EP0831142A1 - Procédé de déshydratation et de dégazolinage d'un gaz, comportant deux étapes complémentaires de régénération du solvant - Google Patents
Procédé de déshydratation et de dégazolinage d'un gaz, comportant deux étapes complémentaires de régénération du solvant Download PDFInfo
- Publication number
- EP0831142A1 EP0831142A1 EP97402177A EP97402177A EP0831142A1 EP 0831142 A1 EP0831142 A1 EP 0831142A1 EP 97402177 A EP97402177 A EP 97402177A EP 97402177 A EP97402177 A EP 97402177A EP 0831142 A1 EP0831142 A1 EP 0831142A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solvent
- gas
- phase
- water
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G5/00—Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
- C10G5/04—Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas with liquid absorbents
Definitions
- the invention relates to a method for treating a gas containing methane, at least one higher hydrocarbon and water for the purpose of remove the water and / or extract the higher hydrocarbon (s) therefrom.
- the method according to the invention advantageously enables the natural gas treatment operations: dehydration and separation of minus part of the condensable hydrocarbons included in the gas natural, within an integrated and optimized process.
- Petroleum products including natural gas and others gases including hydrocarbons such as refinery gases contain undesirable products for their transport and / or their handling.
- one of the main constituents to be eliminated is water, which turns out to be a hydrate promoter and which promotes corrosion, in particular when the petroleum product contains acidic compounds such as H 2 S and / or CO 2 . Hydrates can cause clogging of transport pipes and the corrosive action of acid gases contained in natural gas leads to the deterioration of pipes and natural gas processing and distribution facilities, located downstream.
- the gas treatment may also include a step of extracting higher hydrocarbons, for example a liquid fraction of natural gas (LGN) defined as comprising the LPG fraction and the gasoline fraction (C 5 +).
- LGN liquid fraction of natural gas
- the function of this step is either to adjust the hydrocarbon dew point to avoid condensation of a hydrocarbon fraction during gas transport, or to recover an LGN fraction; more valuable than the treated gas.
- Figure 1 illustrates the process as described in the prior art, when the gas to be treated contains methane, water, at least one hydrocarbon condensable, and possibly acidic compounds. The process is then described as follows.
- the natural gas to be treated arrives via line 1. A fraction or all of this gas is brought into contact, in the contact zone G1, formed by example by filling with a mixture of solvent and water from of duct 2.
- the solvent used can be chosen from methanol, ethanol, propanol, methylpropylether, ethylpropylether, dipropylether, methyltertiobutylether, dimethoxymethane, dimethoxyethane and methoxyethanol.
- the solvent preferably used is methanol.
- a gaseous phase loaded with solvent is evacuated at the top by the line 3. At the bottom, a substantially aqueous phase is drawn off via line 4 free of solvent.
- the treatment process can be optimized by adapting the fraction of gas to pass through the contact area G1 and the fraction of gas passing outside this contact zone as a function of the composition of the gas to be treated and the required performance.
- This option shown in dotted lines in FIG. 1, allows part of the gas to be treated, passing through line 18, to be directly mixed with the gas leaving the contact area via line 3.
- the fraction of gas not passing through the contact area can be, for example, between 0 and 50% of the quantity of gas to be treated.
- the overhead gas phase containing water and solvent, is the most often close to saturation. It is cooled in the El exchanger by a refrigerant, so as to cause the condensation of a phase aqueous containing solvent and a liquid hydrocarbon phase. He was shown that the solvent entrained in the gas phase at the exit of the zone of G1 contact may be sufficient to avoid hydrate formation problems associated with the cooling step E1.
- An addition can be made to the process by line 5 to compensate for losses of solvent in the treated gas, in the liquid hydrocarbon fraction (NGL) and possibly in the water discharged by the conduit 19. Through this conduit 19, a purge current can be established to keep constant the amounts of solvent and water present in the whole circuit.
- the dehydrated treated gas is evacuated from this balloon through line 7.
- the two liquid phases resulting from condensation are separated by decantation in the lower part of B1.
- the aqueous phase formed essentially of water and solvent leaves the balloon B1 via conduit 8.
- a pump P1 enables said phase to be reinjected aqueous through line 9 in line 2, then in contact zone G1.
- the hydrocarbon phase essentially consisting of condensable hydrocarbons from natural gas (C 3 +) (possibly containing ethane and dissolved methane) and solvent, can be evacuated to a stabilization and washing circuit via line 10.
