[go: up one dir, main page]

EP0819033B1 - Device for early detection of run-out in continuous casting - Google Patents

Device for early detection of run-out in continuous casting Download PDF

Info

Publication number
EP0819033B1
EP0819033B1 EP96907513A EP96907513A EP0819033B1 EP 0819033 B1 EP0819033 B1 EP 0819033B1 EP 96907513 A EP96907513 A EP 96907513A EP 96907513 A EP96907513 A EP 96907513A EP 0819033 B1 EP0819033 B1 EP 0819033B1
Authority
EP
European Patent Office
Prior art keywords
temperature
pattern recognition
value
probability
break
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96907513A
Other languages
German (de)
French (fr)
Other versions
EP0819033A1 (en
Inventor
Jürgen ADAMY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Priority to EP96907513A priority Critical patent/EP0819033B1/en
Publication of EP0819033A1 publication Critical patent/EP0819033A1/en
Application granted granted Critical
Publication of EP0819033B1 publication Critical patent/EP0819033B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Definitions

  • the continuous shell can be used during the Growth occurs in the mold places where the Strand shell not or only insufficiently hardened. This Growth defects lead as soon as the strand leaves the mold, to a breakthrough in the strand, through which liquid Steel emerges. The resulting damage to the Casting plant forces a longer downtime and causes high repair costs. So you try Growth defects in the shell before it leaves the mold to recognize. If this succeeds, the exit speed will be so reduced that the potential breakthrough can harden.
  • Possible breakthrough points are based on the surface temperature profiles found by the in the mold in Temperature sensors attached to the inner wall of the mold be measured. It is known the temperature sensors offset in one or more in the direction of the strand Arrange layers around the strand. When a Fault in the strand shell migrates past the temperature sensors, the measured temperature increases due to the not or only weakly developed strand shell, behind which there is liquid steel, the recorded temperature curves a characteristic in the event of an impending breakthrough Have shape.
  • JP-A-4 172 160 the temperatures detected with the temperature sensors neural network, which generates an output signal, if the spatial temperature distribution is one for one impending breakthrough characteristic pattern.
  • a reasonably reliable prediction of breakthroughs using neural networks requires sufficient training data for the neural network.
  • training data from a facility is not can be easily transferred to another system.
  • decision criteria according to which breakthroughs are predicted for the plant operator are essentially invisible.
  • the known methods for pattern recognition require fully existing temperature patterns, e.g. Temperature curves, which results in a large amount of memory Has.
  • the computational effort is very high, because with everyone Changing the temperature pattern, e.g. if the temperature curve is supplemented by a new temperature value and at the same time the oldest temperature value is deleted, one completely new pattern recognition is required.
  • the invention has for its object a device for early detection of breakthroughs, which indicate only a small amount computational effort a safe and for the plant operator understandable detection of possible breakthroughs guaranteed.
  • the early breakthrough detection according to the invention is based on a fuzzy pattern recognition, the rules of which are based on process knowledge be derived.
  • the ones required for pattern recognition There is only information about the temperature profiles from the currently recorded temperatures and one of the representing the current temperature profile and ongoing updated inner state quantity.
  • the pattern recognition can therefore be changed to the previous one for each new temperature value Results of pattern recognition, i.e. the internal state variable, build up so that not a completely new one every time Pattern recognition required due to the temperature curve is.
  • there is no need to save the temperature profiles so that overall the pattern recognition by means of the invention Setup faster and more efficiently than procedures which is the pattern recognition based on complete existing patterns.
  • Figure 1 shows a schematic representation of a continuous caster.
  • a ladle 1 turns liquid steel 2 into one Distributor 3 cast, which the steel on different strands 4 distributed and also as a buffer and separator for non-metallic Particle serves.
  • From the distributor 3 flows Steel in a mold 5, the inner walls of which are made of copper and water-cooled channels 6 included. Because of the heat dissipation the steel cools down on the mold inner walls and it a solid strand shell 7 is formed. This encloses the liquid steel, so that the strand 4 after leaving the Chill mold 5 transported via rollers 8 and finally in individual Slabs 9 can be cut.
  • the mold is in the inner walls 5 temperature sensors 10 in two, offset in the direction of the strand Layers distributed around the strand. It can several levels or only one level can also be provided. Due to changes in the recorded temperature profiles can be concluded on a weak point in the strand shell 7 will. If an error is discovered, the casting speed reduced, so that the cooling time in the mold 5 increases and a sufficiently strong strand shell on the Can form a defect.
  • FIG 3 is an example of that with one of the temperature sensors 10 recorded temperature curve shown when a such errors migrate past the relevant temperature sensor 10. While the adhesive on the temperature sensor 10 passes, a significant rise in temperature is measured. If the adhesive has passed the temperature sensor 10, it drops Temperature drops below the temperature level that is normal Casting conditions prevail. This reduction can be attributed on a thickened strand shell behind the glue due to a reduced speed has arisen there.
  • Air cushions are located between the strand 4 and the mold 5 form.
  • Figure 4 shows an example of when such occurs Error recorded temperature curve. Because of the low The thermal conductivity of the air is the heat dissipation from line 4 to the mold 5 greatly reduced, so that only one very forms thin strand shell 7. If a crack happens to one of the Temperature sensors 10, it is reflected in the detected Temperature curve as a pronounced slump again. Together makes glue and cracks the cause of over 90% of all Breakthroughs.
  • the different growth errors in the strand shell 7 thus cause characteristic patterns in the detected Temperature curves. These patterns arise sequentially by new measured values can be added to a temperature curve.
  • the fuzzy logic 12 is able to recognize the pattern only on the basis of the current temperature T (i) and its change ⁇ T (i), ie without Knowledge of the temperature profile.
  • the temperature profile T is exemplified of an adhesive, as shown in Figure 6, considered:
  • the temperature T is constant under normal casting conditions and their change over time fluctuates very slightly.
  • the Probability P for a breakthrough is zero here.
  • the temperature T rises.
  • the probability P is therefore on a small positive Value, for example 0.1, increased.
  • the temperature T, and the change in temperature T over time also increases. Lies now a low probability from the previous step P before, which is synonymous with observing one Is the beginning of the adhesive, then the probability P becomes one medium value, e.g. 0.4, increased. However, is from the previous one Step no low probability P, i.e. of the Beginning of an adhesive, before, the probability P also not changed.
  • the temperature increase caused by the adhesive is reached now their maximum value, with the temporal Change in temperature T becomes zero. Been up to this Go through the typical temperature curve of an adhesive at this point in time and so far a medium breakthrough probability P is determined, then the probability P becomes a great value, e.g. 0.7, increased.
  • the adhesive has now passed the temperature sensor 10, and the Temperature T drops to medium in the event of a negative temperature change Values.
  • the probability then follows the scheme above P further, e.g. to 0.9, increased, but below provided that it already has great value.
  • the temperature T finally decreases so far that it below the temperature level under normal casting conditions lies. Once this happens and the probability P due to what has happened so far, a very high value , the probability P is at its maximum Value, e.g. 1.0, increased.
  • FIG. 7 shows the fuzzy state graph of the pattern recognition device 11.
  • the states i.e. the linguistic values the breakdown probability P (i), form the nodes 14 of the state graph.
  • the probability P (i) can be assume the following linguistic values:
  • the probability P (i) increases step by step from Z to H only if that Temperature pattern causes the rule sets one after the other R2, R5, R9, R13 and R17 are met. That is with glue or Crack patterns the case.
