EP0840002A2 - Fuel tank ventilation system for a vehicle with a combustion engine - Google Patents
Fuel tank ventilation system for a vehicle with a combustion engine Download PDFInfo
- Publication number
- EP0840002A2 EP0840002A2 EP97118297A EP97118297A EP0840002A2 EP 0840002 A2 EP0840002 A2 EP 0840002A2 EP 97118297 A EP97118297 A EP 97118297A EP 97118297 A EP97118297 A EP 97118297A EP 0840002 A2 EP0840002 A2 EP 0840002A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- line
- tank ventilation
- pump
- ventilation system
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000009423 ventilation Methods 0.000 title claims description 64
- 238000002485 combustion reaction Methods 0.000 title claims description 13
- 239000002828 fuel tank Substances 0.000 title description 2
- 238000001179 sorption measurement Methods 0.000 claims abstract description 42
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 6
- 230000008929 regeneration Effects 0.000 claims description 40
- 238000011069 regeneration method Methods 0.000 claims description 40
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 230000001172 regenerating effect Effects 0.000 abstract 2
- 238000013022 venting Methods 0.000 abstract 2
- 239000000446 fuel Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 230000001419 dependent effect Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/08—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
- F02M25/089—Layout of the fuel vapour installation
Definitions
- the invention relates to a tank ventilation system for a vehicle with an internal combustion engine according to the preamble of claim 1.
- DE 43 12 720 A1 discloses a tank ventilation system for a vehicle with an internal combustion engine, in which a tank connection line leads from a tank to an adsorption filter, and from which in turn a tank ventilation line, in which a regeneration valve is arranged, leads to an intake line.
- This internal combustion engine has a charger, whereby it can be achieved that, depending on the setting of the pressure control valves, an overpressure can be generated in the adsorption filter, and the adsorption filter is flushed and the fuel vapor is conveyed to the intake line.
- This tank ventilation system has the disadvantage that its use can only be provided on vehicles with an internal combustion engine which have a charger so that part of the charging current can be conducted into the adsorption filter.
- this arrangement is complex in terms of components, since an additional connecting line is provided between the charger and the adsorption filter.
- tank ventilation systems are known in which a regeneration of the adsorption filter takes place due to a negative pressure in the intake manifold.
- These tank ventilation systems are mainly used in internal combustion engines without exhaust gas turbochargers.
- the negative pressure and thus the flushing of the adsorption filter is dependent on the position of a throttle valve and is therefore dependent on the load condition of the engine.
- At full load almost no negative pressure is generated due to the lack of throttling.
- the vacuum required for regeneration is missing.
- only small amounts of fuel vapor can be regenerated in idle mode without influencing the exhaust gas values, the negative pressure being greatest in idle mode or in the lower load range.
- the object of the invention is therefore to create a tank ventilation system for motor vehicles with internal combustion engines, in which a regeneration quantity proportional to the engine mass flow rate is supplied to the intake air in a simple manner.
- the arrangement of a pump in a line section connected in parallel to the tank ventilation line enables the adsorption filter to be flushed independently of the load conditions of the internal combustion engine.
- This parallel connection of the pump in a bypass line or a secondary line to the tank ventilation line enables the adsorption filter to be flushed, regardless of whether the internal combustion engine is equipped with or without an exhaust gas turbocharger.
- the regeneration quantity can be set by the pump as a function of the load ranges, so that, in particular in the upper load range in which the degree of regeneration is greatest, a high volume flow can be discharged from the adsorption filter. This enables regeneration to take place as a function of the respective operating phases without the adsorption filter overflowing.
- the tank ventilation system according to the invention fulfills the requirements for the emission limit values, which will become increasingly stringent in the future, since a larger regeneration quantity is made possible in particular in the full-load range, which decisively influence the exhaust gas limit values.
- the use of the pump can ensure that an overflow of the adsorption filter is prevented, so that nuisance or danger to the occupants by fuel vapors can be avoided.
- the configuration of the tank ventilation system according to the invention further enables a diagnosis with an on-board diagnosis system to be possible in different operating states by using a pump.
- a pump when an on-board vapor recovery system (OVR system) is introduced, smaller adsorption filters can be used.
- OVR system on-board vapor recovery system
- the pump can also be used to extract the gases from the tank.
- tank ventilation system can be provided or retrofitted in vehicles with secondary air injection, and the existing secondary air pump can also be used for the tank ventilation system.
- a line section is provided parallel to the bypass line, which has a check valve. This can prevent the feed pump from delivering in a circuit.
- the pump is provided in a bypass line which branches off at one end from the intake pipe and is coupled at the other end after the pump to the tank ventilation line via a suction nozzle.
- a bypass line which branches off at one end from the intake pipe and is coupled at the other end after the pump to the tank ventilation line via a suction nozzle.
- a shut-off valve is provided in the bypass line branching off the intake pipe upstream of the feed pump. In idle operation, this can ensure that the bypass in front of the throttle valve is absolutely tight in order to avoid influencing the idle control.
- the shut-off valve can advantageously be controlled via a system control.
- the pump is a secondary air pump of a secondary air injection.
- the pump is arranged in a bypass line of a fresh air line leading to the adsorption filter.
- This configuration makes it possible for the pump to build up a pressure in the adsorption filter, via which the regeneration quantity can in turn be conveyed in proportion to the engine mass flow.
- this embodiment has the pressing principle.
- a check valve is provided in the line section of the fresh air line parallel to the bypass line. This can ensure that the feed pump does not deliver in a circuit and, if necessary, fuel vapor can flow out of the adsorption filter when the pump is at a standstill.
- the tank ventilation line has a line section running parallel to the intake pipe.
- a pump wheel is arranged in the sections arranged parallel to one another, which are connected to one another via a common shaft.
- This drive device can be designed according to the exhaust gas turbocharger principle. It can thereby be achieved in a simple manner that regeneration proportional to the throughput can take place, since the regeneration can take place depending on the air mass flow rate of the engine.
- FIG. 1 shows a schematic representation of a tank ventilation system 11 which is based on the functional principle of active delivery by a pump and a regeneration valve.
- a tank connection line 13 leads from a tank 12 to an adsorption filter 14, which is designed, for example, as an activated carbon filter.
- This adsorption filter 14 has the task of absorbing and filtering the fuel flowing out of the tank so that the filtered air can escape to the outside via a fresh air line 16.
- a tank ventilation line 17 leads to an intake pipe 18, which requests fresh air to the internal combustion engine.
- the tank ventilation line 17 has a bypass line 19 downstream of the adsorption filter 14, in which a pump 21 is arranged.
- a check valve 23 is provided in a parallel line section 22, which is part of the tank ventilation line 17.
- the bypass line 19 and the line section 22 open downstream of the pump 21 and the check valve 23 into a common section of the tank ventilation line 17, in which a regeneration valve 24 is provided.
- the feed pump is designed to be explosion-proof, since it sucks the regeneration amount in the adsorption filter 14 and delivers it into the suction pipe 18.
- the pump 21 can be controlled relatively simply by the function on / off. Furthermore, a ramp-like start-up or a constant start-up can also be provided. In this embodiment it is essential that the pump 21 only has to work in the upper load ranges. This means that the control requirements are very low. So that the pump 21 does not deliver in a circuit, a check valve 26 must be provided in the line section 22. Furthermore, a shut-off valve 26 for the check valve 23 is advantageously arranged. This enables the regeneration valve in overrun mode 24 closed suddenly.
- the shut-off valve 26 is advantageously designed as a pressure limiting valve or a controlled opening valve.
- this embodiment of the tank ventilation system 11 can also be used for internal combustion engines with a charger.
- FIG. 2 shows pressure profiles of the tank ventilation system 11 described in FIG. 1 in different operating phases.
- the respective sections of the horizontal axis of the diagram correspond to the component components and show which pressure profiles or pressure differences are present in the respective component sections.
