[go: up one dir, main page]

EP0832315A1 - Process for demetallising highly acid baths and use of said process for electropolishing special steel surfaces - Google Patents

Process for demetallising highly acid baths and use of said process for electropolishing special steel surfaces

Info

Publication number
EP0832315A1
EP0832315A1 EP96921930A EP96921930A EP0832315A1 EP 0832315 A1 EP0832315 A1 EP 0832315A1 EP 96921930 A EP96921930 A EP 96921930A EP 96921930 A EP96921930 A EP 96921930A EP 0832315 A1 EP0832315 A1 EP 0832315A1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
electropolishing
ions
weight
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96921930A
Other languages
German (de)
French (fr)
Other versions
EP0832315B1 (en
Inventor
Razmik Abedian
Olaf BÖHME
Siegfried Piesslinger-Schweiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poligrat GmbH
Original Assignee
Poligrat GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poligrat GmbH filed Critical Poligrat GmbH
Publication of EP0832315A1 publication Critical patent/EP0832315A1/en
Application granted granted Critical
Publication of EP0832315B1 publication Critical patent/EP0832315B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • C25F7/02Regeneration of process liquids

Definitions

  • the invention relates to a method for demetallizing highly acidic baths based on phosphoric and sulfuric acid.
  • the invention further relates to the use of a demetalizing method in the electropolishing of stainless steel surfaces (stainless steel).
  • Electropolishing or electrolytic polishing is a method of electrochemical metalworking, in which the metal to be polished is generally connected to an electrical circuit as an anode.
  • the electrolyte consists of an acid or a mixture of acids.
  • outstanding bumps (peaks, burrs) of the metal to be polished are dissolved on the surface and the metal is polished. In this way, the previously matt metal is smoothed and shiny.
  • the electrolytes used are mostly phosphoric acid-sulfuric acid mixtures with additions of catalysts, inhibitors and the like.
  • the objects to be polished which hang on the corresponding carrying and contact elements or devices or are received in baskets or the like, are immersed in the electrolyte, ie the polishing bath, and lifted out of the latter after a certain polishing time. After the bath liquid has drained off the polished surfaces, the treated objects are then immersed in rinsing baths in order to remove the electrolyte.
  • Electropolishing processes which are currently used industrially for processing stainless steels (stainless steel) predominantly use low-water mixtures of concentrated phosphoric acid and sulfuric acid as electrolytes.
  • Various organic and inorganic additives to improve the polishing effect increase the current efficiency, reduce the required current density and avoid hexavalent chromium ions in the rinse water are regularly added to the electrolyte.
  • the optimum working range in the metal content of common electrolytes is usually between 35 g / 1 and 70 g / 1 (2 - 4% by weight). According to the prior art, the electrolytes are capable of working up to a metal content of approx. 100 g / 1, this corresponds to approx. 6% by weight. With a higher metal content, the polishing quality drops drastically.
  • part of the electrolyte enriched with metal ions is removed and replaced by fresh, metal-free electrolyte.
  • the enriched electrolyte is removed either continuously via the carryover of the electrolyte located on the surface of the machined workpieces from the electropolishing bath into the subsequent rinsing process, or by direct removal.
  • the removed electrolyte is either processed using a suitable waste water treatment plant or directly so that the resulting waste water can be discharged into the sewage system, while the solids generally have to be disposed of as hazardous waste because of their heavy metal content.
  • the invention is based on the idea that the metal ions must be selectively removed from the electrolyte enriched with metal ions if an electropolishing electrolyte is to be kept permanently functional without partial exchange of the electrolyte.
  • Ordinary filtration processes are out of the question for this, since in the course of a filtration only solid is separated off, the concentration of metallic ions is not reduced.
  • the membranes commonly used in the prior art for electrodialysis are, for example, not resistant to highly concentrated acid mixtures.
  • diffusion layers are formed with phosphoric acid, which in particular can strongly hinder the transport of materials by metal ions.
  • This diffusion layer acts practically like a barrier layer. Consequently, electrochemical processes with strongly concentrated acid solutions are not carried out in the prior art.
  • electrochemical processes for separating ice are not suitable (cf. Ull ann's Encyclopedia of Industrial Kitchen, Vol.9, pp. 227-230).
  • an auxiliary electrolyte for example dilute ammonium sulfate solution, is usually required for the electrolytic deposition of iron (cf. Kerti et al., Hungarian Journal of Industrial Chemistry, Vol. 1987, pp. 435ff), which, when used, uses the electropolishing electro - would destroy lytes.
  • the aim of the present invention is thus a process which enables the direct separation of metal ions, including iron, from the electrolytes enriched with the metal ions, without the electrolytes having to be diluted appreciably.
  • concentration of the metal ions in the depleted electrolyte should ideally be set so that the optimum working range is achieved with regard to the metal concentration.
  • demetallization can be electrochemically carried out separately from the electropolishing bath under certain circumstances.
  • a separate electrolytic cell known per se, which uses a ceramic material, plastic fleece or sintered material as the separating layer.
  • a uniform layer appears to form in situ, which acts as a diaphragm.
  • a diffusion layer about 1-5 ⁇ m
  • phosphoric acid can be postulated which, as such, allows sulfate ions to pass through for the necessary charge exchange, but excludes a "short circuit" by metal ions, especially iron ions.
  • Effective diaphragms could be achieved with phosphoric acid / sulfuric acid mixtures with a mixing ratio of 1:10 to 10: 1. Mixtures with a ratio of phosphoric to sulfuric acid of 2: 1 to 1: 2 are preferably used.
  • the concentrated mixtures enriched with metal ions based on phosphoric acid and sulfuric acid are electrochemically demetallized.
  • the metal ions are separated from the electrolyte by means of the diaphragm which is formed in situ.
  • the pore size and structure of the partition are no longer decisive for the effectiveness of the separation process, and stable, relatively large-pored carrier media such as ceramic, plastic fleece or sintered material can be used, the pores of which do not become blocked due to their size and which do not themselves have a large diffusion resistance have (about 0.5 - 10 ⁇ m).
  • the appropriate material can be easily found using simple experiments.
  • an electrolytic cell (FIG. 1) is used, the anodic and cathodic regions of which are separated from one another by a porous partition.
  • direct current is applied to the cell filled with the electrolyte to be demetallized, migration of the sulfate ions in the anolyte on the side of the catholyte forms a diffusion layer depleted in sulfate ions with a high phosphoric acid content. endures, which impedes the passage of the metal ions and acts as a separation medium.
  • the higher the phosphoric acid content in the mixture the lower the exchange of metal ions through the diaphragm.
  • the permeability of the diaphragm can be influenced by the temperature and the water content of the electrolyte.
  • the dissolved iron in the electrolyte is initially predominantly in the form of readily soluble Fe (III) ions. These are reduced in the cathode space to substantially less soluble Fe (II) ions and then precipitate out in the form of iron (II) sulfate when the solubility limit is reached (mostly as cathode sludge). This can easily be separated from the electrolyte by appropriate processes such as sedimentation, filtration, centrifugation, etc. At the same time, nickel and chrome are also deposited. It has also been shown to be advantageous that impurities in the electrolyte which have reached it during electropolishing are largely bound to the sludge and likewise separated off. Cumulation of these substances, which could interfere with the electropolishing process at a higher concentration, is thus avoided.
  • the iron content of the electrolyte is usually around 2.5% by weight after precipitation and is therefore in the ideal working range. After adding the sulfuric acid consumed by the precipitation and setting the correct density, the cleaned electrolyte can be used again.
  • the process works in a very wide mixing range of phosphoric acid and sulfuric acid and can be used effectively as soon as the metal content is above 40 g / 1.
  • the invention relates to a process for demetallizing mixtures which essentially contain phosphoric acid and sulfuric acid, the mixture enriched with metal ions being transferred to an electrolysis cell in which Fe (III) ions form Fe (II ) Ions are reduced and these are then precipitated in the form of Fe (II) sulfate.
  • Fe (III) ions form Fe (II ) Ions are reduced and these are then precipitated in the form of Fe (II) sulfate.
  • polishing stainless steel works with a current density of 5 - 50 A / dm 2 , preferably about 10 - 25 A / dm 2 , at about 40 - 80 ° C and a polishing time of approx. 15 min.
  • the process according to the invention can be further optimized with regard to the process stages following the actual electropolishing.
  • the electrolyte recovered from the rinse water can then be returned to the process.
  • the metal salts separated off from the electrolyte during filtration contain the heavy metals in high concentration. For example, they can be sent directly to an smelting process. By a treatment downstream of the filtration such. B. rinsing with ice water, the metal salts can be cleaned from the adhering acid residues to the extent that safe handling is possible.
  • the method according to the invention is carried out in a known arrangement for electrolytic polishing with a separate electrochemical cell including the diaphragm and means for filtering the electrolysis bath.
  • These means usually comprise feed and discharge lines which enable the electrolyte solution to be returned continuously or discontinuously to the polishing process.
  • FIG. 1 shows a schematic structure of a demetallization device and illustrates the essential electrochemical reactions.
  • FIG. 2 shows a process flow diagram of a wastewater-free electropolishing system that uses the method according to the invention
  • Fig.l shows a demetallization device as it can be used externally but also integrated in an electropolishing process.
  • the electrolyte is continuously or discontinuously fed into the electrolytic cell via a suitable feed line performed and subjected to electrolysis there.
  • Fe (III) ions are reduced to Fe (II) ions and, if a certain limit concentration (which is determined by the ion product) is exceeded, precipitated as iron sulfate. Since there are generally high sulfate concentrations in electropolishing baths, the Fe (II) is precipitated practically quantitatively as sulfate.
  • the slurry or suspension from the electrolytic cell is then fed to a filter in which the iron sulfate is essentially separated.
  • FIG. 2 illustrates the particular advantages of the procedure according to the invention. Since both the electrolyte and the rinsing water can be reused, an installation according to the invention optimally works practically without waste water. Workpieces that have been subjected to electropolishing are essentially rinsed with water in a rinsing stage (economy sink). The waste water from the economy sink can then be fed to an evaporator, which separates the electrolyte from the washing water by distillation, so that both can be reused separately. If the electrolyte has reached a certain metal concentration in the electropolishing process, the electropolishing effect usually diminishes.
  • the electrolyte from the electrolysis bath is fed continuously or discontinuously to a separate demetallization.
  • Fe (III) is electrochemically reduced to Fe (II) and the iron content is essentially precipitated as Fe (II) sulfate.
  • a sludge is then obtained which can be fed to a further external work-up.
  • a regenerated electrolyte is obtained which is returned to the electropolishing process.
  • the external workup shown here in FIG. 2 is not absolutely necessary in order to keep a continuous wastewater-free electropolishing system in operation for a long period of time. However, it has certain advantages, since acid components can also be recovered from this external workup, which then flow back into the electropolishing stage.
  • Electrolyte 1 An electrolysis cell was used which could hold a volume of approximately 10 liters. A porous ceramic plate with a pore size of approximately 1.0 ⁇ m was used as the separating material. The separate electrolysis was carried out discontinuously in batches, only the cathode compartment being filled with electrolyte after the filtrate had been returned from the cathode compartment of the electrolysis cell to the electropolishing device. The temperature was set to 60 ° C. and the voltage was 3 V. Carbon pins and stainless steel sheets were used as electrodes. Electrolyte 1:
  • Morpholinomethane diphosphoric acid 1.0% by weight
  • electrolyte solution of various compositions was also demetallized.
  • the electrolytic cell corresponded to the above information. It was found that the most typical examples of electropolishing solutions can be viewed with a wide variety of compositions, successful demetallization is achieved and since the electropolishing solutions have been successfully regenerated.
  • the electrolytes After adding the sulfuric acid consumed by precipitation and adjusting the density to the required values, the electrolytes can be used again without problems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PCT No. PCT/EP96/02439 Sec. 371 Date Mar. 4, 1998 Sec. 102(e) Date Mar. 4, 1998 PCT Filed Jun. 4, 1996 PCT Pub. No. WO96/41905 PCT Pub. Date Dec. 27, 1996The invention relates to a process for the demetallization of highly acidic baths based on phosphoric acid and sulphuric acid, and also to a process for the electropolishing of stainless-steel surfaces, in which a regeneration of, in particular, spent electrolyte compositions for electropolishing can be achieved by separate electrolytic reduction of Fe(III) to Fe(II) and subsequent removal of precipitates.