  • the detected temperature pattern gives way only slightly from these reference patterns, so either keep the current state or the next one in a lower state. If the deviations are larger, depending on the current state reached, one of the rule sets will be activated R3, R8, R12, R16 or R20 active and the probability P (i) becomes Z.
  • Figure 8 shows an example of a in the fuzzy logic of the Pattern recognition device 11 implemented fuzzy rules, at which in addition to the detected temperature T (i) and the change in temperature ⁇ T (i) the change in casting speed ⁇ v (i) to determine breakthrough probability P (i) is used. Otherwise, the one shown in Figure 7 Fuzzy state graph and that shown in Figure 8 Fuzzy rules are equivalent to each other.
  • the rules of the rules give the combinations of linguistic values of the Input variables T (i), ⁇ T (i) and ⁇ v (i) that are met must for the pattern recognition device 11 to be in its state changed or maintained.
  • the temperature will be T (i) assigned the following values:
  • NB negative large
  • NS negative small
  • Z zero
  • PS positive small
  • PM positive medium
  • PB positive large.
  • NB negative large
  • NS negative small
  • Z zero
  • PS positive small
  • PB positive large.
  • the internal state variable i.e. the temporarily stored probability P (i) takes the following linguistic values on:
  • the inference takes place according to the max-min method and the defuzzification according to the focus method.
  • FIG. 9 shows a generalized exemplary embodiment for the pattern recognition device in which the input variables T (i), ⁇ T (i) and ⁇ v (i) are combined in an input vector u (i).
  • a first fuzzy logic 16 generates an updated state vector z (i + 1) from the input vector u (i) and a temporarily stored inner state vector z (i), which is temporarily stored in a memory element 17.
  • the temporarily stored state vector z (i) and the input vector u (i) are linked together in a second fuzzy logic 18 to form an output vector y .
  • FIG. 10 shows an example of a device for predicting the overall probability of breakthroughs on the basis of the individual temperature profiles detected by the temperature sensors 10.
  • the patterns of certain growth disorders of the strand shell are not only found in a temperature profile, but also due to the expansion of the growth error and the strand movement in adjacent temperature profiles.
  • each temperature sensor 10 is followed by its own pattern recognition device 11, which monitors the temperature profile detected in each case for the occurrence of a predetermined pattern. So that the detection of growth errors in the strand shell takes place more reliably, the prediction values P a and P b supplied by the pattern recognition devices 11 each of two immediately adjacent temperature sensors 10 are combined in a linking device 19 to form a local breakdown probability P loc .
  • Erroneous pattern recognitions of an individual pattern recognition device 11 are corrected in that the local breakdown probability P loc is only assigned a large value if both P a and P b each have large values. Furthermore, the detection of adhesives or cracks also improves, since increased values for the individual probabilities P a , P b can be used to infer a local breakthrough probability P loc that is greater than each of the individual probabilities P a , P b .
  • the combination of the individual probabilities P a and P b to the local breakdown probability P loc is therefore preferably based on fuzzy inferences.
  • the pattern recognition results P a and P b from the pattern recognition devices 11 of two adjacent temperature sensors 10 can have a time offset for the same growth error .
  • both pattern recognition results P a and P b can be combined in the linking device 19, they must be present at the same time. For this reason, each pattern recognition device 11 is followed by a delay device 20 with which this time offset is compensated.
  • the pattern recognition in the pattern recognition devices 11 must be independent of different system and operating conditions be. Therefore, there is 10 between each temperature sensor and the associated pattern recognition device 11 a device 22 arranged for the processing of measured values in which the Input variables of the pattern recognition device 11, that is to say the Temperature T, the temporal change in temperature ⁇ T and normalized the change in the casting speed ⁇ v over time or transformed that different plant conditions or changing process conditions the detection of glue and crack patterns do not affect or only slightly.
  • FIG. 11 shows a block diagram of such a device 22 for processing measured values.
  • the temperature values T (i) measured in a time step i are, depending on different system and operating conditions, relatively constant between approx. 100 ° C. and 200 ° C. under normal casting conditions. Adhesives and cracks cause deviations of up to 50 ° C from this constant offset temperature T 0 .
  • the pattern recognition device 11 can only recognize adhesive and cracking patterns if they start from a constant temperature level. To achieve this, an offset temperature T 0 is determined by means of a first-order time-discrete filter 23 and subtracted from the current temperature value T (i) in a subtracting device 24.
  • T A (i) T (i) -T 0 (i) is optionally smoothed to suppress noise in a filter 25 and then fed to a normalization device 26, in which the temperature deviations caused by typical growth errors from the normal temperature level are limited to a value range between zero and one.
  • the normalized temperature value T A (i) thus obtained is then fed to the pattern recognition device 11.
  • the pattern recognition device 11 also receives the temporal change in the temperature ⁇ T A (i), which is formed in a device 27 by means of the difference quotient from the output signal of the subtracting device 24 and subsequently normalized to a value range between zero and one in a further normalization device 28.
  • the change in the casting speed over time can also be an input variable of the pattern recognition device 11.
  • the change in the casting speed ⁇ v (i) over time is determined in a device 29 by means of the difference quotient from the casting speed v (i).
  • the casting speed v (i) is not increased steadily, but in leaps and bounds.
  • the resulting temperature rise which arises from the shorter cooling time in the mold 5, however, takes place continuously over a certain period of time.
  • the influence of changes in the casting speed over time on the temperature profiles can be taken into account by changing the rules for pattern recognition.
  • Another way of reducing the influence of the casting speed changes is to eliminate the temperature changes caused thereby in the recorded temperature profiles before the pattern recognition. This is done by averaging all the temperature values T (i) simultaneously delivered by the temperature sensors 10 on one level in the mold 5 and subtracting the mean value MT (i) thus obtained from the individual temperature values T (i) in a subtractor 32.
  • the adaptation of the pattern recognition by ⁇ v A (i) can also be omitted, so that the structure of the device for early breakthrough detection becomes simpler.
  • the mean value MT (i) of the comparison device 32 is fed via a controllable switching device 33, which switches the mean value MT (i) on to the comparison device 32 only when the change in the casting speed ⁇ v A (i) exceeds a predetermined threshold value v S.
  • the values ⁇ v A (i) and v S are fed to a threshold value detector 34, which controls the controllable switching device 33 on the output side.
  • T A (i) changes abruptly due to the connection of the mean value MT (i)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Radiation Pyrometers (AREA)

Description

Beim Stranggießen können in der Strangschale während des Wachstums in der Kokille Stellen auftreten, in denen die Strangschale nicht oder nur unzureichend erhärtet. Diese Wachstumsfehler führen, sobald der Strang die Kokille verläßt, zu einem Durchbruch im Strang, durch den flüssiger Stahl austritt. Die hierdurch hervorgerufene Beschädigung der Gießanlage erzwingt einen längeren Anlagenstillstand und verursacht hohe Instandsetzungskosten. Man versucht daher, Wachstumsfehler in der Schale vor ihrem Austritt aus der Kokille zu erkennen. Gelingt dies, so wird die Austrittsgeschwindigkeit so verringert, daß die potentielle Durchbruchstelle aushärten kann.During continuous casting, the continuous shell can be used during the Growth occurs in the mold places where the Strand shell not or only insufficiently hardened. This Growth defects lead as soon as the strand leaves the mold, to a breakthrough in the strand, through which liquid Steel emerges. The resulting damage to the Casting plant forces a longer downtime and causes high repair costs. So you try Growth defects in the shell before it leaves the mold to recognize. If this succeeds, the exit speed will be so reduced that the potential breakthrough can harden.

