EP0829911A2 - Ternary solvent nonaqueous organic electrolyte for alkali metal electrochemical cells - Google Patents
Ternary solvent nonaqueous organic electrolyte for alkali metal electrochemical cells Download PDFInfo
- Publication number
- EP0829911A2 EP0829911A2 EP97306820A EP97306820A EP0829911A2 EP 0829911 A2 EP0829911 A2 EP 0829911A2 EP 97306820 A EP97306820 A EP 97306820A EP 97306820 A EP97306820 A EP 97306820A EP 0829911 A2 EP0829911 A2 EP 0829911A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- ether
- cathode
- electrochemical cell
- electrolyte
- alkali metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002904 solvent Substances 0.000 title claims abstract description 54
- 229910052783 alkali metal Inorganic materials 0.000 title claims abstract description 25
- 150000001340 alkali metals Chemical class 0.000 title claims abstract description 19
- 239000005486 organic electrolyte Substances 0.000 title abstract description 5
- 239000003792 electrolyte Substances 0.000 claims abstract description 63
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims abstract description 45
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims abstract description 43
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 10
- 230000003213 activating effect Effects 0.000 claims abstract description 4
- 239000007787 solid Substances 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 35
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 claims description 27
- -1 cyclic ester Chemical class 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 14
- 239000006182 cathode active material Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- 229910052744 lithium Inorganic materials 0.000 claims description 12
- RAVDHKVWJUPFPT-UHFFFAOYSA-N silver;oxido(dioxo)vanadium Chemical compound [Ag+].[O-][V](=O)=O RAVDHKVWJUPFPT-UHFFFAOYSA-N 0.000 claims description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 239000008151 electrolyte solution Substances 0.000 claims description 10
- 229910003455 mixed metal oxide Inorganic materials 0.000 claims description 9
- 229910001290 LiPF6 Inorganic materials 0.000 claims description 8
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 claims description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 239000011877 solvent mixture Substances 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- HHBZZTKMMLDNDN-UHFFFAOYSA-N 2-butan-2-yloxybutane Chemical compound CCC(C)OC(C)CC HHBZZTKMMLDNDN-UHFFFAOYSA-N 0.000 claims description 4
- SZNYYWIUQFZLLT-UHFFFAOYSA-N 2-methyl-1-(2-methylpropoxy)propane Chemical compound CC(C)COCC(C)C SZNYYWIUQFZLLT-UHFFFAOYSA-N 0.000 claims description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 claims description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 150000004292 cyclic ethers Chemical class 0.000 claims description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- NUMQCACRALPSHD-UHFFFAOYSA-N tert-butyl ethyl ether Chemical compound CCOC(C)(C)C NUMQCACRALPSHD-UHFFFAOYSA-N 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 3
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 3
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 3
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 claims description 2
- PZHIWRCQKBBTOW-UHFFFAOYSA-N 1-ethoxybutane Chemical compound CCCCOCC PZHIWRCQKBBTOW-UHFFFAOYSA-N 0.000 claims description 2
- NVJUHMXYKCUMQA-UHFFFAOYSA-N 1-ethoxypropane Chemical compound CCCOCC NVJUHMXYKCUMQA-UHFFFAOYSA-N 0.000 claims description 2
- CXBDYQVECUFKRK-UHFFFAOYSA-N 1-methoxybutane Chemical compound CCCCOC CXBDYQVECUFKRK-UHFFFAOYSA-N 0.000 claims description 2
- RMGHERXMTMUMMV-UHFFFAOYSA-N 2-methoxypropane Chemical compound COC(C)C RMGHERXMTMUMMV-UHFFFAOYSA-N 0.000 claims description 2
- QJMYXHKGEGNLED-UHFFFAOYSA-N 5-(2-hydroxyethylamino)-1h-pyrimidine-2,4-dione Chemical compound OCCNC1=CNC(=O)NC1=O QJMYXHKGEGNLED-UHFFFAOYSA-N 0.000 claims description 2
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- 239000005751 Copper oxide Substances 0.000 claims description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 2
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 claims description 2
- 229910015044 LiB Inorganic materials 0.000 claims description 2
- 229910013375 LiC Inorganic materials 0.000 claims description 2
- 229910000552 LiCF3SO3 Inorganic materials 0.000 claims description 2
- 229910010937 LiGaCl4 Inorganic materials 0.000 claims description 2
- 229910012423 LiSO3F Inorganic materials 0.000 claims description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 2
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 claims description 2
- YALCWJZSJOMTCG-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[V+5].[Cu++].[Ag+] Chemical compound [O--].[O--].[O--].[O--].[V+5].[Cu++].[Ag+] YALCWJZSJOMTCG-UHFFFAOYSA-N 0.000 claims description 2
- JKLVRIRNLLAISP-UHFFFAOYSA-N [O-2].[V+5].[Cu+2] Chemical compound [O-2].[V+5].[Cu+2] JKLVRIRNLLAISP-UHFFFAOYSA-N 0.000 claims description 2
- 239000006230 acetylene black Substances 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 2
- NFMAZVUSKIJEIH-UHFFFAOYSA-N bis(sulfanylidene)iron Chemical compound S=[Fe]=S NFMAZVUSKIJEIH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910000431 copper oxide Inorganic materials 0.000 claims description 2
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 claims description 2
- 150000003950 cyclic amides Chemical class 0.000 claims description 2
- 150000005676 cyclic carbonates Chemical class 0.000 claims description 2
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 claims description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 2
- 229940113088 dimethylacetamide Drugs 0.000 claims description 2
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 claims description 2
- 150000002148 esters Chemical class 0.000 claims description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 2
- 229910000339 iron disulfide Inorganic materials 0.000 claims description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 claims description 2
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims description 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims description 2
- 229910001537 lithium tetrachloroaluminate Inorganic materials 0.000 claims description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 claims description 2
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 claims description 2
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 claims description 2
- 238000000034 method Methods 0.000 claims description 2
- VNKYTQGIUYNRMY-UHFFFAOYSA-N methoxypropane Chemical compound CCCOC VNKYTQGIUYNRMY-UHFFFAOYSA-N 0.000 claims description 2
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 claims description 2
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 claims description 2
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 2
- 239000011159 matrix material Substances 0.000 claims 2
- 239000011347 resin Substances 0.000 claims 2
- 229920005989 resin Polymers 0.000 claims 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- 239000000654 additive Substances 0.000 claims 1
- 230000000996 additive effect Effects 0.000 claims 1
- 239000002482 conductive additive Substances 0.000 claims 1
- 239000004020 conductor Substances 0.000 claims 1
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 claims 1
- 230000008961 swelling Effects 0.000 abstract description 10
- 230000003247 decreasing effect Effects 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 74
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 9
- 239000010406 cathode material Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 230000017525 heat dissipation Effects 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 239000010405 anode material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 206010011906 Death Diseases 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003487 electrochemical reaction Methods 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 229910052976 metal sulfide Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910016390 CuxAgyV2Oz Inorganic materials 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000004811 fluoropolymer Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- GEWWCWZGHNIUBW-UHFFFAOYSA-N 1-(4-nitrophenyl)propan-2-one Chemical compound CC(=O)CC1=CC=C([N+]([O-])=O)C=C1 GEWWCWZGHNIUBW-UHFFFAOYSA-N 0.000 description 1
- 229910017656 Ag2V4O11 Inorganic materials 0.000 description 1
- 229910018075 AgxV2Oy Inorganic materials 0.000 description 1
- 229920013683 Celanese Polymers 0.000 description 1
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 1
- 229910017646 Cu0.16Ag0.67V2Oz Inorganic materials 0.000 description 1
- 229910017651 Cu0.5Ag0.5V2Oz Inorganic materials 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910007857 Li-Al Inorganic materials 0.000 description 1
- 229910013406 LiN(SO2CF3)2 Inorganic materials 0.000 description 1
- 229910008447 Li—Al Inorganic materials 0.000 description 1
- 229910008290 Li—B Inorganic materials 0.000 description 1
- 229910006742 Li—Si—B Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- XYDQMRVDDPZFMM-UHFFFAOYSA-N [Ag+2] Chemical compound [Ag+2] XYDQMRVDDPZFMM-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910000108 silver(I,III) oxide Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/164—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
- H01M2300/004—Three solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
Definitions
- the present invention relates to the conversion of chemical energy to electrical energy, and more particularly, to a nonaqueous electrolyte electrochemical cell.