Description

Verfahren zum Entmetallisieren von hochsauren Bädern und Verwendung dieses Verfahrens beim Elektropolieren von Edel¬ stahloberflächen Process for demetallizing highly acidic baths and use of this process in the electropolishing of stainless steel surfaces
Die Erfindung betrifft ein Verfahren zum Entmetallisieren von hochsauren Bädern auf der Basis von Phosphor- und Schwefel¬ säure.The invention relates to a method for demetallizing highly acidic baths based on phosphoric and sulfuric acid.
Die Erfindung betrifft weiterhin die Verwendung eines Entme- tallisierverfahrens beim Elektropolieren von Edelstahloberflä¬ chen (nicht-rostender Stahl) .The invention further relates to the use of a demetalizing method in the electropolishing of stainless steel surfaces (stainless steel).
Das Elektropolieren oder elektrolytische Polieren ist ein Ver¬ fahren der elektrochemischen Metallbearbeitung, bei dem das zu polierende Metall in der Regel als Anode in einen Stromkreis ge¬ schaltet wird. Der Elektrolyt besteht hierbei aus einer Säure oder einem Säuregemisch. Von dem zu polierenden Metall werden beim Elektropolieren herausragende Unebenheiten (Spitzen, Grate) oberflächlich aufgelöst und so das Metall poliert. So wird das zuvor matte Metall geglättet und glänzend. Als Elek¬ trolyten verwendet man bei rostfreien Stählen und Kohlenstoff¬ stählen zumeist Phosphorsäure-Schwefelsäuremischungen mit Zu¬ sätzen von Katalysatoren, Inhibitoren und dergleichen.Electropolishing or electrolytic polishing is a method of electrochemical metalworking, in which the metal to be polished is generally connected to an electrical circuit as an anode. The electrolyte consists of an acid or a mixture of acids. When electropolishing, outstanding bumps (peaks, burrs) of the metal to be polished are dissolved on the surface and the metal is polished. In this way, the previously matt metal is smoothed and shiny. In the case of stainless steels and carbon steels, the electrolytes used are mostly phosphoric acid-sulfuric acid mixtures with additions of catalysts, inhibitors and the like.
Beim Elektropolieren werden die zu polierenden Gegenstände, die an den entsprechenden Trage- und Kontaktelementen oder Vorrich¬ tungen hängen oder in Körben oder dergl. aufgenommen werden, in den Elektrolyten, d. h. das Polierbad, eingesenkt und nach einer gewissen Polierzeit aus diesem herausgehoben. Nach dem Abfließen der Bad-Flüssigkeit von den polierten Oberflächen werden die behandelten Gegenstände anschließend in Spülbäder getaucht, um den Elektrolyten zu entfernen. Derzeit industriell eingesetzte Elektropolierverfahren zur Be¬ arbeitung von nicht-rostenden Stählen (Edelstahl) setzen über¬ wiegend wasserarme Gemische aus konzentrierter Phosphorsäure und Schwefelsäure als Elektrolyten ein. Regelmäßig werden dem Elektrolyten verschiedene organische und anorganische Zusätze zur Verbesserung der Polierwirkung, Erhöhung der Stromausbeute, Verringerung der erforderlichen Stromdichte und Vermeidung von sechswertigen Chromionen in den Spülwässern beigegeben.In electropolishing, the objects to be polished, which hang on the corresponding carrying and contact elements or devices or are received in baskets or the like, are immersed in the electrolyte, ie the polishing bath, and lifted out of the latter after a certain polishing time. After the bath liquid has drained off the polished surfaces, the treated objects are then immersed in rinsing baths in order to remove the electrolyte. Electropolishing processes which are currently used industrially for processing stainless steels (stainless steel) predominantly use low-water mixtures of concentrated phosphoric acid and sulfuric acid as electrolytes. Various organic and inorganic additives to improve the polishing effect, increase the current efficiency, reduce the required current density and avoid hexavalent chromium ions in the rinse water are regularly added to the electrolyte.
Die während des Elektropolierens an der Werkstückoberfläche ab¬ getragenen Metallionen gehen in Lösung und reichern sich dort mit der Zeit an. Alle heute industriell eingesetzten Elektro- lyte haben den Nachteil, daß deren Wirksamkeit ab einem be¬ stimmten Grad der Metallanreicherung stark nachläßt. Dann muß der Elektrolyt zumindest teilweise durch frischen Elektrolyten ergänzt oder vollständig ersetzt werden. Ein zuverlässig und wirtschaftlich vernünftiges Regenerationsverfahren für einen verbrauchten Elektrolyten steht im Stand der Technik nicht zur Verfügung. Stattdessen wird der verbrauchte Elektrolyt ent¬ sorgt. Aufgrund des hohen Gehaltes an Schwermetallen muß der verbrauchte Elektrolyt als Sonderabfall behandelt werden. Das Gleiche gilt für die während des Elektropolierens anfallenden Spülwässer und die bei deren Aufbereitung anfallenden Schlämme. Da das verfügbare Deponievolumen für Sondermüll in der Regel eng begrenzt ist und darüber hinaus Entsorgungskosten steigen - wenn es nicht in manchen Gebieten schon schwierig bis unmöglich ist, eine geeignete Deponiemöglichkeit zu finden - besteht ein erhebliches Bedürfnis nach einem Verfahren, das einen geringe¬ ren Entsorgungsaufwand ermöglicht.The metal ions removed from the surface of the workpiece during electropolishing go into solution and accumulate there over time. All electrolytes which are used industrially today have the disadvantage that their effectiveness decreases considerably from a certain level of metal accumulation. Then the electrolyte must be at least partially supplemented with fresh electrolyte or completely replaced. A reliable and economically reasonable regeneration process for a used electrolyte is not available in the prior art. Instead, the used electrolyte is disposed of. Due to the high content of heavy metals, the used electrolyte must be treated as special waste. The same applies to the rinse water generated during electropolishing and the sludge generated during the treatment. Since the available landfill volume for hazardous waste is generally very limited and, moreover, disposal costs increase - if it is not already difficult or impossible to find a suitable landfill option in some areas - there is a considerable need for a process which requires less disposal enables.
Im Stand der Technik ist man davon ausgegangen, daß es gerade diese Anreicherung mit Metallionen ist, die den Elektrolyten unbrauchbar macht. Infolgedessen hat man einen Elektrolyten nach Erreichen eines bestimmten Metallgehaltes, zumeist zwische 4 und 5 Gew.-% der Entsorgung zugeführt. Da der zulässige Geha an Phosphaten und Sulfaten im Abwasser zumeist eng begrenzt ist, mußte man hierzu das gesamte Volumen auch noch unverbrauchter Säure neutralisieren. Insgesamt fielen bei dieser Entsorgung große Mengen an Schlamm an.It has been assumed in the prior art that it is precisely this enrichment with metal ions which renders the electrolyte unusable. As a result, an electrolyte, after reaching a certain metal content, usually between 4 and 5% by weight, has been disposed of. Since the permissible Geha of phosphates and sulfates in wastewater is usually very limited, the entire volume of unused acid had to be neutralized. Overall, large amounts of sludge were generated during this disposal.
Zusammengefaßt bestehen bei diesem Stand der Technik folglich Probleme darin, daß a) die Wirksamkeit des Elektropolierbades mit steigender Metallanreicherung deutlich abnimmt und daß b) die beim Elektropolieren anfallenden Abwässer eine aufwendige Entsorgung erfordern.In summary, there are problems with this prior art that a) the effectiveness of the electropolishing bath decreases significantly with increasing metal accumulation and b) the wastewater produced during electropolishing requires complex disposal.
