchs 1.The solution to the procedural part of this task consists in the features
of
Die Lösung des gegenständlichen Teils dieser Aufgabe ist in den Merkmalen des Anspruchs 8 zu sehen.The solution to the objective part of this task is in the characteristics of Claim 8 to see.
Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens sind in den abhängigen Ansprüchen 2 bis 7 charakterisiert. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Vorrichtung bilden den Gegenstand der abhängigen Ansprüche 9 bis 12.Advantageous developments of the method according to the invention are in the dependent Claims 2 to 7 characterized. Advantageous embodiments of the invention Device form the subject of dependent claims 9 until 12.
Kernpunkt der Erfindung bildet die Maßnahme, verbrauchte Verzinnungslösung in starker Verdünnung zu regenerieren. Erfindungsgemäß wird eine Kombination von Elektrodenreaktionen der Elektrolyse mit Transportprozessen in lonenaustauschermembranen vorgenommen. Hierbei erfolgt eine Abreicherung von Kupfer durch kathodische Abscheidung aus einer Verdünnung der Verzinnungslösung und Anreicherung von Zinn durch anodische Auflösung und Transport durch eine Kationenaustauschermembran. The essence of the invention is the measure of tinning solution used regenerate strong dilution. According to the invention, a combination of Electrode reactions of electrolysis with transport processes in ion exchange membranes performed. Here, copper is depleted by cathodic deposition from a dilution of the tinning solution and Enrichment of tin by anodic dissolution and transport through a cation exchange membrane.
Die Erfindung macht sich dabei die Erkenntnis zu eigen, daß bei einer Regenerationslösung, in der die im Verzinnungsprozeß verwendete Verzinnungslösung stark verdünnt vorliegt, sich die Abscheideverhältnisse gegenüber der originalkonzentrierten Verzinnungslösung umkehren und sich bevorzugt Kupfer aus dem thermodynamisch benachteiligten Kupferkomplex abscheidet. Dadurch kann die Störkomponente Kupfer abgereichert und die für den Prozeß notwendige Komponente Zinn durch anodische Auflösung nachgeliefert werden.The invention adopts the knowledge that in a regeneration solution, in which the tinning solution used in the tinning process is strong is present diluted, the separation ratios compared to the original concentrated Reverse tinning solution and prefer copper from the thermodynamic deposits disadvantaged copper complex. This can cause the interference component Copper depleted and the tin component required for the process can be supplied by anodic dissolution.
Die Regenerationslösung wird einer Elektrolysezelle zugeleitet, welche eine Kathodenkammer mit eingegliederter Kathode, eine Mittelkammer und eine mit einem Anolyten gefüllte Anodenkammer mit eingegliederter Anode umfaßt. Die Kathodenkammer ist durch eine Anionenaustauschermembran von der Mittelkammer getrennt, wohingegen zwischen Anodenkammer und Mittelkammer eine Kationenaustauschermembran eingegliedert ist. Zwischen Anode und Kathode ist eine elektrische Potentialdifferenz angelegt.The regeneration solution is fed to an electrolysis cell, which has a cathode chamber with an inserted cathode, a middle chamber and one with a Anolyte-filled anode chamber with anode incorporated. The cathode chamber is separated from the middle chamber by an anion exchange membrane, whereas a cation exchange membrane between the anode chamber and the middle chamber is incorporated. There is an electrical one between the anode and the cathode Potential difference created.
In der Elektrolysezelle gelangt die Regenerationslösung zunächst in die Kathodenkammer und verweilt dort unter Abscheidung von Kupfer an die Kathode. Die Verweilzeit ist abhängig von der zugeführten Gesamtmetallmenge. Anschließend wird die an Kupfer abgereicherte Regenerationslösung in die Mittelkammer geleitet, wo eine Zinnanreicherung von aus dem Anolyten der Anodenkammer durch die Kathodenaustauschermembran durchgetretenen Zinnionen erfolgt.In the electrolysis cell, the regeneration solution first reaches the cathode chamber and remains there with the deposition of copper on the cathode. The dwell time depends on the total amount of metal supplied. Then will the copper-depleted regeneration solution is directed into the middle chamber, where a tin enrichment from the anolyte of the anode chamber through the cathode exchange membrane penetrated tin ions.
Danach kann die aufbereitete, mit Zinn angereicherte Regenerationslösung aus der Mittelkammer der Weiterverwendung zugeführt werden.Then the prepared, tin-enriched regeneration solution can be removed from the Middle chamber are fed for further use.
Zweckmäßigerweise wird die aufbereitete Regenerationslösung in den Verzinnungsprozeß zurückgeführt, wo sie auch die dort durch Verdunstung auftretenden Wasserverluste ausgleicht. The prepared regeneration solution is expediently used in the tinning process returned where they also the water losses occurring there through evaporation balances.
Gemäß den Merkmalen des Anspruchs 2 besteht die Regenerationslösung aus einer 5 bis 50 %igen Verdünnung der Verzinnungslösung. Als besonders vorteilhaft wird ein Konzentrationsbereich zwischen 10 bis 15 % angesehen.According to the features of claim 2, the regeneration solution consists of a 5 to 50% dilution of the tinning solution. Being particularly advantageous considered a concentration range between 10 to 15%.