- a heat exchange between the gas coming from the contact zone G1 and the hydrocarbon phase discharged through the pipe 10 can be envisaged. It has not been shown in FIG. 1.
- a pump P2 makes it possible to send the liquid hydrocarbon phase via line 11 into a stabilization column S1. The purpose of this operation is to separate from said liquid hydrocarbon phase the most volatile components (C 1 and C 2 ), which are removed from the process by line 12.
- the hydrocarbon phase containing the constituents with a molar mass greater than C 2 is sent, via line 13, to a washing zone with water G2 in order to remove the solvent which it contains.
- the aqueous phase evacuated from the contact zone G1 by the conduit 4 and at least partially freed from the solvent, is taken up by a pump P3.
- a fraction of this aqueous phase whose flow is controlled is sent to contact zone G2 via conduit 14.
- the other fraction is evacuated through line 19.
- the fraction of the aqueous phase arriving via line 14 ensures washing of the phase hydrocarbon.
- the solvent having more affinity for water than for the phase hydrocarbon is recovered at least in part in the aqueous phase to the outcome of this step.
- the aqueous phase containing solvent is evacuated from the contact G2 via line 16. This phase is taken up by pump P4 and injected into the contact area G1. Depending on its solvent concentration, this phase is injected into the contact area G1 through the conduit 17, or injected into line 2, in order to be mixed with the arriving aqueous phase of balloon B1 through line 9.
- This process has significant advantages over prior techniques. It allows a significant gain in investment as well in space and weight of the installations, which can be particularly advantageous in the context of offshore oil production.
- the separation of water and solvent by contact with the gas to processing makes it possible to avoid having to carry out a separation by distillation.
- the method and the installation according to the invention are advantageously used to dehydrate a gas such as natural gas containing water and at least one higher hydrocarbon, as well as to obtain a separation at least partial condensable hydrocarbons.
- the liquid hydrocarbon phase can be stabilized and / or freed from the solvent it contains.
- the liquid hydrocarbon phase is sent to a stabilization column.
- the most volatile compounds in the liquid hydrocarbon phase (C 1 and C 2 ) are removed from the process.
- the hydrocarbon phase containing the compounds higher than C 2 is subsequently brought into contact with an aqueous phase free of solvent, which can be all or part of the water resulting from stage (d).
- an aqueous phase free of solvent which can be all or part of the water resulting from stage (d).
- the hydrocarbon phase free of solvent and the aqueous phase charged with solvent are separated.
- the hydrocarbon phase is withdrawn.
- the aqueous phase loaded with solvent is recycled in step (b) and / or in step (d).
- Figures 2 and 3 show schematically the process according to the invention, namely an improvement of the process as described in the prior art, allowing to reduce the section and / or the height of the contact area G1 by the introduction into the installation of a mixer and a separator located upstream of the contact area G1 and allowing a first exchange between the aqueous solution loaded with solvent and all or part of the gas to be treated.
- FIG. 2 shows an implementation of the method according to the invention.
- the aqueous phase loaded with solvent from the separator flask B1 via line 8 is sent by pump P1 in line 9 to a M21 mixer, also connected to the bypass gas supplied by the conduit 18. During the mixing stage, the gas becomes charged with solvent.
- the two aqueous and gaseous phases are separated in a flask separator B21.
- the solvent-laden gas issuing from the flask B21 via the conduit 21 is mixed with the gas leaving the contact area G1, then sent by the conduit 3 towards the exchanger E1.
- the aqueous phase, from balloon B21, is relieved of part of the solvent it contained when leaving the flask B1. It is injected by the conduit 22 at the head of the contact area G1.
- the solvent concentration of the aqueous phase flowing through line 22 is much lower than that of the solution circulating in the conduit 9. Due to this low concentration, the section and / or height of the contact area G1 will be substantially reduced compared to those necessary in the process such as described in the prior art.
- the process contains a step of washing the higher hydrocarbons
- the aqueous phase resulting from washing with conduit 17 can optionally be injected into the contact area G1 or mixed with the aqueous phase in line 22. The choice of point injection of the aqueous phase will be carried out according to its solvent content.
- all of the gas produced, originating from lines 3 and 18, is sent to the mixer M22.