- the rightmost section which represents the pressure in the tank connection line 13
- there is a vapor pressure which is basically present due to the volatilization of the fuel in fuel vapor and which can be greater or less depending on the temperature.
- the course of the characteristic curve below the X axis means that there is negative pressure.
- the suction pressure difference is very high in idle mode.
- the duty cycle of the regeneration valve 24 is very low, as a result of which the pump 21 is at a standstill or idling, and the shut-off valve 26 in the line section 22 is open.
- the lower part-load range it is Suction pressure difference still sufficient. This means that the duty cycle of the regeneration valve 26 is medium-sized and the pump 21 runs idle or stands still.
- the shut-off valve 26 remains in the line section 22 in an open position.
- the suction pressure difference is not sufficient in the upper part of the load range, as a result of which the duty cycle of the regeneration valve 26 becomes very large. This signal causes the pump 21 to be started up and provides the necessary delivery pressure.
- the shut-off valve 26 in the line section 22 is closed at the same time. In full load operation the suction pressure difference is almost zero. This in turn means that the duty cycle of the regeneration valve 24 reaches a maximum value and the pump 21 is driven at the maximum output in order to produce the necessary delivery pressure for the regeneration.
- the shut-off valve 26 remains closed. In overrun mode, the difference in suction pressure can be high, which in turn means that the duty cycle of the regeneration valve is almost or equal to zero.
- the pump 21 is stopped or delivers in a circuit via the control, the shut-off valve 26 being open. The circulation in the circuit is only possible if a controllable shut-off valve 26 is provided.
- FIG. 3 A further embodiment of the tank ventilation system 11 is shown in FIG. 3.
- the bypass line 19 branches off from the intake pipe 18 and opens into the tank ventilation line 17 via a suction nozzle 31.
- a shut-off valve 26 is provided between the pump 21 and the intake pipe 18.
- the regeneration valve 24 is arranged between the suction nozzle 31 and the adsorption filter 14.
- the pump 21 draws clean air from the intake tract in the regeneration mode and conveys it via the suction nozzle 31 into the tank ventilation line 17, for example according to the venturi principle when the air is open Regeneration valve 24 the desired regeneration amount is sucked due to negative pressure at the suction nozzle 31 from the adsorption filter 14 and fed into the suction pipe 18.
- the pump 21 can be of simple design, in particular with regard to the tightness.
- the air removed from the intake tract or intake pipe 18 is measured via the air flow meter 32, since otherwise a considerable amount of false air would be supplied to the engine and the mixture formation would no longer be correct for optimal combustion.
- the closed shut-off valve 26 ensures that the bypass line 19 to the throttle valve 33 in the intake pipe 18 is closed in order to avoid influencing the idle regulation. This can be done, for example, by a controlled shut-off valve 26.
- FIG. 4 shows a tank ventilation system 11 according to FIG. 3 in combination with a secondary air injection.
- the shut-off valve 26 is connected downstream of the pump 21 in the bypass line 19.
- the pump 21 also serves as a secondary air pump, which sucks in cleaned air from an air filter 34, which is detected by an air flow meter 32.
- Another air flow meter 32 is provided in the intake pipe 18, which in turn is connected to the air filter 34.
- a line 36 branches off from the bypass line 19 and leads to the exhaust system (not shown).
- shut-off valve 26 of the bypass line 19 and a shut-off valve 27 of the line 36 work analogously to the time diagram also shown in FIG. 4. This means that in the cold start phase the pump 21 is responsible for blowing air into the exhaust system. The shut-off valve 26 is closed and the shut-off valve 27 is open. Through this embodiment it can be ensured that clean air and not unburned fuel vapors get into the exhaust system. This configuration is also possible because no regeneration is provided in the cold start phase.
- shut-off valve 27 is closed and the shut-off valve 26 is opened.
- the shut-off valve 26 is activated, as described in the individual operating phases for FIG. 3.
- FIG. 5 shows a further alternative embodiment of a tank ventilation system 11.
- This embodiment like the embodiment according to FIGS. 3 and 4, has a pump 21 which pumps fresh air. It is provided that a bypass line 19 with the pump 21 is arranged in a fresh air line 16 leading to the adsorption filter 14. A line section 22 is provided parallel to the bypass line 19 and has the check valve 23. Furthermore, a check valve 23 is provided in the tank connection line 13 between the adsorption filter 14 and the tank 12, so that the fuel vapor cannot be pushed back into the tank 12 or can escape into the open via a tank nozzle. This can also prevent the tank 12 from being pressurized.
- This embodiment can also be provided in combination with the secondary air injection, in which the pump 21 can also be designed as a secondary air pump.
- FIG. 6 A further alternative embodiment of a tank ventilation line 11 is provided in FIG. 6.
- This embodiment has a tank ventilation line 17 which, downstream of the regeneration valve 24, has a line section 46 which runs parallel to the intake pipe 18. Between the two in parallel Running sections of the tank ventilation line 17 and the intake pipe 18, a drive device 47 is provided, the operation of which is based on an exhaust gas turbocharger.
- a turbine 48 is advantageously arranged in the intake pipe 18 and a compressor 49 is advantageously arranged in the line section 46. This can make it possible for the delivery rate of the regeneration quantity to be dependent on the air mass flow rate of the engine. A throughput-proportional regeneration can thus be made possible.
- the arrangement of the drive device 47 can be provided upstream or downstream of the throttle valve 33 in the intake pipe, an arrangement close to the engine being advantageously provided because of the losses in the intake pipe 18.
- This alternative embodiment has the particular advantage that there are no sealing problems here, since the drive device 47 has no connection to the outside.
- the control is carried out automatically by the air mass flow rate, which is determined by the operating phases of the engine.
- the tank ventilation system 11 according to FIGS. 1 and 2 is integrated in an OVR system (on-board vapor recovery system).
- OVR system on-board vapor recovery system
- the gases must also be absorbed when the fuel tank 12 is refueled.
- the tank ventilation system 11 according to FIG. 1 is modified such that a shut-off valve 26 is provided in the fresh air line 16, and a shut-off valve 26 is again provided upstream of the regeneration valve 24 after the pump 21.
- the pump 21 can suck the gases out of the tank 12 via the adsorption filter 14.
- the shut-off valve 26 arranged in the fresh air line 16 is closed.
- the fuel vapors are thus filtered via the adsorption filter 14 and downstream of the pump 21 Shut-off valve 26, which is open in this operating phase, is discharged into the open. This can ensure that the tank ventilation system is uncoupled from the intake pipe 18 and that no fuel vapors get into the intake pipe 18 when the adsorption filter 14 overflows.
- the adsorption filter 14 is of sufficient size so that it does not overflow and gases or fuel vapors can escape into the open.
- the various embodiments of the tank ventilation systems 11 all have in common that a pump 21 is arranged in a bypass line 19, which enables the adsorption filter 14 to be flushed in order to regenerate it.
- the pump 21 can work according to the functional principle of suction or delivery. Other alternative embodiments and arrangements that work according to these functional principles are also conceivable.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
Die Erfindung betrifft eine Tankentlüftungsanlage für ein Fahrzeug mit Verbrennungsmotor gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a tank ventilation system for a vehicle with an internal combustion engine according to the preamble of
Aus der DE 43 12 720 A1 geht eine Tankentlüftungsanlage für ein Fahrzeug mit Verbrennungsmotor hervor, bei dem von einem Tank eine Tankanschlußleitung zu einem Adsorptionsfilter führt, und von dem wiederum eine Tankentlüftungsleitung, in dem ein Regenerierventil angeordnet ist, zu einer Ansaugleitung mündet. Dieser Verbrennungsmotor weist einen Lader auf, wodurch erzielt werden kann, daß in Abhängigkeit der Einstellung der Druckregelventile in dem Adsorptionsfilter ein Überdruck erzeugt werden kann, und der Adsorptionsfilter gespült und der Kraftstoffdampf zur Ansaugleitung gefördert wird.DE 43 12 720 A1 discloses a tank ventilation system for a vehicle with an internal combustion engine, in which a tank connection line leads from a tank to an adsorption filter, and from which in turn a tank ventilation line, in which a regeneration valve is arranged, leads to an intake line. This internal combustion engine has a charger, whereby it can be achieved that, depending on the setting of the pressure control valves, an overpressure can be generated in the adsorption filter, and the adsorption filter is flushed and the fuel vapor is conveyed to the intake line.