- the nonaqueous electrolyte comprises a ternary solvent system preferably including a linear ether solvent mixed with a high permittivity solvent and a low viscosity solvent.
- nonaqueous organic electrolytes suitable for use with alkali metal electrodes are composed of an ion-forming salt, preferably an alkali metal salt with the alkali metal of the salt similar to the alkali metal comprising the electrode, dissolved in a solvent system comprising either a single organic solvent or a mixture of organic solvents.
- a general requirement of nonaqueous organic electrolytes is their stability toward both the anode and the cathode materials.
- the use of a highly conductive electrolyte is especially important. To achieve high electrolyte conductivity, the combination of two solvents, one with a high dielectric constant and one with a low viscosity, is generally used.
- Typical highly conductive and stable electrolytes include propylene carbonate (PC) and 1,2-dimethoxyethane (DME).
- Propylene carbonate has a relatively high dielectric constant of about 64 and is preferably present in conventional electrolytes in an amount of about 10 to 50 volume percent, more preferably about 20 to 30 volume percent. The remainder of the conventional solvent mixture is typically 1,2-dimethoxyethane which functions as a relatively low viscosity solvent.
- a preferred electrolyte according to the prior art is 1.0M or 1.2M LiAsF 6 in a 50:50 mixture of, by volume, propylene carbonate and 1,2-dimethoxyethane, which has a conductivity of about 17.3 mS. This electrolyte is widely used in the battery industry and its successful application in a high rate, pulse dischargeable alkali metal/mixed metal oxide defibrillator battery is one of the best examples.
- electrolytes with improved conductivity In order to minimize the internal resistance during high current density discharge, an electrolyte with improved conductivity over that shown by the prior art electrolytes is desired.
- electrolytes with improved conductivity > 17.3 mS
- electrolytes with improved conductivity are not suitable for high rate, pulse discharge applications, i.e., for use in implantable medical devices such as a cardiac defibrillator and the like, due to various unfavorable characteristics. These include instability toward the anode, instability toward the cathode, or instability toward both electrodes, poor homogeneity, unacceptable voltage delay, high rate of self discharge and unacceptable cell swelling.
- the present improved nonaqueous electrolyte for an alkali metal electrochemical cell comprises a ternary solvent system of at least one high permittivity solvent such as propylene carbonate, a low viscosity solvent such as 1,2-dimethoxyethane and a linear ether such as, for example, diisopropyl ether (DIPE).
- This improved electrolyte not only has high conductivity (> 17.3 mS), but also exhibits good performance characteristics in all other noted categories.
- U.S. Patent No. 4,952,330 to Leger et al. discloses an alkali metal cell activated with a ternary solvent nonaqueous electrolyte comprising a linear aliphatic ether, a polymerizable component of a cyclic ether, and an alkylene carbonate. While DME and DIPE are both listed as suitable linear aliphatic ethers, this patent specifically teaches use of only one linear aliphatic ether in combination with propylene carbonate as the alkylene carbonate and a cyclic ether such as 1,3-dioxolane. This latter compound is stated as forming a protective film on the anode through reduction of the solvent to suppress the formation of lithium dendrite growth.
- the object of the present invention is, therefore, to improve the performance of an alkali metal electrochemical cell such as a lithium cell by providing an improved nonaqueous electrolyte with high conductivity and good stability.
- a further object of this invention is to provide such an electrolyte in defibrillator batteries to improve the cell capacity under high current pulse discharge applications and at the same time to minimize the cell swelling characteristics typically associated with such power sources.
- the preferred anode is lithium metal and the preferred cathode is a transition metal oxide for example, silver vanadium oxide, Ag 2 V 4 O 11 (SVO) or copper silver vanadium oxide (CSVO).
- the preferred electrolytes include 1.0M to 1.4M LiAsF 6 or LiPF 6 as an ion-forming alkali metal salt dissolved in solvents containing at least one high permittivity solvent such as propylene carbonate and at least one low viscosity solvent, preferably a linear ether such as, diisopropyl ether (DIPE) combined with a second low viscosity solvent such as 1,2-dimethoxyethane.
- DIPE diisopropyl ether
- Fig. 1 is a graph showing comparable cell thickness versus potential for lithium/silver vanadium oxide cells activated with various nonaqueous electrolytes according to the prior art and the present invention.
- the electrochemical cell of the present invention comprises an anode of a metal selected from Groups IA, IIA or IIIB of the Periodic Table of the Elements, including lithium, sodium, potassium, etc., and their alloys and intermetallic compounds including, for example, Li-Si, Li-Al, Li-B and Li-Si-B alloys and intermetallic compounds.
- the preferred anode comprises lithium, and the more preferred anode comprises a lithium alloy such as a lithium-aluminum alloy. The greater the amount of aluminum present by weight in the alloy, the lower the energy density of the cell.
- the form of the anode may vary, but preferably the anode is a thin metal sheet or foil of the anode metal, pressed or rolled on a metallic anode current collector, i.e., preferably comprising nickel, to form an anode component.
- the anode component has an extended tab or lead of the same material as the anode current collector, i.e., preferably nickel, integrally formed therewith such as by welding and contacted by a weld to a cell case of conductive metal in a case-negative electrical configuration.
- the anode may be formed in some other geometry, such as a bobbin shape, cylinder or pellet to allow an alternate low surface cell design.
- the cathode is preferably of a solid material and the electrochemical reaction at the cathode involves conversion of ions which migrate from the anode to the cathode in atomic or molecular forms.
- the solid cathode material may comprise a metal element, a metal oxide, a mixed metal oxide and a metal sulfide, and combinations thereof.
- the metal oxide, the mixed metal oxide and the metal sulfide can be formed by the chemical addition, reaction, or otherwise intimate contact of various metal oxides, metal sulfides and/or metal elements, preferably during thermal treatment, sol-gel formation, chemical vapor deposition or hydrothermal synthesis in mixed states.
- the active materials thereby produced contain metals, oxides and sulfides of Groups IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIII, which includes the noble metals and/or other oxide and sulfide compounds.
- One preferred mixed metal oxide has the general formula SM x V 2 O y wherein SM is a metal selected from Groups IB to VIIB and VIII of the Periodic Table of Elements, wherein x is about 0.30 to 2.0 and y is about 4.5 to 6.0 in the general formula.