Auch wenn es grundsätzlich möglich ist, die Regenerationslösung durch Abziehen
von Verzinnungslösung aus dem Beschichtungsprozeß und Zumischen einer entsprechend
hohen Menge von Wasser zu erhalten, ist eine besonders vorteilhafte
Weiterbildung des erfindungsgemäßen Verfahrens in den Merkmalen des Anspruchs
3 zu sehen. Danach wird die Regenerationslösung aus einem Spülprozeß der Kupferwerkstücke
gewonnen.Even if it is basically possible to withdraw the regeneration solution
of tinning solution from the coating process and admixing one accordingly
Getting high amounts of water is a particularly beneficial one
Further development of the method according to the invention in the features of the
Das durch eine geeignete Spültechnik aufkonzentrierte Spülwasser, das eine Elektrolytkonzentration von vorzugsweise 10 bis 15 % der Prozeßlösung besitzt, wird dann in die Kathodenkammer der Elektrolysezelle geleitet.The rinsing water concentrated by a suitable rinsing technique, the electrolyte concentration preferably has 10 to 15% of the process solution then passed into the cathode chamber of the electrolytic cell.
Die Verdünnung der Verzinnungslösung, die sich automatisch beim Spülprozeß ergibt und durch geeignete Spültechniken auf den geforderten Konzentrationsbereich gebracht wird, ermöglicht die kathodische Abscheidung von Kupfer aus dem Komplex gegenüber Zinn, und zwar obwohl die thermodynamischen Redoxpotentiale dies nicht erwarten lassen.The dilution of the tinning solution that results automatically during the rinsing process and through suitable flushing techniques to the required concentration range brought, the cathodic deposition of copper from the complex compared to tin, even though the thermodynamic redox potentials do not expect this.
Die in der Regenerationslösung enthaltenen Kupferionen werden kathodisch abgeschieden. In geringem Maße werden auch die ebenfalls in der Regenerationslösung enthaltenen Zinnionen kathodisch mit abgeschieden. Die Ionen des Reduktionsmittels können durch die lonenaustauschermembranen in die Mittelkammer diffundieren, in der sich die Regenerationslösung des vorhergehenden Regeneriertakts befindet. Diese ist bereits an Kupfer abgereichert.The copper ions contained in the regeneration solution are deposited cathodically. To a small extent, they are also in the regeneration solution contained tin ions cathodically deposited with. The ions of the reducing agent can diffuse through the ion exchange membranes into the middle chamber, in which the regeneration solution of the previous regeneration cycle is located. This is already depleted in copper.
Nach der Kupferanreicherung in der Kathodenkammer wird die Regenerationslösung in die Mittelkammer überführt, in der die Zinnanreicherung stattfindet. After the copper enrichment in the cathode chamber, the regeneration solution transferred to the central chamber in which the tin enrichment takes place.
Hierbei gelangen Zinnionen, die in der Anodenkammer anodisch aufgelöst werden, durch Diffusion aus der Anodenkammer durch die Kationenaustauschermembran in die Mittelkammer. Die Anionen des Reduktionsmittels werden durch die Kationenaustauschermembran an einem Durchtritt in die Anodenkammer gehindert, so daß sie in der Mittelkammer verbleiben.Here tin ions, which are anodically dissolved in the anode chamber, by diffusion from the anode chamber through the cation exchange membrane in the middle chamber. The anions of the reducing agent are through the cation exchange membrane prevented from passing into the anode chamber, so that they remain in the middle chamber.
Die Kombination von Elektrodenreaktionen der Elektrolyse mit Transportprozessen in lonenaustauschermembranen ermöglicht erfindungsgemäß eine selektive Abscheidung der Störkomponente Kupfer aus einer Regenerationslösung in Form von verdünnter Verzinnungslösung.The combination of electrode reactions of electrolysis with transport processes In ion exchange membranes, selective deposition is possible according to the invention the interfering component copper from a regeneration solution in the form of diluted tinning solution.
Im Anschluß an die Zinnanreicherung wird die regenerierte Lösung in den Verzinnungsprozeß zurückgeführt und frischt die Verzinnungslösung auf. Hierdurch wird die Standzeit und Nutzungsdauer der Verzinnungslösung deutlich verlängert.Following the tin enrichment, the regenerated solution is used in the tinning process returned and refreshes the tinning solution. This will the service life and useful life of the tinning solution are significantly extended.
Als Anolyt, der in einem eigenen Kreislauf geführt wird (Anspruch 4), kommt Schwefelsäure zur Anwendung, vorzugsweise in einer Konzentration zwischen 3 % und 6 % (Anspruch 5). Hier verläuft eine anodische Auflösung des Zinns ohne Polarisationseffekt mit nahezu 100 %iger Stromausbeute.As an anolyte, which is carried out in a separate circuit (claim 4) Sulfuric acid for use, preferably in a concentration between 3% and 6% (claim 5). Here, an anodic dissolution of the tin takes place without a polarization effect with almost 100% current efficiency.
Alternativ kann als Anolyt auch Tetrafluoroborsäure oder Methansulfonsäure eingesetzt werden, wie dies Anspruch 6 vorsieht.Alternatively, tetrafluoroboric acid or methanesulfonic acid can also be used as the anolyte be, as provided for in claim 6.
