[go: up one dir, main page]

EP0847614A1 - Direct current voltage converter with soft switching - Google Patents

Direct current voltage converter with soft switching

Info

Publication number
EP0847614A1
EP0847614A1 EP96929380A EP96929380A EP0847614A1 EP 0847614 A1 EP0847614 A1 EP 0847614A1 EP 96929380 A EP96929380 A EP 96929380A EP 96929380 A EP96929380 A EP 96929380A EP 0847614 A1 EP0847614 A1 EP 0847614A1
Authority
EP
European Patent Office
Prior art keywords
switching
current
switches
voltage
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96929380A
Other languages
German (de)
French (fr)
Inventor
Henri Huillet
Didier Ploquin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaia Converter
Original Assignee
Gaia Converter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaia Converter filed Critical Gaia Converter
Publication of EP0847614A1 publication Critical patent/EP0847614A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to the conversion of electrical energy and more specifically to the creation, from a DC input voltage, of one or more DC output voltages and aims generally to provide regulation the most perfect possible of the output voltage (s) with respect to, on the one hand, variations in the input voltage, and, on the other hand, variations in the output current (s) absorbed by the load (s) , and, this, with the highest possible yield.
  • the first types of voltage converters were linear regulators which heat dissipate the excess energy between the needs of the load and the capacities of the power supply. Such converters are bulky and have a poor efficiency, of the order of 50%.
  • the present invention aims precisely, in order to adapt these soft switching techniques to a wider range of input voltages, to restore said soft switching conditions but by simpler means on the contrary reducing losses by conduction, as well as the cost and size of the converter.
  • the subject of the invention is a soft-switching DC voltage converter, comprising a transformer, the primary of which is in particular of the half-bridge mounting type and capable of being connected to an input voltage source by by means of two electronic switches, the secondary of which, of the mono-alternation type, is capable of being connected to a load by means of an inductor in series and means for alternately controlling the two switches, at frequency fixed, according to a regulation by pulse width modulation as a function of the output voltage, so as to achieve a switching of zero voltage at said primary, said converter being characterized in that said secondary comprises, in in addition, a resonant circuit so as to achieve at said secondary a quasi-resonant switching at zero current.
  • the secondary circuit comprises, in addition to a rectification-filtering circuit of conventional type, a resonant circuit comprising a capacitor and a low value inductance, said resonant circuit being capable of creating in the secondary winding of the transformer , at each switch opening / closing cycle, a sinusoidal current which is zero or passes through a zero value in the time intervals during which the two switches are both open, so that the current of the primary winding either in the direction which favors the soft switching, without loss, of that of the two switches which closes.
  • said means for alternately controlling the two switches deliver square signals of identical and constant frequencies, the duration of a slot of one determining the duration of closure of one of the switches, this last duration being modulated as a function of the difference between the output voltage and a reference voltage, while the second signal commands the opening of the second switch before the closing of the first switch and the closing of said second switch after the opening of the first switch, the offsets between the opening of one of the switches and the closing of the other switch being equal and constant.
  • Figure 1 is an electrical diagram of a converter of the prior art, of the soft switching type; .
  • Figures 2a to 2g are diagrams of the times relating to the circuit of Figure 1; .
  • Figure 3 is an electrical diagram of a converter according to the invention; .
  • Figures 4a to 4h are diagrams of the times relating to the circuit of Figure 3; .
  • Figure 5 is an electrical diagram of the secondary of a converter of the prior art; .
  • Figures 6a to 6d are diagrams of the times relating to the circuit of Figure 5; .
  • FIGS. 7a to 7d are diagrams of the times relating to the control circuit of the switches of the device of the invention, and
  • FIG. 1 represents a converter with soft switching switching regulation, of known principle, with primary circuit isolation transformer with half-bridge mounting.
  • the transformer includes a primary core part Np and a secondary core part Ns.
  • the polarized end of the primary winding, where the potential Vc is available, is connected via capacitors to the terminals of application of the input voltage Ve, while the other end of said winding, where is available the potential Vp, is connected to these same terminals via two electronic switches, respectively INT1 and INT2.
  • the polarized end of the secondary winding is connected by a diode D1 and an inductance L to one of the output terminals of the converter between which the output voltage Vo is available.
  • a rectifier diode D2 is mounted between one of the ends of the secondary winding and the diode D 1 -inductance junction L.
  • a capacitor Cs is mounted between the output terminals of the converter.
  • the control chain of the switches INT1 and INT2 includes a differential amplifier 1 connected to the output of the converter, a circuit 2 of regulation by pulse width modulation, two circuits G 1 and G2 for generating dead time tm connected, the one, directly to circuit 2, the other, indirectly to the latter, via an inverter 3, each circuit G 1, G2 controlling the opening / closing of one of the switches INT1, INT2.
  • FIGS. 2a, 2b illustrate the shape of the opening / closing control signals of the switches INT1 and INT2, generated by the circuits G 1, G2.
  • FIGS. 2c and 2d respectively represent the variations of potential Vp and of the voltage Vs at the terminals of the secondary winding;
  • Figures 2e, 2f and 2g respectively illustrate the variations in current
  • T is the cutting period (opening / closing cycle of each switch INT1, INT2) an equal dead time tm being provided between the alternating actuations of these switches so that a simultaneous open state of the latter is obtained twice in each cutting period.
  • the invention proposes to modify the secondary circuit as illustrated in FIG. 3.
  • the rectification circuit - conventional filtering L2, C2, (corresponding to the circuit L, Cs of FIG. 1) is added a resonant circuit L1, C1 at the output of the diode D 1, the diode D2 of FIG. 1 being deleted.
  • the inductance L1 is preferably of low value.
  • FIG. 5 represents a secondary circuit of a forced-switching chopper converter of the type described in US-A-4.41 5.959 and intended for input voltages not exceeding a few tens of volts.
  • Such a secondary is similar to that of FIG. 3 (the homologous components carrying the same reference numeral) with in addition a diode D2 in parallel with the capacitor C1.
  • FIGS. 6a to 6d represent diagrams respectively of the voltage Vs at the terminals of the secondary winding, of the voltage VC1 at the terminals of C1, of the current Is of the secondary and of the current IL2 passing through the inductance L2.
  • the shape of the current Is (FIG. 6c) is indeed sinusoidal when the voltage Vs is established.
  • phase 1 the voltage Vs is established, the inductor L1 charges linearly in current Is up to the value of the current IL2 passing through the inductor L2 and which is close to the current lo supplying the load, the voltage VC1 across the capacitor C1 remaining zero.
  • phase 2 the elements L1, C1 are in resonance, the voltage VC1 (figure 6b) and current Is (figure 6c) having a sinusoidal shape, the voltage VC1 rising to twice the voltage Vs.
  • phase 3 the diode D1 is blocked in reverse, first of all by the current Is which is canceled, then by the fall of the voltage Vs, the capacitor C1 being discharged linearly by the current IL2.
  • phase 4 the current IL2 continues to flow through the freewheeling diode D2, the voltage VC1 remaining zero.
  • the voltage VC1 is filtered by L2, C2 so that its average value is equivalent to the output voltage Vo.
  • the regulation of the output voltage Vo therefore depends on the form of VC1, that is to say on Vs, lo and on the repetition frequency of the cycle of phases 1 to 4. If the voltage Vs is imposed by the input voltage Ve of the converter, the regulation, in this type of device of FIG. 5, of the output voltage Vo as a function of lo and of the input voltage Ve therefore consists in varying said frequency. On the contrary, in the assembly of the secondary (FIG. 3) of the converter of the invention, the freewheeling diode D2 of FIG. 5 has been deleted, so that the cycle of phases 1 to 4 is replaced by the cycle (FIG. 4h) with two phases 1 and 2. Phase 1, corresponding to phases 1 and 2 of FIGS.
  • phase 6a to 6d is a resonance phase and phase 2 is a phase of linear discharge of the capacitor C1 by the current IL2, which is almost constant, corresponding to phase 3 of Figures 6a to 6d.
  • the disappearance of phase 4 is brought about by the suppression of the diode D2.
  • the shape of the voltage VC1 (figure 4f) is symmetrical around the value of the voltage input slot Vs (figure 4e).
  • VC1 can be negative provided that during phase 2 VS remains in an algebraic value lower than VC1, the diode D1 being blocked in reverse. This characteristic fundamentally distinguishes this device from that of FIG. 5 (cf. also FIG. 6b).
  • the regulation of the output voltage Vo is therefore very simple. It does not depend on said frequency but only on the amplitude of the voltage input slot Vs,
  • the voltage Vs will therefore be regulated as a function of the input voltage Ve by the time t1 (FIG. 4a) defined by a period T of appropriate cutting of the control signals of the switches INT1 and INT2 of the assembly. primary bridge.
  • phase 1 (FIGS. 4f and 4g) consists of sinusoidal signals.
  • the duration of phase 1 is constant and breaks down (Figure 4g) in a half-period of duration Tr / 2 ( Figure 4g) at the resonance frequency given by L1, C1 and two intervals located on either side.
  • the removal of the diode D2 brings the advantage of having fewer losses by conduction or reverse current and leads to a reduction in the size of the device and its cost.
  • FIGS. 7a to 7d illustrate by way of example the waveforms generated by the control circuit of the switches INT1 and INT2 of the primary of the converter of FIG. 3.
  • FIG. 7a represents the square signal Va generated by the circuit 2, when the amplifier 1 detects a difference between the output voltage Vo and a reference voltage greater than a predetermined threshold.
  • FIG. 7b represents the signal Vb which is the inverse of Va and FIGS. 7c and 7d respectively represent the signals Vd for controlling the switch INT1 and Vc for controlling the switch INT2, delivered respectively by the circuits G 1 and G2.
  • Vc is generated from Vb and
  • the converter of the invention makes it possible to highlight the following observations.
  • the switches INT1 and INT2 are for example MOS transistors. They can be made up of other components such as in particular bi-polar, GTO or IGBT transistors. MOS transistors naturally exhibit parasitic components (capacitance and diode) and if the switch types chosen did not include such components, in particular the diode function, it would then be necessary to add this function, which is necessary for the proper functioning of the device.
  • the diode D 1 is switched to the locked position in reverse with conditions di / dt and dv / dt lower than in a conventional technique, therefore with less loss by reverse overlap.
  • the measurement of the amplitude of VC1 is a good way to measure the output current lo and to implement functions such as: current limitation, current and short-circuit security, servo control with current loop in parallelization of several modules for an equal and controlled distribution of the respective currents.
  • a 30 watt converter of the type in FIG. 3 has thus been produced by way of example, having several outputs of different values: 3.3; 5; 1 2; 1 5; 24 and 28 volts, regulated in a range of input voltage values between 200 and 400 volts, the switching frequency being 500 KHz.
  • Such a converter had an efficiency of 92% for 15 volts of output and had a volume of 35.6 x 52.5 x 12.7 mm, which is two to three times less than that of the converters of the moment.
  • the converter can have several identical outputs, for example mono-alternation as shown in the drawings.
  • the resonance inductor L1 can be a discrete component or be an integral part of the leakage inductance of the transformer.
  • FIGS. 8a to 8g represent wave diagrams corresponding to an alternative embodiment of the converter consisting essentially of a modification of the dimensioning of the resonant circuit L1 C1 of the device of FIG. 3, this circuit being moreover unchanged.
  • the device works on the same principle with the same commands and the same controls.
  • the aim sought by such a different dimensioning is to carry out a voltage zero switching, hereinafter denoted ZVS, of each primary switch (INT1, INT2) following the opening of the other switch.
  • ZVS a voltage zero switching
  • the condition ZVS is fulfilled if the primary current is negative in A and positive in B all the time of this switching which occurs from the start of the time intervals tm.
  • the ZVS switching to A is ensured by two parameters: the quasi-resonance in current at the secondary brings back to the primary a current at A which is only gradually increasing.
  • the primary current at A remains easily negative the time that the ZVS switching is completed.
  • the balance of the primary capacitive bridge means that the average primary current is zero.
  • the presence of the output current lo leads to a shift in the negative of the average magnetizing current of the transformer and an even more negative value of the primary current at A. Consequently, the more power the converter provides, the more the condition ZVS at A assured.
  • the current brought back from the secondary is zero and only the primary magnetizing current must fulfill the condition of being positive.
  • the more power the converter provides at output the more the offset in the negative of the magnetizing average current causes the primary current towards the negative at point B.
  • the resonant circuit L1 C1 is dimensioned with a lower resonant frequency, therefore a longer period.
  • a non-zero secondary current is thus obtained which superimposes on the primary magnetizing current a positive reduced value contributing to the conservation at B of a positive primary current.
  • FIGS. 8d, 8f and 8g illustrate the above, FIGS. 8a, 8b, 8c, and
  • FIGS. 4a, 4b, 4c and 4th being identical to FIGS. 4a, 4b, 4c and 4th.
  • ia figure 8d the very marked shift towards the positive of the current Ip at the point B and on figure 8g the phase of quasi-resonance in interrupted current of INT2.
  • the invention applies of course to other primary assemblies than that of FIG. 3 and, in general, to any primary, in particular of the Buck type, comprising two alternately controllable switches so as to obtain switching gentle at zero voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The invention relates to a direct current voltage converter with soft switching, comprising a transformer (Np, Ns) of which the primary is particularly of the half-bridge mount type and susceptible of being connected to an input voltage source (Ve) through two electronic switches (INT1, INT2) and of which the secondary, of the monoalternating type, is susceptible of being connected to a load through a series inductance (L2) and means (1-3, G1, G2) to alternatingly control the two switches, at fixed frequency, according to a regulation through pulse width modulation as a function of the output voltage (Vo) so as to achieve at the primary a zero voltage switching, said converter being characterized in that said secondary comprises, additionally, a resonant circuit (L1, C1) so as to perform at said secondary a zero current quasi-resonant switching.