- SVO silver vanadium oxide
- Another preferred composite cathode material includes V 2 O Z wherein z ⁇ 5 combined with Ag 2 O with silver in either the silver(II), silver(I) or silver(0) oxidation state and CuO with copper in either the copper(II), copper(I) or copper(0) oxidation state to provide the mixed metal oxide having the general formula Cu x Ag y V 2 O z , (CSVO).
- this composite cathode active material may be described as a metal oxide-metal oxide-metal oxide, a metal-metal oxide-metal oxide, or a metal-metal-metal oxide and the range of material composition found for Cu x Ag y V 2 O z is preferably about 0.01 ⁇ x ⁇ 1.0, about 0.01 ⁇ y ⁇ 1.0 and about 5.01 ⁇ z ⁇ 6.5.
- Typical forms of CSVO are Cu 0.16 Ag 0.67 V 2 O z with z being about 5.5 and Cu 0.5 Ag 0.5 V 2 O z with z being about 5.75.
- the oxygen content is designated by z since the exact stoichiometric proportion of oxygen in CSVO can vary depending on whether the cathode material is prepared in an oxidizing atmosphere such as air or oxygen, or in an inert atmosphere such as argon, nitrogen and helium.
- cathode active materials useful with the present invention include manganese dioxide, lithium cobalt oxide, lithium nickel oxide, copper oxide, titanium disulfide, copper sulfide, iron sulfide, iron disulfide, copper vanadium oxide, fluorinated carbon, and mixtures thereof.
- the cathode comprises from about 80 to about 99 weight percent of the cathode active material.
- Cathode active materials prepared as described above are preferably mixed with a binder material such as a powdered fluoro-polymer, more preferably powdered polytetrafluoroethylene or powdered polyvinylidene fluoride present at about 1 to about 5 weight percent of the cathode mixture. Further, up to about 10 weight percent of a conductive diluent is preferably added to the cathode mixture to improve conductivity. Suitable materials for this purpose include acetylene black, carbon black and/or graphite or a metallic powder such as powdered nickel, aluminum, titanium and stainless steel.
- the preferred cathode active mixture thus includes a powdered fluoro-polymer binder present at about 3 weight percent, a conductive diluent present at about 3 weight percent and about 94 weight percent of the cathode active material.
- the cathode active mixture may be in the form of one or more plates operatively associated with at least one or more plates of anode material, or in the form of a strip wound with a corresponding strip of anode material in a structure similar to a "jellyroll".
- the cathode may be separated from the Group IA, IIA or IIIB anode material by a suitable separator material.
- the separator is of electrically insulative material, and the separator material also is chemically unreactive with the anode and cathode active materials and both chemically unreactive with and insoluble in the electrolyte.
- the separator material has a degree of porosity sufficient to allow flow therethrough of the electrolyte during the electrochemical reaction of the electrochemical cell.
- Illustrative separator materials include fabrics woven from fluoropolymeric fibers including polyvinylidene fluoride, polyethylenetetrafluoroethylene, and polyethylenechlorotrifluoroethylene used either alone or laminated with a fluoropolymeric microporous film, non-woven glass, polypropylene, polyethylene, glass fiber materials, ceramics, polytetrafluoroethylene membrane commercially available under the designation ZITEX (Chemplast Inc.), polypropylene membrane commercially available under the designation CELGARD (Celanese Plastic Company, Inc.) and a membrane commercially available under the designation DEXIGLAS (C.H. Dexter, Div., Dexter Corp.).
- fluoropolymeric fibers including polyvinylidene fluoride, polyethylenetetrafluoroethylene, and polyethylenechlorotrifluoroethylene used either alone or laminated with a fluoropolymeric microporous film, non-woven glass, polypropylene, polyethylene, glass
- the electrochemical cell of the present invention further includes a nonaqueous, ionically conductive electrolyte which serves as a medium for migration of ions between the anode and the cathode electrodes during the electrochemical reactions of the cell.
- the electrochemical reaction at the electrodes involves conversion of ions in atomic or molecular forms which migrate from the anode to the cathode.
- nonaqueous electrolytes suitable for the present invention are substantially inert to the anode and cathode materials, and they exhibit those physical properties necessary for ionic transport, namely, low viscosity, low surface tension and wettability.
- a suitable electrolyte has an inorganic, ionically conductive salt dissolved in a nonaqueous solvent. More preferably, the electrolyte includes an ionizable alkali metal salt dissolved in a mixture of aprotic organic solvents comprising a first, low viscosity solvent, which is preferably a linear ether, a second low viscosity solvent and a high permittivity solvent.
- aprotic organic solvents comprising a first, low viscosity solvent, which is preferably a linear ether, a second low viscosity solvent and a high permittivity solvent.
- the inorganic, ionically conductive salt serves as the vehicle for migration of the anode ions to intercalate into the cathode active material, and has the general formula MM'F 6 or MM'F 4 wherein M is an alkali metal-similar to the alkali metal comprising the anode and M' is an element selected from the group consisting of phosphorous, arsenic, antimony and boron.
- salts yielding M'F 6 are: hexafluorophosphate (PF 6 ), hexafluoroarsenate (AsF 6 ) and hexafluoroantimonate (SbF 6 ) while tetrafluoroborate (BF 4 ) is exemplary of salts yielding M'F 4 .
- the alkali metal salt comprises lithium hexafluorophosphate, lithium hexafluoroarsenate, lithium hexafluoroantimonate or lithium tetrafluoroborate dissolved in a suitable ternary solvent mixture.
- the corresponding sodium or potassium salts may be used.
- inorganic salts useful with the present invention include LiClO 4 , LiAlCl 4 , LiGaCl 4 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 CF 3 ) 2 , LiSO 3 F, LiB(C 6 H 5 ) 4 and LiCF 3 SO 3 , and mixtures thereof.
- Low viscosity solvents useful with the present invention include esters, linear and cyclic ethers and dialkyl carbonates such as tetrahydrofuran (THF), methyl acetate (MA), diglyme, triglyme, tetraglyme, dimethyl carbonate (DMC), diethyl carbonate, 1,2-dimethoxyethane (DME) and mixtures thereof, and useful high permittivity solvents include cyclic carbonates, cyclic esters and cyclic amides such as propylene carbonate (PC), ethylene carbonate (EC), acetonitrile, dimethyl sulfoxide, dimethyl formamide, dimethyl acetamide, ⁇ -butyrolactone (GBL) and N-methyl-pyrolidinone (NMP) and mixtures thereof.
- PC propylene carbonate
- EC ethylene carbonate
- NMP N-methyl-pyrolidinone
- electrolyte solvent decomposition contributes to alkali metal/mixed metal oxide cell swelling.
- Li/SVO lithium/silver vanadium oxide
- PC:DME lithium/silver vanadium oxide
- propene has been found to be the major component of the gaseous products. It is believed that propylene carbonate in the electrolyte is catalytically decomposed to form propene and lithium carbonate according to the following reaction:
- propene formation is believed to be proportional to the PC concentration.
- propene formation can be reduced during the discharge of an alkali metal/mixed metal oxide electrochemical cell by lowering the percentage of propylene carbonate in the electrolyte.
- the present invention is directed to partially replacing either PC or DME with a second, low viscosity solvent such as a simple, linear ether.