Nach den Merkmalen des Anspruchs 7 liegt die Temperatur in der Elektrolysezelle
zwischen 10 °C und 60 °C. Am besten verläuft die kathodische Abreicherung an
Kupfer und Anreicherung an Zinn in einem Temperaturbereich zwischen 30 °C und
40 °C.According to the features of
Die Regenerationslösung wird in der Elektrolysezelle bewegt, wie dies Anspruch 9 vorsieht. Dies kann beispielsweise durch das Umpumpen von Kammer zu Kammer erfolgen oder durch ein Rühren in den Kammern. Hierdurch werden Polarisationseffekte in den Kammern, insbesondere an den Membranoberflächen, vermieden. The regeneration solution is moved in the electrolysis cell as claimed in claim 9 provides. This can be done, for example, by pumping from chamber to chamber take place or by stirring in the chambers. This causes polarization effects avoided in the chambers, especially on the membrane surfaces.
Zur Gewährleistung optimaler Regenerationsbedingungen kann die Temperatur der Elektrolysezelle steuerbar sein (Anspruch 10).To ensure optimal regeneration conditions, the temperature of the Electrolysis cell can be controlled (claim 10).
Das erfindungsgemäße Verfahren läßt sich sowohl im kontinuierlichen Taktbetrieb als auch im Chargenbetrieb durchführen.The method according to the invention can be used both in continuous cycle operation as well as in batch operation.
Die Regenerationslösung kann entweder quasi kontinuierlich in zwei Takten durch die Kathodenkammer bzw. Mittelkammer der dreikammerigen Membranelektrolyse geführt oder es kann ein Anteil der Verzinnungslösung als Charge verdünnt in der Zelle regeneriert und anschließend wieder der Verzinnungslösung zugeführt werden.The regeneration solution can either run quasi continuously in two cycles the cathode chamber or middle chamber of the three-chamber membrane electrolysis led or there may be a portion of the tinning solution diluted in the batch Cell regenerated and then returned to the tinning solution.
Vorzugsweise besteht das Kathodenmaterial aus Kupfer oder Edelstahl (Anspruch 11). Das Anodenmaterial besteht aus Zinn. Dies ist eine Voraussetzung für die Zinnanreicherung während des Regenerationsprozesses.The cathode material preferably consists of copper or stainless steel 11). The anode material consists of tin. This is a requirement for that Tin enrichment during the regeneration process.
Da ein Verzinnungsprozeß üblicherweise bei Temperaturen zwischen 70 °C und 80 °C durchgeführt wird, treten entsprechend hohe Verdunstungsverluste in der Verzinnungslösung auf. Die zugeführte aufbereitete Regenerationslösung gleicht diese aus. Falls erforderlich, kann eine bedarfsgerechte prozeßabhängige Korrektur bzw. Einstellung der Regenerationslösung vorgenommen werden. Auf diese Weise wird durch das erfindungsgemäße Verfahren auch eine günstigere Wasserkreislaufführung erreicht.Since a tinning process usually takes place at temperatures between 70 ° C and 80 ° C is carried out, correspondingly high evaporation losses occur in the Tinning solution. The prepared regeneration solution is the same this out. If necessary, a needs-based process-dependent correction can be made or adjustment of the regeneration solution. In this way is also a cheaper water cycle management by the inventive method reached.
Gemäß den Merkmalen des Anspruchs 12 können zwei oder mehrere Elektrolysezellen stapelweise hintereinander (Reihenschaltung) oder parallel nebeneinander (Parallelschaltung) geschaltet werden. Damit wird eine hohe Kapazität für die Aufbereitung verbrauchter Verzinnungslösungen bereitgestellt.According to the features of claim 12, two or more Electrolytic cells in stacks one after the other (series connection) or in parallel next to each other (Parallel connection). This creates a high capacity provided for the processing of used tinning solutions.
Die Erfindung ist nachstehend durch ein Beispiel und eine Abbildung näher erläutert. The invention is explained in more detail below by an example and an illustration.
Das Beispiel betrifft einen Verzinnungselektrolyten zur außenstromlosen Verzinnung der auf Fluoroboratbasis mit dem Komplexbildner Thioharnstoff und dem Reduktionsmittel Hypophosphit aufgebaut ist.The example concerns a tinning electrolyte for tinning without external current the fluoroborate-based with the complexing agent thiourea and the reducing agent Hypophosphite is built up.
Für das Beispiel gelten die in der nachfolgenden Tabelle aufgeführten Daten:The data listed in the table below apply to the example:
- Ks (Cu(TH)2 +)
- = 2,0 x 1012
- Ks (Cu(TH)3 +)
- = 2,0 x 1014
- Ks (Cu(TH)4 +)
- = 3,4 x 1015 bzw. 2,4 x 1015
- K s (Cu (TH) 2 + )
- = 2.0 x 10 12
- K s (Cu (TH) 3 + )
- = 2.0 x 10 14
- K s (Cu (TH) 4 + )
- = 3.4 x 10 15 or 2.4 x 10 15
In der Tabelle sind außer den Reaktionsgleichgewichten für das System aus Zinnionen, komplexgebundenen Kupferionen und Anionen des Reduktionsmittels auch diejenigen der chemischen Wasserzersetzung aufgeführt, da diese bei der Membranelektrolyse, insbesondere bei stark verdünnten Lösungen, mit berücksichtigt werden müssen.In addition to the reaction equilibria for the tin ion system, complex-bound copper ions and anions of the reducing agent too those of chemical water decomposition, as these are used in membrane electrolysis, especially with very dilute solutions Need to become.
