EP0860667B1 - Système de conditionnement de composants fonctionnant à température cryogénique - Google Patents
Système de conditionnement de composants fonctionnant à température cryogénique Download PDFInfo
- Publication number
- EP0860667B1 EP0860667B1 EP98400374A EP98400374A EP0860667B1 EP 0860667 B1 EP0860667 B1 EP 0860667B1 EP 98400374 A EP98400374 A EP 98400374A EP 98400374 A EP98400374 A EP 98400374A EP 0860667 B1 EP0860667 B1 EP 0860667B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exchanger
- block
- gas
- pressure
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
- F04B45/04—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
- F04B45/047—Pumps having electric drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B35/00—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
- F04B35/04—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
- F04B35/045—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
- F25B9/145—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1422—Pulse tubes with basic schematic including a counter flow heat exchanger instead of a regenerative heat exchanger
Definitions
- the present invention relates to a system for packaging intended in particular for cooling electronic components during operation, from type comprising for this a cryogenic cooler suitable for implementing a thermodynamic cycle periodically involving alternative phases of compression and expansion of a working gas such as helium.
- a cryogenic cooler suitable for implementing a thermodynamic cycle periodically involving alternative phases of compression and expansion of a working gas such as helium.
- cryogenic temperature generally understood between 80 ° K and 200 ° K.
- these components we can cite more particularly components based on materials high critical temperature superconductors, as well as magnetoelectric components, for which the bass temperatures lengthen the magnetic relaxation time.
- the invention essentially aims to ensure the integration of components into a packaging which, while allowing their cooling at cryogenic temperature under particularly conditions advantageous, also constitutes their station reception, particularly from the point of view of resistance mechanical and thermal stability. It also has aim to always place better in the current race to miniaturization, by providing for a construction of the whole in an extremely compact form, and nevertheless solid, reliable for long periods of use, and competetive price. We will see later that it even allows escape from the classic arrangements where the component is placed at the end of a cold finger opposite a compressor generating pressure variations.
- the invention responds better to the objectives set out here because, for a pneumatically controlled cooler as is the case with pulsed gas tube coolers derived from coolers more generally applying a Stirling cycle, it avoids the need for a gas buffer chamber maintained at constant pressure. It thus allows overcome the limitation of conventional solutions in this which concerns the volume of the cooler. Furthermore, such design removes most parts mobile mechanics, with the difficulties of their adjustment, which goes in the direction of better quality in reliability of construction and operation and in longevity.
- thermodynamics applied in coolers of the kind considered consists, at the theoretical level, in subjecting gas a repetitive closed circuit cycle including a compression phase and an expansion phase, both on the other, a thermal regenerator which ensures delayed thermal recovery between gases relaxed cold and hot compressed gas.
- the regenerator therefore constitutes a thermal sponge which, alternatively, retains heat from the gas resulting from the compression by accumulating it, and then restores it to gas from the relaxation phase.
- the regenerator is conventionally produced in the form an elongated tube at one end of which is the area cold in thermal contact with the component to be cooled. It is filled with a porous structure, bringing great specific surface for heat exchange, which is made of a material with low thermal conductivity clean.
- the solution of pulsed gas coolers basically consists of replace the displacer regenerator (then mounted mobile at sliding in the cold finger) by a regenerative exchanger fixed, and to complete the working gas circuit by a tube called pulsed gas, or pulsation, which receives the pressure change pulses from the pressure oscillator compressor via an appropriate pneumatic connection.
- a corresponding dynamic pressure variation is established there to that of a gas piston, thanks to the introduction a phase shift between pressure variations and variations in flow created by reference to a low buffer tank pressure whose volume is constant.
- valves on the connection circuit pneumatic between the pulsation tube and on the one hand the compressor generating pressure oscillations, other share the buffer tank at constant pressure and volume.
- These valves are generally simple calibrated orifices, in the concern to avoid moving mechanical parts.
- the invention therefore relates to a packaging system components operating at temperature cryogenic, cooled by subject working gas to a closed circuit thermodynamic cycle, according to a periodically repetitive cycle involving alternative phases compression and expansion, in a cooler of the pulsed gas type including the working gas circuit has a pulsation tube extending between an exchanger cold in thermal contact with the component to be cooled and a hot heat rejection exchanger to the outside.
- the invention consists essentially in providing the tubes to pulsations in a block of parallelepiped shape or equivalent, constituting the core of the cooler and made of a thermally insulating material, which supports the cold heat exchanger and the hot heat exchanger attached respectively against two opposite lateral faces of said block, and which also supports, on a so-called face top of the same block, a transfer device thermal between expanded cold gas and compressed hot gas.