- Linear ethers useful as the second, low viscosity solvent in the electrolyte of the present invention include diethyl ether, ethylpropyl ether, ethyl isopropyl ether, ethyl butyl ether, ethyl tert-butyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diisobutyl ether, disec-butyl ether, methylpropyl ether, methyl iso-propyl ether, methylbutyl ether, methy secbutyl ether and methyl tert-butyl ether, and mixtures thereof.
- the most preferred linear ether is diisopropyl ether (DIPE).
- the present invention is, therefore, generally directed to at least partially replacing PC, DME or both PC and DME with a second, low viscosity solvent, preferably a linear ether, the most preferred linear ether being diisopropyl ether, in electrolytes useful for activating alkali metal cells to thereby improve the conductivity of the new electrolyte and concomitantly the cell discharge performance.
- a second, low viscosity solvent preferably a linear ether, the most preferred linear ether being diisopropyl ether
- propylene carbonate is preferably present in the electrolyte at about 20 to about 50 percent, by volume
- diisopropyl ether as the preferred second, low viscosity solvent is preferably present at about 5 percent to about 20 percent, by volume, remainder dimethoxyethane.
- the beneficial effects of DIPE are not pronounced enough to aid in reducing the cell swelling while maintaining high conductivity.
- diisopropyl ether reaches its limit of miscibility, and homogeneity is important in any solvent system.
- the anode is preferably lithium metal and the preferred electrolyte is 1.0M to 1.4M LiAsF 6 or LiPF 6 dissolved in a ternary aprotic solvent comprising propylene carbonate (PC), dimethoxyethane (DME) and diisopropyl ether (DIPE) in a respective 30:55:15 volume percent mixture.
- PC propylene carbonate
- DME dimethoxyethane
- DIPE diisopropyl ether
- the ternary solvent electrolytes of the present invention are also stable toward the alkali metal anode and the solid cathode materials as evidenced by heat dissipation measurements.
- the preferred form of the electrochemical cell of the present invention is a case-negative design wherein the anode/cathode couple is inserted into a conductive metal casing such that the casing is connected to the anode current collector in a case-negative configuration, as is well known to those skilled in the art.
- a preferred material for the casing is titanium although stainless steel, mild steel, nickel-plated mild steel and aluminum are also suitable.
- the casing header comprises a metallic lid having an opening to accommodate the glass-to-metal seal/terminal pin feedthrough for the cathode electrode.
- the anode electrode is preferably connected to the case or the lid. An additional opening is provided for electrolyte filling.
- the casing header comprises elements having compatibility with the other components of the electrochemical cell and is resistant to corrosion.
- the cell is thereafter filled with the electrolyte solution described hereinabove and hermetically sealed such as by close-welding a stainless steel plug over the fill hole, but not limited thereto.
- the cell of the present invention can also be constructed in a case-positive design.
- nonaqueous solvent mixtures comprising propylene carbonate (PC), 1,2-dimethoxyethane (DME) and a linear ether, particularly diisopropyl ether (DIPE), were mixed as listed in Table 1.
- PC propylene carbonate
- DME 1,2-dimethoxyethane
- DIPE diisopropyl ether
- the ternary solvent electrolytes according to the present invention i.e., electrolytes 3, 4, 7 and 8 exhibited similar or improved conductivities in comparison to conventional, binary solvent electrolytes 1 and 5. The conductivity of these electrolytes was determined at 37°C.
- Electrolyte Conductivity Electrolyte [LiAsF 6 ] M [LiPF 6 ] M Solvent Ratio PC:DME:DIPE Conductivity (mmho/cm) 1 1.2 50 : 50 : 0 18.2 2 1.0 50 : 35 : 15 16.7 3 1.2 30 : 55 : 15 18.3 4 1.2 20 : 65 : 15 18.3 5 1.0 50 : 50 : 0 17.3 6 1.0 50 : 35 : 15 16.4 7 1.2 30 : 55 : 15 17.9 8 1.2 20 : 65 : 15 18.2
- a test group of cells was constructed, each having lithium anode material pressed on a nickel current collector screen and silver vanadium oxide cathode material pressed on an aluminum current collector screen.
- a prismatic cell stack assembly configuration with two layers of microporous membrane propylene separator sandwiched between the anode and the cathode was prepared.
- the electrode assembly was then hermetically sealed in a stainless steel casing in a case-negative configuration and the cells were activated with various ones of the electrolytes 1 to 8 set forth in Table 1.
- electrolyte 1 some of the cells in this example, designated as reference cells, were activated with electrolyte 1 and other cells were activated with one of the ternary electrolytes according to the present invention, specifically electrolyte 2 (1.0M LiPF 6 in a 50:35:15 percent mixture of, by volume, PC:DME:DIPE) or electrolyte 3 (1.2M LiPF 6 in a 30:55:15 percent mixture of, by volume, PC:DME:DIPE).
- electrolyte 2 1.0M LiPF 6 in a 50:35:15 percent mixture of, by volume, PC:DME:DIPE
- electrolyte 3 1.2M LiPF 6 in a 30:55:15 percent mixture of, by volume, PC:DME:DIPE
- the cells in this example were discharged by applying a pulse train every thirty minutes.
- the pulse train consisted of four 10 second pulses (23.2 mA/cm 2 ) with 15 second rests between each pulse.
- the delivered capacities to several voltage limits are also listed in Table 2.
- Cell Discharge Capacity and Heat Dissipation Electrolyte Heat Dissipation ( ⁇ Watt) Capacity (mAh) at Cut Off 2.0V 1.7V 1.5V 1 17.7 1544 1751 1843 2 14.2 1424 1731 1838 3 14.6 1542 1776 1872
- curve 10 was constructed from the average discharge of the cells activated with the prior art electrolyte 1 comprising a 50:50 percent mixture of, by volume, PC:DME
- curve 12 was constructed from the average discharge of the cells activated with the electrolyte according to the present invention comprising a 50:35:15 percent mixture of, by volume, PC:DME:DIPE
- curve 14 was constructed from the average discharge of the cells activated with the electrolyte according to the present invention comprising a 30:55:15 percent mixture of, by volume, PC:DME:DIPE.
- Electrolytes 4 and 8 were not tested because while their conductivity was clearly acceptable, 20 volume percent of propylene carbonate results in an electrolyte having borderline homogeneity.
- Hermetically sealed Li/SVO defibrillator batteries were constructed similar to those described in Example II and were activated with electrolytes 1 and 3, respectively. After being subjected to the pre-discharge protocol consisting of the burn-in discharge followed by the acceptance pulse testing described in Example II, these cells were discharged by applying pulse trains at 37°C once every 8 weeks over a 17.4 Kohm background load. The pulse trains consisted of four 10 second pulses (23.2 mA/cm 2 ) with 15 second rests between each pulse.
- Pprel indicates the voltage before the application of the pulse train
- P1min indicates the minimum voltage during the first pulse of the pulse train
- P4min indicates the minimum voltage of the fourth pulse of the pulse train
- P1min - P4min is calculated from the minimum voltage of the first pulse minus the minimum voltage of the fourth pulse of the pulse train.
- the pulse minimum potentials are higher than those of the control cells activated with electrolyte 1 (1.2M LiPF 6 in a 50:50 percent mixture of, by volume, PC:DME).
- cells with electrolyte 3 also had a lower polarization voltage drop as indicated by the pulse 1 minimum minus the pulse 4 minimum (P1min - P4min) presented in the last column of Table 3.
- titanium cathode screens were used in this example.