Mögliche Durchbruchstellen werden anhand der Oberflächen-Temperaturverläufe festgestellt, die durch in der Kokille im Bereich der Kokilleninnenwand angebrachte Temperatursensoren gemessen werden. Dabei ist es bekannt, die Temperatursensoren in einer oder mehreren in Richtung des Stranges versetzten Ebenen um den Strang herum verteilt anzuordnen. Wenn eine Fehlstelle in der Strangschale an den Temperatursensoren vorbeiwandert, steigt die gemessene Temperatur bedingt durch die nicht oder nur schwach ausgebildete Strangschale, hinter der sich flüssiger Stahl befindet, an, wobei die erfaßten Temperaturverläufe im Fall eines drohenden Durchbruches eine charakteristische Form aufweisen.Possible breakthrough points are based on the surface temperature profiles found by the in the mold in Temperature sensors attached to the inner wall of the mold be measured. It is known the temperature sensors offset in one or more in the direction of the strand Arrange layers around the strand. When a Fault in the strand shell migrates past the temperature sensors, the measured temperature increases due to the not or only weakly developed strand shell, behind which there is liquid steel, the recorded temperature curves a characteristic in the event of an impending breakthrough Have shape.

Um aus den erfaßten Temperaturverläufen mögliche Durchbrüche vorhersagen zu können, ist es aus der US-A-4 949 777 bekannt, die Änderung der von jedem einzelnen Temperatursensor jeweils erfaßten Temperatur mit einem Mittelwert aus den mit allen Temperatursensoren erfaßten Temperaturänderungen zu vergleichen und das so erhaltene Vergleichsergebnis auf Überschreiten eines vorgegebenen SchwellenwerteS zu überwachen. Wenn die zeitliche und örtliche Verteilung der Schwellenwertüberschreitungen einem vorgegebenen Muster entspricht, so ist dies ein Zeichen für einen bevorstehenden Durchbruch.To make possible breakthroughs from the recorded temperature profiles to be able to predict, it is known from US-A-4,949,777 the change of each individual temperature sensor recorded temperature with an average of those with all Temperature sensors to compare detected temperature changes and the comparison result thus obtained is exceeded to monitor a predetermined threshold value. If the temporal and spatial distribution of the threshold violations corresponds to a given pattern, is this is a sign of an impending breakthrough.

Aus T. Tanaka et al: "Trouble Forecasting System by Multi-Neural Network on Continuous Casting Process of Steel Production" in T. Kohonen et al (Ed.): Artificial Neural Networks; Proc. of the 1991 Int. Conf. on Artificial Neural Networks, Espoo, Finland, Elsevier Science Publishers B.V. (North-Holland), 1991, S. 835 bis 840, ist es bekannt, zur Durchbruch-Früherkennung im Rahmen einer Mustererkennung mit neuronalen Netzen die von den einzelnen Temperatursensoren erfaßten Temperaturverläufe zu speichern und auf charakteristische Muster zu untersuchen.From T. Tanaka et al: "Trouble Forecasting System by Multi-Neural Network on Continuous Casting Process of Steel Production " in T. Kohonen et al (Ed.): Artificial Neural Networks; Proc. of the 1991 Int. Conf. on Artificial Neural Networks, Espoo, Finland, Elsevier Science Publishers B.V. (North-Holland), 1991, pp. 835 to 840, it is known to Breakthrough early detection as part of a pattern recognition neural networks by the individual temperature sensors save recorded temperature curves and on characteristic Examine patterns.

Bei einem aus der JP-A-4 172 160 bekannten Verfahren werden die mit den Temperatursensoren erfaßten Temperaturen einem neuronalen Netz zugeführt, welches ein Ausgangssignal erzeugt, wenn die räumliche Temperaturverteilung ein für einen drohenden Durchbruch charakteristisches Muster aufweist.In a method known from JP-A-4 172 160 the temperatures detected with the temperature sensors neural network, which generates an output signal, if the spatial temperature distribution is one for one impending breakthrough characteristic pattern.

Eine einigermaßen zuverlässige Vorhersage von Durchbrüchen mittels neuronaler Netze setzt voraus, daß genügend Trainingsdaten für das neuronale Netz vorliegen. Dabei ergibt sich das Problem, daß Trainingsdaten von einer Anlage nicht ohne weiteres auf eine andere Anlage übertragen werden können. Hinzu kommt, daß die Entscheidungskriterien, nach denen die Vorhersage von Durchbrüchen erfolgt, für den Anlagenbetreiber im wesentlichen unsichtbar sind.A reasonably reliable prediction of breakthroughs using neural networks requires sufficient training data for the neural network. Here results the problem is that training data from a facility is not can be easily transferred to another system. In addition, the decision criteria according to which breakthroughs are predicted for the plant operator are essentially invisible.

Darüberhinaus erfordern die bekannten Verfahren zur Mustererkennung vollständig vorliegende Temperatursmuster, z.B. Temperaturverläufe, was einen hohen Speicheraufwand zur Folge hat. Gleichzeitig ist der Rechenaufwand sehr hoch, da bei jeder Änderung des Temperaturmusters, wenn also z.B. der Temperaturverlauf um einen neuen Temperaturwert ergänzt wird und gleichzeitig der älteste Temperaturwert gelöscht wird, eine vollständig neue Mustererkennung erforderlich ist.In addition, the known methods for pattern recognition require fully existing temperature patterns, e.g. Temperature curves, which results in a large amount of memory Has. At the same time, the computational effort is very high, because with everyone Changing the temperature pattern, e.g. if the temperature curve is supplemented by a new temperature value and at the same time the oldest temperature value is deleted, one completely new pattern recognition is required.

Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung zur Durchbruch-Früherkennung anzugeben, die bei nur geringem rechentechnischem Aufwand eine sichere und für den Anlagenbetreiber nachvollziehbare Erkennung möglicher Durchbrüche gewährleistet.The invention has for its object a device for early detection of breakthroughs, which indicate only a small amount computational effort a safe and for the plant operator understandable detection of possible breakthroughs guaranteed.

Gemäß der Erfindung wird die Aufgabe durch die in dem Patentanspruch 1 angegebene Erfindung gelöst.According to the invention the object is achieved by the in the claim 1 specified invention solved.

Vorteilhafte Weiterbildungen der erfindungsgemäßen Einrichtung sind in den Unteransprüchen angegeben.Advantageous further developments of the device according to the invention are specified in the subclaims.