- the invention proposes to avoid the conventional valves of flow / pressure regulation at a circuit supply single pulsed gas, by placing its tube in series pulsations and its thermal transfer device between cold expanded gas and compressed hot gas, consisting of a leads to delayed heat transfer regenerator in time, between two supply channels under periodically variable pressures in phase opposition.
- the invention proposes that the cooler comprises two similar working gas circuits, operating in opposition phase, whose pulsation tubes are arranged at within a single block of thermally insulating material supporting the cold exchanger and the hot exchanger, these being common to both circuits, as well as a device for heat transfer between expanded cold gas and hot gas compressed, consisting of a recovery exchanger with counter-current between the two gas flows supplying the pulse tubes belonging to the two respectively working gas circuits.
- the main block integrating the hot exchanger and the cold exchanger constitutes with the transfer device thermal (especially the recovery exchanger) what we will call here the passive module of the system. It is advantageously enclosed in an encapsulation module forming a waterproof and insulating housing, including a bottom wall supports the component to be cooled against the cold exchanger.
- the recovery exchanger is preferably made integral with the main block, against a upper side of it which is oriented parallel to a common plane of the two pulsation tubes.
- the block is then of rectangular shape, and the cold and hot exchangers are attached to its faces side.
- a cover which at the same time constitutes a plate of heat rejection deviating from the block itself in the extension of the hot exchanger.
- a flat plate of thermally material conductor which is mounted directly on the hot exchanger, insofar as this, in accordance with another characteristic of the invention, is produced in the form of a angled thermally conductive structure, covering the left side face of the block, and partially its face upper in its left part.
- the cold heat exchanger is preferably formed by an angled structure thermally conductive covering the right side face of the cooler block, and partially its underside in its right part.
- While the lower portion, called horizontal, of this bracket receives the component to be cooled, it is so particularly convenient to use the interface between its vertical portion and the main block to provide communication channels belonging to each of the circuits working gas between the countercurrent recovery exchanger and their respective pulse tubes, or the case if necessary, between regenerator and pulsation tube of the same circuit. It is always desirable that the flow (s) gaseous have to cross an area with exchange surface important against the end section of the gas tube, this which is advantageously obtained by appropriate micro-machining of the material of the cold exchanger at this location.
- each circuit includes, as usual, an accumulation regenerator and delayed thermal restitution between expanded gas and gas compressed, which is placed in series in the extension of the tube pulsation on the corresponding circuit.
- the configuration geometric may vary, especially depending on whether regenerative and pulse tube are in line on both sides of the cold exchanger, or that they are arranged in parallel one next to the other, according to the so-called U-shaped configuration, or that they are in a concentric arrangement.
- the preferred solution in the context of the invention corresponding to the U-shaped configuration.
- the two regenerators, belonging respectively to each of the circuits of working gas, are then arranged in parallel with one the other in the thickness of the recovery exchanger as that it has been defined above. In series with the tubes, they receive the pressure pulses in phase opposition.
- the gas inlet channels and orifices are arranged at a same end, and the output ones at the other end, this which ensures the local effect of counter-current circulation.
- the working gas circuits no longer have this kind of regenerator.
- the recovery exchanger thermal against the current only has its proper role in fill.
- Such an exchanger can advantageously be produced by a three-layer composite assembly, comprising a intermediate layer of conductive material forming separator between appropriate corrugations dug into two outer layers to form the desired paths.
- this generator or oscillator of pressure advantageously attached to the housing or encapsulation module, in particular against a plate of heat rejection forming the cover face of the housing, is preferably of the type comprising a flexible element dividing a cavity formed within it into two chambers different, complementary volumes, which are in pneumatic communication with the supply channels, therefore preferably with each of the tubes respectively pulsations through the heat exchanger recovery against the current.
- Such a flexible element whether in the form a pivoting blade or under that of a fixed disc in sound perimeter, can be ordered in particular in its deformations (on either side of a middle position in said cavity) by any appropriate electrical means in relation with its constitution.
- a constant pressure tank can be provided in the active module containing the pressure generator, in particular behind a simple moving piston compressor.
- the communication channels between the generator pressure and cooler can be adapted for offer a calibrated passage section ensuring a phase shift between flow and pressure in the gas circuit and put the two tubes in series.
- the system of the invention responding to above features can be adapted to a single circuit working gas, as soon as it passes through a tube pressure pulsations formed in the heart block of the cooler and by a regenerative tube attached against it block in the passive module.
- the notion of tube must be understood here to extend to all forms of sections for a tubular conduit.
- the tube or integrated regenerative material conduit in the form of a plate attached to the main block will preferably present a rectangular section.