- the hermetically sealed cells in this example were assembled in a similar manner as the cells described in Example II except that some cells, designated as reference cells, were activated with electrolyte 5 (1.0M LiAsF 6 in a 50:50 percent mixture of, by volume, PC:DME) while the remaining test cells were activated with electrolyte 7 (1.2M LiAsF 6 in a 30:55:15 percent mixture of, by volume, PC:DME:DIPE).
- the cells in this example were discharged by applying pulse trains at 37°C over 11.0 Kohm and 17.4 Kohm background loads, respectively.
- the pulse trains consisted of four 10 second pulses (18.4 mA/cm 2 ) with 15 second rests between each pulse.
- the resulting pulse voltages are listed in Table 4.
- ternary solvents according to the present invention containing a high permittivity solvent such as PC, a first, low viscosity solvent such as DME and a second, low viscosity solvent comprising a linear ether present several advantages over the conventional PC/DME binary solvent system. These include stability in the form of lower heat dissipation (Table 2), decreased cell swelling at EOL (Fig. 1), higher pulse minimum voltage (Tables 3 and 4), and lower polarization voltage drop during pulse discharging (Tables 3 and 4).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Primary Cells (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
Electrolyte Conductivity | ||||
Electrolyte | [LiAsF6] M | [LiPF6] M | Solvent Ratio PC:DME:DIPE | Conductivity (mmho/cm) |
1 | 1.2 | 50 : 50 : 0 | 18.2 | |
2 | 1.0 | 50 : 35 : 15 | 16.7 | |
3 | 1.2 | 30 : 55 : 15 | 18.3 | |
4 | 1.2 | 20 : 65 : 15 | 18.3 | |
5 | 1.0 | 50 : 50 : 0 | 17.3 | |
6 | 1.0 | 50 : 35 : 15 | 16.4 | |
7 | 1.2 | 30 : 55 : 15 | 17.9 | |
8 | 1.2 | 20 : 65 : 15 | 18.2 |
Cell Discharge Capacity and Heat Dissipation | ||||
Electrolyte | Heat Dissipation (µ Watt) | Capacity (mAh) at Cut Off | ||
2.0V | 1.7V | 1.5V | ||
1 | 17.7 | 1544 | 1751 | 1843 |
2 | 14.2 | 1424 | 1731 | 1838 |
3 | 14.6 | 1542 | 1776 | 1872 |
Cell Discharge Potentials | |||||
Pulse Train | Electrolyte | Ppre1 (V) | P1min (V) | P4min (V) | P1min-P4min |
1 | 1 | 3.238 | 2.713 | 2.565 | 0.148 |
3 | 3.241 | 2.718 | 2.593 | 0.125 | |
2 | 1 | 3.184 | 2.633 | 2.476 | 0.157 |
3 | 3.188 | 2.640 | 2.507 | 0.133 | |
3 | 1 | 2.980 | 2.504 | 2.388 | 0.116 |
3 | 2.985 | 2.517 | 2.417 | 0.100 | |
4 | 1 | 2.740 | 2.357 | 2.297 | 0.060 |
3 | 2.740 | 2.368 | 2.317 | 0.051 | |
5 | 1 | 2.573 | 2.211 | 2.195 | 0.016 |
3 | 2.573 | 2.240 | 2.224 | 0.016 | |
6 | 1 | 2.529 | 2.116 | 2.088 | 0.028 |
3 | 2.529 | 2.162 | 2.134 | 0.028 |
Cell Discharge Potentials* | |||||
Load (Kohm) | Electrolyte | Ppre1 (V) | P1min (V) | P4min (V) | P1min-P4min |
11.0 | 5 | 3.217 | 2.622 | 2.584 | 0.038 |
7 | 3.217 | 2.657 | 2.626 | 0.031 | |
17.4b | 5 | 3.225 | 2.654 | 2.608 | 0.046 |
7 | 3.225 | 2.672 | 2.643 | 0.029 |
Claims (23)
- An electrolyte solution for use in an electrochemical cell comprising a ternary, nonaqueous solvent mixture comprising a linear ether as a first, low viscosity solvent, a second, low viscosity solvent selected from an ester, a second linear ether, a cyclic ether, a dialkyl carbonate or mixtures thereof and a high permittivity solvent selected from a cyclic carbonate, a cyclic ester, a cyclic amide and mixtures thereof.
- The electrolyte solution of Claim 1 wherein the first, low viscosity solvent is present in the solvent mixture at about 5 to 20 volume percent.
- The electrolyte solution of Claim 1 or 2 wherein the first, linear ether is selected from diethyl ether, ethylpropyl ether, ethyl isopropyl ether, ethylbutyl ether, ethyl tert-butyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diisobutyl ether, disec-butyl ether, methylpropyl ether, methyl isopropyl ether, methylbutyl ether, methy secbutyl ether, methyl tert-butyl ether, and mixtures thereof.
- The electroylte solution of any one of Claims 1 to 3 wherein the electrolyte includes an alkali metal salt dissolved therein.
- The electrolyte solution of Claim 4 wherein the alkali metal salt has the general formula MM1F6 or MM1F4 and wherein M is an alkali metal and M1 is an element selected from phosphorous, arsenic, antimony and boron.
- The electroylte solution of Claim 4 or 5 wherein the alkali metal salt is selected from LiPF6, LiAsF6, LiSbF6, LiBF4, LiClO4, LiAlCl4, LiGaCl4, LiC(SO2CF3)3, LiCF3SO3, LiSO3F, LiB(C6H5)4 and mixtures thereof.
- The electrolyte solution of any one of Claims 1 to 6 wherein the second, low viscosity solvent is selected from 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, methyl acetate, tetrahydrofuran, diglyme, triglyme, tetraglyme, and mixtures thereof.
- The electrolyte solution of any one of Claims 1 to 7 wherein the high permittivity solvent is selected from propylene carbonate, ethylene carbonate, γ-butyrolactone, N-methyl-pyrrolidinone, dimethyl sulfoxide, acetonitrile, dimethyl formamide, dimethyl acetamide and mixtures thereof.
- An electrolyte solution comprising propylene carbonate, dimethoxyethane and diisopropyl ether.
- The electrolyte solution of Claim 9 wherein the propylene carbonate, dimethoxyethane and diisopropyl ether are present in a ratio of about 3:5.5:1.5, by volume, respectively.
- An electrochemical cell, which comprises:a. an anode comprising an alkali metal;b. a cathode comprising a cathode active material; andc. an electrolyte solution according to any one of Claims 1 to 10 said solution activating the anode and the cathode.
- The electrochemical cell of Claim 11 wherein the anode comprises either lithium or a lithium-aluminum alloy.
- The electrochemical cell of Claim 11 or 12 wherein the cathode is comprised of the cathode active material selected from silver vanadium oxide, copper silver vanadium oxide, manganese dioxide, lithium cobalt oxide, lithium nickel oxide, copper oxide, copper sulfide, iron sulfide, iron disulfide, fluorinated carbon, titanium disulfide, copper vanadium oxide and mixtures thereof.
- The electrochemical cell of any one of Claims 11 to 13 wherein the cathode comprises from about 80 to about 99 weight percent of the cathode active material.
- The electrochemical cell of any one of Claims 11 to 14 wherein the cathode further comprises a binder material and a conductor additive.
- The electrochemical cell of Claim 15 wherein the binder material is a fluoro-resin powder.