Der optimale Arbeitsbereich im Metallgehalt gebräuchlicher Elektrolyte liegt in der Regel zwischen 35 g/1 und 70 g/1 (2 - 4 Gew.-%) . Die Elektrolyte sind nach dem Stand der Technik bis zu einem Metallgehalt von ca. 100 g/1, dies entspricht ca. 6 Gew.-%, arbeitsfähig. Bei höherem Metallgehalt sinkt die Polierqualität drastisch ab. Um die Arbeitsfähigkeit zu erhal¬ ten, wird ein Teil des mit Metallionen angereicherten Elektro¬ lyten entnommen und durch frischen, metallfreien Elektrolyten ersetzt. Die Entnahme des angereicherten Elektrolyten erfolgt entweder kontinuierlich über die Verschleppung des an der Ober¬ fläche der bearbeiteten Werkstücke befindlichen Elektrolyten aus dem Elektropolierbad in den nachfolgenden Spülprozeß, oder durch direkte Entnahme. Der entnommene Elektrolyt wird entweder über eine geeignete Abwasseraufbereitungsanlage oder direkt so aufbe¬ reitet, daß das daraus resultierende Abwasser an die Kanalisation abgegeben werden kann, während die Feststoffe wegen ihres Gehal¬ tes an Schwermetallen in der Regel als Sondermüll deponiert wer¬ den müssen.The optimum working range in the metal content of common electrolytes is usually between 35 g / 1 and 70 g / 1 (2 - 4% by weight). According to the prior art, the electrolytes are capable of working up to a metal content of approx. 100 g / 1, this corresponds to approx. 6% by weight. With a higher metal content, the polishing quality drops drastically. In order to maintain the ability to work, part of the electrolyte enriched with metal ions is removed and replaced by fresh, metal-free electrolyte. The enriched electrolyte is removed either continuously via the carryover of the electrolyte located on the surface of the machined workpieces from the electropolishing bath into the subsequent rinsing process, or by direct removal. The removed electrolyte is either processed using a suitable waste water treatment plant or directly so that the resulting waste water can be discharged into the sewage system, while the solids generally have to be disposed of as hazardous waste because of their heavy metal content.
Die Erfindung geht von der Vorstellung aus, daß man dem mit Me¬ tallionen angereicherten Elektrolyten selektiv die Metallionen entziehen muß, wenn ein Elektropolierelektrolyt ohne Teilaus¬ tausch von Elektrolyt dauerhaft arbeitsfähig gehalten werden soll. Gewöhnliche Filtrationsverfahren (vgl. DE-33 43 396 AI) kommen hierfür nicht in Frage, da im Zuge einer Filtration ja lediglich Feststoff abgetrennt, nicht die Konzentration an me¬ tallischen Ionen abgesenkt wird. Die weiterhin nach dem Stand der Technik bekannten Verfahren zur Abtrennung von Metallionen aus sauren Lösungen wie Ionenaustausch, Umkehrosmose, Membranelektro¬ lyse, Elektrodialyse etc. lassen sich nicht in einfacher Weise auf Elektropolierelektrolyte übertragen. Die im Stand der Technik bei der Elektrodialyse üblicher Weise eingesetzten Membranen sind beispielsweise gegenüber hochkonzentrierten Säuregemischen nicht resistent. Darüber hinaus bilden sich mit Phosphorsäure Diffu¬ sionsschichten aus, die insbesondere einen Materialtransport von Metallionen stark behindern können. Diese Diffusionsschicht wirkt praktisch wie eine Sperrschicht. Folglich werden im Stand der Technik elektrochemische Verfahren mit stark konzentrierten sau¬ ren Lösungen nicht durchgeführt. Allgemein besteht sogar die Vor stellung, daß elektrochemische Verfahren zur Abtrennung von Eise nicht geeignet sind (vgl. Ull anns Encyclopedia of Industrial Che istry, Vol.9, S.227 - 230). Darüber hinaus ist zur elektro¬ lytischen Abscheidung von Eisen meist ein Hilfselektrolyt, bei¬ spielsweise verdünnte Ammoniumsulfatlösung, erforderlich (vgl. Kerti et al., Hungarian Journal of Industrial Chemistry, Vol. 1987, S.435ff), der bei der Anwendung den Elektropolierelektro- lyten zerstören würden.The invention is based on the idea that the metal ions must be selectively removed from the electrolyte enriched with metal ions if an electropolishing electrolyte is to be kept permanently functional without partial exchange of the electrolyte. Ordinary filtration processes (see DE-33 43 396 AI) are out of the question for this, since in the course of a filtration only solid is separated off, the concentration of metallic ions is not reduced. The processes for separating metal ions from acidic solutions, such as ion exchange, reverse osmosis, membrane electrolysis, electrodialysis, etc., which are also known from the prior art, cannot be easily transferred to electropolishing electrolytes. The membranes commonly used in the prior art for electrodialysis are, for example, not resistant to highly concentrated acid mixtures. In addition, diffusion layers are formed with phosphoric acid, which in particular can strongly hinder the transport of materials by metal ions. This diffusion layer acts practically like a barrier layer. Consequently, electrochemical processes with strongly concentrated acid solutions are not carried out in the prior art. In general, there is even the position that electrochemical processes for separating ice are not suitable (cf. Ull ann's Encyclopedia of Industrial Kitchen, Vol.9, pp. 227-230). In addition, an auxiliary electrolyte, for example dilute ammonium sulfate solution, is usually required for the electrolytic deposition of iron (cf. Kerti et al., Hungarian Journal of Industrial Chemistry, Vol. 1987, pp. 435ff), which, when used, uses the electropolishing electro - would destroy lytes.
Ziel der vorliegenden Erfindung ist somit ein Verfahren, das die direkte Abtrennung von Metallionen einschließlich Eisen aus den mit den Metallionen angereicherten Elektrolyten ermöglicht, ohne daß dabei die Elektrolyte nennenswert verdünnt werden müssen. Di Konzentration der Metallionen im abgereicherten Elektrolyten so te idealerweise so eingestellt werden, daß bezüglich der Metall konzentration der optimale Arbeitsbereich erreicht wird.The aim of the present invention is thus a process which enables the direct separation of metal ions, including iron, from the electrolytes enriched with the metal ions, without the electrolytes having to be diluted appreciably. The concentration of the metal ions in the depleted electrolyte should ideally be set so that the optimum working range is achieved with regard to the metal concentration.
Es wurde jetzt überraschenderweise festgestellt, daß unter be¬ stimmten Umständen separat von dem Elektropolierbad eine Entme- tallisierung elektrochemisch durchgeführt werden kann. Hierzu bedarf es lediglich einer an sich bekannten separaten Elektro¬ lysezelle, die als Trennschicht einen keramischen Werkstoff, Kunststoffvlies oder Sintermaterial einsetzt. Bei Verwendung dieses Materials mit einer Porenweite zwischen etwa 0,5 μm und 10 μm bildet sich offenbar in situ eine gleichförmige Schicht, die als Diaphragma wirkt. Es läßt sich theoretisch eine mit Phosphorsäure angereicherte Diffusionsschicht (etwa 1 - 5 μm) postulieren, die als solche den Durchtritt von Sulfat-Ionen zum erforderlichen Ladungsaustausch ermöglicht, einen "Kurzschluß" durch Metallionen, insbesondere Eisenionen, aber ausschließt. Wirksame Diaphragmen konnten mit Phosphorsäure/Schwefelsäurege¬ mischen mit einem Mischungsverhältnis von 1 : 10 bis 10 : 1 er¬ reicht werden. Vorzugsweise werden Gemische mit einem Verhältnis Phosphor- zu Schwefelsäure von 2 : 1 bis 1 : 2 eingesetzt.It has now surprisingly been found that demetallization can be electrochemically carried out separately from the electropolishing bath under certain circumstances. For this all that is required is a separate electrolytic cell known per se, which uses a ceramic material, plastic fleece or sintered material as the separating layer. When using this material with a pore size between approximately 0.5 μm and 10 μm, a uniform layer appears to form in situ, which acts as a diaphragm. Theoretically, a diffusion layer (about 1-5 μm) enriched with phosphoric acid can be postulated which, as such, allows sulfate ions to pass through for the necessary charge exchange, but excludes a "short circuit" by metal ions, especially iron ions. Effective diaphragms could be achieved with phosphoric acid / sulfuric acid mixtures with a mixing ratio of 1:10 to 10: 1. Mixtures with a ratio of phosphoric to sulfuric acid of 2: 1 to 1: 2 are preferably used.