- FIGS 1 to 4 relate to a system with two coupled pulsed gas circuits.
- cooler and pressure generator define in actually two separate working gas circuits, which operate according to the same thermodynamic cycle, but in phase opposition to each other.
- the two circuits combine with multiple levels, mainly through an interaction of their effects thermal in the cooler and their connections respective to the same oscillator generating variations pressure, but also at the heat exchangers on the one hand with the component to be cooled, on the other hand with the outside in heat rejection, plus the case which is common to them.
- the core of the cooler is essentially formed by a parallelepipedic block 11, made of a solid material with good properties thermal insulation. Glass can be used for this purpose such as Pyrex or a ceramic material.
- each of tubes constitutes the pulsation tube of its own circuit, by transmitting pressure waves from one end to the other generated from the oscillator, according to the operation of a gas piston in a cycle thermodynamics of the pulsed gas type.
- the cooler integrates with it two exchangers, one 14 in the area hot, the other 16 in the cold zone.
- these two exchangers are common to the two working gas circuits. They are both made of a material with strong thermal conductivity, made in particular of a metal or a metallic compound, such as aluminum, silicon, sapphire, oxide beryllium, aluminum nitride, cupro-tungsten, molybdenum.
- the cold exchanger 16 is in direct contact thermal with the component to be cooled 40, the latter being applied to it, and possibly attached to it by gluing. Naturally, it could be several components of the same electronic circuit.
- a particularly material well suited to constitute this exchanger is silicon monocrystalline orientation (110).
- This conductive support can also be pierced with micro-machined channels improving the heat exchange conditions. This is so in the example described for its zone which is located against the section end of the pulsation tubes.
- the hot exchanger 14 has the role, as it is conventional to provide heat rejection to outside. Like the cold heat exchanger, it is attached flat on one side of the block it at the end of the tubes 1a-1b, but at its opposite compared to these. For a cooler two horizontal tubes like the one in figure 1, the exchangers 14 and 16 cover the side faces of the block 11, respectively the one on the right, and the one on the left, here of the closed side of the pulsation tubes.
- the passive module 10 additionally includes a third exchanger 13. Its function first is to ensure heat transfer between gases hot compressed and cold gas relaxed. It is therefore a thermal recovery.
- this exchanger of recovery is a counter-current exchanger between two parallel conduits guiding the gas flows supplying the two pulsation tubes.
- the gas pipes internal to the exchanger 13 are pneumatically connected, by communication channels which will be discussed later, with tube 1a or 1b of the same circuit on its open side, so right on figure 1.
- this exchanger 13 is in the form of a flat plate, more or less thick depending on the passage section necessary for gas flows. And this plate is attached fixed on one of the faces of block 11. It therefore forms part integral of the cooler, i.e. of the passive module 10. It can even be formed directly by machining the same material as block 11 in some cases.
- the exchanger 13 plays simultaneously the role which is devolved, in a conventional manner, to the regenerator of Stirling cycle coolers.
- Such a cycle with thermal regeneration implies storage and return of heat so alternative during the cycle within the same tube, on each individual working gas circuit.
- the tube is filled with glass beads, or a structure analogous to high ⁇ Cp offering a large specific surface in a reduced space, so as to constitute a "sponge thermal".
- the tubes regenerators are formed in two parallel conduits formed within the exchanger. Like gas flows circulate in phase opposition (from right to left one in one direction the other in the other in Figure 1), the effect regenerative combines with the specific regenerative effect that exchange provides against the tide. This is insured for example by microchannels which locally increase the thermal conduction through the mass of the exchanger.
- the exchanger is in practical in the form of a mass of material thermally conductor in which two conduits are formed describing parallel serpentine paths. These two conduits are defined for a flow essentially laminar licking suitably oriented corrugations.
- the exchanger 13 of miniature construction, consists of a plate composite in three layers.
- the conduits 6a-6b are dug on the surface of the outer layers facing the intermediate layer.
- the latter serves as separator and conductor between the two circuits.
- the two layers exterior need not be conductive.
- the square structure forming the exchanger cold 16 extends from the right lateral face of block 11 to the right side of its underside.
- the component to cool 40 is fixed in thermal contact above, preferably by gluing.
- the square structure 14 forming a hot exchanger envelops the block on its part left, covering both a fraction of its face upper and all of its lateral face.
- the left side of block 11 on the side where tubes la and 1b are closed, constitutes the hot zone of the cooler.
- the area cold is the opposite of the right side of block 11, where the tubes la and 1b open to be put in communication with the means which make it possible to generate pulsations of pressure (oscillator 20) via the exchanger against the current 13.