Description

CONVERTISSEUR DE TENSION CONTINUE A COMMUTATION DOUCE CONTINUOUS VOLTAGE CONVERTER WITH SOFT SWITCHING
La présente invention a trait à la conversion d'énergie électrique et plus précisément à la création, à partir d'une tension d'entrée continue, d'une ou plusieurs tensions de sortie continues et vise d'une manière générale à assurer une régulation la plus parfaite possible de la ou des tensions de sortie vis à vis, d'une part, des variations de la tension d'entrée, et, d'autre part, des variations du ou des courants de sortie absorbés par la ou les charges, et, ce, avec le rendement le plus élevé possible.The present invention relates to the conversion of electrical energy and more specifically to the creation, from a DC input voltage, of one or more DC output voltages and aims generally to provide regulation the most perfect possible of the output voltage (s) with respect to, on the one hand, variations in the input voltage, and, on the other hand, variations in the output current (s) absorbed by the load (s) , and, this, with the highest possible yield.
Diverses techniques ont été mises en oeuvre jusqu'à ce jour en vue d'assurer une telle régulation. Les premiers types de convertisseurs de tension étaient à régulateur linéaire dissipant thermiquement l'excédent d'énergie entre les besoins de la charge et les capacités de l'alimentation. De tels convertisseurs sont volumineux et ont un mauvais rendement, de l'ordre de 50%.Various techniques have been implemented to date in order to ensure such regulation. The first types of voltage converters were linear regulators which heat dissipate the excess energy between the needs of the load and the capacities of the power supply. Such converters are bulky and have a poor efficiency, of the order of 50%.
Ensuite apparurent les convertisseurs à découpage à commutation forcée dans lesquels le transfert de l'énergie juste nécessaire, de l'entrée vers la ou les sorties, se fait par quanta d'énergie prélevée de manière périodique sur la source, stockés dans des composants réactifs puis restitués vers la ou les charges par des techniques dites à découpage mettant en oeuvre des commutations d'interrupteurs électroniques. L'inconvénient majeur de ces convertisseurs provient du fait que chaque commutation s'accompagne de pertes qui vont en augmentant avec le nombre de commutations, c'est-à-dire avec la fréquence de découpage.Then appeared the switching converters with forced commutation in which the transfer of the just necessary energy, of the entry towards the exit (s), is done by quanta of energy taken periodically on the source, stored in reactive components then restored to the charge (s) by techniques known as switching techniques using electronic switch switching. The major drawback of these converters comes from the fact that each switching is accompanied by losses which increase with the number of switching, that is to say with the switching frequency.
Cependant, avec l'évolution des caractéristiques des composants on a pu atteindre l'optimum avec ce type de convertisseur avec des appareils fonctionnant à des fréquences de découpage de l'ordre de 200 KHz avec un rendement pouvant atteindre 80%.However, with the evolution of the characteristics of the components, it has been possible to reach the optimum with this type of converter with devices operating at switching frequencies of the order of 200 KHz with an efficiency of up to 80%.
Ces convertisseurs ont été supplantés récemment par des dispositifs mettant en oeuvre des techniques de découpage à résonance dont le principe est d'exploiter, voire d'amplifier, les effets des éléments parasites par l'adjonction de composants passifs formant des circuits résonnants. Ces structures permettent alors de créer des conditions où les tensions aux bornes des interrupteurs ou diodes de commutation, ou le courant qui les traversent, sont nuls aux instants où leur commutation est commandée. Les pertes par commutation s'en trouvent réduites d'autant.These converters have recently been supplanted by devices implementing resonance cutting techniques, the principle of which is to exploit, even amplify, the effects of parasitic elements by the addition of passive components forming resonant circuits. These structures then make it possible to create conditions where the voltages at the terminals of the switches or switching diodes, or the current flowing through them, are zero at the times when their switching is commanded. Switching losses are reduced accordingly.
Ceci a permis d'élever la fréquence de découpage, qui a dépassé 500 KHz, tout en réduisant parallèlement le poids et le volume du convertisseur.This made it possible to increase the switching frequency, which exceeded 500 KHz, while at the same time reducing the weight and the volume of the converter.
De telles techniques demeurent néanmoins délicates à mettre en oeuvre et présentent des inconvénients et des limites. A chaque commutation apparaissent de forts courants ou surtensions dans les circuits résonnants et donc des pertes par conduction. Si l'on a réduit les pertes par commutation, on a par contre augmenté les pertes par conduction.Such techniques nevertheless remain difficult to implement and have drawbacks and limits. At each switching, high currents or overvoltages appear in the resonant circuits and therefore conduction losses. If we have reduced switching losses, we have increased conduction losses.
De plus, cet inconvénient a obligé à sur-dimensionner les composants de découpage par rapport à une alimentation classique, d'un facteur 1 ,5 à 2. Plus récemment encore sont apparues de nouvelles techniques de conversion par régulateur à découpage à commutation douce. Elles se distinguent des techniques à résonance par l'absence de circuit résonnant coûteux en perte par conduction et par des conditions de commutation à zéro de tension, donc avec de moindres pertes par commutation, obtenues à partir d'éléments des techniques classiques à découpage. Ces nouvelles techniques sont par exemple exposées dans les documents US-A-4.441 .1 46, US-A-5.057.986 et US-A-5.1 26.931 , ainsi que" dans les publications :In addition, this drawback has made it necessary to over-size the cutting components compared to a conventional power supply, by a factor of 1.5 to 2. More recently, new conversion techniques have appeared with soft switching switching regulators. They are distinguished from resonance techniques by the absence of an expensive resonant circuit in loss by conduction and by switching conditions at zero voltage, therefore with lower switching losses, obtained from elements of conventional switching techniques. These new techniques are for example exposed in the documents US-A-4,441 .1 46, US-A-5,057,986 and US-A-5.1 26,931, as well as " in the publications:
. "Utilization of an active-clamp circuit to achieve soft switching in flyback converters" de R. Watson, F.C. Lee, G.C. Hua ; Conférence. "Utilization of an active-clamp circuit to achieve soft switching in flyback converters" by R. Watson, F.C. Lee, G.C. Hua; Conference
PESC 1 994 ; . "Characterization of an active clamp flyback topology for power factor correction applications" de R. Watson, F.C. Lee, G.C. Hua ; Conférence PESC 1 994. Cependant, l'efficacité de ces techniques reste limitée en ce qui concerne la plage de variation de la tension d'entrée qui est insuffisante dans la plupart des applications industrielles. En effet, pour des variations importantes de cette tension d'entrée on ne remplit plus les conditions d'une commutation douce et pour restaurer ces conditions on doit recourir à des aménagements, notamment des circuits résonnants, entraînant de sérieux problèmes de pertes par conduction.PESC 1 994; . "Characterization of an active clamp flyback topology for power factor correction applications" by R. Watson, F.C. Lee, G.C. Hua; PESC Conference 1 994. However, the effectiveness of these techniques remains limited as regards the range of variation of the input voltage which is insufficient in most industrial applications. In fact, for large variations in this input voltage, the conditions for soft switching are no longer fulfilled and, in order to restore these conditions, arrangements must be made, in particular resonant circuits, causing serious problems of conduction losses.
La présente invention vise précisément, en vue d'adapter ces techniques à commutation douce à une plus large plage de tensions d'entrée, à restaurer lesdites conditions de commutation douce mais par des moyens plus simples réduisant au contraire les pertes par conduction, ainsi que le coût et la taille du convertisseur.The present invention aims precisely, in order to adapt these soft switching techniques to a wider range of input voltages, to restore said soft switching conditions but by simpler means on the contrary reducing losses by conduction, as well as the cost and size of the converter.
A cet effet, l'invention a pour objet un convertisseur de tension continue à commutation douce, comprenant un transformateur dont le primaire est notamment du type à montage en demi-pont et susceptible d'être relié à une source de tension d'entrée par l'intermédiaire de deux interrupteurs électroniques et dont le secondaire, de type mono-alternance, est susceptible d'être relié à une charge par l'intermédiaire d'une inductance en série et des moyens pour commander en alternance les deux interrupteurs, à fréquence fixe, suivant une régulation par modulation de largeur d'impulsion en fonction de la tension de sortie, en sorte de réaliser audit primaire une commutation à zéro de tension, ledit convertisseur étant caractérisé en ce que ledit secondaire comporte, en outre, un circuit résonnant en sorte de réaliser audit secondaire une commutation quasi-résonnante à zéro de courant.To this end, the subject of the invention is a soft-switching DC voltage converter, comprising a transformer, the primary of which is in particular of the half-bridge mounting type and capable of being connected to an input voltage source by by means of two electronic switches, the secondary of which, of the mono-alternation type, is capable of being connected to a load by means of an inductor in series and means for alternately controlling the two switches, at frequency fixed, according to a regulation by pulse width modulation as a function of the output voltage, so as to achieve a switching of zero voltage at said primary, said converter being characterized in that said secondary comprises, in in addition, a resonant circuit so as to achieve at said secondary a quasi-resonant switching at zero current.