Diese Tankentlüftungsanlage weist den Nachteil auf, daß deren Einsatz nur an Fahrzeugen mit Verbrennungsmotor vorgesehen werden kann, die einen Lader aufweisen, damit ein Teil des Ladestromes in den Adsorptionsfilter geführt werden kann. Darüber hinaus ist erforderlich, daß die zum Adsorptionsfilter führende Leitung als auch die vom Adsorptionsfilter abführende Leitung mit aufwendigen Drucksteuerventilen ausgestattet sind, die über eine Drucksteuerventileinrichtung aufwendig angesteuert werden müssen. Desweiteren ist diese Anordnung bauteilaufwendig, da eine zusätzliche Verbindungsleitung zwischen dem Lader und dem Adsorptionsfilter vorgesehen ist.This tank ventilation system has the disadvantage that its use can only be provided on vehicles with an internal combustion engine which have a charger so that part of the charging current can be conducted into the adsorption filter. In addition, it is necessary that the line leading to the adsorption filter and the line leading away from the adsorption filter are equipped with complex pressure control valves which have to be controlled in a complex manner via a pressure control valve device. Furthermore, this arrangement is complex in terms of components, since an additional connecting line is provided between the charger and the adsorption filter.
Desweiteren sind Tankentlüftungsanlagen bekannt, bei denen durch einen Unterdruck im Saugrohr eine Regenerierung des Adsorptionsfilters erfolgt. Diese Tankentlüftungsanlagen finden hauptsächlich bei Verbrennungsmotoren ohne Abgasturbolader Anwendung. Bei diesen Tankentlüftungsanlagen ist nachteilig, daß der Unterdruck und somit die Spülung des Adsorptionsfilters in Abhängigkeit von der Stellung einer Drosselklappe steht und somit vom Lastzustand des Motors abhängig ist. Bei Vollastbetrieb wird nahezu kein Unterdruck aufgrund der fehlenden Drosselwirkung erzeugt. In diesem Lastbereich, in dem der Motor ohne Beeinflussung der Abgaswerte die größte Regeneriermenge vertragen würde, fehlt also der für die Regenerierung nötige Unterdruck. Im Leerlaufbetrieb hingegen können nur geringe Mengen an Kraftstoffdampf regeneriert werden, ohne die Abgaswerte zu beeinflussen, wobei im Leerlaufbetrieb bzw. im unteren Lastbereich der Unterdruck am größten ist.Furthermore, tank ventilation systems are known in which a regeneration of the adsorption filter takes place due to a negative pressure in the intake manifold. These tank ventilation systems are mainly used in internal combustion engines without exhaust gas turbochargers. In these tank ventilation systems, it is disadvantageous that the negative pressure and thus the flushing of the adsorption filter is dependent on the position of a throttle valve and is therefore dependent on the load condition of the engine. At full load, almost no negative pressure is generated due to the lack of throttling. In this load range, in which the engine would be able to tolerate the largest regeneration quantity without influencing the exhaust gas values, the vacuum required for regeneration is missing. In contrast, only small amounts of fuel vapor can be regenerated in idle mode without influencing the exhaust gas values, the negative pressure being greatest in idle mode or in the lower load range.
Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Tankentlüftungsanlage für Kraftfahrzeuge mit Verbrennungsmotoren zu schaffen, bei denen auf einfache Weise eine dem Motormassendurchsatz proportionale Regneriermenge der Ansaugluft zugeführt wird.The object of the invention is therefore to create a tank ventilation system for motor vehicles with internal combustion engines, in which a regeneration quantity proportional to the engine mass flow rate is supplied to the intake air in a simple manner.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.This object is achieved according to the invention by the characterizing features of
Durch die Anordnung einer Pumpe in einem parallel zur Tankentlüftungsleitung geschaltenen Leitungsabschnitt ist ermöglicht, daß unabhängig von den Lastverhältnissen des Verbrennungsmotors eine Spülung des Adsorptionsfilters ermöglicht ist. Diese Parallelschaltung der Pumpe in einem Bypass- oder einer Nebenleitung zur Tankentlüftungsleitung ermöglicht eine Spülung des Adsorptionsfilters, unabhängig, ob der Verbrennungsmotor mit oder ohne Abgasturbolader ausgestattet ist.The arrangement of a pump in a line section connected in parallel to the tank ventilation line enables the adsorption filter to be flushed independently of the load conditions of the internal combustion engine. This parallel connection of the pump in a bypass line or a secondary line to the tank ventilation line enables the adsorption filter to be flushed, regardless of whether the internal combustion engine is equipped with or without an exhaust gas turbocharger.
Durch die Pumpe kann in Abhängigkeit der Lastbereiche die Regeneriermenge eingestellt werden, so daß insbesondere im oberen Lastbereich, bei dem der Regenerierungsgrad am größten ist, ein hoher Volumenstrom aus dem Adsorptionsfilter abgeführt werden kann. Dadurch ist ermöglicht, daß in Abhängigkeit der jeweiligen Betriebsphasen eine Regenerierung erfolgt, ohne daß es zu einem Überlaufen des Adsorptionsfilters kommen kann.The regeneration quantity can be set by the pump as a function of the load ranges, so that, in particular in the upper load range in which the degree of regeneration is greatest, a high volume flow can be discharged from the adsorption filter. This enables regeneration to take place as a function of the respective operating phases without the adsorption filter overflowing.
Darüber hinaus erfüllt die erfindungsgemäße Tankentlüftungsanlage die Voraussetzungen für die in Zukunft immer schärfer werdenden Emissionsgrenzwerte, da insbesondere im Vollastbereich eine größere Regeneriermenge ermöglicht ist, die die Abgasgrenzwerte entscheidend beeinflussen. Desweiteren kann durch den Einsatz der Pumpe sichergestellt werden, daß ein Überlaufen des Adsorptionsfilters verhindert wird, so daß eine Belästigung bzw. Gefährdung der Insassen durch Kraftstoffdämpfe vermieden werden kann.In addition, the tank ventilation system according to the invention fulfills the requirements for the emission limit values, which will become increasingly stringent in the future, since a larger regeneration quantity is made possible in particular in the full-load range, which decisively influence the exhaust gas limit values. Furthermore, the use of the pump can ensure that an overflow of the adsorption filter is prevented, so that nuisance or danger to the occupants by fuel vapors can be avoided.
Die erfindungsgemäße Ausgestaltung der Tankentlüftungsanlage ermöglicht desweiteren, daß durch den Einsatz einer Pumpe eine Diagnose mit einem on-board-diagnose-system in unterschiedlichen Betriebszuständen möglich ist. Darüber hinaus kann bei Einführung eines on-board-vapour-recovery-system (OVR-System) ermöglicht sein, daß kleinere Adsorptionsfilter eingesetzt werden können. Zudem kann die Pumpe zum Absaugen der Gase aus dem Tank genutzt werden.The configuration of the tank ventilation system according to the invention further enables a diagnosis with an on-board diagnosis system to be possible in different operating states by using a pump. In addition, when an on-board vapor recovery system (OVR system) is introduced, smaller adsorption filters can be used. The pump can also be used to extract the gases from the tank.