Die erfindungsgemäße Durchbruch-Früherkennung beruht auf einer Fuzzy-Mustererkennung, deren Regeln aus dem Prozeßwissen abgeleitet werden. Die zur Mustererkennung erforderlichen Informationen über die Temperaturverläufe bestehen dabei lediglich aus den aktuell erfaßten Temperaturen und einer den bisherigen Temperaturverlauf repräsentierenden und laufend aktualisierten inneren Zustandsgröße. Die Mustererkennung kann daher bei jedem neuen Temperaturwert auf den bisherigen Ergebnissen der Mustererkennung, also der inneren Zustandsgröße, aufbauen, so daß nicht jedes Mal eine vollständig neue Mustererkennung aufgrund des Temperaturverlaufs erforderlich ist. Außerdem entfällt das Speichern der Temperaturverläufe, so daß insgesamt die Mustererkennung mittels der erfindungsgemäßen Einrichtung schneller und effizienter als bei Verfahren ist, die die Mustererkennung auf der Grundlage von vollständig vorliegenden Mustern ausführen. The early breakthrough detection according to the invention is based on a fuzzy pattern recognition, the rules of which are based on process knowledge be derived. The ones required for pattern recognition There is only information about the temperature profiles from the currently recorded temperatures and one of the representing the current temperature profile and ongoing updated inner state quantity. The pattern recognition can therefore be changed to the previous one for each new temperature value Results of pattern recognition, i.e. the internal state variable, build up so that not a completely new one every time Pattern recognition required due to the temperature curve is. In addition, there is no need to save the temperature profiles, so that overall the pattern recognition by means of the invention Setup faster and more efficiently than procedures which is the pattern recognition based on complete existing patterns.

Zur weiteren Erläuterung der Erfindung wird im folgenden auf die Figuren der Zeichnung Bezug genommen; im einzelnen zeigen

Figur 1
den prinzipiellen Aufbau einer Stranggießanlage,
Figur 2
eine in der Stranggießanlage verwendete Kokille mit Temperatursensoren in den Kokilleninnenwänden,
Figuren 3 und 4
Beispiele für die mit den Temperatursensoren erfaßten Temperaturverläufe bei unterschiedlichen Wachstumsfehlern in der Strangschale,
Figur 5
ein Beispiel für eine Fuzzy-Mustererkennungseinrichtung zur Bildung eines Vorhersagewertes für die Durchbruch-Wahrscheinlichkeit aufgrund des mit einem Temperatursensor erfaßten Temperaturverlaufs,
Figur 6
ein Beispiel für den beim Auftreten eines bestimmten Wachstumsfehlers erfaßten Temperaturverlauf zusammen mit der in Abhängigkeit davon ermittelten Durchbruch-Wahrscheinlichkeit,
Figur 7
ein Beispiel für die Fuzzy-Zustände der Fuzzy-Mustererkennungseinrichtung,
Figur 8
ein Beispiel für das Fuzzy-Regelwerk der Mustererkennungseinrichtung,
Figur 9
ein verallgemeinertes Ausführungsbeispiel für die Mustererkennungseinrichtung,
Figur 10
ein Beispiel für eine Einrichtung zur Vorhersage der Gesamtwahrscheinlichkeit von Durchbrüchen und
Figur 11
ein Beispiel für die Meßwertaufbereitung der der Mustererkennungseinrichtung zugeführten Signale.
To further explain the invention, reference is made below to the figures of the drawing; show in detail
Figure 1
the basic structure of a continuous caster,
Figure 2
a mold used in the continuous caster with temperature sensors in the mold inner walls,
Figures 3 and 4
Examples of the temperature profiles recorded with the temperature sensors in the case of different growth errors in the strand shell,
Figure 5
an example of a fuzzy pattern recognition device for forming a predictive value for the breakdown probability on the basis of the temperature profile detected with a temperature sensor,
Figure 6
an example of the temperature profile recorded when a certain growth error occurs together with the breakdown probability determined as a function thereof,
Figure 7
an example of the fuzzy states of the fuzzy pattern recognition device,
Figure 8
an example of the fuzzy set of rules of the pattern recognition device,
Figure 9
a generalized embodiment for the pattern recognition device,
Figure 10
an example of a facility for predicting the overall probability of breakthroughs and
Figure 11
an example of the measured value processing of the signals supplied to the pattern recognition device.

Figur 1 zeigt in schematischer Darstellung eine Stranggießanlage. Aus einer Gießpfanne 1 wird flüssiger Stahl 2 in einen Verteiler 3 gegossen, der den Stahl auf verschiedene Stränge 4 verteilt und außerdem als Puffer und Abscheider für nichtmetallische Partikel dient. Aus dem Verteiler 3 fließt der Stahl in eine Kokille 5, deren Innenwände aus Kupfer bestehen und wassergekühlte Kanäle 6 enthalten. Aufgrund der Wärmeabfuhr an den Kokilleninnenwänden kühlt der Stahl ab und es bildet sich eine feste Strangschale 7 aus. Diese umschließt den flüssigen Stahl, so daß der Strang 4 nach Verlassen der Kokille 5 über Rollen 8 transportiert und schließlich in einzelne Brammen 9 zerschnitten werden kann.Figure 1 shows a schematic representation of a continuous caster. A ladle 1 turns liquid steel 2 into one Distributor 3 cast, which the steel on different strands 4 distributed and also as a buffer and separator for non-metallic Particle serves. From the distributor 3 flows Steel in a mold 5, the inner walls of which are made of copper and water-cooled channels 6 included. Because of the heat dissipation the steel cools down on the mold inner walls and it a solid strand shell 7 is formed. This encloses the liquid steel, so that the strand 4 after leaving the Chill mold 5 transported via rollers 8 and finally in individual Slabs 9 can be cut.

Probleme können entstehen, wenn die Strangschale 7 Wachstumsfehler aufweist. Dann bildet sich oft an einzelnen lokalen Stellen nur eine sehr dünne erhärtete Schicht aus, die nach Verlassen der Kokille 5 brechen kann. In einem solchen Fall tritt flüssiger Stahl aus, der die Anlage beschädigt, so daß ein Stillstand und entsprechende Reparaturen nötig werden. Um solche Durchbrüche in der Strangschale 7 zu verhindern, werden die Wachstumsfehler in der Strangschale 7 bei ihrer Entstehung in der Kokille 5 geortet.Problems can arise if the strand shell has 7 growth defects having. Then often forms on individual local Issue only a very thin hardened layer that after Leaving the mold 5 can break. In such a case liquid steel escapes, which damages the system, so that a standstill and corresponding repairs become necessary. Around to prevent such breakthroughs in the strand shell 7 the growth defects in the strand shell 7 when they arise located in the mold 5.

Wie Figur 2 zeigt, sind hierzu in den Innenwänden der Kokille 5 Temperatursensoren 10 in zwei, in Strangrichtung versetzten Ebenen um den Strang herum verteilt angeordnet. Es können auch mehrere Ebenen oder nur eine Ebene vorgesehen werden. Aufgrund von Änderungen in den erfaßten Temperaturverläufen kann auf eine Schwachstelle in der Strangschale 7 geschlossen werden. Wird ein Fehler entdeckt, so wird die Gießgeschwindigkeit reduziert, so daß sich die Abkühlzeit in der Kokille 5 erhöht und sich eine ausreichend feste Strangschale an der Fehlstelle ausbilden kann. As shown in FIG. 2, the mold is in the inner walls 5 temperature sensors 10 in two, offset in the direction of the strand Layers distributed around the strand. It can several levels or only one level can also be provided. Due to changes in the recorded temperature profiles can be concluded on a weak point in the strand shell 7 will. If an error is discovered, the casting speed reduced, so that the cooling time in the mold 5 increases and a sufficiently strong strand shell on the Can form a defect.