Suivant un mode de mise en oeuvre, le circuit secondaire comporte, outre un circuit de redressement-filtrage de type conventionnel, un circuit résonnant comprenant un condensateur et une inductance de faible valeur, ledit circuit résonnant étant susceptible de créer dans le bobinage secondaire du transformateur, à chaque cycle d 'ouverture/fermeture des interrupteurs, un courant de forme sinusoïdale qui est nul ou passe par une valeur nulle dans les intervalles de temps pendant lesquels les deux interrupteurs sont tous les deux ouverts, en sorte que le courant du bobinage primaire soit dans le sens qui favorise la commutation douce, sans perte, de celui des deux interrupteurs qui se referme.According to one embodiment, the secondary circuit comprises, in addition to a rectification-filtering circuit of conventional type, a resonant circuit comprising a capacitor and a low value inductance, said resonant circuit being capable of creating in the secondary winding of the transformer , at each switch opening / closing cycle, a sinusoidal current which is zero or passes through a zero value in the time intervals during which the two switches are both open, so that the current of the primary winding either in the direction which favors the soft switching, without loss, of that of the two switches which closes.
Suivant ce mode de mise en oeuvre, lesdits moyens de commande en alternance des deux interrupteurs délivrent des signaux carrés de fréquences identiques et constantes, la durée d'un créneau de l'un déterminant la durée de fermeture de l'un des interrupteurs, cette dernière durée étant modulée en fonction de l'écart entre la tension de sortie et une tension de référence, cependant que le second signal commande l'ouverture du second interrupteur avant la fermeture du premier interrupteur et la fermeture dudit second interrupteur après l'ouverture du premier interrupteur, les décalages entre l'ouverture de l'un des interrupteurs et la fermeture de l'autre interrupteur étant égaux et constants.According to this mode of implementation, said means for alternately controlling the two switches deliver square signals of identical and constant frequencies, the duration of a slot of one determining the duration of closure of one of the switches, this last duration being modulated as a function of the difference between the output voltage and a reference voltage, while the second signal commands the opening of the second switch before the closing of the first switch and the closing of said second switch after the opening of the first switch, the offsets between the opening of one of the switches and the closing of the other switch being equal and constant.
Un tel convertisseur combinant une commutation à zéro de tension au primaire du transformateur d'isolement avec une commutation quasi-résonnante à zéro de courant au secondaire assure une excellente régulation de la tension de sortie, même avec des variations de la tension d'entrée importantes, sans altérations sensibles des conditions de la commutation douce au niveau des interrupteurs du primaire, avec comme conséquence des pertes de commutation très réduites, mais également des pertes de conduction quasi-inexistantes. D'autres caractéristiques et avantages ressortiront de la description qui va suivre d'un mode de réalisation préféré du dispositif de l'invention, description donnée à titre d'exemple uniquement et en regard des dessins annexés sur lesquels :Such a converter combining zero voltage switching at the primary of the isolation transformer with a quasi-resonant switching at zero current at the secondary ensures excellent regulation of the output voltage, even with large variations in input voltage , without appreciable alterations of the conditions of the soft switching at the level of the primary switches, with as a consequence very reduced switching losses, but also almost non-existent conduction losses. Other characteristics and advantages will emerge from the following description of a preferred embodiment of the device of the invention, description given by way of example only and with reference to the appended drawings in which:
. Figure 1 est un schéma électrique d'un convertisseur de l'art antérieur, du type à commutation douce ; . Figures 2a à 2g sont des diagrammes des temps relatifs au circuit de la figure 1 ; . Figure 3 est un schéma électrique d'un convertisseur selon l'invention ; . Figures 4a à 4h sont des diagrammes des temps relatifs au circuit de la figure 3 ; . Figure 5 est un schéma électrique du secondaire d'un convertisseur de l'art antérieur ; . Figures 6a à 6d sont des diagrammes des temps relatifs au circuit de la figure 5 ; . Figures 7a à 7d sont des diagrammes des temps relatifs au circuit de commande des interrupteurs du dispositif de l'invention, et. Figure 1 is an electrical diagram of a converter of the prior art, of the soft switching type; . Figures 2a to 2g are diagrams of the times relating to the circuit of Figure 1; . Figure 3 is an electrical diagram of a converter according to the invention; . Figures 4a to 4h are diagrams of the times relating to the circuit of Figure 3; . Figure 5 is an electrical diagram of the secondary of a converter of the prior art; . Figures 6a to 6d are diagrams of the times relating to the circuit of Figure 5; . FIGS. 7a to 7d are diagrams of the times relating to the control circuit of the switches of the device of the invention, and
. Figures 8a à 8g sont des diagrammes des temps relatifs à une variante de réalisation du convertisseur de l'invention. La figure 1 représente un convertisseur à régulation à découpage à commutation douce, de principe connu, à transformateur d'isolement à circuit primaire à montage demi-pont.. Figures 8a to 8g are timing diagrams relating to an alternative embodiment of the converter of the invention. FIG. 1 represents a converter with soft switching switching regulation, of known principle, with primary circuit isolation transformer with half-bridge mounting.
Le transformateur comporte une partie de noyau primaire Np et une partie de noyau secondaire Ns.The transformer includes a primary core part Np and a secondary core part Ns.
L'extrémité polarisée de l'enroulement primaire, où est disponible le potentiel Vc, est relié par l'intermédiaire de condensateurs aux bornes d'application de la tension d'entrée Ve, cependant que l'autre extrémité dudit enroulement, où est disponible le potentiel Vp, est reliée à ces mêmes bornes via deux interrupteurs électroniques, respectivement INT1 et INT2.The polarized end of the primary winding, where the potential Vc is available, is connected via capacitors to the terminals of application of the input voltage Ve, while the other end of said winding, where is available the potential Vp, is connected to these same terminals via two electronic switches, respectively INT1 and INT2.
L'extrémité polarisée de l'enroulement secondaire est relié par une diode D1 et une inductance L à l'une des bornes de sortie du convertisseur entre lesquelles est disponible la tension de sortie Vo.The polarized end of the secondary winding is connected by a diode D1 and an inductance L to one of the output terminals of the converter between which the output voltage Vo is available.
L'autre extrémité de l'enroulement secondaire est reliée à l'autre borne de sortie. Une diode D2 de redressement est montée entre l'une des extrémités de l'enroulement secondaire et la jonction diode D 1 -inductance L. Enfin, un condensateur Cs est monté entre les bornes de sortie du convertisseur.The other end of the secondary winding is connected to the other output terminal. A rectifier diode D2 is mounted between one of the ends of the secondary winding and the diode D 1 -inductance junction L. Finally, a capacitor Cs is mounted between the output terminals of the converter.
La chaîne de commande des interrupteurs INT1 et INT2 comprend un amplificateur différentiel 1 relié à la sortie du convertisseur, un circuit 2 de régulation par modulation de largeur d'impulsion, deux circuits G 1 et G2 de génération de temps mort tm reliés, l'un, directement au circuit 2, l'autre, indirectement à ce dernier, via un inverseur 3, chaque circuit G 1 ,G2 commandant l'ouverture/fermeture de l'un des interrupteurs INT1 , INT2. Les figures 2a, 2b illustrent la forme des signaux de commande d'ouverture/fermeture des interrupteurs INT1 et INT2, générés par les circuits G 1 ,G2.The control chain of the switches INT1 and INT2 includes a differential amplifier 1 connected to the output of the converter, a circuit 2 of regulation by pulse width modulation, two circuits G 1 and G2 for generating dead time tm connected, the one, directly to circuit 2, the other, indirectly to the latter, via an inverter 3, each circuit G 1, G2 controlling the opening / closing of one of the switches INT1, INT2. FIGS. 2a, 2b illustrate the shape of the opening / closing control signals of the switches INT1 and INT2, generated by the circuits G 1, G2.
Les figures 2c et 2d représentent respectivement les variations de potentiel Vp et de la tension Vs aux bornes de l'enroulement secondaire; Les figures 2e, 2f et 2g illustrent respectivement les variations du courantFIGS. 2c and 2d respectively represent the variations of potential Vp and of the voltage Vs at the terminals of the secondary winding; Figures 2e, 2f and 2g respectively illustrate the variations in current
IL traversant l'inductance L, du courant Is de l'enroulement secondaire et du courant Ip de l'enroulement primaire.IL crossing the inductance L, of the current Is of the secondary winding and of the current Ip of the primary winding.
Sur la figure 2a, T est la période de découpage (cycle d'ouverture/fermeture de chaque interrupteur INT1 , INT2) un égal temps mort tm étant prévu entre les actionnements alternés de ces interrupteurs en sorte qu'un état ouvert simultané de ces derniers soit obtenu à deux reprises dans chaque période de découpage.In FIG. 2a, T is the cutting period (opening / closing cycle of each switch INT1, INT2) an equal dead time tm being provided between the alternating actuations of these switches so that a simultaneous open state of the latter is obtained twice in each cutting period.