Ein weiterer Vorteil der erfindungsgemäßen Ausgestaltung der Tankentlüftungsanlage ist dadurch gegeben, daß die Tankentlüftungsanlage in Fahrzeugen mit Sekundärlufteinblasung vorgesehen oder nachgerüstet werden kann, wobei die bereits vorhandene Sekundärluftpumpe gleichzeitig für die Tankentlüftungsanlage verwendet werden kann.Another advantage of the design of the tank ventilation system according to the invention is given in that the tank ventilation system can be provided or retrofitted in vehicles with secondary air injection, and the existing secondary air pump can also be used for the tank ventilation system.
Nach einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß parallel zur Bypassleitung ein Leitungsabschnitt vorgesehen ist, der ein Rückschlagventil aufweist. Dadurch kann vermieden werden, daß die Förderpumpe im Kreis fördert.According to an advantageous embodiment of the invention, it is provided that a line section is provided parallel to the bypass line, which has a check valve. This can prevent the feed pump from delivering in a circuit.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß die Pumpe in einer Bypassleitung vorgesehen ist, die mit ihrem einen Ende von dem Ansaugrohr abzweigt und am anderen Ende nach der Pumpe über eine Saugdüse mit der Tankentlüftungsleitung gekoppelt ist. Dadurch ist ermöglicht, daß eine einfache Ausbildung der Pumpe ermöglicht ist, da die Pumpe aus dem Ansaugtrakt nur reine Luft ansaugt. Über die Saugdüse erfolgt aufgrund des dadurch erzeugten Unterdrucks dann die Förderung des Regeneriergases aus dem Adsorptionsfilter. Vorteilhafterweise ist zwischen der Saugdüse und dem Adsorptionsfilter ein Regenerierventil vorgesehen, so daß in Abhängigkeit der Pumpenleistung das Regenerierventil geöffnet und vermieden werden kann, daß beispielsweise im Laderbetrieb ein Überdruck im Adsorptionsfilter entsteht.According to a further advantageous embodiment of the invention it is provided that the pump is provided in a bypass line which branches off at one end from the intake pipe and is coupled at the other end after the pump to the tank ventilation line via a suction nozzle. This makes it possible for the pump to be designed in a simple manner, since the pump only sucks in pure air from the intake tract. The regeneration gas is then conveyed out of the adsorption filter via the suction nozzle due to the negative pressure generated thereby. A regeneration valve is advantageously provided between the suction nozzle and the adsorption filter, so that the regeneration valve can be opened as a function of the pump output and it can be avoided that, for example, an overpressure arises in the adsorption filter during charger operation.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß in der von dem Ansaugrohr abzweigenden Bypassleitung stromauf der Förderpumpe ein Absperrventil vorgesehen ist. Dadurch kann im Leerlaufbetrieb sichergestellt sein, daß der Bypass vor der Drosselklappe absolut dicht ist, um eine Beeinflussung der Leerlaufregulierung zu vermeiden. Vorteilhafterweise ist das Absperrventil über eine Systemsteuerung ansteuerbar.According to a further advantageous embodiment of the invention, it is provided that a shut-off valve is provided in the bypass line branching off the intake pipe upstream of the feed pump. In idle operation, this can ensure that the bypass in front of the throttle valve is absolutely tight in order to avoid influencing the idle control. The shut-off valve can advantageously be controlled via a system control.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß die Pumpe eine Sekundärluftpumpe einer Sekundärlufteinblasung ist. Dadurch können die Systeme für die Regenerierung und Sekundärlufteinblasung miteinander kombiniert werden, wodurch eine Bauteilereduzierung ermöglicht ist.According to a further advantageous embodiment of the invention it is provided that the pump is a secondary air pump of a secondary air injection. As a result, the systems for regeneration and secondary air injection can be combined with one another, which enables component reduction.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß die Pumpe in einer Bypassleitung einer zum Adsorptionsfilter führenden Frischluftleitung angeordnet ist. Durch diese Ausgestaltung ist ermöglicht, daß durch die Pumpe ein Druck im Adsorptionsfilter aufbaubar ist, über den die Regeneriermenge wiederum proportional zum Motormassenstrom gefördert werden kann. Im Gegensatz zu der zuvor beschriebenen Ausführungsform, die nach dem Funktionsprinzip Saugen arbeiten, weist diese Ausführungsform das Funktionsprinzip Drücken auf. Desweiteren ist vorteilhafterweise vorgesehen, daß im Leitungsabschnitt der Frischluftleitung parallel zur Bypassleitung ein Rückschlagventil vorgesehen ist. Dadurch kann sichergestellt sein, daß die Förderpumpe nicht im Kreis fördert und ggf. aus dem Adsorptionsfilter beim Stillstand der Pumpe Kraftstoffdampf nach außen abströmen kann.According to a further advantageous embodiment of the invention it is provided that the pump is arranged in a bypass line of a fresh air line leading to the adsorption filter. This configuration makes it possible for the pump to build up a pressure in the adsorption filter, via which the regeneration quantity can in turn be conveyed in proportion to the engine mass flow. In contrast to the previously described embodiment, which operate according to the suction principle, this embodiment has the pressing principle. Furthermore, it is advantageously provided that a check valve is provided in the line section of the fresh air line parallel to the bypass line. This can ensure that the feed pump does not deliver in a circuit and, if necessary, fuel vapor can flow out of the adsorption filter when the pump is at a standstill.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß die Tankentlüftungsleitung einen parallel zum Ansaugrohr verlaufenden Leitungsabschnitt aufweist. In den parallel zueinander angeordneten Abschnitten sind jeweils ein Pumpenrad angeordnet, die über eine gemeinsame Welle miteinander verbunden sind. Diese Antriebsvorichtung kann nach dem Abgasturboladerprinzip ausgebildet sein. Dadurch kann auf einfache Weise erreicht werden, daß eine durchsatzproportionale Regenerierung erfolgen kann, da in Abhängigkeit des Luftmassendurchsatzes des Motors die Regenerierung erfolgen kann.According to a further advantageous embodiment of the invention, it is provided that the tank ventilation line has a line section running parallel to the intake pipe. A pump wheel is arranged in the sections arranged parallel to one another, which are connected to one another via a common shaft. This drive device can be designed according to the exhaust gas turbocharger principle. It can thereby be achieved in a simple manner that regeneration proportional to the throughput can take place, since the regeneration can take place depending on the air mass flow rate of the engine.
Anhand von in der Zeichnung dargestellten bevorzugten Ausführungsbeispielen wird die erfindungsgemäße Tankentlüftungsanlage nachfolgend näher erläutert. Es zeigen:
- Fig. 1
- eine schematische Darstellung einer Tankentlüftungsanlage mit einer Pumpe in einer Bypassleitung einer Tankentlüftungsleitung zwischen einem Ansaugrohr und einem Adsorptionsfilter,
- Fig. 2
- eine schematische Darstellung von Druckverläufen der Tankentlüftungsanlage gemäß Fig. 1 in verschiedenen Betriebszuständen,
- Fig. 3
- eine schematische Darstellung einer alternativen Tankentlüftungsanlage mit einer Pumpe in einer Bypassleitung einer Tankentlüftungsleitung, die von einem Ansaugrohr abzweigt und in eine vom Adsorptionsfilter zum Ansaugrohr führende Tankentlüftungsleitung einmündet,
- Fig. 4
- eine schematische Darstellung einer Kombination der erfindungsgemäßen Tankentlüftungsanlage gemäß Fig.3 und einer Sekundärlufteinblasung,
- Fig. 5
- eine schematische Darstellung einer alternativen Tankentlüftungsanlage mit einer Pumpe in einer Bypassleitung, die in einer zum Adsorptionsfilter führenden Frischluftleitung angeordnet ist,
- Fig. 6
- eine schematische Darstellung einer weiteren alternativen Ausführungsform mit einem parallel zum Ansaugrohr verlaufenden Leitungsabschnitt der Tankentlüftungsleitung mit einer dazwischenliegenden Antriebsvorrichtung und
- Fig. 7
- eine schematische Darstellung einer Tankentlüftungsanlage gemäß Fig. 1, die in ein on-board-vapour-recovery-system integriert ist.