Erfindungsgemäß werden die mit Metallionen angereicherten kon¬ zentrierten Gemische auf Basis von Phosphorsäure und Schwefel¬ säure elektrochemisch entmetallisiert. Die Trennung der Metall¬ ionen vom Elektrolyten erfolgt mittels des in situ entstehenden Diaphragmas. Damit sind Porengröße und Struktur der Trennwand nicht mehr ausschlaggebend für die Wirksamkeit des Trennprozesses und es können stabile, relativ großporige Trägermedien wie Kera¬ mik, Kunststoffvlies oder Sintermaterial eingesetzt werden, deren Poren sich wegen ihrer Größe nicht verstopfen und die selbst kei¬ nen großen Diffusionswiderstand aufweisen (etwa 0,5 - 10 μm) . Das geeignete Material läßt sich anhand einfacher Versuche leicht auffinden.According to the invention, the concentrated mixtures enriched with metal ions based on phosphoric acid and sulfuric acid are electrochemically demetallized. The metal ions are separated from the electrolyte by means of the diaphragm which is formed in situ. Thus, the pore size and structure of the partition are no longer decisive for the effectiveness of the separation process, and stable, relatively large-pored carrier media such as ceramic, plastic fleece or sintered material can be used, the pores of which do not become blocked due to their size and which do not themselves have a large diffusion resistance have (about 0.5 - 10 μm). The appropriate material can be easily found using simple experiments.
Zur Durchführung des Verfahrens bedient man sich einer Elektro¬ lysezelle (Fig.l), deren anodischer und kathodischer Bereich durch eine poröse Trennwand voneinander getrennt sind. Beim An¬ legen von Gleichstrom an die mit dem zu entmetallisierenden Elek¬ trolyten gefüllte Zelle bildet sich durch Wanderung der Sulfat¬ ionen in den Anolyten auf der Seite des Katholyten eine an Sulfat¬ ionen abgereicherte Diffusionsschicht mit hohem Phosphorsäurege- halt aus, die den Durchtritt der Metallionen erschwert und als Trennmedium wirkt. Je höher der Gehalt an Phosphorεäure im Ge¬ misch ist, desto niedriger ist im Prinzip der Austausch von Me¬ tallionen durch das Diaphragma. Man kann jedoch die Permeabilität des Diaphragmas durch die Temperatur und den Wassergehalt des Elektrolyten beeinflussen.To carry out the method, an electrolytic cell (FIG. 1) is used, the anodic and cathodic regions of which are separated from one another by a porous partition. When direct current is applied to the cell filled with the electrolyte to be demetallized, migration of the sulfate ions in the anolyte on the side of the catholyte forms a diffusion layer depleted in sulfate ions with a high phosphoric acid content. endures, which impedes the passage of the metal ions and acts as a separation medium. In principle, the higher the phosphoric acid content in the mixture, the lower the exchange of metal ions through the diaphragm. However, the permeability of the diaphragm can be influenced by the temperature and the water content of the electrolyte.
Im Elektrolyt liegt das gelöste Eisen ursprünglich überwiegend in Form von gut löslichen Fe(III)-Ionen vor. Diese werden im Katho¬ denraum zu wesentlich geringer löslichen Fe(II)-Ionen reduziert und fallen anschließend beim Erreichen der Löslichkeitsgrenze in Form von Eisen(II)-Sulfat aus (zumeist als Kathodenschlamm). Die¬ ser ist leicht durch entsprechende Verfahren wie Sedimentation, Filtration, Zentrifugierung etc. vom Eletrolyten abzutrennen. Gleichzeitig werden auch Nickel und Chrom abgeschieden. Vorteil¬ haft hat sich auch gezeigt, daß Verunreinigungen im Elektrolyten die während des Elektropolierens in diesen gelangten, weitgehend an den Schlamm gebunden und ebenfalls abgetrennt werden. Damit wird eine Kumulierung dieser Stoffe, die bei höherer Konzentra¬ tion den Elektropolierprozeß stören könnten, vermieden.The dissolved iron in the electrolyte is initially predominantly in the form of readily soluble Fe (III) ions. These are reduced in the cathode space to substantially less soluble Fe (II) ions and then precipitate out in the form of iron (II) sulfate when the solubility limit is reached (mostly as cathode sludge). This can easily be separated from the electrolyte by appropriate processes such as sedimentation, filtration, centrifugation, etc. At the same time, nickel and chrome are also deposited. It has also been shown to be advantageous that impurities in the electrolyte which have reached it during electropolishing are largely bound to the sludge and likewise separated off. Cumulation of these substances, which could interfere with the electropolishing process at a higher concentration, is thus avoided.
Der Eisengehalt des Elektrolyten liegt nach der Fällung in der Regel bei ca. 2,5 Gew.-% und damit im idealen Arbeitsbereich. Nach Ergänzung der durch die Fällung verbrauchten Schwefelsäure und Einstellung der korrekten Dichte ist der gereinigte Elektro¬ lyt wieder verwendungsfähig.The iron content of the electrolyte is usually around 2.5% by weight after precipitation and is therefore in the ideal working range. After adding the sulfuric acid consumed by the precipitation and setting the correct density, the cleaned electrolyte can be used again.
Das Verfahren arbeitet in einem sehr weiten Mischungsbereich vo Phosphorsäure und Schwefelsäure und ist wirksam einzusetzen, so bald der Metallgehalt über 40 g/1 liegt.The process works in a very wide mixing range of phosphoric acid and sulfuric acid and can be used effectively as soon as the metal content is above 40 g / 1.
Kombiniert man das erfindungsgemäße Verfahren mit einer Einrich tung zur Rückgewinnung von verschlepptem Elektrolyten und gerei nigtem Wasser aus dem Spülwasser, wie z.B. einem Verdampfer in Verbindung mit geeigneter Spülwasserführung, so ist ein abwasse freier Betrieb von Elektropolieranlagen möglich (Fig.2). Der aus dem Verfahren anfallende Schlamm enthält die abgetrennten Metalle in hoher Konzentration. Er kann nach entsprechender Be¬ handlung ggf. einer Weiterverwendung zugeführt werden. Damit sind die Voraussetzungen geschaffen, den Anfall von Sondermüll zu ver¬ meiden, der die Deponien in hohem Maße belastet und hohe Entsor¬ gungskosten verursacht.If you combine the method according to the invention with a device for recovering entrained electrolytes and purified water from the rinsing water, such as an evaporator in conjunction with a suitable rinsing water system, wastewater-free operation of electropolishing systems is possible (FIG. 2). The sludge resulting from the process contains the separated metals in high concentration. After appropriate treatment, it can possibly be used for further use. This creates the prerequisites for avoiding the generation of hazardous waste, which places a heavy burden on the landfills and causes high disposal costs.