- the whole gas product is mixed in the M22 mixer with the charged aqueous solution solvent coming from flask B1 and flowing through line 9.
- the gas leaving the separation flask B22 via the conduit 23 is directly sent to the exchanger El, while the aqueous phase from the flask B22 through the conduit 24 is injected into the contact area G1.
- the aqueous phase resulting from washing through the pipe 17 can optionally be injected into the contact area G1 or mixed with the aqueous phase in line 24.
- the solvent used in the process of the invention can be chosen among methanol, ethanol, propanol, methylpropylether, ethylpropylether, dipropyl ether, methyltertiobutylether, dimethoxymethane, dimethoxyethane and methoxyethanol. We most often use the methanol.
- Example 1 illustrates a process according to the prior art and the Examples 2 and 3 illustrate the two particular embodiments of the method of the invention.
- the solvent used for this application is methanol.
- Half of the gas produced (50%) is injected into the contact zone G1 via line 1, the other half (50%) is directed to the head of the contactor via line 18.
- Contactor G1 contains structured packing.
- a recycled aqueous methanol solution is injected at the head of the contactor via line 2 at a temperature of - 25 ° C.
- an aqueous solution depleted in solvent comes from the contactor through the line 4.
- This solution contains 160 ppm by mass of methanol. Its flow is 245 kg / h; it corresponds approximately to the amount of water initially contained in the 108 tonnes / h of gas to be treated.
- bypass gas from the conduit 18 is brought to contact of the aqueous phase loaded with solvent from the separator flask B1 via line 8 in the mixer M21. During this stage of mixing the gas is loaded with solvent.
- the two aqueous and gaseous phases are separated in a flask separator B21.
- the solvent-laden gas issuing from the flask B21 via the conduit 21 is mixed with the gas leaving the contact area G1, then sent by the conduit 3 towards the exchanger E1.
- the aqueous phase from balloon B21 is relieved of part of the solvent it contained when leaving the flask B1. It is injected by the conduit 22 at the head of the contact area G1.
- the solvent concentration of the aqueous solution is divided by a factor of 2.5 compared to the solution circulating in the conduit 9.
- Example 2 All else being equal, identical performance to those described in Example 1 are obtained with a column of reduced G1 contact. Indeed, the contact of the aqueous solution partially depleted in solvent by 44% of the gas to be treated is sufficient to exhaust the solution.
- the methanol concentration of the water coming from the contactor through line 4 is 160 ppm mass, as in example 1.
- the exhaustion of the solution is obtained using a column of a diameter reduced by 6% compared to the previous example.
- the weight of steel linked to this reduction in diameter varies in proportion to this reduction.
- the volume of filling required is therefore also reduced by 12%; however, the packing height is identical to that from example 1.
- a portion of the gas to be treated is sent to the zone contact G1 through line 1.
- the gas charged with solvent after contact leaves G1 via line 3. It is mixed with the gas solvent-free bypass in line 18. All of the gas is mixed with the aqueous solution laden with recycled solvent in a M22 mixer. The mixture is sent to the separator flask B22.
- the solvent concentration of the aqueous solution is divided by a factor of 3.5 compared to the solution circulating in the conduit 9.
- Example 2 All else being equal, identical performance to those described in Example 1 are obtained with a column of reduced G1 contact. Indeed, the contact of the aqueous solution partially depleted in solvent by 31% of the gas to be treated is sufficient to exhaust the solution.
- the methanol concentration of the water coming from the contactor through line 4 is 160 ppm by mass, as in example 1.
- the exhaustion of the solution is obtained using a column of a diameter reduced by 21% compared to Example 1.
- the weight of steel linked to this reduction in diameter varies in proportion to this reduction.
- the volume of filling required is therefore also reduced by 38%; however, the packing height is identical to that from example 1.
- Example 1 The comparison of Example 1 according to the prior art, on the one hand, and Examples 2 and 3 according to the invention, on the other hand, demonstrate that the process according to the invention allows a significant reduction in the cross-section of the contact area, and thereby the resulting bulk and weight by this equipment, as well as the packing volume necessary for a gas treatment operation.