- Fig. 1
- 1 shows a schematic illustration of a tank ventilation system with a pump in a bypass line of a tank ventilation line between an intake pipe and an adsorption filter,
- Fig. 2
- 1 shows a schematic illustration of pressure profiles of the tank ventilation system according to FIG. 1 in different operating states,
- Fig. 3
- 1 shows a schematic representation of an alternative tank ventilation system with a pump in a bypass line of a tank ventilation line, which branches off from an intake pipe and opens into a tank ventilation line leading from the adsorption filter to the intake pipe,
- Fig. 4
- 3 shows a schematic representation of a combination of the tank ventilation system according to the invention as shown in FIG. 3 and a secondary air injection,
- Fig. 5
- 1 shows a schematic representation of an alternative tank ventilation system with a pump in a bypass line which is arranged in a fresh air line leading to the adsorption filter,
- Fig. 6
- a schematic representation of a further alternative embodiment with a parallel to the intake pipe section of the tank ventilation line with an intermediate drive device and
- Fig. 7
- a schematic representation of a tank ventilation system according to FIG. 1, which is integrated in an on-board vapor recovery system.
In Fig. 1 ist eine schematische Darstellung einer Tankentlüftungsanlage 11 dargestellt, die auf dem Funktionsprinzip aktive Förderung durch eine Pumpe und ein Regenerierventil beruht. Von einem Tank 12 führt eine Tankanschlußleitung 13 zu einem Adsorptionsfilter 14, der beispielsweise als Aktivkohlefilter ausgebildet ist. Dieser Adsorptionsfilter 14 hat die Aufgabe, den aus dem Tank ausströmenden Kraftstoff aufzunehmen und zu filtern, so daß über eine Frischluftleitung 16 die gefilterte Luft ins Freie entweichen kann.1 shows a schematic representation of a
Von dem Adsorptionsfilter 14 führt eine Tankentlüftungsleitung 17 zu einem Ansaugrohr 18, welches Frischluft zur Brennkraftmaschine fordert. Die Tankentlüftungsleitung 17 weist stromab des Adsorptionsfilters 14 eine Bypassleitung 19 auf, in der eine Pumpe 21 angeordnet ist. Parallel zur Pumpe 21 ist in einem parallelen Leitungsabschnitt 22, der ein Teil der Tankentlüftungsleitung 17 ist, ein Rückschlagventil 23 vorgesehen. Die Bypassleitung 19 und der Leitungsabschnitt 22 münden stromab der Pumpe 21 und des Rückschlagventils 23 wieder in einen gemeinsamen Abschnitt der Tankentlüftungsleitung 17, in dem ein Regenerierventil 24 vorgesehen ist.From the
Bei dieser Ausführungsform ist die Förderpumpe explosionssicher ausgeführt, da diese die Regeneriermenge im Adsorptionsfilter 14 ansaugt und in das Ansaugrohr 18 fördert. Die Steuerung der Pumpe 21 kann relativ einfach durch die Funktion ein/aus erfolgen. Desweiteren kann auch ein rampenförmiges Anlaufen oder ein stetiges Anlaufen vorgesehen sein. Bei dieser Ausführung ist wesentlich, daß die Pumpe 21 nur in den oberen Lastbereichen arbeiten muß. Dadurch sind die Anforderungen an die Steuerung sehr gering. Damit die Pumpe 21 nicht im Kreis fördert, muß in dem Leitungsabschnitt 22 ein Rückschlagventil 26 vorgesehen sein. Desweiteren ist vorteilhafterweise ein Absperrventil 26 zum Rückschlagventil 23 angeordnet. Dadurch ist ermöglicht, daß im Schubbetrieb das Regenerierventil 24 schlagartig zumacht. In diesem Moment wird auch die Pumpe 21 die Förderung einstellen, jedoch aufgrund der Trägheit läuft diese Pumpe 21 noch geringfügig weiter und baut somit einen Druck in der Leitung zwischen dem Regenerierventil 24 und der Pumpe 21 auf. Das Absperrventil 26 ist vorteilhafterweise als Druckbegrenzungsventil oder ein gesteuertes Öffnungsventil ausgebildet.In this embodiment, the feed pump is designed to be explosion-proof, since it sucks the regeneration amount in the
Durch die aktiv fördernde Pumpe 21 kann diese Ausführungsform der Tankentlüftungsanlage 11 auch für Brennkraftmaschinen mit einem Laderbetrieb eingesetzt werden.Due to the actively pump 21, this embodiment of the
In Fig. 2 sind Druckverläufe der in Figur 1 beschriebenen Tankentlüftungsanlage 11 in unterschiedlichen Betriebsphasen dargestellt. Dabei entsprechen die jeweiligen Abschnitte der horizontalen Achse des Diagramms den Bauteilkomponenten und zeigen, welche Druckverläufe bzw. Druckunterschiede in den jeweiligen Bauteilabschnitten vorliegen. Beispielsweise ist in dem äußerst rechten Abschnitt, der den Druck in der Tankanschlußleitung 13 darstellt, zu erkennen, daß ein Dampfdruck vorliegt, der durch das Verflüchtigen des Kraftstoffes in Kraftstoffdampf grundsätzlich vorliegt und in Abhängigkeit der Temperatur größer oder kleiner sein kann. Der Verlauf der Kennlinie unterhalb der X-Achse bedeutet, daß ein Unterdruck vorliegt.2 shows pressure profiles of the
Im einzelnen werden in den unterschiedlichen Betriebsphasen die Arbeitszustände des Regenerierventils 24, der pumpe 21 und dem Leitungsabschnitt 22 beschrieben.The working states of the
Im Leerlaufbetrieb ist die Saugdruckdifferenz sehr hoch. In diesem Betriebszustand ist die Tastrate des Regenerierventils 24 sehr klein, wodurch die Pumpe 21 stillsteht oder im Leerlauf mitläuft, und das Absperrventil 26 in dem Leitungsabschnitt 22 offen ist. Im unteren Teillastbereich ist die Saugdruckdifferenz noch ausreichend. Dies bedeutet, daß dadurch die Tastrate des Regenerierventils 26 mittelgroß ist und die Pumpe 21 lastlos mitläuft oder stillsteht. Das Absperrventil 26 bleibt in dem Leitungsabschnitt 22 in einer offenen Stellung. Im oberen Teillastbereich ist die Saugdruckdifferenz nicht ausreichend, wodurch die Tastrate des Regenerierventils 26 sehr groß wird. Dieses Signal bewirkt, daß die Pumpe 21 in Betrieb genommen wird und für den nötigen Förderdruck sorgt. Das Absperrventil 26 im Leitungsabschnitt 22 wird gleichzeitig geschlossen. Im Vollastbetrieb ist die Saugdruckdifferenz nahezu Null. Dies bedeutet wiederum, daß die Tastrate des Regenerierventils 24 einen Maximalwert erreicht und die Pumpe 21 mit der maximalen Leistung angetrieben wird, um den nötigen Förderdruck für die Regenerierung zu erbringen. Das Absperrventil 26 bleibt weiterhin geschlossen. Im Schubbetrieb kann die Differenz des Saugdruckes hoch sein, wodurch wiederum die Tastrate des Regenerierventils nahezu oder gleich Null ist. Dadurch wird über die Steuerung die Pumpe 21 stillgesetzt oder fördert im Kreis, wobei das Absperrventil 26 offen ist. Die im-Kreis-Förderung ist nur dann ermöglicht, wenn ein steuerbares Absperrventil 26 vorgesehen ist.The suction pressure difference is very high in idle mode. In this operating state, the duty cycle of the
In Fig. 3 ist eine weitere Ausführungsform der Tankentlüftungsanlage 11 dargestellt. Bei dieser Ausführungsform zweigt die Bypassleitung 19 von dem Ansaugrohr 18 ab und mündet über eine Saugdüse 31 in die Tankentlüftungsleitung 17. Zwischen der Pumpe 21 und dem Ansaugrohr 18 ist ein Absperrventil 26 vorgesehen. Zwischen der Saugdüse 31 und dem Adsorptionsfilter 14 ist das Regenerierventil 24 angeordnet.A further embodiment of the