Nach einem anderen Aspekt betrifft die Erfindung ein Verfahren zum Entmetallisieren von Gemischen, die im wesentlichen Phosphor¬ säure und Schwefelsäure enthalten, wobei das mit Metallionen an¬ gereicherte Gemisch in eine Elektrolysezelle überführt wird, in der Fe(III)-Ionen zu Fe(II)-Ionen reduziert und diese dann in Form von Fe(II)-Sulfat ausgefällt werden. Durch dieses Verfahren kann separat von einem laufenden Elektropolierverfahren (unabhän¬ gig davon) eine Regenerierung von hochsauren Elektropolierbädern erreicht werden.According to another aspect, the invention relates to a process for demetallizing mixtures which essentially contain phosphoric acid and sulfuric acid, the mixture enriched with metal ions being transferred to an electrolysis cell in which Fe (III) ions form Fe (II ) Ions are reduced and these are then precipitated in the form of Fe (II) sulfate. With this method, regeneration of highly acidic electropolishing baths can be achieved separately from an ongoing electropolishing process (irrespective of this).
Die elektrolytischen Verfahrensbedingungen des erfindungsgemäßen Verfahren entsprechen im Großen und Ganzen denjenigen des Standes der Technik. Beispielsweise arbeitet man beim Polieren von Edel¬ stahl mit einer Stromdichte von 5 - 50 A/dm2 , vorzugsweise etwa 10 - 25 A/dm2, bei etwa 40 - 80° C und einer Polierzeit von ca. 15 min.The electrolytic process conditions of the process according to the invention largely correspond to those of the prior art. For example, polishing stainless steel works with a current density of 5 - 50 A / dm 2 , preferably about 10 - 25 A / dm 2 , at about 40 - 80 ° C and a polishing time of approx. 15 min.
Das erfindungsgemäße Verfahren läßt sich hinsichtlich der an das eigentliche Elektropolieren anschließenden Verfahrensstufen wei¬ ter optimieren. Insbesondere ist es möglich, die der Elektropoli- tur nachfolgenden Spülvorgänge so zu gestalten, daß das Spülwas¬ ser unter Einsatz einer Kaskadenspülung mit Spülwasserregenera¬ tion (Verdampfer) in einem geschlossenen Kreislauf geführt wird. Der aus dem Spülwasser rückgewonnene Elektrolyt kann dann wieder dem Prozeß zugeführt werden. Diese vielfältigen Vorteile des er¬ findungsgemäßen Verfahrens wären mit dem Stand der Technik nicht zu realisieren gewesen. Prinzipiell hätte man zwar schon an eine destillative Aufarbeitung der Spülwässer denken können. Dies hätte aber kaum Vorteile gebracht, da ja einem beträchtlichen Energieeinsatz keine wirklichen Vorteile gegenüber gestanden hät¬ ten. Erst durch die Erfindung wird eine Spülwasserregeneration vernünftig nutzbar. Denn erst hierbei wird eine wiederverwendbare Säure für den Elektrolyten gewonnen. Im Stand der Technik wurden die Spülwässer regelmäßig zusammen mit der Säure - nach deren Neutralisation - verworfen.The process according to the invention can be further optimized with regard to the process stages following the actual electropolishing. In particular, it is possible to design the rinsing processes following the electropolishing in such a way that the rinsing water is conducted in a closed circuit using a cascade rinsing with rinsing water regeneration (evaporator). The electrolyte recovered from the rinse water can then be returned to the process. These various advantages of the method according to the invention would not have been possible to achieve with the prior art. In principle, one could have already thought of a reprocessing of the rinse water by distillation. This but would hardly have brought any advantages, since there would have been no real advantages over a considerable amount of energy. Only through the invention can a rinsing water regeneration be used properly. This is the only way to obtain a reusable acid for the electrolyte. In the prior art, the rinse water was regularly discarded together with the acid - after its neutralization.
Die bei der Filtration aus dem Elektrolyten abgetrennten Metall¬ salze enthalten die Schwermetalle in hoher Konzentration. Sie können beispielsweise direkt einem Verhüttungsprozeß zugeführt werden. Durch eine der Filtration nachgeschaltete Behandlung wie z. B. Spülen mit Eiswasser können die Metallsalze soweit von den anhaftenden Säureresten gereinigt werden, daß ein gefahrloses Handhaben möglich ist.The metal salts separated off from the electrolyte during filtration contain the heavy metals in high concentration. For example, they can be sent directly to an smelting process. By a treatment downstream of the filtration such. B. rinsing with ice water, the metal salts can be cleaned from the adhering acid residues to the extent that safe handling is possible.
Das erfindungsgemäße Verfahren wird in einer an sich bekannten Anordnung für die elektrolytische Politur mit einer separaten elektrochemischen Zelle einschließlich dem Diaphragma und Mittel zum Filtern des Elektrolysebades durchgeführt. Üblicherweise um¬ fassen diese Mittel Zu- und Ableitungen, die ein beständiges ode diskontinuierliches Rückführen der Elektrolytlösung in den Po¬ lierprozeß ermöglichen.The method according to the invention is carried out in a known arrangement for electrolytic polishing with a separate electrochemical cell including the diaphragm and means for filtering the electrolysis bath. These means usually comprise feed and discharge lines which enable the electrolyte solution to be returned continuously or discontinuously to the polishing process.
Die Fig.l zeigt einen schematischen Aufbau eine Entmetallisie- rungsvorrichtung und veranschaulicht die wesentlichen elektro¬ chemischen Reaktionen.1 shows a schematic structure of a demetallization device and illustrates the essential electrochemical reactions.
Die Fig.2 zeigt ein Verfahrensfließbild einer abwasserfreien Elektropolieranlage, die das erfindungsgemäße Verfahren einsetz2 shows a process flow diagram of a wastewater-free electropolishing system that uses the method according to the invention
Die Fig.l zeigt eine Entmetallisierungsvorrichtung, wie sie extern aber auch eingebunden in ein Elektropolierverfahren eing setzt werden kann. Der Elektrolyt wird über geeignete Zuleitung in die Elektrolysezelle kontinuierlich oder diskontinuierlich geführt und dort einer Elektrolyse unterworfen. Bei der Elektro¬ lyse werden Fe(III)-Ionen zu Fe(II)-Ionen reduziert und bei Über¬ schreiten einer bestimmten Grenzkonzentration (die durch das Ionenprodukt bestimmt wird) als Eisensulfat ausgefällt. Da in Elektropolierbädern in der Regel hohe Sulfatkonzentrationen vor¬ liegen, wird das Fe(II) praktisch quantitativ als Sulfat ausge¬ fällt. Die Aufschlämmung oder Suspension aus der Elektrolysezelle wird dann einem Filter zugeführt, in dem im wesentlichen das Eisensulfat abgeschieden wird. Neben dem Eisensulfat werden hier¬ bei aus der Lösung auch andere schwerlösliche Metallsalze abge¬ schieden, wie diejenigen des Chroms, Nickels, Molybdäns oder Kupfers. Das Filtrat kann dann direkt in eine Elektropoliturvor- richtung zurückgeführt werden. Häufig bietet sich eine Auf¬ frischung mit Phosphorsäure und/oder Schwefelsäure an. Dies ist wegen der angedeuteten Kreislauffahrweise in der Regel aber nicht erforderlich.Fig.l shows a demetallization device as it can be used externally but also integrated in an electropolishing process. The electrolyte is continuously or discontinuously fed into the electrolytic cell via a suitable feed line performed and subjected to electrolysis there. In the electrolysis, Fe (III) ions are reduced to Fe (II) ions and, if a certain limit concentration (which is determined by the ion product) is exceeded, precipitated as iron sulfate. Since there are generally high sulfate concentrations in electropolishing baths, the Fe (II) is precipitated practically quantitatively as sulfate. The slurry or suspension from the electrolytic cell is then fed to a filter in which the iron sulfate is essentially separated. In addition to iron sulfate, other poorly soluble metal salts are also separated from the solution, such as those of chromium, nickel, molybdenum or copper. The filtrate can then be returned directly to an electropolishing device. Refreshing with phosphoric acid and / or sulfuric acid is often appropriate. However, this is generally not necessary due to the circulatory procedure indicated.