- The electrochemical cell of Claim 15 wherein the conductive additive is selected from carbon, graphite powder, acetylene black and metallic powder selected from titanium, aluminum, nickel, stainless steel and mixtures thereof.
- The electrochemical cell of any one of Claims 11 to 17 wherein the cathode is comprised of about 0 to 3 weight percent carbon, about 1 to 5 weight percent of a powder fluoro-resin and about 94 weight percent of the cathode active material.
- An electrochemical cell according to any one of Claims 11 to 18 wherein the cathode includes a mixed metal oxide comprised of vanadium oxide and a second metal "SM" selected from Groups IB, IIB, IIIB, IVB, VIB, VIIB and VIII of the Periodic Table of the Elements, the mixed oxide matrix having the general formula SMxV2Oy wherein 0.3 ≤ x ≤ 2.0 and 4.5 ≤ y ≤ 6.0.
- An electrochemical cell, according to any one of Claims 11 to 18 wherein the cathode includes a mixed metal oxide comprised of vanadium oxide and a mixture of copper and a second metal "SM" selected from Groups IB, IIB, IIIB, IVB, VIB, VIIB, and VIII of the Periodic Table of the Elements, the mixed oxide matrix having the general formula CuxSMyV2Oz wherein 0.01 ≤ x ≤ 1.0, 0.01 ≤ y ≤ 1.0 and 5.01 ≤ z ≤ 6.5.
- The electrochemical cell of Claim 20 wherein x ≤ y.
- An implantable medical device including an electrochemical cell in accordance with any one of Claims 11 to 21.
- A method of providing an electrochemical cell activated with a nonaqueous electrolyte, comprising the steps of:a. providing a casing;b. providing an anode comprising an alkali metal;c. providing a solid cathode comprising a cathode active material, wherein the anode and the cathode are disposed inside the casing in electrical association with each other; andd. activating the anode and the cathode with the nonaqueous electrolyte, of any one of Claims 1 to 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US710382 | 1996-09-16 | ||
US08/710,382 US5776635A (en) | 1996-09-16 | 1996-09-16 | Ternary solvent nonaqueous organic electrolyte for alkali metal electrochemical cells |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0829911A2 true EP0829911A2 (en) | 1998-03-18 |
EP0829911A3 EP0829911A3 (en) | 1999-03-17 |
EP0829911B1 EP0829911B1 (en) | 2003-03-12 |
Family
ID=24853817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97306820A Expired - Lifetime EP0829911B1 (en) | 1996-09-16 | 1997-09-03 | Ternary solvent nonaqueous organic electrolyte for alkali metal electrochemical cells |
Country Status (5)
Country | Link |
---|---|
US (1) | US5776635A (en) |
EP (1) | EP0829911B1 (en) |
JP (1) | JP4105263B2 (en) |
AU (1) | AU709614B2 (en) |
DE (1) | DE69719644T2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0971432A1 (en) * | 1998-07-09 | 2000-01-12 | Wilson Greatbatch Ltd. | Inorganic and organic nitrate additives for non aqueous electrolyte in alkali metal electrochemical cells |
EP0975038A2 (en) * | 1998-07-22 | 2000-01-26 | Wilson Greatbatch Ltd. | Current collector with chemically machined design |
US6136477A (en) * | 1998-10-22 | 2000-10-24 | Wilson Greatbatch Ltd. | Nitrate additives for nonaqueous electrolyte rechargeable cells |
US6562515B2 (en) | 2001-03-21 | 2003-05-13 | Wilson Greatbatch Ltd. | Electrochemical cell having an electrode with a nitrate additive in the electrode active mixture |
EP1315226A2 (en) * | 2001-11-05 | 2003-05-28 | Wilson Greatbatch Technologies, Inc. | Highly conductive and stable nonaqueous electrolyte for lithium electrochemical cells |
EP1696501A1 (en) * | 2005-02-28 | 2006-08-30 | Samsung SDI Co., Ltd. | Electrolyte for a lithium battery and lithium battery comprising the same |
WO2018224374A1 (en) * | 2017-06-09 | 2018-12-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Electrolyte for an alkali-sulfur battery, alkali-sulfur battery containing the electrolyte, and uses of the electrolyte |
US11961970B2 (en) | 2019-01-17 | 2024-04-16 | Sceye Sa | LiS battery with low solvating electrolyte |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6492064B1 (en) | 1998-06-04 | 2002-12-10 | California Institute Of Technology | Organic solvents, electrolytes, and lithium ion cells with good low temperature performance |
US7807300B2 (en) * | 2006-01-31 | 2010-10-05 | Medtronic, Inc. | Resistance-stabilizing additives for electrolyte |
US20020192546A1 (en) * | 2001-06-07 | 2002-12-19 | Zhenhua Mao | Multi-salt electrolyte for electrochemical applications |
US20100185264A1 (en) * | 2002-01-24 | 2010-07-22 | Greatbatch Ltd. | Method For Coating A Cathode Active Material With A Metal Oxide For Incorporation Into A Lithium Electrochemical Cell |
US20030138697A1 (en) * | 2002-01-24 | 2003-07-24 | Randolph Leising | Cathode active material coated with a metal oxide for incorporation into a lithium electrochemical cell |
US20040161671A1 (en) * | 2003-02-13 | 2004-08-19 | Medtronic, Inc. | Liquid electrolyte for an electrochemical cell |
AR045347A1 (en) | 2003-08-08 | 2005-10-26 | Rovcal Inc | HIGH CAPACITY ALKAL CELL |
JP2005141998A (en) * | 2003-11-05 | 2005-06-02 | Sony Corp | Lithium / iron disulfide primary battery |
AR047875A1 (en) | 2004-06-04 | 2006-03-01 | Rovcal Inc | ALKAL CELLS THAT PRESENT HIGH CAPACITY |
US20050271939A1 (en) * | 2004-06-07 | 2005-12-08 | Yang Xu | Novel polymer electrolyte for electrochemical power sources |
US7465521B2 (en) * | 2004-12-08 | 2008-12-16 | Greatbatch Ltd. | Nickel-based alloys as positive electrode support materials in electrochemical cells containing nonaqueous electrolytes |
US20070077488A1 (en) * | 2005-10-04 | 2007-04-05 | Kaimin Chen | Power capability of a cathode |
EP1989748B1 (en) * | 2006-01-17 | 2012-10-31 | Medtronic, Inc. | Implantable medical device battery |
US20070176151A1 (en) * | 2006-01-31 | 2007-08-02 | Kaimin Chen | Electrolyte additive for performance stability of batteries |
JP4963186B2 (en) | 2006-03-31 | 2012-06-27 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery |
JP5614432B2 (en) * | 2012-08-31 | 2014-10-29 | Tdk株式会社 | Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery |
DE102013201030A1 (en) * | 2013-01-23 | 2014-07-24 | Robert Bosch Gmbh | Electrolyte for lithium cell |
JP2015026587A (en) * | 2013-07-29 | 2015-02-05 | 富士フイルム株式会社 | Electrolyte for nonaqueous secondary battery, additive for nonaqueous secondary battery electrolyte, and nonaqueous secondary battery |
KR102050838B1 (en) | 2016-04-22 | 2019-12-03 | 주식회사 엘지화학 | Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof |
KR20180001997A (en) * | 2016-06-28 | 2018-01-05 | 주식회사 엘지화학 | Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof |
GB201720745D0 (en) * | 2017-12-13 | 2018-01-24 | Faradion Ltd | Non-aqueous electrolyte compositions |