Bei dieser Ausführungsform saugt im Regenerierbetrieb die Pumpe 21 reine Luft von dem Ansaugtrakt an und fördert diese über die Saugdüse 31 in die Tankentlüftungsleitung 17, wobei beispielsweise nach dem Venturi-Prinzip bei einem geöffneten Regenerierventil 24 die gewünschte Regeneriermenge aufgrund von Unterdruck an der Saugdüse 31 aus dem Adsorptionsfilter 14 gesaugt und in das Ansaugrohr 18 gefördert wird. Durch das Ansaugen von reiner Luft kann die Pumpe 21, insbesondere hinsichtlich der Dichtigkeit einfach ausgestaltet sein. Die aus dem Ansaugtrakt bzw. Ansaugrohr 18 entnommene Luft wird über den Luftmengenmesser 32 gemessen, da ansonsten eine erhebliche Menge an Falschluft dem Motor zugeführt werden würde und die Gemischbildung nicht mehr für eine optimale Verbrennung korrekt wäre. Im Leerlaufbetrieb beispielsweise ist durch das geschlossene Absperrventil 26 sichergestellt, daß die Bypassleitung 19 zur Drosselklappe 33 in dem Ansaugrohr 18 geschlossen ist, um eine Beeinflussung der Leerlaufregulierung zu vermeiden. Dies kann beispielsweise durch ein gesteuertes Absperrventil 26 erfolgen.In this embodiment, the
In Fig. 4 ist eine Tankentlüftungsanlage 11 gemäß Fig. 3 in Kombination mit einer Sekundärlufteinblasung dargestellt. Im Unterschied zu Fig. 3 ist das Absperrventil 26 in der Bypassleitung 19 der Pumpe 21 nachgeschalten. Die pumpe 21 dient gleichzeitig als Sekundärluftpumpe, die von einem Luftfilter 34 gereinigte Luft ansaugt, die über einen Luftmengenmesser 32 erfaßt wird. Ein weiterer Luftmengenmesser 32 ist in dem Ansaugrohr 18 vorgesehen, das an dem Luftfilter 34 wiederum angeschlossen ist.FIG. 4 shows a
Stromab der Pumpe 21 zweigt von der Bypassleitung 19 eine Leitung 36 ab, die zur Abgasanlage (nicht dargestellt) führt.Downstream of the
Das Absperrventil 26 der Bypassleitung 19 und ein Absperrventil 27 der Leitung 36 arbeiten analog dem ebenfalls in Fig. 4 dargestellten Zeitdiagramm. Dies bedeutet, daß in der Kaltstartphase die Pumpe 21 für die Lufteinblasung in die Abgasanlage zuständig ist. Das Absperrventil 26 ist dabei geschlossen und das Absperrventil 27 geöffnet. Durch diese Ausführungsform kann sichergestellt sein, daß reine Luft und nicht unverbrannte Kraftstoffdämpfe in die Abgasanlage gelangen. Diese Ausgestaltung ist auch deshalb ermöglicht, da in der Kaltstartphase keine Regenerierung vorgesehen ist.The shut-off
Nachdem die Kaltstartphase beendet ist, wird das Absperrventil 27 geschlossen und das Absperrventil 26 geöffnet. In Abhängigkeit der dann auftretenden Betriebszustände wird das Absperrventil 26 angesteuert, wie in den einzelnen Betriebsphasen zu Fig. 3 beschrieben ist.After the cold start phase has ended, the shut-off
In Fig. 5 ist eine weitere alternative Ausführungsform einer Tankentlüftungsanlage 11 dargestellt. Diese Ausführungsform weist ebenso wie die Ausführungsform gemäß Fig. 3 und Fig. 4 eine Pumpe 21 auf, die Frischluft pumpt. Dabei ist vorgesehen, daß in einer Frischluftleitung 16, die zum Adsorptionsfilter 14 führt, eine Bypassleitung 19 mit der Pumpe 21 angeordnet ist. Parallel zur Bypassleitung 19 ist ein Leitungsabschnitt 22 vorgesehen, der das Rückschlagventil 23 aufweist. Desweiteren ist in der Tankanschlußleitung 13 zwischen dem Adsorptionsfilter 14 und dem Tank 12 ein Rückschlagventil 23 vorgesehen, damit der Kraftstoffdampf nicht in den Tank 12 zurückgedrückt bzw. über einen Tankstutzen ins Freie gelangen kann. Dadurch kann gleichzeitig verhindert werden, daß der Tank 12 unter Druck gesetzt wird.FIG. 5 shows a further alternative embodiment of a
Diese Ausführungsform kann ebenso in Kombination mit der Sekundärlufteinblasung vorgesehen sein, bei der die Pumpe 21 gleichzeitig als Sekundärluftpumpe ausgeführt sein kann.This embodiment can also be provided in combination with the secondary air injection, in which the
In Fig. 6 ist eine weitere alternative Ausführungsform einer Tankentlüftungsleitung 11 vorgesehen. Diese Ausführungsform weist eine Tankentlüftungsleitung 17 auf, die stromab des Regenerierventils 24 einen Leitungsabschnitt 46 aufweist, der parallel zum Ansaugrohr 18 verläuft. Zwischen den zwei parallel verlaufenden Abschnitten der Tankentlüftungsleitung 17 und dem Ansaugrohr 18 ist eine Antriebsvorrichtung 47 vorgesehen, deren Funktionsweise sich an einen Abgasturbolader anlehnt. In dem Ansaugrohr 18 ist vorteilhafterweise eine Turbine 48 und in dem Leitungsabschnitt 46 ist vorteilhafterweise ein Verdichter 49 angeordnet. Dadurch kann ermöglicht sein, daß die Förderleistung der Regeneriermenge abhängig von dem Luftmassendurchsatz des Motors ist. Somit kann eine durchsatzproportionale Regenerierung ermöglicht werden.A further alternative embodiment of a
Die Anordnung der Antriebsvorrichtung 47 kann stromauf oder stromab der Drosselklappe 33 im Ansaugrohr vorgesehen sein, wobei vorteilhafterweise wegen der Verluste im Ansaugrohr 18 eine motornahe Anordnung vorgesehen ist.The arrangement of the
Diese alternative Ausführungsform weist insbesondere den Vorteil auf, daß hier keine Dichtigkeitsprobleme auftreten, da die Antriebsvorrichtung 47 keine Verbindung nach außen hat. Darüber hinaus erfolgt die Ansteuerung automatisch durch den Luftmassendurchsatz, der durch die Betriebsphasen des Motors bestimmt ist.This alternative embodiment has the particular advantage that there are no sealing problems here, since the
In Fig. 7 ist die Tankentlüftungsanlage 11 gemäß Fig. 1 und Fig. 2 in ein OVR-System (on-board-vapour-recovery-system) eingebunden. Bei diesem System müssen auch die Gase beim Betanken des Kraftstofftanks 12 aufgenommen werden. Dafür ist die Tankentlüftungsanlage 11 gemäß Fig. 1 derart modifiziert, daß in der Frischluftleitung 16 ein Absperrventil 26 vorgesehen ist, und stromauf des Regenerierventils 24 nach der Pumpe 21 wiederum ein Absperrventil 26 vorgesehen ist. Somit kann während des Betankens die Pumpe 21 über den Adsorptionsfilter 14 die Gase aus dem Tank 12 absaugen. Dabei ist das in der Frischluftleitung 16 angeordnete Absperrventil 26 geschlossen. Somit werden die Kraftstoffdämpfe über den Adsorptionsfilter 14 gefiltert und über das der Pumpe 21 nachgeschaltete Absperrventil 26, das in dieser Betriebsphase offen ist, ins Freie abgeleitet. Dadurch kann sichergestellt sein, daß die Tankentlüftungsanlage von dem Ansaugrohr 18 abgekoppelt ist und bei überlaufendem Adsorptionsfilter 14 keine Kraftstoffdämpfe in das Ansaugrohr 18 gelangen.In FIG. 7, the
Durch eine derartige Absaugung könnte die sonst erforderliche Abdichtung des Einfüllstutzens entfallen. Der Adsorptionsfilter 14 ist bei der Einbindung in ein derartiges OVR-System genügend groß ausgebildet, damit dieser nicht überläuft und Gase bzw. Kraftstoffdämpfe ins Freie austreten können.Such an extraction could eliminate the otherwise required sealing of the filler neck. When integrated into such an OVR system, the