Es zeigt sich anhand der Daten, daß freies Kupfer, sowohl als Cu(I) als auch als Cu(II) bevorzugt gegenüber Zinn abgeschieden werden könnte. Da das Kupfer aber ausschließlich als komplexgebundenes Kupfer vorliegt, erfolgt eine Zinnabscheidung. Dies ist in konzentrierten Lösungen auch der Fall. The data show that free copper, both as Cu (I) and as Cu (II) could preferably be deposited over tin. Since the copper Tin is only present as complex-bound copper. This is also the case in concentrated solutions.
Die Erfindung führt dazu, daß bei der Regenerationslösung in der Verzinnungslösung in der angegebenen Verdünnung vorliegt, elektrodenkinetische Effekte (Durchtrittsreaktion, Austauschstromdichte, Überspannung) eine zunehmend wichtigere Rolle spielen, so daß trotz der ungünstigen Potentialverhältnisse bevorzugt Kupfer abgeschieden werden kann.The invention results in that in the regeneration solution in the tinning solution is present in the specified dilution, electrode kinetic effects (Breakdown reaction, exchange current density, overvoltage) an increasingly important Play role, so that preferred despite the unfavorable potential conditions Copper can be deposited.
Der Ablauf des Regenerationsprozesses einer Verzinnungslösung ist in Figur 1 verdeutlicht. Die für das System wichtigen Reaktionsgleichgewichte, Redoxpotentiale und Komplexstabilitätskonstanten finden sich in vorstehender Tabelle.The course of the regeneration process of a tinning solution is illustrated in FIG. 1. The reaction equilibria, redox potentials that are important for the system and complex stability constants can be found in the table above.
Mit 1 ist in der Figur 1 eine Anlage zur außenstromlosen Verzinnung von Kupferwerkstücken mittels einer wäßrigen Verzinnungslösung bezeichnet.1 in FIG. 1 is a system for tinning copper workpieces without external current referred to by means of an aqueous tinning solution.
Im Anschluß an den Verzinnungsprozeß werden die Kupferwerkstücke in einem Spülvorgang gereinigt. Der Spülvorgang ist mit SP, die Wasserzuführung durch den Pfeil W gekennzeichnet. Hierbei wird der aus der Verzinnungslösung durch Elektrolytausschleppung ausgeschleppte Anteil durch das Spülwasser verdünnt. Durch eine entsprechende Spültechnik wird das Spülwasser auf eine 10 bis 15 %ige Verdünnung der Prozeßlösung konzentriert.Following the tinning process, the copper workpieces are made in one Rinsing process cleaned. The flushing process is with SP, the water supply through the Arrow marked W. Here, the tinning solution is carried out by electrolyte extraction towed portion diluted by the rinse water. By a appropriate rinsing technology, the rinse water to a 10 to 15% dilution the process solution concentrated.
Die so hergestellte Regenerationslösung wird einer dreikammerigen Elektrolysezelle
2 zugeleitet. Die Elektrolysezelle umfaßt eine Kathodenkammer 3, eine
Mittelkammer 4 und eine Anodenkammer 5.The regeneration solution produced in this way becomes a three-chamber electrolysis cell
2 forwarded. The electrolytic cell comprises a
In der Kathodenkammer 3 befindet sich eine Kathode 6 aus Kupfer, in der Anodenkammer
5 ist eine Anode 7 aus Zinn angeordnet. Zwischen Anode 7 und Kathode 6
ist eine Potentialdifferenz angelegt.In the
Die Kathodenkammer 3 ist durch eine Anionenaustauschermembran 8 und die Anodenkammer
5 durch eine Kationenaustauschermembran 9 von der Mittelkammer 4
getrennt. The
Die Regenerationslösung wird zunächst in die Kathodenkammer 3 geleitet (Pfeil P1). Die Störkomponente Kupfer wird dann aus dem Thioharnstoffkomplex bei einer Stromdichte von 0,4 bis 0,6 A/dm2 zu über 95 % kathodisch abgeschieden und damit aus dem System entfernt. Gleichzeitig können Anionen, wie das Tetrafluoroboratanion und das Hypophosphitanion durch die Anionenaustauschermembran 8 in die Mittelkammer 4 durchtreten.The regeneration solution is first fed into the cathode chamber 3 (arrow P1). The interfering component copper is then cathodically deposited from the thiourea complex at a current density of 0.4 to 0.6 A / dm 2 and thus removed from the system. At the same time, anions such as the tetrafluoroborate anion and the hypophosphite anion can pass through the anion exchange membrane 8 into the middle chamber 4.