- the core of the cooler, integral exchangers forming with it the passive module 10, and with the component glued on its underside, is mounted inside the encapsulation module 30.
- the latter forms a waterproof case which is closed by a cover constituted by the plate 15 for rejection of heat.
- the dimensions of the latter are sufficient for cover the upper edge 31 of the walls of the housing shown vertical.
- the wall forming its bottom 32 supports a circuit printed 33 which provides the electrical connections between the component 40 and outlet tabs 34, via of waterproof insulating bushings 36. It is schematically illustrated that outside of the assembly, the legs 34 are connect to a printed circuit 35 supplying the component 40 and electronic signal processing that it provides.
- the dimensions of the housing 30 match those of block 11 in width (depth in FIG. 1), plus the thickness of the exchangers in width. Subject a tight bond between the facing surfaces, can fill the environment closed by the hot exchanger a heavy inert gas, such as a mixture of xenon and krypton. However, it is preferable to have the empty in the space below block 11. As a variant, we can also plan to fill these empty spaces with a filling material or by height variations the rectangular section of the main block.
- orifices and channels 2a and 2b are delimited in the structure of the cold exchanger 16, more precisely here at its interface with the block main, so as to ensure communication between each of the open ends of the tubes la and 1b respectively and the right end of the counterflow heat exchanger 13.
- holes 3a and 3b are drilled from him through the cover plate 15 up the pressure oscillator.
- Figure 1 shows the channels and orifices 2a and 3a in the same plane diametral of the pulsation tube la, before and after the convolutions in the exchanger 13. Their counterparts in the other working gas circuit are assumed to be located behind. For reasons of parallelism of the paths to inside the exchanger 13 and identity between their lengths, we may prefer a distribution of inputs and outputs.
- the active module 20, generating the pulsations of pressure, is mounted on the cover plate 15 as it is shown in the figures. It is made up of a mass of thermally conductive material, generally in shape parallelepiped which is applied on the face upper side of the encapsulated passive module. However, it extends beyond the housing 30 on the hot side of the cooler, and it is notched in this place to form fins 22 which contribute effectively to the evacuation of heat towards outside.
- the mass 21 encloses a sealed cavity 23, which contains a flexible element which divides it into two chambers of variable volume in addition to each other, in part and on the other side of a median position of rest of said element where they are in pressure balance.
- the two bedrooms 4a and 4b belong respectively to each of the gas circuits of work.
- the bottom wall of the module is pierced by two holes 5a and 5b which are placed exactly in correspondence with the homologous orifices 3a-3b of the plate 15.
- the element flexible that separates the two complementary chambers is consisting of a pivoting blade 26. It is a blade rectangular which is embedded waterproof in the mass of the module at one of its ends, at 27 right on the Fig. Its other end is free; during deformations of the blade, it slides in contact on the wall opposite internal cavity 23, which is curved for this purpose.
- the blade 26 On either side of its median rest position, the blade 26 goes to symmetrical extreme positions where it is applied against the wall of the cavity 23.
- a shape adapted from this wall reduces the corresponding room to a zero volume at maximum pressure in its circuit.
- functional play on the three free slots of the slide is of the order of 50 microns.
- the blade 26 is replaced by a disc circular which is flexible to be deformed by its center and which is built-in waterproof all around its perimeter wall of the cavity 23, which is then of section circular, at least in this place, that is to say in its vertical median plane.
- the blade 26 is associated with control means electric which give it a deformation movement periodic, alternately on either side of the plane median of the cavity 23.
- control means electric which give it a deformation movement periodic, alternately on either side of the plane median of the cavity 23.
- These means are illustrated on the Figure 2 by two pairs of electrodes. Each couple comprising an electrode 27a-27b integral with the blade 26 which is brought to the reference voltage, and an electrode in look 28a-28b in the wall of the cavity 23.
- the electrodes of each pair, 28a and 28b are subject to opposite periodic voltages, which combine their effects in blade attraction and repulsion 26.
- wires 24 and 29 for the electrical supply of electrodes.
- a control circuit not shown, ensures the regulation of the deformations of the blade 26; it is fixed plated on the oscillator housing.
- the external electrodes appear in volume in the mass of the oscillator housing, but they are preferably made by simple conductive coatings deposited on the surface of the cavity walls 23, and supplied as the internal electrodes from the right side of the oscillator.
- the mode of control of the deformations of the element flexible generating pressure oscillations can be materialize under different variants.
- the casing 21 of the active module is for example in alumina, material with good thermal conduction and high electrical resistance. It is metallic on its face lower to be sealed by welding on the plate 15.