Die verschiedenen Ausführungsformen der Tankentlüftungsanlagen 11 haben alle gemeinsam, daß in einer Bypassleitung 19 eine Pumpe 21 angeordnet ist, wodurch eine Spülung des Adsorptionsfilters 14 ermöglicht ist, um diesen zu regenerieren. Dabei kann die Pumpe 21 sowohl nach dem Funktionsprinzip Saugen oder Fördern arbeiten. Weitere alternative Ausführungsformen und Anordnungen, die nach diesen Funktionsprinzipien arbeiten, sind ebenfalls denkbar.The various embodiments of the
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19645382 | 1996-11-04 | ||
DE19645382A DE19645382C2 (en) | 1996-11-04 | 1996-11-04 | Tank ventilation system for a vehicle with an internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0840002A2 true EP0840002A2 (en) | 1998-05-06 |
EP0840002A3 EP0840002A3 (en) | 1998-10-07 |
Family
ID=7810587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97118297A Withdrawn EP0840002A3 (en) | 1996-11-04 | 1997-10-22 | Fuel tank ventilation system for a vehicle with a combustion engine |
Country Status (3)
Country | Link |
---|---|
US (1) | US5918580A (en) |
EP (1) | EP0840002A3 (en) |
DE (1) | DE19645382C2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999006688A1 (en) * | 1997-07-28 | 1999-02-11 | Siemens Canada Limited | Evaporative emission system for low engine intake system vacuums |
WO2001073283A1 (en) * | 2000-03-24 | 2001-10-04 | Robert Bosch Gmbh | Tank ventilation system for a motor vehicle and method for operating a system of this type |
WO2010097067A1 (en) * | 2009-02-25 | 2010-09-02 | Iav Gmbh | Apparatus for tank ventilation |
CN102305151A (en) * | 2011-08-03 | 2012-01-04 | 天津大学 | System for efficiently recovering waste heat energy from internal combustion engine |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3338644B2 (en) * | 1997-12-09 | 2002-10-28 | 株式会社ユニシアジェックス | Evaporative fuel treatment system for internal combustion engine |
DE19828774A1 (en) * | 1998-06-27 | 1999-12-30 | Bosch Gmbh Robert | Procedure for operating IC engine using direct injection and a regenerating gas |
DE19829423B4 (en) * | 1998-07-01 | 2007-03-22 | Mahle Filtersysteme Gmbh | Device for venting the fuel tank of an internal combustion engine |
DE19831188C2 (en) * | 1998-07-11 | 2003-05-08 | Freudenberg Carl Kg | Tank ventilation device for motor vehicles |
AUPP627098A0 (en) * | 1998-09-30 | 1998-10-22 | Orbital Engine Company (Australia) Proprietary Limited | Purge fuel flow rate determination method |
WO2001012975A1 (en) * | 1999-08-16 | 2001-02-22 | Delphi Technologies, Inc. | Low evaporative emissions engine management system |
DE10034391A1 (en) * | 2000-07-14 | 2002-01-24 | Alfmeier Praez Ag | Device for regenerating an activated carbon filter has a regenerating pipe to connect the activated carbon filter to an intake channel for an internal combustion engine and a regenerating valve to control the opening of the pipe |
DE10040574A1 (en) * | 2000-08-18 | 2002-02-28 | Daimler Chrysler Ag | Operating an internal combustion engine involves igniting fuel vapor taken from fuel tank or from activated carbon container connected to combustion chambers of internal combustion engine |
DE10060350A1 (en) * | 2000-12-04 | 2002-06-06 | Mahle Filtersysteme Gmbh | Ventilation device of the fuel tank of an internal combustion engine |
DE10102604A1 (en) * | 2001-01-20 | 2002-07-25 | Mann & Hummel Filter | Air intake system, for an IC motor, has a connected fuel vapor filter to adsorb hydrocarbons and prevent their escape into the ambient environment |
DE10255801A1 (en) * | 2002-11-29 | 2004-06-09 | Daimlerchrysler Ag | Motor vehicle tank venting device has transport pump that comes into contact with fuel vapor and can be operated via regeneration valve with vacuum pump that does not come into contact with fuel vapor |
DE102006002718B4 (en) * | 2006-01-19 | 2008-01-03 | Siemens Ag | Method and device for operating an internal combustion engine |
DE102007040913A1 (en) | 2007-08-30 | 2009-03-05 | Bayerische Motoren Werke Aktiengesellschaft | Tank ventilation system for motor vehicle, has flushing pipe branched into two flushing branches that are downstream and upstream to compressor, respectively, where throttle is provided upstream to opening point of one branch |
WO2010088438A2 (en) * | 2009-02-02 | 2010-08-05 | Borgwarner Inc. | Drive device |
JP5485681B2 (en) * | 2009-12-23 | 2014-05-07 | 愛三工業株式会社 | Evaporative fuel processing device for internal combustion engine |
DE102010025561B4 (en) | 2010-06-30 | 2013-11-28 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Device for tank ventilation |
DE102010048313A1 (en) * | 2010-10-14 | 2012-04-19 | Continental Automotive Gmbh | Method and device for operating a tank ventilation system |
WO2014134553A1 (en) * | 2013-03-01 | 2014-09-04 | Discovery Technology International, Inc. | Precision purge valve system with pressure assistance |
US9359978B2 (en) * | 2014-03-25 | 2016-06-07 | Continental Automotive Systems, Inc. | Turbo purge module hose detection and blow off prevention check valve |
JP6040962B2 (en) * | 2014-06-03 | 2016-12-07 | 株式会社デンソー | Evaporative fuel processing equipment |
US9605610B2 (en) | 2014-06-10 | 2017-03-28 | Ford Global Technologies, Llc | System and methods for purging a fuel vapor canister |
US9624853B2 (en) | 2015-03-12 | 2017-04-18 | Ford Global Technologies, Llc | System and methods for purging a fuel vapor canister |
US10267247B2 (en) | 2015-12-01 | 2019-04-23 | GM Global Technology Operations LLC | Purge pump control systems and methods |
US10190515B2 (en) | 2015-12-01 | 2019-01-29 | GM Global Technology Operations LLC | Fuel vapor flow estimation systems and methods |
US10344715B2 (en) * | 2015-12-01 | 2019-07-09 | GM Global Technology Operations LLC | Purge pressure sensor offset and diagnostic systems and methods |
JP6668145B2 (en) * | 2016-03-30 | 2020-03-18 | 愛三工業株式会社 | Evaporative fuel processing equipment |
US11181103B2 (en) * | 2018-06-19 | 2021-11-23 | Waters Technologies Corporation | Multi-stage displacement pump |
DE102018212149A1 (en) | 2018-07-20 | 2020-01-23 | Volkswagen Aktiengesellschaft | Internal combustion engine with a Venturi nozzle provided in a fluid-carrying component that is fluidly connected to a tank ventilation line |
DE102019219937B4 (en) * | 2019-12-18 | 2023-05-17 | Volkswagen Aktiengesellschaft | Internal combustion engine with a venturi nozzle provided in a fluid-carrying component fluidly connected to a tank ventilation line |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4312720A1 (en) | 1993-04-20 | 1994-10-27 | Bosch Gmbh Robert | Tank venting system for a motor vehicle and method for its operation |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3832500A1 (en) * | 1987-10-03 | 1989-04-13 | Volkswagen Ag | INTERNAL COMBUSTION ENGINE WITH REGENERABLE FILTER FOR FUEL DAMPERS |
DE3935612C2 (en) * | 1988-11-02 | 2000-06-15 | Volkswagen Ag | Device assigned to an internal combustion engine for recovering fuel vapors stored in a fuel vapor filter |