Sur le diagramme de la figure 2g on observe que les commutations pendant les deux temps morts tm, respectivement au point A (juste avant que ne se ferme l'interrupteur INT2) et au point B (juste avant que ne se ferme l'interrupteur INT1 ) s'opèrent de manière douce car le courant Ip est dans le bon sens, c'est-à-dire qu'il est dans le sens qui va naturellement charger ou décharger les condensateurs parasites des interrupteurs INT1 et INT2 de sorte que le potentiel Vp va évoluer simultanément tel que représenté sur le diagramme de la figure 2c.On the diagram of figure 2g we observe that the commutations during the two dead times tm, respectively at point A (just before switch INT2 closes) and at point B (just before switch INT1 closes ) operate smoothly because the current Ip is in the right direction, that is to say it is in the direction which will naturally charge or discharge the parasitic capacitors of the switches INT1 and INT2 so that the potential Vp will evolve simultaneously as shown in the diagram in Figure 2c.
Toutefois, un tel dispositif a ses limites. Lorsqu'en effet la plage de variation de la tension d'entrée Ve est susceptible d'être importante, à valeur élevée de Ve correspond une allure du courant Ip dans la zone du point A telle qu'il devient positif et croît juste avant que ne se ferme l'interrupteur INT2 à la fin du 1 er temps mort tm des figures 2a, 2b.However, such a device has its limits. When in fact the range of variation of the input voltage Ve is likely to be large, at high of Ve corresponds to a shape of the current Ip in the zone of point A such that it becomes positive and increases just before the switch INT2 closes at the end of the 1st dead time tm in FIGS. 2a, 2b.
On s'éloigne donc des conditions d'une commutation douce et le fait d'augmenter suffisamment l'amplitude du courant Ip pour que le point A demeure dans des valeurs négatives poserait de sérieux problèmes de pertes par conduction.One thus moves away from the conditions of a soft commutation and the fact of sufficiently increasing the amplitude of the current Ip so that the point A remains in negative values would pose serious problems of losses by conduction.
Pour remédier à ces problèmes, l'invention propose de modifier le circuit du secondaire comme illustré par la figure 3. A cet effet, sur cette figure 3, au circuit de redressement - filtrage classique L2,C2, (correspondant au circuit L,Cs de la figure 1 ) est rajouté un circuit résonnant L1 ,C1 à la sortie de la diode D 1 , la diode D2 de la figure 1 étant supprimée. L'inductance L1 est de préférence de faible valeur.To remedy these problems, the invention proposes to modify the secondary circuit as illustrated in FIG. 3. To this end, in this FIG. 3, to the rectification circuit - conventional filtering L2, C2, (corresponding to the circuit L, Cs of FIG. 1) is added a resonant circuit L1, C1 at the output of the diode D 1, the diode D2 of FIG. 1 being deleted. The inductance L1 is preferably of low value.
Les diagrammes d'ondes des figures 4a, 4b, 4c, 4d, 4e, 4g et 4h correspondent respectivement à ceux des figures 2a,2b,2c,2g,2d,2f et 2e.The wave diagrams of Figures 4a, 4b, 4c, 4d, 4th, 4g and 4h correspond respectively to those of Figures 2a, 2b, 2c, 2g, 2d, 2f and 2e.
La nature du circuit du secondaire du convertisseur de l'invention permet de donner au courant Is ramené au primaire une forme sinusoïdale présentantThe nature of the secondary circuit of the converter of the invention makes it possible to give the current Is brought back to the primary a sinusoidal shape having
(figure 4g), au contraire d'une forme rectangulaire à front raide (figure 2f), des fronts doux. Ces fronts doux maintiennent, dans la zone de commutation A (juste avant que ne se ferme l'interrupteur INT2, figure 4d) le courant Ip en deçà de zéro, le courant tendant vers zéro, ce qui assure une commutation douce, cependant que dans la zone de commutation B, ledit courant Ip tendant vers zéro est toujours positif juste avant que ne se ferme l'interrupteur INT1 . Cette forme sinusoïdale dudit courant Is ramené au primaire est précisément obtenue par le type de circuit résonnant à zéro de courant de l'étage secondaire du convertisseur.(Figure 4g), unlike a rectangular shape with a stiff front (Figure 2f), soft fronts. These soft edges maintain, in the switching zone A (just before the switch INT2, figure 4d, closes) the current Ip below zero, the current tending towards zero, which ensures a soft switching, however that in the switching zone B, said current Ip tending towards zero is always positive just before the switch INT1 closes. This sinusoidal form of said current Is brought back to the primary is precisely obtained by the type of circuit resonating at zero current of the secondary stage of the converter.
Pour plus de détails sur un tel circuit résonnant à zéro de courant, connu en lui-même, on va se reporter à la figure 5 et aux diagrammes de formes d'ondes associées des figures 6a à 6d. La figure 5 représente un circuit secondaire d'un convertisseur à découpage à commutation forcée du type de celui décrit dans US-A-4.41 5.959 et destiné à des tensions d'entrée n'excédant pas quelques dizaines de volts.For more details on such a circuit resonating at zero current, known in itself, reference is made to FIG. 5 and to the associated waveform diagrams of FIGS. 6a to 6d. FIG. 5 represents a secondary circuit of a forced-switching chopper converter of the type described in US-A-4.41 5.959 and intended for input voltages not exceeding a few tens of volts.
Un tel secondaire est similaire à celui de la figure 3 (les composants homologues portant la même référence numérique) avec en plus une diode D2 en parallèle avec le condensateur C1 .Such a secondary is similar to that of FIG. 3 (the homologous components carrying the same reference numeral) with in addition a diode D2 in parallel with the capacitor C1.
Les figures 6a à 6d représentent des diagrammes respectivement de la tension Vs aux bornes de l'enroulement secondaire, de la tension VC1 aux bornes de C1 , du courant Is du secondaire et du courant IL2 traversant l'inductance L2.FIGS. 6a to 6d represent diagrams respectively of the voltage Vs at the terminals of the secondary winding, of the voltage VC1 at the terminals of C1, of the current Is of the secondary and of the current IL2 passing through the inductance L2.
Dans un tel circuit, la forme du courant Is (figure 6c) est bien sinusoïdale lorsque s'établit la tension Vs.In such a circuit, the shape of the current Is (FIG. 6c) is indeed sinusoidal when the voltage Vs is established.
Au cours de la phase 1 s'établit la tension Vs, l'inductance L1 se charge linéairement en courant Is jusqu'à la valeur du courant IL2 traversant l'inductance L2 et qui est proche du courant lo alimentant la charge, la tension VC1 aux bornes du condensateur C1 demeurant nulle.During phase 1, the voltage Vs is established, the inductor L1 charges linearly in current Is up to the value of the current IL2 passing through the inductor L2 and which is close to the current lo supplying the load, the voltage VC1 across the capacitor C1 remaining zero.
Au cours de la phase 2 les éléments L1 ,C1 sont en résonance, les tension VC1 (figure 6b) et courant Is (figure 6c) ayant une allure sinusoïdale, la tension VC1 montant au double de la tension Vs. Dans la phase 3, la diode D1 est bloquée en inverse, tout d'abord par le courant Is qui s'est annulé, puis par la retombée de la tension Vs, le condensateur C1 étant déchargé linéairement par le courant IL2.During phase 2 the elements L1, C1 are in resonance, the voltage VC1 (figure 6b) and current Is (figure 6c) having a sinusoidal shape, the voltage VC1 rising to twice the voltage Vs. In phase 3, the diode D1 is blocked in reverse, first of all by the current Is which is canceled, then by the fall of the voltage Vs, the capacitor C1 being discharged linearly by the current IL2.
En phase 4, le courant IL2 continue de circuler par la diode de roue libre D2, la tension VC1 demeurant nulle. Ainsi, la tension VC1 est filtrée par L2, C2 si bien que sa valeur moyenne équivaut à la tension de sortie Vo.In phase 4, the current IL2 continues to flow through the freewheeling diode D2, the voltage VC1 remaining zero. Thus, the voltage VC1 is filtered by L2, C2 so that its average value is equivalent to the output voltage Vo.
La régulation de la tension de sortie Vo dépend donc de la forme de VC1 , c'est-à-dire de Vs, de lo et de la fréquence de répétition du cycle des phases 1 à 4. Si la tension Vs est imposée par la tension d'entrée Ve du convertisseur, la régulation, dans ce type d'appareil de la figure 5, de la tension de sortie Vo en fonction de lo et de la tension d'entrée Ve consiste donc à faire varier ladite fréquence. Au contraire, dans le montage du secondaire (figure 3) du convertisseur de l'invention, la diode de roue libre D2 de la figure 5 a été supprimée, si bien que le cycle des phases 1 à 4 est remplacé par le cycle (figure 4h) à deux phases 1 et 2. La phase 1 , correspondant aux phases 1 et 2 des figures 6a à 6d, est une phase de résonance et la phase 2 est une phase de décharge linéaire du condensateur C1 par le courant IL2, qui est quasi constant, correspondant à la phase 3 des figures 6a à 6d. La disparition de la phase 4 est entraînée par la suppression de la diode D2.The regulation of the output voltage Vo therefore depends on the form of VC1, that is to say on Vs, lo and on the repetition frequency of the cycle of phases 1 to 4. If the voltage Vs is imposed by the input voltage Ve of the converter, the regulation, in this type of device of FIG. 5, of the output voltage Vo as a function of lo and of the input voltage Ve therefore consists in varying said frequency. On the contrary, in the assembly of the secondary (FIG. 3) of the converter of the invention, the freewheeling diode D2 of FIG. 5 has been deleted, so that the cycle of phases 1 to 4 is replaced by the cycle (FIG. 4h) with two phases 1 and 2. Phase 1, corresponding to phases 1 and 2 of FIGS. 6a to 6d, is a resonance phase and phase 2 is a phase of linear discharge of the capacitor C1 by the current IL2, which is almost constant, corresponding to phase 3 of Figures 6a to 6d. The disappearance of phase 4 is brought about by the suppression of the diode D2.
La différence de montage entre les deux secondaires des figures 3 et 5 fait apparaître les conséquences essentielles suivantes.The difference in mounting between the two secondaries of Figures 3 and 5 shows the following essential consequences.