- a packaging system such as described and illustrated by the figures can be achieved, by view of a cooling power of 100 mW at 180 ° K for a ambient temperature of 30 ° C, in dimensions of 35 mm by 25 mm by: 25 mm, with a ceramic case with a wall thickness of 1.5 to 2 millimeters, and an oscillator providing pressure pulses at a maximum excursion of 20% compared to a pressure of loading of 2 bars.
- the invention is not limited to the mode of preferred embodiment described above with reference to Figures 1 to 4, it will be recalled that the exchanger 13, described in part of a purely regenerative cycle, can be replaced by a delayed heat transfer device between gases relaxed cold and hot compressed gas, involving filling gas conduits of energy-storing material thermal to then restore it during the phases of the cycle.
- the conduit belonging to each circuit then plays the role of a regenerative tube, in series with the corresponding pulses between communication channels with the associated chamber of the pressure generator. Yes necessary, the different channels can be calibrated in the passage section they offer to the working gas.
- FIG. 5 of the accompanying drawings illustrates a variant of the system of the invention in which the oscillator as already described is used in combination with a passive module similarly encapsulated in its case, but in which the core of the cooler does not has more than one working gas circuit, including a pulsation tube in series with a device for regenerative type thermal recovery.
- the cooler core has a tube single pulsation 51 dug longitudinally in the block principal 11.
- the general structure of the passive module is constructed as above.
- the tube 51 opens out the interface with the cold exchanger 16, in an area where its material is micro-machined to increase its surface specific in communication with a vertical channel 52. From opposite side, we see the hot exchanger 14, which is formed here in one piece with the plate 53 of the recovery over block 11.
- the tube 51 opens also on the left side of block 11, in a channel 54 which closes the gas circuit by communication with one of the pressure oscillator chambers (chamber 4a of the figure 2).
- the other bedroom via channel 55, communicates with the left end of the regenerator 56 formed in the plate 53, on the hot side of the cooler.
- the gas circuit closes between regenerator 56 and tube 51 via channel 52 already mentioned.
- Regenerator 56 forms a section duct flattened in the plate 53.
- the regeneration effect by recovery from the work developed at the hot spring is obtained by constituting it by a material made of a mosaic of glass blocks micro-machined by photolithography in surface of a glass plate, in dimensions from 100 to 200 microns.
- the plate 53 is therefore actually constituted by two glass plates assembled, with a full plate 58 covering the micromachined plate 57.
- the operation in accordance with a regenerative pulsed gas cycle is provided by the oscillator as it would be by a second double-acting compressor piston instead phase shift valves and solution buffer tank classics.
- this thus removes dead volumes, which are always penalizing, especially at miniature scales.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
- la figure 1 représente schématiquement un système de conditionnement réfrigéré à deux circuits de gaz de travail, vu suivant une coupe longitudinale décalée par rapport à son axe médian ;
- la figure 2 est une coupe schématique de son oscillateur de pression considéré en vue de dessus par rapport à la figure 1 ;
- la figure 3 montre plutôt l'échangeur de récupération dans le même genre de coupe schématique ;
- la figure 4 montre les trois modules principaux du système dans leur apparence extérieure suivant une vue éclatée avant assemblage ;
- et la figure 5 illustre en perspective la constitution du module passif d'un système à un seul circuit de gaz de travail.
- les fonctions d'un refroidisseur cryogénique à cycle thermodynamique mis en oeuvre dans un circuit fermé de gaz de travail au voisinage immédiat d'un composant électronique à refroidir,
- celles donc d'un générateur de pression associé, imposant périodiquement détentes et compressions alternatives du gaz de travail dans ce circuit,
- celles d'un boítier de protection formant aussi station d'accueil thermiquement isolante pour le composant et supportant ses connexions électriques avec l'extérieur.
- un module dit passif 10, qui constitue le refroidisseur proprement dit,
- un module dit actif 20, qui comporte l'oscillateur de pression intégré,
- et un module d'encapsulation 30 formant boítier pour le refroidisseur avec ses échangeurs.