Die weitaus häufigsten Wachstumsfehler, sogenannte Kleber, entstehen durch eine lokal erhöhte Reibung zwischen dem Strang 4 und der Innenwand der Kokille 5. An der Reibungsstelle haftet der Strang 4 stärker als in der Umgebung an der Kokilleninnenwand, weshalb sich dort auch seine Geschwindigkeit verringert. Dies führt zu Spannungen in der Strangschale 7, so daß diese aufbricht. Flüssiger Stahl gelangt an die Kokilleninnenwand und führt dort zu einem Temperaturanstieg.By far the most common growth errors, so-called glue, arise from a locally increased friction between the Strand 4 and the inner wall of the mold 5. At the friction point the strand 4 adheres more strongly than in the environment to the Mold inner wall, which is why there is also its speed decreased. This leads to tension in the strand shell 7 so that it breaks open. Liquid steel gets to the Mold inner wall and there leads to a rise in temperature.

In Figur 3 ist ein Beispiel für den mit einem der Temperatursensoren 10 erfaßten Temperaturverlauf dargestellt, wenn ein solcher Fehler an dem betreffenden Temperatursensor 10 vorbeiwandert. Während der Kleber an dem Temperatursensor 10 vorbeiläuft, wird ein deutlicher Temperaturanstieg gemessen. Hat der Kleber den Temperatursensor 10 passiert, so sinkt die Temperatur unter das Temperaturniveau ab, das bei normalen Gießbedingungen herrscht. Zurückzuführen ist diese Absenkung auf eine verdickte Strangschale hinter dem Kleber, die aufgrund einer verringerten Geschwindigkeit dort entstanden ist.In Figure 3 is an example of that with one of the temperature sensors 10 recorded temperature curve shown when a such errors migrate past the relevant temperature sensor 10. While the adhesive on the temperature sensor 10 passes, a significant rise in temperature is measured. If the adhesive has passed the temperature sensor 10, it drops Temperature drops below the temperature level that is normal Casting conditions prevail. This reduction can be attributed on a thickened strand shell behind the glue due to a reduced speed has arisen there.

Eine weitere Ursache für Durchbrüche in der Strangschale sind Luftpolster, sogenannte Cracks, die sich zwischen dem Strang 4 und der Kokille 5 bilden.Another cause of breakthroughs in the strand shell are Air cushions, called cracks, are located between the strand 4 and the mold 5 form.

Figur 4 zeigt ein Beispiel für den beim Auftreten eines solchen Fehlers erfaßten Temperaturverlauf. Durch die geringe Wärmeleitfähigkeit der Luft ist die Wärmeabfuhr vom Strang 4 zur Kokille 5 stark vermindert, so daß sich nur eine sehr dünne Strangschale 7 ausbildet. Passiert ein Crack einen der Temperatursensoren 10, so spiegelt er sich in dem erfaßten Temperaturverlauf als ausgeprägter Einbruch wieder. Zusammen bildet Kleber und Cracks die Ursache für über 90% aller Durchbrüche. Figure 4 shows an example of when such occurs Error recorded temperature curve. Because of the low The thermal conductivity of the air is the heat dissipation from line 4 to the mold 5 greatly reduced, so that only one very forms thin strand shell 7. If a crack happens to one of the Temperature sensors 10, it is reflected in the detected Temperature curve as a pronounced slump again. Together makes glue and cracks the cause of over 90% of all Breakthroughs.

Die unterschiedlichen Wachstumsfehler in der Strangschale 7 verursachen also charakteristische Muster in den erfaßten Temperaturverläufen. Diese Muster entstehen sequentiell, indem neue Meßwerte einem Temperaturverlauf hinzugefügt werden.The different growth errors in the strand shell 7 thus cause characteristic patterns in the detected Temperature curves. These patterns arise sequentially by new measured values can be added to a temperature curve.

Figur 5 zeigt ein Beispiel für eine Mustererkennungseinrichtung 11, die fortlaufend aus den mit einem Temperatursensor 10 in Zeitschritten i erfaßten aktuellen Temperaturwerten T(i) und den zeitlichen Temperaturänderungen ΔT(i)= T(i)-T(i-1) die Wahrscheinlichkeit P(i+1) dafür bestimmt, daß sich in dem erfaßten Temperaturverlauf ein Kleber- oder Crackmuster entwickelt. Da alleine anhand der aktuellen Werte T(i) und ΔT(i) keine Mustererkennung erfolgen kann, wird zusätzlich die jeweils zuvor ermittelte Durchbruch-Wahrscheinlichkeit P(i) als eine den bisherigen Temperaturverlauf repräsentierende innere Zustandsgröße verwendet und gemeinsam mit den aktuellen Meßwerten T(i) und ΔT(i) einer Fuzzy-Logik 12 zugeführt, die daraus die aktuelle Durchbruch-Wahrscheinlichkeit P(i+1) bestimmt. Diese wird in einem Speicherglied 13 zwischengespeichert und im nächsten Zeitschritt auf den Eingang der Fuzzy-Logik 12 rückgekoppelt. Durch die Zwischenspeicherung und Rückkopplung der in dem jeweils vorangegangenen Zeitschritt ermittelten Durchbruch-Wahrscheinlichkeit P(i) ist die Fuzzy-Logik 12 in der Lage, die Mustererkennung nur anhand der aktuellen Temperatur T(i) und ihrer Änderung ΔT(i), d.h. ohne Kenntnis des Temperaturverlaufs, durchzuführen.FIG. 5 shows an example of a pattern recognition device 11, which continuously consists of the current temperature values T (i) detected in time steps i by a temperature sensor 10 and the temporal temperature changes ΔT (i) = T (i) -T (i-1) the probability P (i + 1) determines that an adhesive or cracking pattern develops in the recorded temperature profile. Since no pattern recognition can take place solely on the basis of the current values T (i) and ΔT (i), the previously determined breakdown probability P (i) is additionally used as an internal state variable representing the previous temperature profile and together with the current measured values T ( i) and ΔT (i) fed to a fuzzy logic 12, which determines the current breakdown probability P (i + 1). This is temporarily stored in a memory element 13 and fed back to the input of the fuzzy logic 12 in the next time step. By temporarily storing and feeding back the breakthrough probability P (i) determined in the preceding time step, the fuzzy logic 12 is able to recognize the pattern only on the basis of the current temperature T (i) and its change ΔT (i), ie without Knowledge of the temperature profile.

Um die Arbeitsweise der Mustererkennungseinrichtung 11 zu veranschaulichen, wird beispielhaft der Temperaturverlauf T eines Klebers, wie er in Figur 6 dargestellt ist, betrachtet:To the operation of the pattern recognition device 11 too illustrate, the temperature profile T is exemplified of an adhesive, as shown in Figure 6, considered:

Bei normalen Gießbedingungen ist die Temperatur T konstant und ihre zeitliche Änderung schwankt sehr geringfügig. Die Wahrscheinlichkeit P für eine Durchbruch ist hier Null. The temperature T is constant under normal casting conditions and their change over time fluctuates very slightly. The Probability P for a breakthrough is zero here.