Das in der Fig.2 gezeigte Verfahrensfließbild veranschaulicht die besonderen Vorzüge der erfindungsgemäßen Arbeitsweise. Da sowohl der Elektrolyt als auch die Spülwässer wiederverwendet werden können, arbeitet optimalerweise eine erfindungsgemäße Anlage praktisch abwasserfrei. Werkstücke, die einer Elektropolitur unterworfen wurden, werden in einer Spülstufe (Sparspüle) im wesentlichen mit Wasser gespült. Das Abwasser der Sparspüle kann dann einen Verdampfer zugeführt werden, der destillativ den Elek¬ trolyten vom Spülwasser trennt, so daß beide separat wiederver¬ wendet werden können. Wenn der Elektrolyt im Elektropolierver- fahren eine gewisse Metallkonzentration erreicht hat, läßt in der Regel die Elektropolierwirkung nach. Um diesem Zustand vorzubeu¬ gen oder die Elektropolierfähigkeit zu regenerieren, wird der Elektrolyt aus dem Elektrolysebad kontinuierlich oder diskonti¬ nuierlich einer separaten Entmetallisierung zugeführt. In der Entmetallisierung wird, wie oben beschrieben, elektrochemisch Fe(III) zu Fe(II) reduziert und der Eisengehalt im wesentlichen als Fe(II)-Sulfat ausgefällt. Bei der sich anschließenden Fil- trierung wird dann ein Schlamm erhalten, der einer weiteren ex¬ ternen Aufarbeitung zugeführt werden kann. Zugleich wird ein re¬ generierter Elektrolyt erhalten, der in das Elektropolierverfah- ren zurückgeführt wird. Die hier in Fig.2 abgebildete externe Aufarbeitung ist nicht zwingend erforderlich, um über einen lan¬ gen Zeitraum eine kontinuierliche abwasserfreie Elektropolier- anlage im Betrieb zu halten. Sie hat aber gewisse Vorteile, da auch aus dieser externen Aufarbeitung Säurebestandteile zurück¬ gewonnen werden können, die dann in die Elektropolierstufe zu¬ rückfließen.The process flow diagram shown in FIG. 2 illustrates the particular advantages of the procedure according to the invention. Since both the electrolyte and the rinsing water can be reused, an installation according to the invention optimally works practically without waste water. Workpieces that have been subjected to electropolishing are essentially rinsed with water in a rinsing stage (economy sink). The waste water from the economy sink can then be fed to an evaporator, which separates the electrolyte from the washing water by distillation, so that both can be reused separately. If the electrolyte has reached a certain metal concentration in the electropolishing process, the electropolishing effect usually diminishes. In order to prevent this condition or to regenerate the electropolishing ability, the electrolyte from the electrolysis bath is fed continuously or discontinuously to a separate demetallization. In the demetallization, as described above, Fe (III) is electrochemically reduced to Fe (II) and the iron content is essentially precipitated as Fe (II) sulfate. In the subsequent filing A sludge is then obtained which can be fed to a further external work-up. At the same time, a regenerated electrolyte is obtained which is returned to the electropolishing process. The external workup shown here in FIG. 2 is not absolutely necessary in order to keep a continuous wastewater-free electropolishing system in operation for a long period of time. However, it has certain advantages, since acid components can also be recovered from this external workup, which then flow back into the electropolishing stage.
Das erfindungsgemäße Verfahren wird anhand der folgenden Bei¬ spiele näher erläutert.The method according to the invention is explained in more detail with the aid of the following examples.
BeispieleExamples
Es wurden mehrere Elektrolytlösungen mit den weiter unten ange¬ gebenen Zusammensetzungen zubereitet. Diese Elektrolyte wurden einem erfindungsgemäßen Verfahren und vergleichsweise einem Ver¬ fahren nach dem Stand der Technik unterworfen. Es zeigte sich, daß in einem erfindungsgemäßen Verfahren mit einer kontinuier¬ lichen separaten Elektrolyse und Filtration des Elektrolyten und Rückführung des Filtrates in den Elektrolyten nicht nur gleich¬ bleibende Polierergebnisse erzielt werden konnten, sondern daß diese auch über einen längeren Zeitraum erhalten blieben.Several electrolyte solutions were prepared with the compositions given below. These electrolytes were subjected to a method according to the invention and comparatively to a method according to the prior art. It was found that in a process according to the invention, with continuous separate electrolysis and filtration of the electrolyte and recycling of the filtrate in the electrolyte, not only could constant polishing results be achieved, but that these were retained over a longer period of time.
Es wurde mit einer Elektrolysezelle gearbeitet, die ein Volumen von etwa 10 1 aufnehmen konnte. Als Trennmaterial diente eine poröse Keramikplatte mit einer Porengröße von etwa 1,0 μm. Die separate Elektrolyse wurde diskontinuierlich in Chargen durch¬ geführt, wobei lediglich der Kathodenraum mit Elektrolyt nach vorhergehender Rückführung des Filtrats aus dem Kathodenraum de Elektrolysezelle in die Elektropoliervorrichtung aufgefüllt wurde. Die Temperatur wurde auf 60°C eingestellt und die Spannu betrug 3 V. Es wurden als Elektroden Kohlestifte und Edelstahl¬ bleche eingesetzt. Elektrolyt 1:An electrolysis cell was used which could hold a volume of approximately 10 liters. A porous ceramic plate with a pore size of approximately 1.0 μm was used as the separating material. The separate electrolysis was carried out discontinuously in batches, only the cathode compartment being filled with electrolyte after the filtrate had been returned from the cathode compartment of the electrolysis cell to the electropolishing device. The temperature was set to 60 ° C. and the voltage was 3 V. Carbon pins and stainless steel sheets were used as electrodes. Electrolyte 1:
Phosphorsäure 85%-ig 60,0 Gew.-%Phosphoric acid 85% 60.0% by weight
Schwefelsäure 96%-ig 36,0 Gew.-%Sulfuric acid 96% 36.0% by weight
Morpholinomethandiphosphorsäure 1,0 Gew.-%Morpholinomethane diphosphoric acid 1.0% by weight
Diethanolamin 0,5 Gew.-%Diethanolamine 0.5% by weight
Wasser 2,5 Gew.-%Water 2.5% by weight
Elektrolyt 2:Electrolyte 2:
Phosphorsäure 85%-ig 54,0 Gew.-% Schwefelsäure 96%-ig 43,0 Gew.-% Morpholin 1,0 Gew.-% Diisopropanolamin 0,5 Gew.-% Wasser 1,5 Gew.-%Phosphoric acid 85% 54.0% by weight sulfuric acid 96% 43.0% by weight morpholine 1.0% by weight diisopropanolamine 0.5% by weight water 1.5% by weight
Elektrolyt 3:Electrolyte 3:
Phosphorsäure 85%-ig 56,0 Gew.-% Schwefelsäure 96%-ig 40,0 Gew.-% Nicotinsäure 1,5 Gew.-% Diisopropanolamin 0,5 Gew.-% Wasser 2,0 Gew.-%Phosphoric acid 85% 56.0% by weight sulfuric acid 96% 40.0% by weight nicotinic acid 1.5% by weight diisopropanolamine 0.5% by weight water 2.0% by weight
Mit den oben genannten Elektrolyten wurden verschiedene Edelstahl¬ sorten elektropoliert bei einer Elektrolyttemperatur von 45 - 80°C und einer Stromdichte von 5 - 25 A/dm2 mit nachgeschalteter Spülung der Teile in einer mehrstufigen Spülkaskade mit Spülwas¬ serrückführung. Das Spülwasser aus der ersten, konzentriertesten Spülstufe wurde im Nebenstrom durch Destillation aufkonzentriert und das Konzentrat dem Elektropolierbad wieder zugeführt. Das reine Kondensatwasser wurde zur Endspülung in der Spülkaskade verwendet, womit der Spülwasserkreislauf geschlossen wurde.Various types of stainless steel were electropolished with the above-mentioned electrolytes at an electrolyte temperature of 45-80 ° C. and a current density of 5-25 A / dm 2 with subsequent rinsing of the parts in a multi-stage rinsing cascade with rinsing water return. The rinse water from the first, most concentrated rinse stage was concentrated in a side stream by distillation and the concentrate was returned to the electropolishing bath. The pure condensate water was used for final rinsing in the rinsing cascade, which closed the rinsing water circuit.