Claims (24)
- Système de conditionnement de composants fonctionnant à température cryogénique, à refroidissement par un gaz de travail soumis à un cycle thermodynamique en circuit fermé, suivant un cycle périodiquement répétitif impliquant des phases alternatives de compression et de détente, dans un refroidisseur du type à gaz pulsé dont le circuit de gaz de travail comporte un tube à pulsations (1a, 1b) s'étendant entre un échangeur froid (16) en contact thermique avec le composant à refroidir et un échangeur chaud (14) de réjection de chaleur vers l'extérieur,
caractérisé en ce que ledit refroidisseur (30) comporte deux circuits de gaz de travail similaires, opératifs en opposition de phase, dont les tubes à pulsations (1a, 1b) sont ménagés au sein d'un même bloc (11) de matériau isolant thermiquement supportant ledit échangeur froid (16) et ledit échangeur chaud (14), ceux-ci étant communs aux deux circuits,
ainsi qu'un dispositif de récupération (13) pour un transfert thermique à contre-courant entre les deux flux de gaz alimentant les tubes à pulsations appartenant respectivement aux deux circuits de gaz de travail. - Système suivant la revendication 1, caractérisé en ce que ledit bloc est enfermé, avec ledit échangeur chaud et ledit échangeur froid, dans un module d'encapsulation formant boítier étanche et qui présente une paroi de fond formant support du composant à refroidir contre ledit échangeur froid.
- Système suivant la revendication 1 ou 2, caractérisé en ce que ledit dispositif de récupération est un échangeur configuré pour obliger le gaz de travail, dans chacun des deux circuits, à suivre en parallèle un trajet laminaire en serpentin entre un canal de communication avec des moyens oscillateurs de pression et un canal de communication avec l'une des extrémités du tube à pulsations correspondant.
- Système suivant la revendication 1 ou 2, caractérisé en ce que ledit dispositif de récupération (13) est constitué par une masse de matériau thermiquement conducteur intégrant des régénérateurs d'accumulation thermique et échange différé entre gaz chaud et gaz froid qui appartiennent respectivement à chacun desdits circuits de gaz de travail et qui sont disposés parallèles entre un orifice de communication avec des moyens oscillateurs de pression et un orifice de communication avec l'une des extrémités du tube à pulsations correspondant.
- Système suivant la revendication 3 ou 4, caractérisé en ce que ledit dispositif de récupération (13) est constitué solidaire dudit bloc (11) contre une face supérieure de celui-ci parallèle à un plan commun aux deux tubes à pulsations desdits circuits de gaz de travail.
- Système suivant l'une quelconque des revendications 2 à 5, caractérisé en ce qu'il comporte une paroi formant couvercle en fermeture dudit boítier qui est formée par une plaque de réjection de chaleur (15) en matériau thermiquement conducteur s'écartant dudit bloc (11) dans le prolongement dudit échangeur chaud (14).
- Système suivant l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit échangeur chaud (14) est formé par une équerre thermiquement conductrice recouvrant une face latérale gauche et, partiellement, une face supérieure dudit bloc en sa partie gauche.
- Système suivant la revendication 7 combinée à la revendication 6, caractérisé en ce que la plaque de réjection de chaleur (15) est montée sur l'échangeur chaud en équerre (14) en sa partie recouvrant partiellement ladite face supérieure du bloc (11).
- Système suivant l'une quelconque des revendications 1 à 8, caractérisé en ce que ledit échangeur froid (16) est formé par une équerre thermiquement conductrice recouvrant une face latérale droite et, partiellement, une face inférieure dudit bloc (11) en sa partie droite.
- Système suivant la revendication 9, caractérisé en ce que des canaux de communication appartenant à chacun des circuits de gaz de travail entre l'échangeur de récupération à contre-courant (13) et leurs tubes à pulsations respectifs (1a, 1b) sont ménagés à l'interface entre ledit bloc (11) et l'échangeur froid (16) en sa portion recouvrant sa face latérale droite.
- Système suivant l'une quelconque des revendications 2 à 6, caractérisé en ce qu'il comporte un oscillateur de pression pour générer des impulsions en variation de pression dans chacun desdits circuits en opposition de phase, alternativement en compression et détente, qui est accolé solidaire avec ledit boítier.
- Système suivant la revendication 11, caractérisé en ce que ledit oscillateur de pression est accolé contre une plaque de réjection de chaleur (15) formant la paroi couvercle du boítier conformément à la revendication 6.
- Système suivant la revendication 11 ou 12, caractérisé en ce que l'oscillateur de pression est de type comportant un élément flexible (26) divisant une cavité (23) ménagée dans ledit oscillateur en deux chambres différentes (4a-4b), de volumes complémentaires, qui sont en communication pneumatique avec respectivement chacun des tubes à pulsations par l'intermédiaire de l'échangeur de récupération à contre-courant (15).
- Système suivant la revendication 13, caractérisé en ce que ledit élément flexible (26) est associé à des moyens électriques de commande de ses déformations de part et d'autre d'une position médiane dans ladite cavité (23), pour créer des impulsions périodiques de pression dans lesdits circuits qui sont alternativement en haute pression dans l'un et en basse pression dans l'autre.