Zu Beginn eines Klebers steigt die Temperatur T an. Die Wahrscheinlichkeit P wird deshalb auf einen kleinen positiven Wert, beispielsweise 0,1, erhöht.At the beginning of an adhesive, the temperature T rises. The probability P is therefore on a small positive Value, for example 0.1, increased.

Im weiteren Verlauf des Klebers steigt die Temperatur T, und auch die zeitliche Änderung der Temperatur T nimmt zu. Liegt nun aus dem vorherigen Schritt eine geringe Wahrscheinlichkeit P vor, was gleichbedeutend mit der Beobachtung eines Kleberbeginns ist, so wird die Wahrscheinlichkeit P auf einen mittleren Wert, z.B. 0,4, erhöht. Liegt dagegen aus dem vorherigen Schritt keine geringe Wahrscheinlichkeit P, d.h. der Beginn eines Klebers, vor, so wird die Wahrscheinlichkeit P auch nicht geändert.In the further course of the adhesive, the temperature T, and the change in temperature T over time also increases. Lies now a low probability from the previous step P before, which is synonymous with observing one Is the beginning of the adhesive, then the probability P becomes one medium value, e.g. 0.4, increased. However, is from the previous one Step no low probability P, i.e. of the Beginning of an adhesive, before, the probability P also not changed.

Die durch den Kleber verursachte Temperaturerhöhung erreicht nun ihren maximalen Wert, wobei gleichzeitig die zeitliche Änderung der Temperatur T Null wird. Wurde bis zu diesem Zeitpunkt die typische Temperaturkurve eines Klebers durchlaufen und somit bisher eine mittlere Durchbruch-Wahrscheinlichkeit P festgestellt, so wird die Wahrscheinlichkeit P auf einen großen Wert, z.B. 0,7, erhöht.The temperature increase caused by the adhesive is reached now their maximum value, with the temporal Change in temperature T becomes zero. Been up to this Go through the typical temperature curve of an adhesive at this point in time and so far a medium breakthrough probability P is determined, then the probability P becomes a great value, e.g. 0.7, increased.

Der Kleber hat nun den Temperatursensor 10 passiert, und die Temperatur T sinkt bei negativer Temperaturänderung auf mittlere Werte ab. Dem obigen Schema folgend wird dann die Wahrscheinlichkeit P weiter, z.B. auf 0,9, erhöht, allerdings unter der Voraussetzung, daß sie schon einen großen Wert aufweist.The adhesive has now passed the temperature sensor 10, and the Temperature T drops to medium in the event of a negative temperature change Values. The probability then follows the scheme above P further, e.g. to 0.9, increased, but below provided that it already has great value.

Aufgrund der Verdickung der Strangschale am Ende eines Klebers nimmt die Temperatur T schließlich so weit ab, daß sie unterhalb des Temperaturniveaus bei normalen Gießbedingungen liegt. Sobald dies geschieht und die Wahrscheinlichkeit P aufgrund des bisherigen Geschehens einen sehr großen Wert aufweist, wird die Wahrscheinlichkeit P auf ihren maximalen Wert, z.B. 1,0, erhöht.Due to the thickening of the strand shell at the end of an adhesive The temperature T finally decreases so far that it below the temperature level under normal casting conditions lies. Once this happens and the probability P due to what has happened so far, a very high value , the probability P is at its maximum Value, e.g. 1.0, increased.

Figur 7 zeigt den Fuzzy-Zustandsgraphen der Mustererkennungseinrichtung 11. Die Zustände, d.h. die linguistischen Werte der Durchbruch-Wahrscheinlichkeit P(i), bilden die Knoten 14 des Zustandsgraphen. Die Wahrscheinlichkeit P(i) kann dabei die folgenden linguistischen Werte annehmen:FIG. 7 shows the fuzzy state graph of the pattern recognition device 11. The states, i.e. the linguistic values the breakdown probability P (i), form the nodes 14 of the state graph. The probability P (i) can be assume the following linguistic values:

Z = 0, T = sehr klein, S = klein, M = mittel, B = groß, H = sehr groß.Z = 0, T = very small, S = small, M = medium, B = large, H = very large.

An den Übergangspfeilen 15 zwischen den Zuständen 14 stehen vor dem Schrägstrich die Übergangsbedingungen, d.h. die Fuzzy-Regeln, die einen Zustandswechsel bewirken ; der Wert nach dem Querstrich gibt den jeweils neu erreichten Zustand an. Im Verlauf der Mustererkennung wird die Wahrscheinlichkeit P(i) nur dann schrittweise von Z auf H erhöht, wenn das Temperaturmuster dazu führt, daß nacheinander die Regelsätze R2, R5, R9, R13 und R17 erfüllt sind. Das ist bei Kleber- oder Crackmustern der Fall. Weicht das erfaßte Temperaturmuster nurgeringfügig von diesen Referenzmustern ab, so wird entweder der momentane Zustand beibehalten oder der nächst niedrigere Zustand eingenommen. Sind die Abweichungen größer, so wird je nach erreichtem aktuellen Zustand einer der Regelsätze R3, R8, R12, R16 oder R20 aktiv und die Wahrscheinlichkeit P(i) wird Z.Stand on the transition arrows 15 between the states 14 before the slash the transition conditions, i.e. the Fuzzy rules that cause a change of state; the value after the slash indicates the newly achieved condition on. In the course of pattern recognition, the probability P (i) increases step by step from Z to H only if that Temperature pattern causes the rule sets one after the other R2, R5, R9, R13 and R17 are met. That is with glue or Crack patterns the case. The detected temperature pattern gives way only slightly from these reference patterns, so either keep the current state or the next one in a lower state. If the deviations are larger, depending on the current state reached, one of the rule sets will be activated R3, R8, R12, R16 or R20 active and the probability P (i) becomes Z.

Einen großen Einfluß auf die für Durchbrüche in der Strangschale 7 charakteristischen Temperaturverläufe haben Änderungen der Gießgeschwindigkeit. Es ist daher sinnvoll, diese Änderungen Δv(i) zusätzlich bei der Mustererkennung zu berücksichtigen, so wie dies in Figur 5 gestrichelt dargestellt ist. Erhöht sich beispielsweise die Gießgeschwindigkeit, so verringert sich die Verweildauer und damit auch die Kühldauer des Stranges 4 in der Kokille 5. Dies bedeutet gleichzeitig eine Erhöhung der gemessenen Temperatur. Treten dann während einer Änderung der Gießgeschwindigkeit Wachstumsfehler in der Strangschale 7 auf, so werden die für sie typischen Temperaturverläufe verzerrt.A major influence on the breakthroughs in the strand shell 7 characteristic temperature profiles have changes the casting speed. It therefore makes sense to do this Consider changes Δv (i) additionally in pattern recognition, as shown in dashed lines in Figure 5 is. For example, the casting speed increases, so the dwell time is reduced and with it the cooling time of strand 4 in the mold 5. This means at the same time an increase in the measured temperature. Then kick during a change in the casting speed growth error in the Strand shell 7, so the typical temperature curves for them distorted.