Während der gesamten Betriebsdauer wurde der Elektrolyt im Neben¬ strom der oben beschriebenen Elektrolysezelle zugeführt und fil¬ triert, so daß das gesamte Badvolumen je nach Badbelastung alle 3 bis 14 Tage einmal umgewälzt wurde. Die durch den Schlammaustrag O 96/41905 PCT/EP96/02439During the entire operating time, the electrolyte was supplied and filtered in the bypass flow to the electrolysis cell described above, so that the entire bath volume was circulated once every 3 to 14 days, depending on the bath load. The through the sludge discharge O 96/41905 PCT / EP96 / 02439
- 12 -- 12 -
hervorgerufenen Verluste an Chemikalien wurden ergänzt. Es ergab sich ein stationärer Zustand des Elektrolyten bei einem Gesamtge¬ halt an Metallen (überwiegend Eisen, Chrom und Nickel) von 2,5 bis 4 Gew.-%. Der Elektrolyt blieb dabei arbeitsfähig und die erzielten Ergebnisse entsprachen den Qualitätserwartungen nach dem derzeitigen Stand der Technik. Nach dem Erreichen des statio¬ nären Zustandes des Elektrolyten wurde die gesamte beim Elektro¬ polieren abgetragene Metallmenge unmittelbar bei der Elektrolyse als Metallsalzschlamm ausgefällt und über den Filterkreislauf in konzentrierter Form aus dem Elektrolyten entfernt.Losses of chemicals caused have been added. The electrolyte was in a steady state with a total content of metals (predominantly iron, chromium and nickel) of 2.5 to 4% by weight. The electrolyte remained functional and the results achieved corresponded to the quality expectations according to the current state of the art. After the stationary state of the electrolyte had been reached, the entire amount of metal removed during the electropolishing was precipitated as metal salt sludge immediately during the electrolysis and was removed from the electrolyte in concentrated form via the filter circuit.
Separat von den vorstehenden Untersuchungen wurde auch verbrauch te Elektrolytlösung verschiedener Zusammensetzung entmetalli¬ siert. Die Elektrolysezelle entsprach den vorstehenden Angaben. Es zeigte sich, daß bei verschiedensten Zusammensetzungen die al typische Beispiele für Elektropolierlösungen angesehen werden können, eine erfolgreiche Entmetallisierung erreicht wird und da die Elektropolierlösungen erfolgreich regeneriert wurden.Separate from the above investigations, used electrolyte solution of various compositions was also demetallized. The electrolytic cell corresponded to the above information. It was found that the most typical examples of electropolishing solutions can be viewed with a wide variety of compositions, successful demetallization is achieved and since the electropolishing solutions have been successfully regenerated.
Ausführuncrsbeispiele;Execution examples;
Verbrauchte Elektrolyte folgender Zusammensetzung wurden entmeta lisiert. Dabei wurde als Trennwand ein Polypropylensintermateria eingesetzt (Vyon T; 1,5 mm dick, Porendurchmesser 0,3 - 5 μm) .Used electrolytes of the following composition were demetallized. A polypropylene sintered material was used as the partition (Vyon T; 1.5 mm thick, pore diameter 0.3 - 5 μm).
1) Dichte: 1.760 H2S04: 35.1 Gew.-% H3P04: 37.8 Gew.-% Eisen: 4.5 Gew.-% 82 g/11) Density: 1,760 H 2 S0 4 : 35.1% by weight H 3 P0 4 : 37.8% by weight iron: 4.5% by weight 82 g / 1
Die Entmetallisierung erfolgte bei 60°C // 3 V // 1,5 A/l // 20 Stunden. Es wurde ein Elektrolyt folgender Zusammensetzung erhalten: Dichte: 1.675The demetallization was carried out at 60 ° C // 3 V // 1.5 A / l // 20 hours. An electrolyte of the following composition was obtained: Density: 1,675
H2S04: 31 Gew.-%H 2 S0 4 : 31% by weight
H3P04: 38 Gew.-%H 3 P0 4 : 38% by weight
Eisen: 2.5 Gew.-% 41 g/1Iron: 2.5% by weight 41 g / 1
2 ) Dichte: 1.7602) Density: 1,760
H2S04: 21 Gew.-%H 2 S0 4 : 21% by weight
H3P04: 43 Gew.-%H 3 P0 4 : 43% by weight
Eisen: 4.5 Gew.-% 80 g/1Iron: 4.5% by weight 80 g / 1
Entmetallisierung: 60°C // 2.5 V // 1.2 A/l // 20 StundenDemetallization: 60 ° C // 2.5 V // 1.2 A / l // 20 hours
Dichte: 1.610Density: 1,610
Eisen: 2.5 Gew.-% 37 g/1Iron: 2.5% by weight 37 g / 1
3) Dichte: 1.7503) Density: 1,750
Eisen: 5 Gew.-% 89 g/1Iron: 5% by weight 89 g / 1
Entmetallisierung: 60°C // 3 V // 1.5 A/l // 18 StundenDemetallization: 60 ° C // 3 V // 1.5 A / l // 18 hours
Dichte: 1.675Density: 1,675
H2S04: 35.1 Gew.-%H 2 S0 4 : 35.1% by weight
H3P04: 28.5 Gew.-%H 3 P0 4 : 28.5% by weight
Eisen: 2.5 Gew.-% 42 g/1Iron: 2.5% by weight 42 g / 1
Nach Zugabe der durch Fällung verbrauchten Schwefelsäure und Ein¬ stellung der Dichte auf die geforderten Werte sind die Elektroly¬ te wieder problemlos zu verwenden. After adding the sulfuric acid consumed by precipitation and adjusting the density to the required values, the electrolytes can be used again without problems.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Verfahren zum Entmetallisieren von Gemischen, die im we¬ sentlichen Phosphorsäure und Schwefelsäure enthalten, wobei das Gemisch einer Elektrolysezelle zugeführt wird mit einer Trenn¬ wand zwischen dem anodischen und kathodischen Bereich der Elek¬ trolysezelle und wobei die in dem Gemisch vorhandenen Fe(III)- Ionen zu Fe(II)-Ionen reduziert und beim Erreichen der Löslich- keitsgrenze als FeSO ausgefällt und die Ausfällungen abge¬ trennt werden.1. A process for demetallizing mixtures which essentially contain phosphoric acid and sulfuric acid, the mixture being fed to an electrolysis cell with a partition between the anodic and cathodic region of the electrolysis cell and the Fe (III ) - ions are reduced to Fe (II) ions and, when the solubility limit is reached, precipitated as FeSO and the precipitates are separated off.
2. Verwendung eines Verfahrens nach Anspruch 1 beim Elektro¬ polieren von Edelstahloberflächen, bei dem2. Use of a method according to claim 1 in the electropolishing of stainless steel surfaces, in which
- als Elektrolyt eine Schwefelsäure/Phosphorsäure-Mischung ein¬ gesetzt wird,a sulfuric acid / phosphoric acid mixture is used as the electrolyte,
- der Elektrolyt separat kontinuierlich oder diskontinuierlich einer Elektrolyse unterworfen wird, wobei Fe(III)-Ionen zu Fe(II)-Ionen reduziert und- The electrolyte is subjected to electrolysis separately continuously or discontinuously, Fe (III) ions being reduced to Fe (II) ions and
- auftretende Ausfällungen abfiltriert werden und das Filtrat in den Elektrolyten zurückgeführt wird.- precipitates are filtered off and the filtrate is returned to the electrolyte.
3. Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß in dem sich an das Elektropolieren anschließenden Spülprozeß das Spülwasser im Kreislauf geführt wird.3. Use according to claim 2, characterized in that in the rinsing process following the electropolishing, the rinsing water is circulated.
4. Verwendung nach Anspruch 3, dadurch gekennzeichnet, daß der aus dem Spülwasserkreislauf gewonnene Elektrolyt zurückgeführt wird. 4. Use according to claim 3, characterized in that the electrolyte obtained from the rinsing water circuit is recycled.
EP96921930A 1995-06-09 1996-06-04 Process for demetallising highly acid baths and use of said process for electropolishing special steel surfaces Expired - Lifetime EP0832315B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19521132A DE19521132C1 (en) 1995-06-09 1995-06-09 Demetallising used, highly acidic electropolishing baths
DE19521132 1995-06-09
PCT/EP1996/002439 WO1996041905A1 (en) 1995-06-09 1996-06-04 Process for demetallising highly acid baths and use of said process for electropolishing special steel surfaces