- Système suivant la revendication 14, caractérisé en ce que lesdits moyens de commande électriques comportent des électrodes fixes (28a-28b) d'attraction respectivement d'électrodes opposées (27a-27b) portées par ledit élément flexible (26) et des circuits d'alimentation des électrodes et de régulation fixés sur ladite masse.
- Système l'une quelconque des revendications 11 à 15, caractérisé en ce que l'oscillateur de pression est sous la forme d'une masse (21) de forme parallélépipédique présentant des ailettes de diffusion thermique dans une partie se plaçant en débord du boítier (30) du côté de l'échangeur chaud quand il est accolé sur la plaque de réjection thermique (15) suivant la revendication 6.
- Système de conditionnement de composants fonctionnant à température cryogénique, à refroidisseur du type à gaz pulsé dont le circuit de gaz de travail comporte un tube à pulsations (51) de pression s'étendant entre un échangeur froid (14) en contact thermique avec le composant à refroidir et un échangeur chaud (14) de réjection de chaleur vers l'extérieur, caractérisé en ce que ledit tube à pulsations (51) est ménagé au sein d'un bloc de matériau isolant thermiquement (11) supportant ledit échangeur froid et ledit échangeur chaud, et en ce qu'un autre conduit tubulaire (56) ménagé parallèlement contre ledit bloc est connecté en série avec ledit tube à pulsations (51) sur ledit circuit et rempli d'un matériau régénérateur assurant une récupération thermique différée dans le temps.
- Système suivant la revendication 17, caractérisé en ce que ledit bloc (11) est enfermé dans un module d'encapsulation formant boítier étanche et qui présente une paroi de fond formant support du composant à refroidir contre ledit échangeur froid.
- Système selon la revendication 18, caractérisé en ce qu'il comporte une paroi formant couvercle en fermeture du boítier, formée par une plaque de rejection de chaleur (15) en matériau thermiquement conducteur s'écartant dudit bloc (11) dans le prolongement dudit échangeur chaud (14).
- Système selon l'une des revendications 18 ou 19, caractérisé en ce qu'il comporte, montés solidaires dudit boítier un oscillateur de pression à double effet pour générer des impulsions périodiques de pression, alternativement en compression et détente, qui parviennent en opposition de phase respectivement aux extrémités dudit tube à pulsation (51) et dudit conduit régénérateur (56) à l'opposé des extrémités où ils sont en communication l'un avec l'autre.
- Système selon la revendication 20, caractérisé en ce que ledit oscillateur de pression est accolé contre un couvercle de celui-ci formant également plaque de réjection de chaleur pour le bloc refroidisseur.
- Système selon l'une des revendications 17 à 21, caractérisé en ce que ledit échangeur chaud (14) est formé par une équerre thermiquement conductrice recouvrant une face latérale gauche et, partiellement, une face supérieure dudit bloc en sa partie gauche.
- Système selon la revendication 19 combinée à la revendication 22, caractérisé en ce que la plaque de réjection de chaleur (15) est montée sur l'échangeur chaud en équerre (14) en sa partie recouvrant partiellement ladite face supérieure du bloc (11).
- Système selon l'une des revendications 17 à 23, caractérisé en ce que ledit échangeur froid (16) est formé par une équerre thermiquement conductrice recouvrant une face latérale droite et, partiellement, une face inférieure dudit bloc (11) en sa partie droite.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9702083A FR2760075B1 (fr) | 1997-02-21 | 1997-02-21 | Systeme de conditionnement de composants fonctionnant a temperature cryogenique |
FR9702083 | 1997-02-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0860667A1 EP0860667A1 (fr) | 1998-08-26 |
EP0860667B1 true EP0860667B1 (fr) | 2002-10-23 |
Family
ID=9504024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98400374A Expired - Lifetime EP0860667B1 (fr) | 1997-02-21 | 1998-02-17 | Système de conditionnement de composants fonctionnant à température cryogénique |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0860667B1 (fr) |
DE (1) | DE69808818T2 (fr) |
FR (1) | FR2760075B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016044322A1 (fr) * | 2014-09-16 | 2016-03-24 | Hoffman Enclosures, Inc. | Encapsulation de composants et circuit à faible énergie pour emplacements dangereux |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10041747B2 (en) | 2010-09-22 | 2018-08-07 | Raytheon Company | Heat exchanger with a glass body |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2554516A1 (fr) * | 1983-11-08 | 1985-05-10 | Inf Milit Spatiale Aeronaut | Microcompresseur piezo-electrique |
JP2902159B2 (ja) * | 1991-06-26 | 1999-06-07 | アイシン精機株式会社 | パルス管式冷凍機 |
US5275002A (en) * | 1992-01-22 | 1994-01-04 | Aisin Newhard Co., Ltd. | Pulse tube refrigerating system |