La forme de la tension VC1 (figure 4f) est symétrique autour de la valeur du créneau d'entrée de tension Vs (figure 4e). Le filtrage de VC1 à sa valeur moyenne par L2,C2 donne la tension Vs qui n'est autre que la tension de sortie Vo. Par suite, Vo = Vs quels que soient la fréquence de répétition et le courant de sortie lo. II est incidemment à noter que VC1 peut être négative à condition que pendant la phase 2 VS reste en valeur algébrique inférieure à VC1 , la diode D1 étant bloquée en inverse. Cette caractéristiques distingue fondamentalement ce dispositif de celui de la figure 5 (Cf. également figure 6b). La régulation de la tension de sortie Vo est par conséquent très simple. Elle ne dépend pas de ladite fréquence mais uniquement de l'amplitude du créneau d'entrée de tension Vs,The shape of the voltage VC1 (figure 4f) is symmetrical around the value of the voltage input slot Vs (figure 4e). The filtering of VC1 at its average value by L2, C2 gives the voltage Vs which is none other than the output voltage Vo. Consequently, Vo = Vs whatever the repetition frequency and the output current lo. Incidentally, it should be noted that VC1 can be negative provided that during phase 2 VS remains in an algebraic value lower than VC1, the diode D1 being blocked in reverse. This characteristic fundamentally distinguishes this device from that of FIG. 5 (cf. also FIG. 6b). The regulation of the output voltage Vo is therefore very simple. It does not depend on said frequency but only on the amplitude of the voltage input slot Vs,
Dans le dispositif de la figure 3, la tension Vs sera donc régulée en fonction de la tension d'entrée Ve par le temps t1 (figure 4a) défini par une période T de découpage appropriée des signaux de commande des interrupteurs INT1 et INT2 du montage demi-pont du primaire.In the device of FIG. 3, the voltage Vs will therefore be regulated as a function of the input voltage Ve by the time t1 (FIG. 4a) defined by a period T of appropriate cutting of the control signals of the switches INT1 and INT2 of the assembly. primary bridge.
La fonction de régulation est simple et indépendante de la charge. Seule l'amplitude crête à crête de la tension VC1 est liée à celle du courant de sortie lo et le fonctionnement à vide avec lo = 0 ne pose aucun problème. Par ailleurs, l'ensemble de la phase 1 (figures 4f et 4g) est constitué de signaux sinusoïdaux. La durée de la phase 1 est constante et se décompose (figure 4g) en une demi-période de durée Tr/2 (figure 4g) à la fréquence de résonance donnée par L1 ,C1 et deux intervalles situés de part et d'autre.The regulation function is simple and independent of the load. Only the peak-to-peak amplitude of the voltage VC1 is linked to that of the output current lo and the no-load operation with lo = 0 poses no problem. Furthermore, the whole of phase 1 (FIGS. 4f and 4g) consists of sinusoidal signals. The duration of phase 1 is constant and breaks down (Figure 4g) in a half-period of duration Tr / 2 (Figure 4g) at the resonance frequency given by L1, C1 and two intervals located on either side.
La durée du créneau d'entrée Vs peut être indifféremment comprise entre la durée de la phase 1 et la durée de la phase 1 plus la moitié de la durée de la phase 2, voire davantage. Cette possibilité de variation sera exploitée dans l'étage demi-pont pour faire varier t1 (figure 4a) en fonction de la tension d'entrée Ve et obtenir Vs = constante = Vo.The duration of the input slot Vs can be indifferently between the duration of phase 1 and the duration of phase 1 plus half the duration of phase 2, or even more. This possibility of variation will be exploited in the half-bridge stage to vary t1 (FIG. 4a) as a function of the input voltage Ve and obtain Vs = constant = Vo.
Enfin, la suppression de la diode D2 apporte l'avantage d'avoir moins de pertes par conduction ou courant inverse et entraîne une réduction de la taille du dispositif et de son coût.Finally, the removal of the diode D2 brings the advantage of having fewer losses by conduction or reverse current and leads to a reduction in the size of the device and its cost.
Les figures 7a à 7d illustrent à titre d'exemple des formes d'ondes générées par le circuit de commande des interrupteurs INT1 et INT2 du primaire du convertisseur de la figure 3.FIGS. 7a to 7d illustrate by way of example the waveforms generated by the control circuit of the switches INT1 and INT2 of the primary of the converter of FIG. 3.
La figure 7a représente le signal carré Va généré par le circuit 2, lorsque l'amplificateur 1 détecte un écart entre la tension de sortie Vo et une tension de référence supérieur à un seuil prédéterminé.FIG. 7a represents the square signal Va generated by the circuit 2, when the amplifier 1 detects a difference between the output voltage Vo and a reference voltage greater than a predetermined threshold.
La figure 7b représente le signal Vb qui est l'inverse de Va et les figures 7c et 7d représentent respectivement les signaux Vd de commande de l'interrupteur INT1 et Vc de commande de l'interrupteur INT2, délivrés respectivement par les circuits G 1 et G2.FIG. 7b represents the signal Vb which is the inverse of Va and FIGS. 7c and 7d respectively represent the signals Vd for controlling the switch INT1 and Vc for controlling the switch INT2, delivered respectively by the circuits G 1 and G2.
Le circuit (1 à 3, G 1 , G2) effectue une modulation de largeur d'impulsion t/T = fonction dudit écart détecté par l'amplificateur 1 afin d'obtenir le temps t1 définissant la longueur du créneau de tension Vs. Vc est généré à partir de Vb etThe circuit (1 to 3, G 1, G2) performs a pulse width modulation t / T = function of said difference detected by the amplifier 1 in order to obtain the time t1 defining the length of the voltage pulse Vs. Vc is generated from Vb and
Vd à partir de Va, les fronts descendants étant transmis sans retard et les fronts montants étant transmis avec un retard tm.Vd from Va, the falling edges being transmitted without delay and the rising edges being transmitted with a delay tm.
En résumé et en d'autres termes, le convertisseur de l'invention permet de mettre en évidence les constatations suivantes.In summary and in other words, the converter of the invention makes it possible to highlight the following observations.
On observe une commutation douce à zéro de tension au primaire. En effet, à l'ouverture de l'un des interrupteurs (par exemple INT1 ), au début d'un intervalle tm, le courant dans le bobinage du primaire persiste grâce au courant magnétisant et à un courant au secondaire ramené au primaire (Is) de forme sinusoïdale. Ce courant est dans le sens qui favorise la commutation naturelle sans perte (transition A) de l'autre interrupteur (INT2). A la transition A, en effet, lorsque l'interrupteur INT1 s'ouvre, le courant du primaire du transformateur (Ip) est négatif et circule du point Vp vers le point Vc. II charge la capacité parasite de l'interrupteur INT1 et décharge celle de INT2, le potentiel aux bornes de INT2 décroît pour s'annuler. Le courant primaire continue alors de circuler dans la diode parasite de INT2 en même temps qu'il décroît en amplitude. On referme alors l'interrupteur INT2 avant qu'il ne devienne positif. La puissance perdue lors de la commutation est nulle.There is a soft switching to zero voltage at the primary. Indeed, at the opening of one of the switches (for example INT1), at the start of an interval tm, the current in the winding of the primary persists thanks to the magnetizing current and to a current in the secondary reduced to the primary (Is ) of sinusoidal shape. This current is in the direction which favors the natural commutation without loss (transition A) of the other switch (INT2). At transition A, in fact, when the switch INT1 opens, the current of the transformer primary (Ip) is negative and flows from point Vp to point Vc. It charges the stray capacitance of the switch INT1 and discharges that of INT2, the potential across the terminals of INT2 decreases to cancel itself. The primary current then continues to flow in the stray diode of INT2 at the same time as it decreases in amplitude. The INT2 switch is then closed before it becomes positive. The power lost during switching is zero.
En réglant l'amplitude du courant magnétisant, en déterminant la valeur de l'inductance du transformateur, pour que cette amplitude soit supérieure au double de la valeur moyenne du courant secondaire ramené au primaire, on aura un courant Ip qui sera, pendant le temps tm durant lequel on va refermer l'interrupteur INT1 (transition B) suffisamment positif pour réaliser également une commutation douce pour l'autre interrupteur. Ces commutations naturelles, sans perte, sont obtenues sans ajouter de circuit résonnant.By adjusting the amplitude of the magnetizing current, by determining the value of the inductance of the transformer, so that this amplitude is greater than twice the average value of the secondary current brought back to the primary, we will have a current Ip which will be, during the time tm during which the switch INT1 (transition B) is closed sufficiently positive to also carry out a soft switching for the other switch. These natural, lossless switches are obtained without adding a resonant circuit.
Les interrupteurs INT1 et INT2 sont par exemple des transistors MOS. Ils peuvent être constitués par d'autres composants tels que notamment des transistors bi-polaires, GTO ou IGBT. Les transistors MOS présentent de manière naturelle des composantes parasites (capacité et diode) et si les types d'interrupteur choisis n'incluaient pas de telles composantes, en particulier la fonction diode, il serait alors nécessaire d'y ajouter cette fonction, laquelle est nécessaire au bon fonctionnement du dispositif.The switches INT1 and INT2 are for example MOS transistors. They can be made up of other components such as in particular bi-polar, GTO or IGBT transistors. MOS transistors naturally exhibit parasitic components (capacitance and diode) and if the switch types chosen did not include such components, in particular the diode function, it would then be necessary to add this function, which is necessary for the proper functioning of the device.