Figur 8 zeigt ein Beispiel für ein in der Fuzzy-Logik der Mustererkennungseinrichtung 11 implementiertes Fuzzy-Regelwerk, bei dem zusätzlich zu der erfaßten Temperatur T(i) und der Temperaturänderung ΔT(i) die Änderung der Gießgeschwindigkeit Δv(i) zur Bestimmung Durchbruch-Wahrscheinlichkeit P(i) herangezogen wird. Im übrigen sind der in Figur 7 gezeigte Fuzzy-Zustandsgraph und das in Figur 8 dargestellte Fuzzy-Regelwerk zueinander äquivalent. Die Regeln des Regelwerks geben die Kombinationen von linguistischen Werten der Eingangsvariablen T(i), ΔT(i) und Δv(i) an, die erfüllt sein müssen, damit die Mustererkennungseinrichtung 11 ihren Zustand verändert bzw. beibehält. Der Temperatur T(i) werden dabei folgende Werte zugeordnet:Figure 8 shows an example of a in the fuzzy logic of the Pattern recognition device 11 implemented fuzzy rules, at which in addition to the detected temperature T (i) and the change in temperature ΔT (i) the change in casting speed Δv (i) to determine breakthrough probability P (i) is used. Otherwise, the one shown in Figure 7 Fuzzy state graph and that shown in Figure 8 Fuzzy rules are equivalent to each other. The rules of the rules give the combinations of linguistic values of the Input variables T (i), ΔT (i) and Δv (i) that are met must for the pattern recognition device 11 to be in its state changed or maintained. The temperature will be T (i) assigned the following values:

NB = negativ groß, NS = negativ klein, Z = Null, PS = positiv klein, PM = positiv mittel, PB = positiv groß.NB = negative large, NS = negative small, Z = zero, PS = positive small, PM = positive medium, PB = positive large.

Der Temperaturänderung ΔT(i) werden folgende Werte zugeordnet:The following values are assigned to the temperature change ΔT (i):

NB = negativ groß, NS = negativ klein, Z = Null, PS = positiv klein, PB = positiv groß.NB = negative large, NS = negative small, Z = zero, PS = positive small, PB = positive large.

Für die Änderung der Gießgeschwindigkeit Δv(i) sind folgende Werte vorgesehen:The following are for changing the casting speed Δv (i) Values provided:

N = negativ, Z = Null, PN = positiv normal, PE = positiv extrem. N = negative, Z = zero, PN = positive normal, PE = positive extreme.

Die innere Zustandsgröße, also die zwischengespeicherte Wahrscheinlichkeit P(i), nimmt die folgenden linguistischen Werte an:The internal state variable, i.e. the temporarily stored probability P (i) takes the following linguistic values on:

Z = Null, T = sehr klein, S = klein, M = mittel, B = groß, H = sehr groß.Z = zero, T = very small, S = small, M = medium, B = large, H = very large.

Für jede Wertekombination der Temperatur T(i), der Temperaturänderung ΔT(i), der Änderung der Gießgeschwindigkeit Δv(i) und der zwischengespeicherten Wahrscheinlichkeit P(i) ergibt sich jeweils ein bestimmter linguistischer Wert für die von der Mustererkennungseinrichtung 11 vorhergesagte Durchbruch-Wahrscheinlichkeit P(i+1). Die linguistischen Werte der vorhergesagten Durchbruch-Wahrscheinlichkeit P(i+1) sind der Übersicht halber wie folgt codiert: Z = 1, T = 2, S = 3, M = 4, B = 5, H = 6.For each combination of values of temperature T (i), the temperature change ΔT (i), the change in casting speed Δv (i) and the temporarily stored probability P (i) each results in a specific linguistic value for that predicted by the pattern recognition device 11 Breakthrough probability P (i + 1). The linguistic Predicted breakdown probability values P (i + 1) are coded as follows for the sake of clarity: Z = 1, T = 2, S = 3, M = 4, B = 5, H = 6.

Aus dem Regelwerk sind alle Regeln der Fuzzy-Logik 12 direkt ablesbar. So gilt beispielsweise: Wenn P(i) = Z und Δv(i) = Z und T = Z und ΔT = Z, dann P(i+1) = 1(=Z).All rules of the fuzzy logic 12 can be read directly from the set of rules. For example, if P (i) = Z and Δv (i) = Z and T = Z and ΔT = Z , then P (i + 1) = 1 (= Z) .

Die Inferenz erfolgt nach der Max-Min-Methode und die Defuzzifizierung nach der Schwerpunktmethode.The inference takes place according to the max-min method and the defuzzification according to the focus method.

Figur 9 zeigt ein verallgemeinertes Ausführungsbeispiel für die Mustererkennungseinrichtung, bei der die Eingangsgrößen T(i), ΔT(i) und Δv(i) in einem Eingangsvektor u(i) zusammengefaßt sind. Eine erste Fuzzy-Logik 16 erzeugt aus dem Eingangsvektor u(i) und einem zwischengespeicherten inneren Zustandsvektor z(i) einen aktualisierten Zustandsvektor z(i+1), der in einem Speicherglied 17 zwischengespeichert wird. Der zwischengespeicherte Zustandsvektor z(i) und der Eingangsvektor u(i) werden in einer zweiten Fuzzy-Logik 18 zu einem Ausgangsvektor y miteinander verknüpft. Die in Figur 5 gezeigte Mustererkennungseinrichtung 11 ist ein Spezialfall der in Figur 9 gezeigten Einrichtung mit nur einer inneren Zustandsgröße z(i) = P(i), einer Ausgangsgröße y(i) = P(i+1) und mit übereinstimmendem Übertragungsverhalten der ersten Fuzzy-Logik 16 und der zweiten Fuzzy-Logik 18, dh. f=g.FIG. 9 shows a generalized exemplary embodiment for the pattern recognition device in which the input variables T (i), ΔT (i) and Δv (i) are combined in an input vector u (i). A first fuzzy logic 16 generates an updated state vector z (i + 1) from the input vector u (i) and a temporarily stored inner state vector z (i), which is temporarily stored in a memory element 17. The temporarily stored state vector z (i) and the input vector u (i) are linked together in a second fuzzy logic 18 to form an output vector y . The pattern recognition device 11 shown in FIG. 5 is a special case of the device shown in FIG. 9 with only one internal state variable z (i) = P (i) , an output variable y (i) = P (i + 1) and with matching transmission behavior of the first fuzzy logic 16 and the second fuzzy logic 18, ie. f = g .