Als Nebenreaktionen können eine Mitabscheidung des Zinns von weniger als 35 %, die Zersetzung von Wasser durch Wasserstoffentwicklung und eine Reduktion von Orthophosphitanteilen zu Hypophosphit über den entstehenden Wasserstoff eintreten. Insbesondere die Wasserzersetzung aufgrund der Verdünnung führt zu einer geringeren Stromausbeute (ca. 40 %) bezüglich der Metallabscheidung.As a side reaction, tin co-deposition of less than 35%, the decomposition of water through the evolution of hydrogen and a reduction of Orthophosphite parts to hypophosphite occur via the hydrogen formed. In particular, the water decomposition due to the dilution leads to a lower current efficiency (approx. 40%) with regard to metal deposition.
Nach einer der abzuscheidenden Metallmenge entsprechenden Verweilzeit wird der
Inhalt der Kathodenkammer 3 in die Mittelkammer 4 umgepumpt (siehe Pfeil P 2).
Hier findet eine Zinnanreicherung durch Zinnionen statt, die aus der Anodenkammer
5 durch die Kationenaustauschermembran 9 diffundieren Die Tetrafluoroborat- und
Hypophospitionen können wegen der Kationenaustauschermembran 9 nicht in die
Anodenkammer 5 durchtreten.After a dwell time corresponding to the amount of metal to be deposited, the
Contents of the
Im Anschluß an die Zinnanreicherung kann die regenerierte Lösung in den Verzinnungsprozeß zurückgeführt werden (Pfeil P3). Hierdurch können auch die im Verzinnungsprozeß auftretenden Verdunstungsverluste ausgeglichen werden. Die im Verzinnungsprozeß auftretende Verdunstung ist durch die Pfeile V angedeutet. Falls erforderlich, kann eine Bedarfskorrektur (Pfeil BK) der aufbereiteten verdünnten Lösung auf die prozeßtechnischen Anforderungen der Verzinnungslösung vorgenommen werden. Following the tin enrichment, the regenerated solution can be used in the tinning process be returned (arrow P3). This can also be used in the tinning process occurring evaporation losses can be compensated. The in Evaporation occurring during the tinning process is indicated by the arrows V. If a need correction (arrow BK) of the prepared diluted solution made to the process engineering requirements of the tinning solution become.
Die jeweiligen Elektrolytlösungen in den drei Reaktionskammern (Kathodenkammer
3, Mittelkammer 4, Anodenkammer 5) werden bewegt, damit Polarisationseffekte in
den Reaktionskammern 3, 4, 5, insbesondere an den Membranoberflächen, vermieden
werden. Die Bewegung in der Kathodenkammer 3 und in der Mittelkammer 4 ist
durch die Pfeile B1 und B2 angedeutet. Die Bewegung B1, B2 kann beispielsweise
durch Rühren erfolgen. Der Anolyt (H2SO4) in der Anodenkammer 5 wird in einem
eigenen Kreislauf geführt. Dieser ist durch den Pfeil B3 gekennzeichnet.The respective electrolyte solutions in the three reaction chambers (
Die Kombination von Elektrodenreaktionen der Elektrolyse mit Transportprozessen in lonenaustauschermembranen ermöglicht somit eine selektive Abscheidung der Störkomponente Kupfer aus einer verdünnten Verzinnungslösung bei gleichzeitiger Anreicherung von Zinn über anodische Auflösung und Transport der Zinnionen durch die Kationenaustauschermembran. Die regenerierte Lösung wird in die Verzinnungslösung des Verzinnungsprozesses zurückgeführt. Hierdurch wird die Standzeit bzw. die Nutzungsdauer der Verzinnungslösung deutlich verlängert.The combination of electrode reactions of electrolysis with transport processes in ion exchange membranes thus enables a selective separation of the Interfering component copper from a diluted tinning solution with simultaneous Enrichment of tin via anodic dissolution and transport of the tin ions through the cation exchange membrane. The regenerated solution is in the tinning solution of the tinning process. This will make the Service life or the useful life of the tinning solution significantly extended.
Erfindungsgemäß ist es möglich, daß zwei oder mehrere der vorbeschriebenen Elektrolysezellen 2 stapelweise hintereinander (Reihenschaltung) oder parallel nebeneinander (Parallelschaltung) geschaltet sind. Auf diese Weise wird die jeweils bedarfsgerecht gestaltete Kapazität für die Aufbereitung von Verzinnungslösungen erreicht. According to the invention it is possible that two or more of the above Electrolytic cells 2 in stacks one after the other (series connection) or in parallel next to each other (Parallel connection) are connected. In this way, each Capacity designed for the processing of tinning solutions reached.