La diode D 1 est commutée en position bloquée en inverse avec des conditions di/dt et dv/dt plus faibles que dans une technique classique, donc avec moins de perte par recouvrement inverse.The diode D 1 is switched to the locked position in reverse with conditions di / dt and dv / dt lower than in a conventional technique, therefore with less loss by reverse overlap.
La loi de régulation est Vo = Vs = n*Vc = n *Ve*t1 /T. Elle est linéaire et permet d'obtenir une plage de variation de Ve dans un rapport de 2 minimum. Le procédé de régulation est obtenu en faisant varier t1 tout en conservant tm = cte et t1 + t2 + 2*tm = ete = 1 /F où F = fréquence de découpage. Les calculs théoriques montrent que le courant magnétisant est croissant avec Ve tout en conservant par le biais de la régulation Vo = ete. Ceci est favorable aux critères de commutation douce.The regulation law is Vo = Vs = n * Vc = n * Ve * t1 / T. It is linear and makes it possible to obtain a range of variation of Ve in a ratio of 2 minimum. The regulation process is obtained by varying t1 while retaining tm = cte and t1 + t2 + 2 * tm = summer = 1 / F where F = switching frequency. Theoretical calculations show that the magnetizing current is increasing with Ve while conserving through the regulation Vo = ete. This is favorable to the soft switching criteria.
Le fonctionnement à fréquence fixe permet de synchroniser plusieurs convertisseurs.Fixed frequency operation allows synchronization of several converters.
Enfin, la mesure de l'amplitude de VC1 est un bon moyen pour mesurer le courant de sortie lo et pour implémenter des fonctions telles que : limitation en courant, sécurité de courant et de court-circuit, asservissement avec boucle de courant en parallélisation de plusieurs modules pour une répartition égale et asservie des courants respectifs.Finally, the measurement of the amplitude of VC1 is a good way to measure the output current lo and to implement functions such as: current limitation, current and short-circuit security, servo control with current loop in parallelization of several modules for an equal and controlled distribution of the respective currents.
Conformément à l'invention, on a ainsi réalisé, à titre d'exemple, un convertisseur du type de la figure 3 de 30 watts présentant plusieurs sorties de différentes valeurs : 3,3 ; 5 ; 1 2 ; 1 5 ; 24 et 28 volts, régulées dans une plage de valeurs de tension d'entrée entre 200 et 400 volts, la fréquence de découpage étant de 500 KHz.In accordance with the invention, a 30 watt converter of the type in FIG. 3 has thus been produced by way of example, having several outputs of different values: 3.3; 5; 1 2; 1 5; 24 and 28 volts, regulated in a range of input voltage values between 200 and 400 volts, the switching frequency being 500 KHz.
Un tel convertisseur avait un rendement de 92% pour 1 5 volts de sortie et présentait un volume de 35,6 x 52,5 x 1 2,7 mm, soit deux à trois fois moindre que celui des convertisseurs du moment.Such a converter had an efficiency of 92% for 15 volts of output and had a volume of 35.6 x 52.5 x 12.7 mm, which is two to three times less than that of the converters of the moment.
II est à noter que le convertisseur peut avoir plusieurs sorties, identiques, par exemple mono-alternance comme représenté sur les dessins.It should be noted that the converter can have several identical outputs, for example mono-alternation as shown in the drawings.
Par ailleurs, l'inductance de résonance L1 peut être un composant discret ou faire partie intégrante de l'inductance de fuite du transformateur.Furthermore, the resonance inductor L1 can be a discrete component or be an integral part of the leakage inductance of the transformer.
Les figures 8a à 8g représentent des diagrammes d'onde correspondant à une variante de réalisation du convertisseur consistant essentiellement en une modification du dimensionnement du circuit résonnant L1 C1 du dispositif de la figure 3, ce circuit étant par ailleurs inchangé.FIGS. 8a to 8g represent wave diagrams corresponding to an alternative embodiment of the converter consisting essentially of a modification of the dimensioning of the resonant circuit L1 C1 of the device of FIG. 3, this circuit being moreover unchanged.
Indépendamment du dimensionnement différent, impliquant une fréquence de résonance plus faible, le dispositif fonctionne sur le même principe avec les mêmes commandes et les mêmes contrôles. Le but recherché par un tel dimensionnement différent est de réaliser une commutation à zéro de tension, ci-après notée ZVS, de chaque interrupteur primaire (INT1 , INT2) suite à l'ouverture de l'autre interrupteur. En se reportant à la figure 4d, on constate que la condition ZVS est réalisée si le courant primaire est négatif en A et positif en B tout le temps de cette commutation qui intervient dès le début des intervalles de temps tm.Regardless of the different dimensioning, implying a lower resonant frequency, the device works on the same principle with the same commands and the same controls. The aim sought by such a different dimensioning is to carry out a voltage zero switching, hereinafter denoted ZVS, of each primary switch (INT1, INT2) following the opening of the other switch. Referring to FIG. 4d, it can be seen that the condition ZVS is fulfilled if the primary current is negative in A and positive in B all the time of this switching which occurs from the start of the time intervals tm.
La commutation ZVS en A est assurée grâce à deux paramètres : la quasi- résonance en courant au secondaire ramène au primaire un courant en A qui n'est que progressivement croissant. Dans le convertisseur de l'invention, le courant primaire en A reste facilement négatif le temps que soit accomplie la commutation ZVS. L'équilibre du pont capacitif primaire fait que le courant primaire moyen est nul. La présence du courant de sortie lo entraîne un décalage dans le négatif du courant moyen magnétisant du transformateur et une valeur encore plus négative du courant primaire en A. En conséquence, plus le convertisseur fournit de puissance en sortie, plus la condition ZVS en A est assurée.The ZVS switching to A is ensured by two parameters: the quasi-resonance in current at the secondary brings back to the primary a current at A which is only gradually increasing. In the converter of the invention, the primary current at A remains easily negative the time that the ZVS switching is completed. The balance of the primary capacitive bridge means that the average primary current is zero. The presence of the output current lo leads to a shift in the negative of the average magnetizing current of the transformer and an even more negative value of the primary current at A. Consequently, the more power the converter provides, the more the condition ZVS at A assured.
En ce qui concerne la commutation ZVS en B, le courant ramené du secondaire est nul et seul le courant magnétisant primaire doit remplir la condition d'être positif. Contrairement au point A, mais pour la même raison, plus le convertisseur fournit de puissance en sortie, plus le décalage dans le négatif du courant moyen magnétisant entraîne le courant primaire vers le négatif au point B. Aussi, afin d'avoir au point B un courant primaire qui reste positif, en sorte de réaliser la condition ZVS audit point B, on dimensionne le circuit résonnant L1 C1 avec une fréquence de résonance plus faible, donc une période plus longue. Au point B, on obtient ainsi un courant secondaire non nul qui superpose au courant magnétisant primaire une valeur ramenée positive contribuant à la conservation en B d'un courant primaire positif. En clair, la phase de quasi résonance en courant est interrompue par ouverture anticipée de l'interrupteur INT2. On peut ainsi minimiser l'amplitude de variation du courant magnétisant ainsi que les pertes par conduction qui en découlent tout en conservant la propriété de commutation ZVS en B. Les figures 8d, 8f et 8g illustrent ce qui précède, les figures 8a, 8b, 8c, etWith regard to ZVS switching at B, the current brought back from the secondary is zero and only the primary magnetizing current must fulfill the condition of being positive. Unlike point A, but for the same reason, the more power the converter provides at output, the more the offset in the negative of the magnetizing average current causes the primary current towards the negative at point B. Also, in order to have at point B a primary current which remains positive, so as to fulfill the condition ZVS at said point B, the resonant circuit L1 C1 is dimensioned with a lower resonant frequency, therefore a longer period. At point B, a non-zero secondary current is thus obtained which superimposes on the primary magnetizing current a positive reduced value contributing to the conservation at B of a positive primary current. Clearly, the current quasi-resonance phase is interrupted by early opening of the switch INT2. It is thus possible to minimize the amplitude of variation of the magnetizing current as well as the conduction losses which result therefrom while retaining the switching property ZVS at B. FIGS. 8d, 8f and 8g illustrate the above, FIGS. 8a, 8b, 8c, and
8e étant identiques aux figures 4a, 4b, 4c et 4e. En particulier, on notera sur ia figure 8d le décalage très marqué vers le positif du courant Ip au point B et sur la figure 8g la phase de quasi-résonance en courant interrompue de INT2.8e being identical to FIGS. 4a, 4b, 4c and 4th. In particular, one will note on ia figure 8d the very marked shift towards the positive of the current Ip at the point B and on figure 8g the phase of quasi-resonance in interrupted current of INT2.
L'invention s'applique bien entendu à d'autres montages de primaire que celui de la figure 3 et, d'une manière générale, à tout primaire, notamment du type Buck, comportant deux interrupteurs commandables en alternance de façon à obtenir une commutation douce à zéro de tension. The invention applies of course to other primary assemblies than that of FIG. 3 and, in general, to any primary, in particular of the Buck type, comprising two alternately controllable switches so as to obtain switching gentle at zero voltage.
14.T14.T
LEGENDE ASSOCIEE A LA FIGURE 2gLEGEND ASSOCIATED WITH FIGURE 2g
— Ip de valeur moyenne nulle- Ip of zero mean value
^ Is ramené au primaire^ Is brought back to primary
Courant magnétisant de valeur moyenne = - valeur moyenne de % 'a Magnetizing current of average value = - average value of% 'a