US5190015A (en) * | 1991-02-05 | 1993-03-02 | Toyota Jidosha Kabushiki Kaisha | Evaporated fuel discharge suppressing apparatus for an internal combustion engine |
US5245973A (en) * | 1991-04-18 | 1993-09-21 | Toyota Jidosha Kabushiki Kaisha | Failure detection device for evaporative fuel purge system |
US5220898A (en) * | 1991-08-22 | 1993-06-22 | Toyota Jidosha Kabushiki Kaisha | Pressure control system for controlling pressure in fuel tank of engine by controlling discharging of evaporated fuel in fuel tank into canister |
US5183023A (en) * | 1991-11-01 | 1993-02-02 | Siemens Automotive Limited | Evaporative emission control system for supercharged internal combustion engine |
US5273020A (en) * | 1992-04-30 | 1993-12-28 | Nippondenso Co., Ltd. | Fuel vapor purging control system for automotive vehicle |
DE4316728A1 (en) * | 1992-05-23 | 1994-03-03 | Atlas Fahrzeugtechnik Gmbh | Controlled feeding and recycling set=up for fuel fraction from vehicle tank - collects vented components in storage unit for re-emission into inlet manifold when richer mixture is required |
DE4316392A1 (en) * | 1992-05-23 | 1993-12-02 | Atlas Fahrzeugtechnik Gmbh | Metering of fuel with extra air addition for IC engine - using valve in filter tank opening to allow extra air in under certain engine operating conditions |
US5349934A (en) * | 1992-06-19 | 1994-09-27 | Honda Giken Kogyo K.K. | Evaporative emission control system for internal combustion engines |
US5396873A (en) * | 1992-12-18 | 1995-03-14 | Honda Giken Kogyo Kabushiki Kaisha | Evaporative fuel-processing system for internal combustion engines |
US5411004A (en) * | 1993-02-03 | 1995-05-02 | Siemens Automotive Limited | Positive pressure canister purge system integrity confirmation |
JP2970280B2 (en) * | 1993-02-05 | 1999-11-02 | トヨタ自動車株式会社 | Engine drive control unit for generator |
US5544483A (en) * | 1993-02-19 | 1996-08-13 | Volkswagen Ag | Internal combustion engine with a secondary air-fuel supply |
DE4311316C1 (en) * | 1993-04-06 | 1994-03-31 | Freudenberg Carl Fa | Device for storage and feed of volatile fuel components into IC engine - has return valve with flow intake and two flow outlets, each with own seal body with one-directional flow |
JP3223480B2 (en) * | 1993-09-10 | 2001-10-29 | 本田技研工業株式会社 | Evaporative fuel processor for internal combustion engines |
DE4343654A1 (en) * | 1993-12-21 | 1995-06-22 | Bosch Gmbh Robert | Process and plant for tank ventilation |
-
1996
- 1996-11-04 DE DE19645382A patent/DE19645382C2/en not_active Expired - Fee Related
-
1997
- 1997-10-22 EP EP97118297A patent/EP0840002A3/en not_active Withdrawn
- 1997-11-03 US US08/962,901 patent/US5918580A/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4312720A1 (en) | 1993-04-20 | 1994-10-27 | Bosch Gmbh Robert | Tank venting system for a motor vehicle and method for its operation |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999006688A1 (en) * | 1997-07-28 | 1999-02-11 | Siemens Canada Limited | Evaporative emission system for low engine intake system vacuums |
US6196202B1 (en) | 1997-07-28 | 2001-03-06 | Siemens Canada Limited | Evaporative emission system for low engine intake system vacuums |
WO2001073283A1 (en) * | 2000-03-24 | 2001-10-04 | Robert Bosch Gmbh | Tank ventilation system for a motor vehicle and method for operating a system of this type |
WO2010097067A1 (en) * | 2009-02-25 | 2010-09-02 | Iav Gmbh | Apparatus for tank ventilation |
US8555862B2 (en) | 2009-02-25 | 2013-10-15 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Apparatus for tank ventilation |
CN102305151A (en) * | 2011-08-03 | 2012-01-04 | 天津大学 | System for efficiently recovering waste heat energy from internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
US5918580A (en) | 1999-07-06 |
EP0840002A3 (en) | 1998-10-07 |
DE19645382A1 (en) | 1998-05-14 |
DE19645382C2 (en) | 1998-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0840002A2 (en) | Fuel tank ventilation system for a vehicle with a combustion engine | |
DE2717685C3 (en) | Internal combustion engine for motor vehicles | |
DE102011084539B3 (en) | Turbo supercharger for internal combustion engine of motor car, has compressor whose venturi nozzle is connected with activated charcoal filter and diverter valve is connected with venturi nozzle and opened for venting filter | |
WO2016177561A1 (en) | Water injection device for an internal combustion engine and method for operating a water injection device of said type | |
WO2012089432A1 (en) | Venting system, particularly for a fuel tank | |
DE102007033411A1 (en) | Vehicle, in particular motor vehicle with tank ventilation system | |
DE102011054851A1 (en) | Tank ventilation with Venturi nozzle | |
DE102008056337A1 (en) | Internal combustion engine, particularly diesel engine or gasoline engine, has fresh air system, in which intercooler is arranged, and circumventive intercooler bypass is arranged in intercooler of fresh air system | |
WO2006040026A1 (en) | Internal combustion engine comprising an exhaust gas recirculation device | |
DE102014223765B4 (en) | High-performance vacuum venturi pump | |
DE102014222632B4 (en) | Active purge pump system module for an evaporative emission control system | |
EP1715162A2 (en) | Exhaust discharge system for internal combustion engine and gate valve for an exhaust discharge system | |
DE102019101181A1 (en) | Process for regeneration of an activated carbon filter and internal combustion engine | |
EP1882831A1 (en) | Exhaust unit of a diesel engine | |
DE19944388A1 (en) | Device for heating a pollutant catalyst | |
DE102010005826A1 (en) | Suction pipe module for turbo engine, particularly turbo engine according to Otto principle, for motor vehicle, has suction pipe and control valve that is designed as three-way valve and is connected to suction pipe by attachment | |
EP0997633B1 (en) | Fuel feed system | |
EP2401494B1 (en) | Apparatus for tank ventilation | |
DE102008052763B4 (en) | Tank ventilation device for a motor vehicle | |
DE102018000836A1 (en) | Motor vehicle with a ventilation system for oil vapors and fuel vapors | |
DE102016225870A1 (en) | Internal combustion engine with a suction line, a fuel tank and a leading of the fuel tank in the intake pipe tank vent line and method for operating an internal combustion engine | |
DE10148057A1 (en) | Device for liquefying vaporous fuel fractions in fuel tanks | |
DE102010025561B4 (en) | Device for tank ventilation | |
DE2435707B2 (en) | CONTROL DEVICE FOR A CHARGED COMBUSTION ENGINE | |
DE19529799C2 (en) | Starting device for gasoline engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17P | Request for examination filed |
Effective date: 19980915 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DAIMLERCHRYSLER AG |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20010129 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 20010516 |