CN110752362A (en) * | 2019-10-31 | 2020-02-04 | 贵州中伟资源循环产业发展有限公司 | Ternary precursor coated with magnesium and preparation method thereof |
KR102685521B1 (en) * | 2022-08-31 | 2024-07-16 | 주식회사 엘지에너지솔루션 | Electrolyte for lithium-sulfur battery and lithium-sulfur battery including the same |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3468716A (en) * | 1965-10-24 | 1969-09-23 | Electrochimica Corp | Organic electrolyte electrochemical system |
US3877983A (en) * | 1973-05-14 | 1975-04-15 | Du Pont | Thin film polymer-bonded cathode |
FR2378361A1 (en) * | 1977-01-19 | 1978-08-18 | Accumulateurs Fixes | ELECTROLYTES WITH ORGANIC SOLVENTS FOR SPECIFIC HIGH ENERGY ELECTROCHEMICAL GENERATORS |
US4252876A (en) * | 1979-07-02 | 1981-02-24 | Eic Corporation | Lithium battery |
JPS5987772A (en) * | 1982-11-10 | 1984-05-21 | Sanyo Electric Co Ltd | Organic electrolyte battery |
US4952330A (en) * | 1989-05-25 | 1990-08-28 | Eveready Battery Company, Inc. | Nonaqueous electrolyte |
EP0398689A2 (en) * | 1989-05-16 | 1990-11-22 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
EP0478379A2 (en) * | 1990-09-28 | 1992-04-01 | Kabushiki Kaisha Toshiba | A nonaqueous electrolyte secondary battery |
JPH0541244A (en) * | 1991-08-02 | 1993-02-19 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JPH06176769A (en) * | 1992-12-09 | 1994-06-24 | Hitachi Maxell Ltd | Organic electrolyte battery |
EP0618630A1 (en) * | 1993-03-17 | 1994-10-05 | Wilson Greatbatch Ltd. | Metaloxide composite-cathode material for high energy density batteries |
EP0689256A1 (en) * | 1994-06-21 | 1995-12-27 | Wilson Greatbatch Ltd. | Cathode material for nonaqueous electrochemical cells |
JPH0945339A (en) * | 1995-07-28 | 1997-02-14 | Sanyo Electric Co Ltd | Lithium battery |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4327166A (en) * | 1980-09-29 | 1982-04-27 | Union Carbide Corporation | Nonaqueous cell having a MNO2 /poly-carbon fluoride cathode |
US4399204A (en) * | 1981-06-30 | 1983-08-16 | Union Carbide Corporation | Solid cathode comprising a lead fluoride/tin fluoride compound |
US4385103A (en) * | 1981-09-29 | 1983-05-24 | Union Carbide Corporation | Nonaqueous cell having an antimony trisulfide cathode |
FR2550388B1 (en) * | 1983-08-03 | 1985-12-27 | Gipelec | POSITIVE ACTIVE MATERIAL FOR ELECTROCHEMICAL GENERATORS AND ELECTROCHEMICAL GENERATORS USING THE SAME |
JPH0789483B2 (en) * | 1984-05-07 | 1995-09-27 | 三洋化成工業株式会社 | Secondary battery |
US4913988A (en) * | 1987-06-11 | 1990-04-03 | Eveready Battery Company, Inc. | Li2 CO3 -Ca(OH)2 additive for cathodes in nonaqueous cells |
US4957833A (en) * | 1988-12-23 | 1990-09-18 | Bridgestone Corporation | Non-aqueous liquid electrolyte cell |
CA2055305C (en) * | 1990-11-17 | 2002-02-19 | Naoyuki Sugeno | Nonaqueous electrolyte secondary battery |
FR2677175B1 (en) * | 1991-05-31 | 1997-01-31 | Alsthom Cge Alcatel | RECHARGEABLE ELECTROCHEMICAL GENERATOR WITH LIQUID ELECTROLYTE AND LITHIUM / CARBON ANODE. |
US5246795A (en) * | 1991-07-31 | 1993-09-21 | Rayovac Corporation | High temperature lithium solid cathode electrochemical cells |
JP2643046B2 (en) * | 1991-12-27 | 1997-08-20 | シャープ株式会社 | Non-aqueous secondary battery |
US5192629A (en) * | 1992-04-21 | 1993-03-09 | Bell Communications Research, Inc. | High-voltage-stable electrolytes for Li1+x Mn2 O4 /carbon secondary batteries |
JP3238954B2 (en) * | 1992-09-25 | 2001-12-17 | 三洋電機株式会社 | Non-aqueous secondary battery |
US5478673A (en) * | 1992-10-29 | 1995-12-26 | Fuji Photo Film Co., Ltd. | Nonaqueous secondary battery |
US5296318A (en) * | 1993-03-05 | 1994-03-22 | Bell Communications Research, Inc. | Rechargeable lithium intercalation battery with hybrid polymeric electrolyte |
US5516340A (en) * | 1993-03-17 | 1996-05-14 | Wilson Greatbatch Ltd. | Process for making a metal oxide composite cathode material for high energy density batteries |
JPH07263028A (en) * | 1994-03-25 | 1995-10-13 | Fuji Photo Film Co Ltd | Nonaqueous secondary battery |
JPH0864240A (en) * | 1994-08-25 | 1996-03-08 | Sanyo Electric Co Ltd | Nonaqueous electrolyte battery |
JP3539448B2 (en) * | 1995-04-19 | 2004-07-07 | 日本ゼオン株式会社 | Non-aqueous secondary battery |
-
1996
- 1996-09-16 US US08/710,382 patent/US5776635A/en not_active Expired - Lifetime
-
1997
- 1997-09-03 DE DE69719644T patent/DE69719644T2/en not_active Expired - Lifetime
- 1997-09-03 EP EP97306820A patent/EP0829911B1/en not_active Expired - Lifetime
- 1997-09-04 JP JP25746997A patent/JP4105263B2/en not_active Expired - Fee Related
- 1997-09-15 AU AU37548/97A patent/AU709614B2/en not_active Ceased
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3468716A (en) * | 1965-10-24 | 1969-09-23 | Electrochimica Corp | Organic electrolyte electrochemical system |
US3877983A (en) * | 1973-05-14 | 1975-04-15 | Du Pont | Thin film polymer-bonded cathode |
FR2378361A1 (en) * | 1977-01-19 | 1978-08-18 | Accumulateurs Fixes | ELECTROLYTES WITH ORGANIC SOLVENTS FOR SPECIFIC HIGH ENERGY ELECTROCHEMICAL GENERATORS |
US4252876A (en) * | 1979-07-02 | 1981-02-24 | Eic Corporation | Lithium battery |
JPS5987772A (en) * | 1982-11-10 | 1984-05-21 | Sanyo Electric Co Ltd | Organic electrolyte battery |
EP0398689A2 (en) * | 1989-05-16 | 1990-11-22 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
US4952330A (en) * | 1989-05-25 | 1990-08-28 | Eveready Battery Company, Inc. | Nonaqueous electrolyte |
EP0478379A2 (en) * | 1990-09-28 | 1992-04-01 | Kabushiki Kaisha Toshiba | A nonaqueous electrolyte secondary battery |
JPH0541244A (en) * | 1991-08-02 | 1993-02-19 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JPH06176769A (en) * | 1992-12-09 | 1994-06-24 | Hitachi Maxell Ltd | Organic electrolyte battery |
EP0618630A1 (en) * | 1993-03-17 | 1994-10-05 | Wilson Greatbatch Ltd. | Metaloxide composite-cathode material for high energy density batteries |
EP0689256A1 (en) * | 1994-06-21 | 1995-12-27 | Wilson Greatbatch Ltd. | Cathode material for nonaqueous electrochemical cells |
JPH0945339A (en) * | 1995-07-28 | 1997-02-14 | Sanyo Electric Co Ltd | Lithium battery |
Non-Patent Citations (4)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 008, no. 200 (E-266), 13 September 1984 & JP 59 087772 A (SANYO DENKI KK), 21 May 1984 * |
PATENT ABSTRACTS OF JAPAN vol. 017, no. 334 (E-1387), 24 June 1993 & JP 05 041244 A (MATSUSHITA ELECTRIC IND CO LTD), 19 February 1993 * |
PATENT ABSTRACTS OF JAPAN vol. 018, no. 504 (E-1608), 21 September 1994 & JP 06 176769 A (HITACHI MAXELL LTD), 24 June 1994 * |