Claims

R E V E N D I C A T I O N S
1 . Convertisseur de tension continue à commutation douce, comprenant un transformateur (Np,Ns) dont le primaire est notamment du type à montage en demi-pont et susceptible d'être relié à une source de tension d'entrée (Ve) par l'interméd iaire de deux interrupteurs électroniques (INT1 , INT2) et dont le secondaire, de type mono-alternance, est susceptible d'être relié à une charge par l'intermédiaire d'une inductance en série (L2) et des moyens ( 1 à 3, G 1 ,G2) pour commander en alternance les deux interrupteurs, à fréquence fixe, suivant une régulation par modulation de largeur d'impulsion en fonction de la tension de sortie (Vo), en sorte de réaliser audit primaire une commutation à zéro de tension, ledit convertisseur étant caractérisé en ce que ledit secondaire comporte, en outre, un circuit résonnant (L1 ,C1 ) en sorte de réaliser audit secondaire une commutation quasi-résonnante à zéro de courant.1. Soft-switching DC voltage converter, comprising a transformer (Np, Ns), the primary of which is in particular of the half-bridge type and can be connected to an input voltage source (Ve) via iary of two electronic switches (INT1, INT2) and the secondary of which, of the mono-alternation type, is capable of being connected to a load via a series inductor (L2) and means (1 to 3 , G 1, G2) to alternately control the two switches, at fixed frequency, according to a regulation by pulse width modulation as a function of the output voltage (Vo), so as to achieve a zero switching of the primary voltage, said converter being characterized in that said secondary comprises, in addition, a resonant circuit (L1, C1) so as to achieve said secondary quasi-resonant switching at zero current.
2. Convertisseur suivant la revendication 1 , caractérisé en ce que le circuit secondaire comporte, outre un circuit de redressement-filtrage (L2,C2) de type conventionnel, un circuit résonnant comprenant un condensateur (C1 ) et une inductance (L1 ) de faible valeur, ledit circuit résonnant (L1 ,C1 ) étant susceptible de créer dans le bobinage secondaire (Ns) du transformateur, à chaque cycle d'ouverture/fermeture des interrupteurs (INT1 , INT2), un courant de forme sinusoïdale (Is) qui est nul ou passe par une valeur nulle dans les intervalles de temps (tm) pendant lesquels les deux interrupteurs (INT1 ,INT2) sont tous les deux ouverts, en sorte que le courant (Ip) du bobinage primaire (Np) soit dans le sens qui favorise la commutation douce, sans perte, de celui des deux interrupteurs qui se referme.2. Converter according to claim 1, characterized in that the secondary circuit comprises, in addition to a rectification-filtering circuit (L2, C2) of conventional type, a resonant circuit comprising a capacitor (C1) and a low inductance (L1) value, said resonant circuit (L1, C1) being capable of creating in the secondary winding (Ns) of the transformer, at each opening / closing cycle of the switches (INT1, INT2), a current of sinusoidal shape (Is) which is zero or goes through a zero value in the time intervals (tm) during which the two switches (INT1, INT2) are both open, so that the current (Ip) of the primary winding (Np) is in the direction which promotes gentle, lossless switching of the two switches which closes.
3. Convertisseur suivant la revendication 2, caractérisé en ce que lesdits moyens de commande en alternance des deux interrupteurs (INT1 ,INT2) délivrent des signaux carrés (Vc,Vd) de fréquences identiques et constantes, la durée (t1 ) d'un créneau de l'un (Vd) déterminant la durée de fermeture de l'un des interrupteurs, cette dernière durée étant modulée en fonction de l'écart entre la tension de sortie (Vo) et une tension de référence, cependant que le second signal (Vc) commande l'ouverture du second interrupteur avant la fermeture du premier interrupteur et la fermeture dudit second interrupteur après l'ouverture du premier interrupteur, les décalages (tm) entre l'ouverture de l'un des interrupteurs et la fermeture de l'autre interrupteur étant égaux et constants.3. Converter according to claim 2, characterized in that said alternating control means of the two switches (INT1, INT2) deliver square signals (Vc, Vd) of identical and constant frequencies, the duration (t1) of a slot of one (Vd) determining the closing time of one of the switches, this last time being modulated as a function of the difference between the output voltage (Vo) and a reference voltage, while the second signal (Vc) commands the opening of the second switch before the closing of the first switch and the closing of said second switch after the opening of the first switch, the offsets (tm) between the opening of one of the switches and the closing of the other switch being equal and constant.
4. Convertisseur suivant l'une des revendications 1 à 3, caractérisé en ce que ledit circuit résonnant (L1 , CD du secondaire est dimensionné avec une fréquence de résonance suffisamment faible pour obtenir un courant primaire de signe approprié permettant d'avoir une commutation à zéro de tension de chaque interrupteur (INT1 , INT2) suite à l'ouverture de l'autre. 4. Converter according to one of claims 1 to 3, characterized in that said resonant circuit (L1, CD of the secondary is dimensioned with a resonant frequency sufficiently low to obtain a primary current of suitable sign allowing switching to zero voltage of each switch (INT1, INT2) following the opening of the other.
EP96929380A 1995-08-30 1996-08-29 Direct current voltage converter with soft switching Withdrawn EP0847614A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9510362 1995-08-30
FR9510362A FR2738417B1 (en) 1995-08-30 1995-08-30 CONTINUOUSLY SWITCHED VOLTAGE CONVERTER
PCT/FR1996/001330 WO1997008812A1 (en) 1995-08-30 1996-08-29 Direct current voltage converter with soft switching