- 1 -1 -
- Verzinnungsanlagetinning
- 2 -2 -
- Elektrolysezelleelectrolysis cell
- 3 -3 -
- Kathodenkammercathode chamber
- 4 -4 -
- Mittelkammermiddle chamber
- 5 -5 -
- Anodenkammeranode chamber
- 6 -6 -
- Kathodecathode
- 7 -7 -
- Anodeanode
- 8 -8th -
- Anionenaustauschermembrananion exchange membrane
- 9 -9 -
- Kationenaustauschermembrancation
- B1 -B1 -
- Pfeilarrow
- 82 -82 -
- Pfeilarrow
- B3 -B3 -
- Pfeilarrow
- BK -BK -
- Bedarfskorrekturneeds correction
- P1 -P1 -
- Pfeilarrow
- P2 -P2 -
- Pfeilarrow
- P3 -P3 -
- Pfeilarrow
- SP -SP -
- Spülvorgangflushing
- V -V -
- Verdunstungevaporation
Claims (12)
- Method for regeneration of an aqueous copper workpiece tinning solution which works without external current and contains tin and copper ions, free complexing agents and complexing agents bound to the copper ions and used and unused reducing agent, characterised in that a regeneration solution with a solution exhibiting a lower tin content than the tinning solution working without external current is fed to an electrolysis cell (2) which comprises a cathode chamber (3) with an integral cathode (6), a middle chamber (4) and an anode chamber (5) filled with an anolyte with an integral tin anode (7), and a potential difference is applied between the tin anode (7) and the cathode (6) and the cathode chamber (3) is separated from the middle chamber (4) by an anion exchanger membrane (8) and the anode chamber (5) is separated from the middle chamber (4) by a cation exchanger membrane (9), and the regeneration solution is first passed into the cathode chamber (3) and retained there while depositing copper on the cathode (6), and in that after the retention time the regeneration solution depleted of copper is pumped into the middle chamber (4) where tin enrichment is carried out with tin ions which have passed out of the anode chamber (5) through the cation exchanger membrane (9).
- Method according to claim 1, characterised in that the regeneration solution contains between 5% and 50%, preferably 10% to 15% of tinning solution.
- Method according to claim 1 or 2, characterised in that the regeneration solution is recovered from a copper workpiece rinsing process (SP).
- Method according to one of claims 1 to 3, characterised in that the anolyte is conveyed in a circuit (B3).
- Method according to one of claims 1 to 4, characterised in that a 3 to 6% sulphuric acid is used as anolyte.
- Method according to one of claims 1 to 4, characterised in that a tetrafluoroboric acid or a methane sulphonic acid is used as anolyte.
- Method according to one of claims 1 to 6, characterised in that the temperature in the electrolysis cell (2) lies between 10°C and 60°C, preferably between 30°C and 40°C.
- Device for implementing the method according to one or more of claims 1 to 7, consisting of an electrolysis cell (2) which comprises a cathode chamber (3) with an integral cathode (6), a middle chamber (4) and an anode chamber (5) with an integral tin anode (7), and the cathode chamber (3) is separated from the middle chamber (4) by an anion exchanger membrane (8) and the anode chamber (5) is separated from the middle chamber (4) by a cation exchanger membrane (9), and a potential difference can be applied between the tin anode (7) and the cathode (6).
- Device according to claim 8, characterised in that the regeneration solution can be moved in the electrolysis cell (2).
- Device according to claim 8 or 9, characterised in that the temperature of the electrolysis cell (2) can be controlled.
- Device according to one of claims 8 to 10, characterised in that the cathode (6) is made of copper or special steel.
- Device according to one of claims 8 to 11, characterised in that a plurality of electrolysis cells are connected in series and/or in parallel with one another.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19719020A DE19719020A1 (en) | 1997-05-07 | 1997-05-07 | Method and device for regenerating tinning solutions |
DE19719020 | 1997-05-07 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0878561A2 EP0878561A2 (en) | 1998-11-18 |
EP0878561A3 EP0878561A3 (en) | 1999-04-28 |
EP0878561B1 true EP0878561B1 (en) | 2003-09-03 |
Family
ID=7828719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98107584A Expired - Lifetime EP0878561B1 (en) | 1997-05-07 | 1998-04-25 | Process and apparatus for the regeneration of tin plating solutions |
Country Status (12)
Country | Link |
---|---|
US (1) | US6120673A (en) |
EP (1) | EP0878561B1 (en) |
JP (1) | JPH10317154A (en) |
AR (1) | AR010155A1 (en) |
AT (1) | ATE248935T1 (en) |
AU (1) | AU724854B2 (en) |
BR (1) | BR9801580A (en) |
CA (1) | CA2236393C (en) |
DE (2) | DE19719020A1 (en) |
DK (1) | DK0878561T3 (en) |
ES (1) | ES2202686T3 (en) |
PT (1) | PT878561E (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9901586D0 (en) * | 1999-01-25 | 1999-03-17 | Alpha Fry Ltd | Process for the recovery of lead and/or tin or alloys thereof from substrate surfaces |
JP3455709B2 (en) * | 1999-04-06 | 2003-10-14 | 株式会社大和化成研究所 | Plating method and plating solution precursor used for it |
FR2801062B1 (en) * | 1999-11-12 | 2001-12-28 | Lorraine Laminage | INSTALLATION AND METHOD FOR ELECTROLYTIC DISSOLUTION BY OXIDATION OF A METAL |
JP2002317275A (en) * | 2001-04-17 | 2002-10-31 | Toto Ltd | Method for elongating service life of electroless tinning solution |