PATENT ABSTRACTS OF JAPAN vol. 097, no. 006, 30 June 1997 & JP 09 045339 A (SANYO ELECTRIC CO LTD), 14 February 1997 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0971432A1 (en) * | 1998-07-09 | 2000-01-12 | Wilson Greatbatch Ltd. | Inorganic and organic nitrate additives for non aqueous electrolyte in alkali metal electrochemical cells |
US6060184A (en) * | 1998-07-09 | 2000-05-09 | Wilson Greatbatch Ltd. | Inorganic and organic nitrate additives for nonaqueous electrolyte in alkali metal electrochemical cells |
EP0975038A2 (en) * | 1998-07-22 | 2000-01-26 | Wilson Greatbatch Ltd. | Current collector with chemically machined design |
EP0975038A3 (en) * | 1998-07-22 | 2002-06-19 | Wilson Greatbatch Ltd. | Current collector with chemically machined design |
US6461771B1 (en) | 1998-07-22 | 2002-10-08 | Wilson Greatbatch Ltd. | Method for providing a chemically machined current collector |
US6136477A (en) * | 1998-10-22 | 2000-10-24 | Wilson Greatbatch Ltd. | Nitrate additives for nonaqueous electrolyte rechargeable cells |
US6562515B2 (en) | 2001-03-21 | 2003-05-13 | Wilson Greatbatch Ltd. | Electrochemical cell having an electrode with a nitrate additive in the electrode active mixture |
EP1315226A2 (en) * | 2001-11-05 | 2003-05-28 | Wilson Greatbatch Technologies, Inc. | Highly conductive and stable nonaqueous electrolyte for lithium electrochemical cells |
EP1315226A3 (en) * | 2001-11-05 | 2003-11-05 | Wilson Greatbatch Technologies, Inc. | Highly conductive and stable nonaqueous electrolyte for lithium electrochemical cells |
US6844115B2 (en) | 2001-11-05 | 2005-01-18 | Wilson Greatbatch Technologies, Inc. | Highly conductive and stable nonaqueous electrolyte for lithium electrochemical cells |
EP1696501A1 (en) * | 2005-02-28 | 2006-08-30 | Samsung SDI Co., Ltd. | Electrolyte for a lithium battery and lithium battery comprising the same |
US9590271B2 (en) | 2005-02-28 | 2017-03-07 | Samsung Sdi Co., Ltd. | Electrolyte for a lithium battery and a lithium battery comprising the same |
WO2018224374A1 (en) * | 2017-06-09 | 2018-12-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Electrolyte for an alkali-sulfur battery, alkali-sulfur battery containing the electrolyte, and uses of the electrolyte |
US11594760B2 (en) | 2017-06-09 | 2023-02-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Electrolyte for an alkali-sulfur battery, alkali-sulfur battery containing the electrolyte, and uses of the electrolyte |
US11961970B2 (en) | 2019-01-17 | 2024-04-16 | Sceye Sa | LiS battery with low solvating electrolyte |
Also Published As
Publication number | Publication date |
---|---|
JPH10106626A (en) | 1998-04-24 |
US5776635A (en) | 1998-07-07 |
EP0829911B1 (en) | 2003-03-12 |
DE69719644T2 (en) | 2003-10-23 |
AU3754897A (en) | 1998-03-19 |
DE69719644D1 (en) | 2003-04-17 |
AU709614B2 (en) | 1999-09-02 |
EP0829911A3 (en) | 1999-03-17 |
JP4105263B2 (en) | 2008-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0829911B1 (en) | Ternary solvent nonaqueous organic electrolyte for alkali metal electrochemical cells | |
EP0803924B1 (en) | Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells | |
US6221534B1 (en) | Alkali metal electrochemical cell having an improved cathode activated with a nonaqueous electrolyte having a carbonate additive | |
US6511772B2 (en) | Electrochemical cell having an electrode with a phosphate additive in the electrode active mixture | |
US6171729B1 (en) | Control of swelling in alkali metal electrochemical cells | |
US5639577A (en) | Nonaqueous electrochemical cell having a mixed cathode and method of preparation | |
US5667916A (en) | Mixed cathode formulation for achieving end-of-life indication | |
EP0777915B1 (en) | Reduced voltage delay additive for nonaqueous electrolyte in alkali metal electrochemical cell | |
US6096447A (en) | Phosphonate additives for nonaqueous electrolyte in alkali metal electrochemical cells | |
US6537698B2 (en) | Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture | |
US5807645A (en) | Discharge promoter mixture for reducing cell swelling in alkali metal electrochemical cells | |
US6451483B1 (en) | Enhanced capacity Li/CFx electrochemical cell | |
US6673493B2 (en) | Double current collector cathode design using the same active material in varying formulations for alkali metal or ion electrochemical cells | |
US5695892A (en) | Preparation of silver vanadium oxide using nitric acid with oxide starting materials | |
EP1315226B1 (en) | Highly conductive and stable nonaqueous electrolyte for lithium electrochemical cells | |
EP0840389A1 (en) | Alkali metal electrochemical cell with improved energy density | |
US6605385B2 (en) | Electrochemical cell having an electrode with a carbonate additive in the electrode active mixture | |
US5616429A (en) | alkali metal electrochemical cell exhibiting reduced voltage delay and method of manufacture | |
US20020136947A1 (en) | Manufacturing process for improved discharge of lithium-containing electrochemical cells | |
US6586135B2 (en) | Electrochemical cell having an electrode with a dicarbonate additive in the electrode active mixture | |
US6562515B2 (en) | Electrochemical cell having an electrode with a nitrate additive in the electrode active mixture | |
US6528207B2 (en) | Electrochemical cell having an electrode with a nitrite additive in the electrode active mixture | |
WO1996029750A1 (en) | Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE FR GB IT LI NL SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;RO;SI |
|
17P | Request for examination filed |
Effective date: 19990916 |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT NL SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE FR GB IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 20011128 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): CH DE FR GB IT LI NL SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER & PEDRAZZINI AG |
|
REF | Corresponds to: |
Ref document number: 69719644 Country of ref document: DE Date of ref document: 20030417 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20031215 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20040920 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040923 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050902 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050903 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20050909 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060401 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20060401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060904 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060903 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160831 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160816 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69719644 Country of ref document: DE |