Publications (1)

Publication Number Publication Date
EP0847614A1 true EP0847614A1 (en) 1998-06-17

Family

ID=9482260

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96929380A Withdrawn EP0847614A1 (en) 1995-08-30 1996-08-29 Direct current voltage converter with soft switching

Country Status (6)

Country Link
US (1) US5903446A (en)
EP (1) EP0847614A1 (en)
AU (1) AU6879696A (en)
CA (1) CA2227966A1 (en)
FR (1) FR2738417B1 (en)
WO (1) WO1997008812A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1308711B1 (en) * 1999-02-17 2002-01-10 St Microelectronics Srl SWITCHING DEVICE WITH TWO HALF-BRIDGE AND HALF SWITCHES TO KEEP EACH SWITCH IN INTERDICTION WHEN THE OTHER
US6442047B1 (en) 1999-10-08 2002-08-27 Lambda Electronics, Inc. Power conversion apparatus and methods with reduced current and voltage switching
WO2002033814A1 (en) * 2000-10-18 2002-04-25 Jun Chen Self-incentive push-pull type power supply
DE10117301A1 (en) * 2001-04-06 2002-10-10 Philips Corp Intellectual Pty Power supply circuit arrangement with a DC / DC converter
US6807073B1 (en) * 2001-05-02 2004-10-19 Oltronics, Inc. Switching type power converter circuit and method for use therein
US6819575B1 (en) 2001-07-30 2004-11-16 University Of Central Florida AC/DC switch mode power supply with power factor correction using direct energy transfer concept
US6636430B1 (en) 2001-07-30 2003-10-21 University Of Central Florida Energy transfer concept in AC/DC switch mode power supply with power factor correction
US20040228153A1 (en) * 2003-05-14 2004-11-18 Cao Xiao Hong Soft-switching techniques for power inverter legs
JP4503348B2 (en) * 2004-04-28 2010-07-14 パナソニック株式会社 High frequency heating device
US20060158037A1 (en) * 2005-01-18 2006-07-20 Danley Douglas R Fully integrated power storage and supply appliance with power uploading capability
FR2884074B1 (en) * 2005-04-01 2007-07-06 Alcatel Converters Sa MULTI-CHANNEL CONVERTER WITH CASCADE CUTTING AND CURRENT LIMITATION
FR2884076A1 (en) * 2005-04-04 2006-10-06 Thomson Licensing Sa Smooth switching DC converter for generating regulated voltage, has inductive circuit connected between secondary winding and charge capacitor whose end is connected to inductance through switch
FR2884075A1 (en) 2005-04-04 2006-10-06 Thomson Licensing Sa Semi-bridge type high frequency DC/DC converter for e.g. apparatus providing isolated DC output voltage, has low value capacitor resonating with leakage inductance, and switches that are switched when current in inductance is not null
US7274975B2 (en) 2005-06-06 2007-09-25 Gridpoint, Inc. Optimized energy management system
US20070203860A1 (en) * 2006-02-24 2007-08-30 Gridpoint, Inc. Energy budget manager
US8103389B2 (en) * 2006-05-18 2012-01-24 Gridpoint, Inc. Modular energy control system
EP2684286A2 (en) 2011-03-11 2014-01-15 Utah State University Method and apparatus for controlling lcl converters using asymmetric voltage cancellation techniques
US9140763B2 (en) 2011-09-19 2015-09-22 Utah State University Wireless power transfer test system
US9240270B2 (en) 2011-10-07 2016-01-19 Utah State University Wireless power transfer magnetic couplers
US8922131B1 (en) 2011-10-10 2014-12-30 Universal Lighting Technologies, Inc. Series resonant inverter with capacitive power compensation for multiple lamp parallel operation
CN104205264B (en) 2012-01-23 2016-11-09 犹他州立大学 wireless power transfer system
WO2016032981A1 (en) 2014-08-25 2016-03-03 NuVolta Technologies Wireless power transfer system and method
WO2022170574A1 (en) * 2021-02-10 2022-08-18 华为数字能源技术有限公司 Direct-current converter, electronic device and charger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2170663B (en) * 1985-02-02 1989-06-14 Brian Ernest Attwood Harmonic-resonant power supply
US4720668A (en) * 1986-06-20 1988-01-19 Lee Fred C Zero-voltage switching quasi-resonant converters
US4823249A (en) * 1987-04-27 1989-04-18 American Telephone And Telegraph Company At&T Bell Laboratories High-frequency resonant power converter
EP0534379A3 (en) * 1991-09-27 1993-09-08 Yamaha Corporation Power supply circuit
US5177675A (en) * 1991-10-16 1993-01-05 Shindengen Archer Corp. Zero voltage, zero current, resonant converter
US5262930A (en) * 1992-06-12 1993-11-16 The Center For Innovative Technology Zero-voltage transition PWM converters
US5434767A (en) * 1994-01-10 1995-07-18 University Of Central Florida Power converter possessing zero-voltage switching and output isolation
FR2720567B1 (en) * 1994-05-27 1996-07-26 Europ Agence Spatiale High efficiency continuous DC converter.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9708812A1 *

Also Published As

Publication number Publication date
CA2227966A1 (en) 1997-03-06
AU6879696A (en) 1997-03-19
US5903446A (en) 1999-05-11
FR2738417B1 (en) 1997-11-07
FR2738417A1 (en) 1997-03-07
WO1997008812A1 (en) 1997-03-06

Similar Documents

Publication Publication Date Title
EP0847614A1 (en) Direct current voltage converter with soft switching
EP0680245B1 (en) Static converter with controlled switch and operating circuit
EP0720281B1 (en) Electronic device for electric energy conversion
FR2543377A1 (en) CONTINUOUS-CONTINUOUS CONVERTER REGULATED
FR2815790A1 (en) Flyback DC to DC converter with self-oscillating control circuit makes predetermined switching point variable wrt voltage at auxiliary terminals
WO2007122268A2 (en) Improved isolated power transfer device
EP1040559B1 (en) Method for controlling dc/dc voltage converter with induction storage
FR2729515A1 (en) BIDIRECTIONAL CONTINUOUS-CONTINUOUS VOLTAGE CONVERTERS AND CURRENT SENSOR
FR2627644A1 (en) CONTINUOUS-CONTINUOUS CONVERTER WITHOUT LOSS OF SWITCHING, IN PARTICULAR FOR HIGH FREQUENCY CONTINUOUS POWER SUPPLY OR FOR PROGRESSIVE WAVE TUBE AMPLIFIER
EP2320553A2 (en) Converter device and uninterruptible power supply comprising such a device
EP0986288B1 (en) Supply device with a controlled power delivering inverter
FR2709891A1 (en) Self-oscillating converter of the adjustment type.
CA2143821C (en) Switching power supply adapted for reduced voltage communication
EP0231756A1 (en) Double resonant inverter
EP0022380B1 (en) Switched-mode power supply combined with a television receiver's line deflection circuit and controlled by variable phase-shifting
FR2866491A1 (en) SIMULLY SWITCHING RESONANT INVERTER, VOLTAGE CONVERTER AND WELDING STATION USING THE SAME
FR2702607A1 (en) Device for controlling the oscillating circuit of a voltage inverter operating in quasi-resonance with pulse width modulation regulation.
FR2627915A1 (en) DIRECT CURRENT POWER CONVERTER IN CONTINUOUS CURRENT
EP0261018B1 (en) Voltage frequency auto-piloted converter
EP0928057B1 (en) High voltage switch comprising resonant cells connected in series
FR2782206A1 (en) CONTINUOUS-CONTINUOUS VOLTAGE CONVERTER, LIKE SHORT-CIRCUIT PROTECTION
CA2170317C (en) Control process for bidirectional current and inverter
FR2933546A1 (en) SOFT ARC WELDING STATION WITH SOFT SWITCHING SOFT RESONANT
FR2555375A1 (en) CONTINUOUS CONTINUOUS CONVERTER HAVING SWITCHED LOAD INDUCTANCE
EP1324478A2 (en) High voltage converter with fast response

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981119

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19990626