- the process according to the invention offers the advantage of being less costly in investment than the methods described in the prior art, by the double reduction of the contactor section and the volume of packing necessary for operations.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Gas Separation By Absorption (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
Composition | % Poids |
N2 | 1,6 |
CO2 | 3,4 |
Méthane | 70,4 |
Éthane | 11,6 |
Propane | 6,9 |
Butane | 3,7 |
Pentane | 1,4 |
C6+ | 1,0 |
- un flux de 99 500 kg/h de gaz traité, contenant une teneur résiduelle en eau de 14 ppm mole, soit 10,5 kg/MNm3;
- un flux de 616 kg/h d'eau chargée de méthanol, qui est recyclé vers la zone de contact G1 ; et
- un flux de 8400 kg/h de phase hydrocarbure condensée (LGN) qui peut éventuellement être stabilisée, puis lavée afin d'être débarrassée du solvant qu'elle contient, avant valorisation.
- le gaz contenant le solvant, qui est envoyé par le conduit 23 à la l'échangeur de chaleur E1 ; et
- la solution aqueuse de solvant partiellement appauvrie, qui est envoyée par le conduit 24 à la zone de contact G1.
Claims (16)
- Procédé de traitement d'un gaz contenant du méthane, de l'eau et au moins un hydrocarbure supérieur au méthane, ledit procédé visant à débarrasser au moins en partie le gaz de l'eau et des hydrocarbures supérieurs au méthane, et étant caractérisé en ce qu'il comprend les étapes suivantes :a) on sépare le gaz à traiter en deux flux (1) et (2) ;b) on met en contact au moins ledit flux (2) dudit gaz avec une phase liquide recyclée renfermant à la fois de l'eau et un solvant,consistant en un composé organique non hydrocarbure, normalement liquide, autre que l'eau, au moins partiellement miscible à l'eau et distillable à une température inférieure à la température de distillation de l'eau, de manière à obtenir une phase liquide aqueuse appauvrie en solvant, par comparaison avec ladite phase liquide recyclée, et une phase gazeuse chargée en solvant ;c) on sépare la phase aqueuse appauvrie en solvant et la phase gazeuse chargée en solvant ;d) on met en contact ladite phase aqueuse appauvrie en solvant avec le flux (1) dudit gaz à traiter exempt de solvant dans une zone de contact, le solvant étant extrait de ladite phase aqueuse appauvrie par ledit gaz à traiter, une phase gazeuse riche en solvant et une phase liquide aqueuse régénérée étant issues de cette étape ;e) on mélange ladite phase gazeuse riche en solvant issue de l'étape (d) soit à la phase gazeuse chargée en solvant issue de l'étape (b), soit au flux de gaz (2) exempt de solvant de l'étape (a) ;f) on refroidit ladite phase gazeuse issue du mélange, de manière à la condenser partiellement en une phase aqueuse et une phase hydrocarbure, contenant toutes deux du solvant, et produisant le gaz traité, débarrassé au moins en partie de l'eau et des hydrocarbures supérieurs qu'il comprenait ;g) on sépare par décantation lesdites phase aqueuse et phase hydrocarbure issues de l'étape (f) ; eth) on recycle ladite phase aqueuse riche en solvant à l'étape (b).
- Procédé selon la revendication 1, caractérisé en ce que, dans l'étape (a), la fraction de gaz présente dans le flux (2) est supérieure à celle présente dans le flux (1).
- Procédé selon la revendication 1 ou 2, caractérisé en ce que la phase gazeuse riche en solvant issue l'étape (d) est mélangée à la phase gazeuse riche en solvant issue de l'étape (b) du procédé.
- Procédé selon la revendication 1, caractérisé en ce qu'à l'issue l'étape de contact (c), la totalité du gaz à traiter est mise en contact au cours de l'étape (b) avec la phase aqueuse recyclée riche en solvant.
- Procédé selon l'une des revendications 1 à 4, caractérisé en ce que, à l'issue des étapes de contact (b) et (d), un appoint de solvant est apporté à la phase gazeuse afin d'éviter les problèmes de formation d'hydrates liés à l'étape de refroidissement (f) et de compenser les pertes de solvant dans le gaz traité.
- Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le solvant est choisi parmi le méthanol, l'éthanol, le propanol, le méthylpropyléther, l'éthylpropyléther, le dipropyléther, le méthyltertiobutyléther, le diméthoxyméthane, le diméthoxyéthane et le méthoxyéthanol.
- Procédé selon la revendication 6, caractérisé en ce que le solvant est le méthanol.
- Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la phase aqueuse riche en solvant recyclée à l'étape (b) contient de 50 à 95 % poids de solvant.
- Procédé selon l'une des revendications 1 à 8, caractérisé en ce que la température de la phase gazeuse à l'issue de l'étape (f) est comprise entre -15 et - 80°C, le gaz obtenu à l'issue de l'étape (f) étant débarrassé de la majeure partie du propane qu'il contenait à l'entrée du procédé.
- Procédé selon l'une des revendications 1 à 9, caractérisé en ce que la fraction de gaz traversant la zone de contact de l'étape (d) représente de 25 à 95 % du gaz à traiter.
- Procédé selon l'une des revendications 1 à 9, caractérisé en ce que la fraction de gaz traversant la zone de contact de l'étape (d) représente de 30 à 50 %du gaz à traiter.
- Procédé selon l'une des revendications 1 à 11, caractérisé en ce que l'on soumet la phase liquide hydrocarbure issue de l'étape (g) à une étape de stabilisation pour en éliminer les composés volatils.
- Procédé selon l'une des revendications 1 à 12, caractérisé en ce que l'on soumet la phase liquide hydrocarbure issue de l'étape (g) à une étape de lavage afin d'en récupérer le solvant.
- Procédé selon la revendication 13, caractérisé en ce que le lavage de la phase liquide hydrocarbure est réalisé avec la phase aqueuse régénérée issue de l'étape (d) sur laquelle un courant de purge est établi de manière à maintenir sensiblement constantes les quantités de solvant et d'eau présentes dans l'ensemble du circuit.
- Procédé selon la revendication 13, caractérisé en ce que l'étape de lavage de la phase hydrocarbure liquide est réalisée par la mise en oeuvre de mélangeurs décanteurs.
- Procédé selon la revendication 13, caractérisé en ce que l'étape de lavage de la phase hydrocarbure liquide est réalisée par contact dans une colonne.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9611694A FR2753719B1 (fr) | 1996-09-24 | 1996-09-24 | Procede de deshydratation et de degazolinage d'un gaz, comportant deux etapes complementaires de regeneration du solvant |
FR9611694 | 1996-09-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0831142A1 true EP0831142A1 (fr) | 1998-03-25 |
EP0831142B1 EP0831142B1 (fr) | 2002-12-11 |
Family
ID=9496065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97402177A Expired - Lifetime EP0831142B1 (fr) | 1996-09-24 | 1997-09-18 | Procédé de déshydratation et de dégazolinage d'un gaz, comportant deux étapes complémentaires de régénération du solvant |
Country Status (11)
Country | Link |
---|---|
US (1) | US5868005A (fr) |
EP (1) | EP0831142B1 (fr) |
JP (1) | JPH10102076A (fr) |
CN (1) | CN1085645C (fr) |
CA (1) | CA2215157C (fr) |
DE (1) | DE69717747T2 (fr) |
DK (1) | DK0831142T3 (fr) |
FR (1) | FR2753719B1 (fr) |
NO (1) | NO315696B1 (fr) |
RU (1) | RU2179569C2 (fr) |
SA (1) | SA97180476B1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2326423B (en) * | 1997-06-17 | 2002-01-23 | Inst Francais Du Petrole | Process for degasolining a gas containing condensable hydrocarons |
FR3106136A1 (fr) * | 2020-01-14 | 2021-07-16 | Axens | Procédé de dégazolinage d’un gaz contenant des hydrocarbures condensables |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2366802B (en) * | 1997-06-17 | 2002-07-03 | Inst Francais Du Petrole | Process for degasolining a gas containing condensable hydrocarbons |
WO2002079310A2 (fr) * | 2001-03-28 | 2002-10-10 | Ciba Specialty Chemicals Holding Inc. | Procede de preparation d'un polyester stabilise |
FR2866345B1 (fr) * | 2004-02-13 | 2006-04-14 | Inst Francais Du Petrole | Procede de traitement d'un gaz naturel avec extraction du solvant contenu dans le gaz naturel purifie |
JP4585222B2 (ja) * | 2004-04-12 | 2010-11-24 | 三菱重工業株式会社 | 不純物廃棄システム及び方法 |
CN1313810C (zh) * | 2004-09-17 | 2007-05-02 | 中国地质大学(北京) | 船载提取海底沉积物中烃类气体的方法及其设备 |
RU2443763C2 (ru) * | 2006-10-31 | 2012-02-27 | Осака Гэс Ко., Лтд. | Система концентрирования воспламеняющегося газа |