US5303555A (en) * | 1992-10-29 | 1994-04-19 | International Business Machines Corp. | Electronics package with improved thermal management by thermoacoustic heat pumping |
EP0601516B1 (fr) * | 1992-12-07 | 1998-10-07 | Hitachi, Ltd. | Dispositif de refroidissement |
GB2273975A (en) * | 1992-12-31 | 1994-07-06 | William Alexander Courtney | Refrigerator for cryogenic temperatures |
FR2717563B1 (fr) * | 1994-03-18 | 1996-04-19 | Thomson Csf | Refroidisseur à gaz pulsé. |
-
1997
- 1997-02-21 FR FR9702083A patent/FR2760075B1/fr not_active Expired - Fee Related
-
1998
- 1998-02-17 EP EP98400374A patent/EP0860667B1/fr not_active Expired - Lifetime
- 1998-02-17 DE DE69808818T patent/DE69808818T2/de not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016044322A1 (fr) * | 2014-09-16 | 2016-03-24 | Hoffman Enclosures, Inc. | Encapsulation de composants et circuit à faible énergie pour emplacements dangereux |
US9559517B2 (en) | 2014-09-16 | 2017-01-31 | Hoffman Enclosures, Inc. | Encapsulation of components and a low energy circuit for hazardous locations |
Also Published As
Publication number | Publication date |
---|---|
DE69808818T2 (de) | 2003-06-18 |
EP0860667A1 (fr) | 1998-08-26 |
FR2760075B1 (fr) | 1999-05-28 |
DE69808818D1 (de) | 2002-11-28 |
FR2760075A1 (fr) | 1998-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1243169B1 (fr) | Module electronique a haut pouvoir de refroidissement | |
EP0614059B1 (fr) | Refroidisseur muni d'un doigt froid du type tube pulsé | |
WO2013088054A1 (fr) | Dispositif electronique avec refroidissement par spreader a metal liquide | |
FR2505035A1 (fr) | Compresseur hermetique de refrigeration equipe d'un silencieux, notamment pour refrigerateurs menagers | |
FR2956200A1 (fr) | Machine thermoacoustique a boucle de retroaction electrique | |
FR3009435A1 (fr) | Module thermoelectrique | |
EP1531267B1 (fr) | Dispositif de pompage par micropompes à transpiration thermique | |
EP0860667B1 (fr) | Système de conditionnement de composants fonctionnant à température cryogénique | |
FR2633465A1 (fr) | Oscillateur ultrastable fonctionnant a pression atmospherique et sous vide | |
WO2012020183A1 (fr) | Generateur thermique a materiau magnetocalorique | |
EP0672873A1 (fr) | Refroidisseur à gaz pulsé | |
EP0803687B1 (fr) | Cryostat pour refroidisseur cryogenique et refroidisseurs comportant un tel cryostat | |
WO2007118861A1 (fr) | Convertisseur thermo-acoustique et générateur d'énergie électrique comprenant un convertisseur thermo-acoustique. | |
FR2760076A1 (fr) | Dispositif de refroidissement cryogenique a oscillateur de pression a double effet | |
EP4308802B1 (fr) | Cartouche pour machine thermique à cycle thermodynamique et module pour machine thermique associé | |
FR2741940A1 (fr) | Refroidisseur a moteur lineaire | |
FR2993649A1 (fr) | Dispositif de controle thermique | |
FR2750481A1 (fr) | Refroidisseur a gaz pulse | |
EP0541456B1 (fr) | Support de carte de composants électroniques à faible résistance thermique | |
FR2477688A1 (fr) | Perfectionnements apportes aux appareils de climatisation a fonctionnement autonome et servant a refroidir ou rechauffer un volume d'utilisation relativement grand | |
WO2024074263A1 (fr) | Dispositif de réfrigération à basse température | |
WO2022229537A1 (fr) | Structure thermomécanique pour plan focal d'instrument d'observation spatiale | |
FR2963668A1 (fr) | Generateur thermique a materiau magnetocalorique | |
FR3097077A1 (fr) | Module électronique | |
WO2020127295A1 (fr) | Machine stirling de type beta |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19981214 |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT NL |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT NL |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20020213 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THALES CRYOGENIE S.A. |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69808818 Country of ref document: DE Date of ref document: 20021128 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030204 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030724 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20050203 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050208 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20050210 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050216 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060217 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060228 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060901 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060901 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060217 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20060901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20061031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070217 |