Publications (2)

Publication Number Publication Date
EP0832315A1 true EP0832315A1 (en) 1998-04-01
EP0832315B1 EP0832315B1 (en) 1999-03-24

Family

ID=7764051

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96921930A Expired - Lifetime EP0832315B1 (en) 1995-06-09 1996-06-04 Process for demetallising highly acid baths and use of said process for electropolishing special steel surfaces

Country Status (11)

Country Link
US (1) US5882500A (en)
EP (1) EP0832315B1 (en)
JP (1) JP2000512685A (en)
AT (1) ATE178106T1 (en)
AU (1) AU6300596A (en)
CA (1) CA2226367A1 (en)
CZ (1) CZ396197A3 (en)
DE (2) DE19521132C1 (en)
ES (1) ES2129268T3 (en)
TW (1) TW358831B (en)
WO (1) WO1996041905A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016030506A1 (en) 2014-08-29 2016-03-03 Poligrat Gmbh Electrolyte for polishing stainless steels, containing a pyridinecarboxylic acid

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0931860A1 (en) * 1997-12-31 1999-07-28 Otomec S.r.l. Apparatus for electrically treating ferrous and non ferrous metal wires
US6428683B1 (en) * 2000-12-15 2002-08-06 United Technologies Corporation Feedback controlled airfoil stripping system with integrated water management and acid recycling system
CN103361660A (en) * 2012-03-27 2013-10-23 中国科学院大连化学物理研究所 Method for pre-treating stainless steel bipolar plate of proton exchange membrane fuel cell
US9057272B2 (en) * 2012-06-29 2015-06-16 United Technologies Corporation Protective polishing mask
US20170088971A1 (en) * 2015-09-30 2017-03-30 Macdermid Acumen, Inc. Treatment of Etch Baths

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3206538C2 (en) * 1982-02-24 1984-04-12 Keramchemie GmbH, 5433 Siershahn Process for the electrolytic regeneration of used sulfuric acid pickling liquid
DE3343396A1 (en) * 1983-11-30 1985-06-05 Kraftwerk Union AG, 4330 Mülheim METHOD FOR DECONTAMINATING METALLIC COMPONENTS OF A NUCLEAR TECHNICAL PLANT
DE4218915A1 (en) * 1992-06-10 1993-12-16 Heraeus Elektrochemie Method and device for regenerating an aqueous solution containing metal ions and sulfuric acid, and use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9641905A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016030506A1 (en) 2014-08-29 2016-03-03 Poligrat Gmbh Electrolyte for polishing stainless steels, containing a pyridinecarboxylic acid

Also Published As

Publication number Publication date
TW358831B (en) 1999-05-21
ES2129268T3 (en) 1999-06-01
CA2226367A1 (en) 1996-12-27
EP0832315B1 (en) 1999-03-24
ATE178106T1 (en) 1999-04-15
CZ396197A3 (en) 1998-06-17
AU6300596A (en) 1997-01-09
DE59601506D1 (en) 1999-04-29
DE19521132C1 (en) 1996-10-17
US5882500A (en) 1999-03-16
WO1996041905A1 (en) 1996-12-27
JP2000512685A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
DE2604371C2 (en)
DE2930194C2 (en) Device for treating waste water
DE69115458T2 (en) Electrolysis cell and method for its operation
DE3739580C2 (en)
EP1521864B1 (en) Method and device for recycling metal pickling baths
DE69209986T2 (en) Electrolytic treatment of an acidic solution
DE2432354A1 (en) METHOD OF PURIFYING WASTE WATER BY ELECTROLYSIS
DE1496907B2 (en) PROCESS FOR CONTINUOUS ELECTROLYTIC LIGHTENING OF STEELS CONTAINING NICKEL AND CHROME
EP0832315B1 (en) Process for demetallising highly acid baths and use of said process for electropolishing special steel surfaces
DE2721994A1 (en) PROCESS FOR PROCESSING AQUATIC RESIDUES FROM METALLIZING STRIPS
JP2873095B2 (en) Treatment method of waste water in final washing tank in cationic electrodeposition coating
DE2527853B2 (en) Process for improving the water balance in the phosphating of metals
CH642033A5 (en) Process and equipment for the treatment of waste waters containing heavy metals
DE2623277A1 (en) Recovery of heavy metals and water from effluent - by use of ion exchange for sepn. of heavy metal ions and subsequent extraction for recovery by electrolysis
DE4137377A1 (en) METHOD, MEANS AND DEVICE FOR THE ELECTRODIALYTIC REGENERATION OF THE ELECTROLYTE OF A GALVANIC BATH OR THE LIKE.
DE4109434C2 (en) Process for working up chromate-containing wastewaters and / or process solutions
DE4218554C2 (en) Method and device for processing treatment solutions
DE19729493C2 (en) Method and device for treating rinsing water contaminated with metal ions
DE10161841A1 (en) Treatment of circulating water in a paint shop comprises removing coagulated or dispersed paint solids and passing the water through an ion exchanger
DE2406574C2 (en)
DE3607097C2 (en)
DE19506832A1 (en) Recirculatory electrolytic process for recovery of copper@ from copper@ alloys
EP1533399A2 (en) Method for obtaining a waste-water-low alkali zinc-nickel bath
WO2006018173A1 (en) Device and method for removing foreign matter from process solutions
DE19923607A1 (en) Treatment of waste rinsing water from an electrolytic bath using ultrafiltration and active carbon treatment to allow nearly all the metal ions to be recycled to the bath

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980629

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990324

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990324

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990324

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990324

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990324

REF Corresponds to:

Ref document number: 178106

Country of ref document: AT

Date of ref document: 19990415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59601506

Country of ref document: DE

Date of ref document: 19990429

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2129268

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990604

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990624

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19990324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991019

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: POLIGRAT G.M.B.H.

Effective date: 19990630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080402

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090629

Year of fee payment: 14

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090605

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630