CN103946348B (zh) * | 2011-09-22 | 2015-12-16 | 挪威国家石油公司 | 动力学水合物抑制剂的再生 |
WO2014079515A1 (fr) * | 2012-11-26 | 2014-05-30 | Statoil Petroleum As | Déshydratation de gaz et inhibition d'hydrate de liquide combinées à partir d'un flux de puits |
GB2575568B (en) * | 2012-11-26 | 2020-08-19 | Equinor Energy As | Dehydration of gas from a well stream |
GB2526604B (en) | 2014-05-29 | 2020-10-07 | Equinor Energy As | Compact hydrocarbon wellstream processing |
CA2987988C (fr) | 2015-06-05 | 2022-07-19 | Statoil Petroleum As | Procede et appareil pour la deshydratation d'un gaz hydrocarbone |
CN110295072B (zh) * | 2019-05-30 | 2021-06-25 | 中石化石油机械股份有限公司研究院 | 小型撬装化的天然气净化装置及净化方法 |
GB2587658B (en) * | 2019-10-04 | 2022-03-16 | Equinor Energy As | Reduced pressure drop in wet gas pipelines by injection of condensate |
CN110844867B (zh) * | 2019-11-20 | 2021-06-22 | 常州大学 | 一种二氧化碳水合物灭火器的生产填装系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2605241A1 (fr) * | 1986-10-16 | 1988-04-22 | Inst Francais Du Petrole | Procede integre de traitement d'un gaz humide renfermant du methane dans le but d'en eliminer l'eau |
FR2636857A1 (fr) * | 1988-09-26 | 1990-03-30 | Inst Francais Du Petrole | Procede de deshydratation, de desacidification et de separation d'un condensat d'un gaz naturel |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2672034A (en) * | 1950-10-26 | 1954-03-16 | Standard Oil Dev Co | Dehydration of liquefied petroleum gas |
US2994644A (en) * | 1958-03-03 | 1961-08-01 | Phillips Petroleum Co | Purification and drying of liquids |
US3925047A (en) * | 1970-12-24 | 1975-12-09 | Phillips Petroleum Co | Removal of moisture from a natural gas stream by contacting with a liquid desiccant-antifreeze agent and subsequently chilling |
US4266958A (en) * | 1978-07-17 | 1981-05-12 | Dut Pty Limited | Simultaneous cooling and removal of water from hydrocarbon gas mixtures |
-
1996
- 1996-09-24 FR FR9611694A patent/FR2753719B1/fr not_active Expired - Fee Related
-
1997
- 1997-09-18 DK DK97402177T patent/DK0831142T3/da active
- 1997-09-18 EP EP97402177A patent/EP0831142B1/fr not_active Expired - Lifetime
- 1997-09-18 DE DE69717747T patent/DE69717747T2/de not_active Expired - Fee Related
- 1997-09-23 US US08/936,097 patent/US5868005A/en not_active Expired - Lifetime
- 1997-09-23 NO NO19974396A patent/NO315696B1/no not_active IP Right Cessation
- 1997-09-23 RU RU97116008/04A patent/RU2179569C2/ru not_active IP Right Cessation
- 1997-09-23 CA CA002215157A patent/CA2215157C/fr not_active Expired - Fee Related
- 1997-09-24 CN CN97121414A patent/CN1085645C/zh not_active Expired - Fee Related
- 1997-09-24 JP JP9258725A patent/JPH10102076A/ja not_active Ceased
- 1997-10-08 SA SA97180476A patent/SA97180476B1/ar unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2605241A1 (fr) * | 1986-10-16 | 1988-04-22 | Inst Francais Du Petrole | Procede integre de traitement d'un gaz humide renfermant du methane dans le but d'en eliminer l'eau |
FR2636857A1 (fr) * | 1988-09-26 | 1990-03-30 | Inst Francais Du Petrole | Procede de deshydratation, de desacidification et de separation d'un condensat d'un gaz naturel |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2326423B (en) * | 1997-06-17 | 2002-01-23 | Inst Francais Du Petrole | Process for degasolining a gas containing condensable hydrocarons |
FR3106136A1 (fr) * | 2020-01-14 | 2021-07-16 | Axens | Procédé de dégazolinage d’un gaz contenant des hydrocarbures condensables |
Also Published As
Publication number | Publication date |
---|---|
CN1186797A (zh) | 1998-07-08 |
EP0831142B1 (fr) | 2002-12-11 |
JPH10102076A (ja) | 1998-04-21 |
NO974396D0 (no) | 1997-09-23 |
CA2215157C (fr) | 2007-11-27 |
FR2753719B1 (fr) | 1998-11-27 |
US5868005A (en) | 1999-02-09 |
CA2215157A1 (fr) | 1998-03-24 |
CN1085645C (zh) | 2002-05-29 |
NO315696B1 (no) | 2003-10-13 |