DE10132478C1 (en) * | 2001-07-03 | 2003-04-30 | Atotech Deutschland Gmbh | Process for depositing a metal layer and process for regenerating a solution containing metal ions in a high oxidation state |
US7195702B2 (en) * | 2003-06-06 | 2007-03-27 | Taskem, Inc. | Tin alloy electroplating system |
US6942810B2 (en) * | 2003-12-31 | 2005-09-13 | The Boc Group, Inc. | Method for treating metal-containing solutions |
US20060096867A1 (en) * | 2004-11-10 | 2006-05-11 | George Bokisa | Tin alloy electroplating system |
ES2303973T3 (en) * | 2005-05-25 | 2008-09-01 | Enthone Inc. | PROCEDURE AND DEVICE TO ADJUST THE CONCENTRATION OF IONS IN ELECTROLYTES. |
JP2006341213A (en) * | 2005-06-10 | 2006-12-21 | Es Adviser:Kk | Apparatus and method for electrolyzing waste electroless copper plating liquid |
DE102006045157B4 (en) | 2006-09-25 | 2020-06-18 | Robert Bosch Gmbh | Hand tool |
KR100934729B1 (en) * | 2007-10-29 | 2009-12-30 | (주)화백엔지니어링 | Electroless Tin Plating Solution Impurity Removal Apparatus and Method |
US20110226613A1 (en) | 2010-03-19 | 2011-09-22 | Robert Rash | Electrolyte loop with pressure regulation for separated anode chamber of electroplating system |
US9404194B2 (en) | 2010-12-01 | 2016-08-02 | Novellus Systems, Inc. | Electroplating apparatus and process for wafer level packaging |
JP5715411B2 (en) | 2010-12-28 | 2015-05-07 | ローム・アンド・ハース電子材料株式会社 | Method for removing impurities from plating solution |
JP5830242B2 (en) | 2010-12-28 | 2015-12-09 | ローム・アンド・ハース電子材料株式会社 | Method for removing impurities from plating solution |
JP5937320B2 (en) | 2011-09-14 | 2016-06-22 | ローム・アンド・ハース電子材料株式会社 | Method for removing impurities from plating solution |
WO2013080326A1 (en) * | 2011-11-30 | 2013-06-06 | 不二商事株式会社 | Method of regenerating plating solution |
US9534308B2 (en) | 2012-06-05 | 2017-01-03 | Novellus Systems, Inc. | Protecting anodes from passivation in alloy plating systems |
EP2671968B1 (en) * | 2012-06-05 | 2014-11-26 | ATOTECH Deutschland GmbH | Method and regeneration apparatus for regenerating a plating composition |
JP6706095B2 (en) * | 2016-03-01 | 2020-06-03 | 株式会社荏原製作所 | Electroless plating apparatus and electroless plating method |
WO2019089282A1 (en) | 2017-11-01 | 2019-05-09 | Lam Research Corporation | Controlling plating electrolyte concentration on an electrochemical plating apparatus |
CN112135932A (en) * | 2018-05-09 | 2020-12-25 | 应用材料公司 | System and method for removing contaminants within an electroplating system |
CN109467167B (en) * | 2018-10-30 | 2021-12-03 | 上海大学 | Method for removing heavy metals in stainless steel pickling wastewater |
EP3875637A1 (en) * | 2020-03-04 | 2021-09-08 | AT & S Austria Technologie & Systemtechnik Aktiengesellschaft | Method for recovering an elemental metal from printed circuit board and / or substrate production |
CN111676470A (en) * | 2020-05-29 | 2020-09-18 | 广东天承科技有限公司 | Simple and soluble high-valence tin reduction method |
CN116288292A (en) * | 2023-03-20 | 2023-06-23 | 聂柱根 | Chemical tin liquid tin reduction regeneration copper removal device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3764503A (en) * | 1972-01-19 | 1973-10-09 | Dart Ind Inc | Electrodialysis regeneration of metal containing acid solutions |
DE2742718C2 (en) * | 1977-09-22 | 1984-04-19 | ESTEL HOOGOVENS B.V., 1970 Ijmuiden | Method and device for regenerating a tin-plating electrolyte |
US4330377A (en) * | 1980-07-10 | 1982-05-18 | Vulcan Materials Company | Electrolytic process for the production of tin and tin products |
US4600493A (en) * | 1985-01-14 | 1986-07-15 | Morton Thiokol, Inc. | Electrodialysis apparatus for the chemical maintenance of electroless copper plating baths |
CA2083196C (en) * | 1991-11-27 | 1998-02-17 | Randal D. King | Process for extending the life of a displacement plating bath |
DE4310366C1 (en) * | 1993-03-30 | 1994-10-13 | Fraunhofer Ges Forschung | Method for regenerating aqueous coating baths operating in an electroless manner |
-
1997
- 1997-05-07 DE DE19719020A patent/DE19719020A1/en not_active Withdrawn
-
1998
- 1998-03-10 JP JP10058275A patent/JPH10317154A/en active Pending
- 1998-04-25 DK DK98107584T patent/DK0878561T3/en active
- 1998-04-25 ES ES98107584T patent/ES2202686T3/en not_active Expired - Lifetime
- 1998-04-25 AT AT98107584T patent/ATE248935T1/en not_active IP Right Cessation
- 1998-04-25 DE DE59809451T patent/DE59809451D1/en not_active Expired - Fee Related
- 1998-04-25 EP EP98107584A patent/EP0878561B1/en not_active Expired - Lifetime
- 1998-04-25 PT PT98107584T patent/PT878561E/en unknown
- 1998-04-30 CA CA002236393A patent/CA2236393C/en not_active Expired - Fee Related
- 1998-05-04 AR ARP980102075A patent/AR010155A1/en unknown
- 1998-05-05 BR BR9801580A patent/BR9801580A/en not_active IP Right Cessation
- 1998-05-06 AU AU64757/98A patent/AU724854B2/en not_active Ceased
- 1998-05-07 US US09/074,725 patent/US6120673A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE19719020A1 (en) | 1998-11-12 |
BR9801580A (en) | 1999-07-06 |
US6120673A (en) | 2000-09-19 |
CA2236393C (en) | 2004-01-20 |
AR010155A1 (en) | 2000-05-17 |
ES2202686T3 (en) | 2004-04-01 |
AU724854B2 (en) | 2000-10-05 |
EP0878561A2 (en) | 1998-11-18 |
PT878561E (en) | 2004-02-27 |
ATE248935T1 (en) | 2003-09-15 |
JPH10317154A (en) | 1998-12-02 |
EP0878561A3 (en) | 1999-04-28 |
AU6475798A (en) | 1998-11-12 |
DE59809451D1 (en) | 2003-10-09 |
CA2236393A1 (en) | 1998-11-07 |
DK0878561T3 (en) | 2004-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0878561B1 (en) | Process and apparatus for the regeneration of tin plating solutions | |
EP1344850B1 (en) | Alkaline zinc-nickel bath | |
DE1496886A1 (en) | Method and device for the preparation of metal treatment solutions | |
DE19748905A1 (en) | Treatment of alkaline effluent from nuclear fuel reprocessing | |
EP0638664A1 (en) | Process and apparatus for regenerating solutions containing metal ions and sulfuric acid | |
DE10025551C2 (en) | Cathode for the electrochemical regeneration of permanganate etching solutions, process for their preparation and electrochemical regeneration device | |
DE10261493A1 (en) | Anode for electroplating | |
DE4310366C1 (en) | Method for regenerating aqueous coating baths operating in an electroless manner | |
DE69303266T2 (en) | Method and device for regenerating a reducing agent | |
DE10240350B4 (en) | Apparatus and method for regenerating an electroless plating bath | |
DE2713392C2 (en) | Process for the preparation of metal complex solutions | |
EP0240589B1 (en) | Process and apparatus for regenerating an electroless copper-plating bath | |
DE2607512C2 (en) | Process for the production of a metal powder, electrolysis cell for carrying out the process and application of the process | |
DE3943142A1 (en) | ELECTROLYSIS PROCESS FOR PROCESSING METALION-CONTAINING OLD Stains or Product Streams | |
DE1931123B2 (en) | METHOD OF REMOVING CYANIDES FROM CYANIDE-CONTAINING Aqueous ALKALINE ELECTROLYTES BY ELECTROLYTIC OXYDATION OF THE CYANIDE | |
EP4330448A1 (en) | Device and method for coating a component or semi-finished product with a chromium layer | |
WO2000026440A2 (en) | Circular method for pickling copper and copper alloys | |
EP2384800B1 (en) | Regeneration of alkaline zinc nickel electrolytes by removing cyanide ions | |
EP2401422A2 (en) | Method and device for regenerating peroxodisulfate pickling solution | |
DE2940741C2 (en) | ||
DE2929305C2 (en) | Process and device for the continuous electrodeposition of manganese on steel | |
DE4218916C2 (en) | Use of a grid anode for electrolytic detoxification or regeneration of an aqueous solution containing cyanide | |
DE4229917C1 (en) | Electrolytic bath for meter coating - has sec. anode contg. alkaline or ammonium soln. with acid added to electrolyte to compensate for pH rise | |
DE19829274A1 (en) | Process for the recovery of precious metals | |
EP0079032B1 (en) | Apparatus for electroplating a metallic workpiece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI PAYMENT 980507 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI PAYMENT 19980507 |
|
17P | Request for examination filed |
Effective date: 19991014 |
|
AKX | Designation fees paid |
Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AXX | Extension fees paid |
Free format text: SI PAYMENT 19980507 |
|
17Q | First examination report despatched |
Effective date: 20010419 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Extension state: SI |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030903 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 59809451 Country of ref document: DE Date of ref document: 20031009 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PA ALDO ROEMPLER |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20030404580 Country of ref document: GR |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2202686 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040604 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20070403 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20070404 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20070412 Year of fee payment: 10 Ref country code: AT Payment date: 20070412 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20070413 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20070416 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070419 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20070427 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20070430 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20070521 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: KME GERMANY AG Free format text: KM EUROPA METAL AKTIENGESELLSCHAFT#POSTFACH 3320#D-49023 OSNABRUECK (DE) -TRANSFER TO- KME GERMANY AG#KLOSTERSTRASSE 29#49074 OSNABRUECK (DE) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070425 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070522 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080312 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20080404 Year of fee payment: 11 Ref country code: BE Payment date: 20080616 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080425 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20081101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081101 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081101 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080425 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080425 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20080313 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080425 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080430 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20080426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080425 |
|
BERE | Be: lapsed |
Owner name: *KM EUROPA METAL A.G. Effective date: 20090430 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20091026 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20091231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080425 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080426 |