NO974396L (no) | 1998-03-25 |
RU2179569C2 (ru) | 2002-02-20 |
DE69717747D1 (de) | 2003-01-23 |
DK0831142T3 (da) | 2003-01-06 |
FR2753719A1 (fr) | 1998-03-27 |
SA97180476B1 (ar) | 2006-04-04 |
DE69717747T2 (de) | 2003-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0831142B1 (fr) | Procédé de déshydratation et de dégazolinage d'un gaz, comportant deux étapes complémentaires de régénération du solvant | |
EP0362023B1 (fr) | Procédé de déshydratation, de désacidification et de séparation d'un condensat d'un gaz naturel | |
CA2034806C (fr) | Procede et dispositif pour le transport et le traitement d'un gaz naturel | |
CA2239758C (fr) | Procede de degazolinage d'un gaz contenant des hydrocarbures condensables | |
CA2357860C (fr) | Procede de desacidification d'un gaz par absorption dans un solvant avec un controle de la temperature | |
CA2194083C (fr) | Procede de deshydratation, de desacidification et de degazolinage d'un gaz naturel, utilisant un melange de solvants | |
FR2893515A1 (fr) | Procede ameliore de pretraitement de gaz naturel acide | |
CA2383283C (fr) | Procede de pretraitement d'un gaz naturel contenant des composes acides | |
EP0267819B1 (fr) | Procédé integré de traitement d'un gaz humide renfermant du méthane dans le but d'en éliminer l'eau | |
EP1408102B1 (fr) | Procédé de desacidification d'un gaz naturel | |
EP0796134B1 (fr) | Procede de traitement du gaz naturel contenant de l'eau et des hydrocarbures condensables | |
CA2378677C (fr) | Procede ameliore de deshydratation et de degazolinage d'un gaz naturel humide | |
FR2618876A1 (fr) | Procede de traitement et de transport d'un gaz contenant du methane et de l'eau | |
FR2943683A1 (fr) | Procede de traitement d'un gaz naturel de charge pour obtenir un gaz naturel traite et une coupe d'hydrocarbures en c5+, et installation associee | |
CA2214968C (fr) | Procede de deshydratation et de degazolinage d'un gaz, comportant un etage de refroidissement preliminaire | |
EP3643394B1 (fr) | Procédé de déshydratation d'un gaz hydrocarbone | |
US20240368477A1 (en) | Gas oil separation plant systems and methods with reduced heating demand | |
MXPA97007250A (en) | Process of dehydration and separation of the gasolinas of a gas, that comprises two complementary stages of regeneration of the solve | |
WO2013076433A1 (fr) | Procédé de traitement d'effluent gazeux en tête de distillation atmosphérique | |
FR3106136A1 (fr) | Procédé de dégazolinage d’un gaz contenant des hydrocarbures condensables | |
FR2824492A1 (fr) | Procede de pretraitement d'un gaz naturel contenant des composes acides | |
FR3148601A1 (fr) | Formulations de solvants pour extraction liquide-liquide de composés aromatiques | |
FR2971043A1 (fr) | Procede de liquefaction d'un gaz naturel a haute pression avec un pretraitement utilisant un solvant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE DK GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;RO;SI |
|
DAX | Request for extension of the european patent (deleted) | ||
17P | Request for examination filed |
Effective date: 19980925 |
|
AKX | Designation fees paid |
Free format text: DE DK GB IT |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE DK GB IT |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20011218 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE DK GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REF | Corresponds to: |
Ref document number: 69717747 Country of ref document: DE Date of ref document: 20030123 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030315 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20030924 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20031002 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050401 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050918 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080924 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090918 |