Figur 10 zeigt ein Beispiel für eine Einrichtung zur Vorhersage der Gesamtwahrscheinlichkeit von Durchbrüchen aufgrund der mit den Temperatursensoren 10 erfaßten einzelnen Temperaturverläufe. Die Muster von bestimmten Wachstumsstörungen der Strangschale finden sich nicht nur in einem Temperaturverlauf, sondern aufgrund der Ausdehnung des Wachstumsfehlers und der Strangbewegung auch in benachbart gemessenen Temperaturverläufen wieder. Wie Figur 10 zeigt, ist jedem Temperatursensor 10 eine eigene Mustererkennungseinrichtung 11 nachgeordnet, die den jeweils erfaßten Temperaturverlauf auf das Auftreten eines vorgegebenen Musters überwacht. Damit die Erkennung von Wachstumsfehlern in der Strangschale zuverlässiger erfolgt, werden die von den Mustererkennungseinrichtungen 11 jeweils zweier unmittelbar benachbarter Temperatursensoren 10 gelieferten Vorhersagewerte Pa und Pb in einer Verknüpfungseinrichtung 19 zu einer lokalen Durchbruch-Wahrscheinlichkeit Ploc kombiniert. So werden fehlerhafte Mustererkennungen einer einzelnen Mustererkennungseinrichtung 11 korrigiert, indem der lokalen Durchbruch-Wahrscheinlichkeit Ploc nur dann ein großer Wert zugeordnet wird, wenn sowohl Pa als auch Pb jeweils große Werte aufweisen. Weiterhin verbessert sich auch die Erkennung von Klebern oder Cracks, da aus erhöhten Werten für die Einzelwahrscheinlichkeiten Pa, Pb auf eine lokale Durchbruch-Wahrscheinlichkeit Ploc geschlossen werden kann, die größer ist als jede der Einzelwahrscheinlichkeiten Pa, Pb. Die Verknüpfung der Einzelwahrscheinlichkeiten Pa und Pb zu der lokalen Durchbruch-Wahrscheinlichkeit Ploc erfolgt daher vorzugsweise auf der Grundlage von Fuzzy-Folgerungen. FIG. 10 shows an example of a device for predicting the overall probability of breakthroughs on the basis of the individual temperature profiles detected by the temperature sensors 10. The patterns of certain growth disorders of the strand shell are not only found in a temperature profile, but also due to the expansion of the growth error and the strand movement in adjacent temperature profiles. As FIG. 10 shows, each temperature sensor 10 is followed by its own pattern recognition device 11, which monitors the temperature profile detected in each case for the occurrence of a predetermined pattern. So that the detection of growth errors in the strand shell takes place more reliably, the prediction values P a and P b supplied by the pattern recognition devices 11 each of two immediately adjacent temperature sensors 10 are combined in a linking device 19 to form a local breakdown probability P loc . Erroneous pattern recognitions of an individual pattern recognition device 11 are corrected in that the local breakdown probability P loc is only assigned a large value if both P a and P b each have large values. Furthermore, the detection of adhesives or cracks also improves, since increased values for the individual probabilities P a , P b can be used to infer a local breakthrough probability P loc that is greater than each of the individual probabilities P a , P b . The combination of the individual probabilities P a and P b to the local breakdown probability P loc is therefore preferably based on fuzzy inferences.

Da sich die Wachstumsfehler in der Strangschale an den einzelnen Temperatursensoren 10 vorbeibewegen, wobei die Bewegungsrichtung und Ausbreitung der Wachstumsfehler unterschiedlich erfolgen kann, können die Mustererkennungs-Ergebnisse Pa und Pb von den Mustererkennungseinrichtungen 11 zweier benachbarter Temperatursensoren 10 für denselben Wachstumsfehler einen zeitlichen Versatz aufweisen. Damit beide Mustererkennungs-Ergebnisse Pa und Pb in der Verknüpfungseinrichtung 19 kombiniert werden können, müssen sie jedoch gleichzeitig vorliegen. Aus diesem Grund ist jeder Mustererkennungseinrichtung 11 eine Verzögerungseinrichtung 20 nachgeordnet, mit der dieser zeitliche Versatz kompensiert wird. Die Verzögerungseinrichtungen 20 bestehen dabei jeweils aus einem Maximalwert-Halteglied, das von jeder Einzelwahrcheinichkeit P(i) am Ausgang der vorgeordneten Mustererkennungsinrichtung 11 den maximalen Wert Pmax(i) = max(P(i-k), ...,P(i)) der letzten k Zeitschritte ermittelt und der Verknüpfungseinrichtung 19 zuführt.Since the growth errors in the strand shell move past the individual temperature sensors 10, whereby the direction of movement and the spreading of the growth errors can take place differently, the pattern recognition results P a and P b from the pattern recognition devices 11 of two adjacent temperature sensors 10 can have a time offset for the same growth error . However, in order that both pattern recognition results P a and P b can be combined in the linking device 19, they must be present at the same time. For this reason, each pattern recognition device 11 is followed by a delay device 20 with which this time offset is compensated. The delay devices 20 each consist of a maximum value holding element, which has the maximum value of each individual probability P (i) at the output of the upstream pattern recognition device 11 P Max (i) = max (P (ik), ..., P (i)) the last k time steps are determined and supplied to the linking device 19.

In einer allen Verknüpfungseinrichtungen 19 nachgeordneten Logikschaltung 21 wird der maximale Wert aller lokalen Durchbruch-Wahrscheinlichkeiten Ploc ermittelt, der dann die Gesamtwahrscheinlichkeit Pges für einen Durchbruch darstellt.The maximum value of all local breakthrough probabilities P loc , which then represents the total probability P tot for a breakthrough, is ascertained in a logic circuit 21 arranged downstream of all logic devices 19.

Die Mustererkennung in den Mustererkennungseinrichtungen 11 muß unabhängig von unterschiedlichen Anlagen- und Betriebsbedingungen sein. Daher ist zwischen jedem Temperatursensor 10 und der zugeordneten Mustererkennungseinrichtung 11 eine Einrichtung 22 zur Meßwertaufbereitung angeordnet, in der die Eingangsgrößen der Mustererkennungseinrichtung 11, also die Temperatur T, die zeitliche Änderung der Temperatur ΔT und die zeitliche Änderung der Gießgeschwindigkeit Δv so normiert bzw. transformiert werden, daß unterschiedliche Anlagenverhältnisse oder sich ändernde Prozeßbedingungen die Erkennung von Kleber- und Crackmustern nicht oder nur geringfügig beeinflussen.The pattern recognition in the pattern recognition devices 11 must be independent of different system and operating conditions be. Therefore, there is 10 between each temperature sensor and the associated pattern recognition device 11 a device 22 arranged for the processing of measured values in which the Input variables of the pattern recognition device 11, that is to say the Temperature T, the temporal change in temperature ΔT and normalized the change in the casting speed Δv over time or transformed that different plant conditions or changing process conditions the detection of glue and crack patterns do not affect or only slightly.

Figur 11 zeigt ein Blockschaltbild einer solchen Einrichtung 22 zur Meßwertaufbereitung. Die in einem Zeitschritt i gemessenen Temperaturwerte T(i) liegen, abhängig von unterschiedlichen Anlagen- und Betriebsbedingungen, bei normalen Gießbedingungen relativ konstant zwischen ca. 100°C und 200°C. Kleber und Cracks verursachen Abweichungen um bis zu 50°C von dieser konstanten Offset-Temperatur T0. Die Mustererkennungseinrichtung 11 kann Kleber- und Crackmuster nur dann erkennen, wenn diese von einem immer gleichen Temperaturniveau ausgehen. Um dies zu erreichen, wird mittels eines zeitdiskreten Filters 23 erster Ordnung eine Offset-Temperatur T0 bestimmt und in einer Subtrahiereinrichtung 24 von dem aktuellen Temperaturwert T(i) subtrahiert. Die so erhaltene Temperatur TA(i)= T(i)-T0(i) wird gegebenenfalls zur Unterdrückung von Rauschen in einem Filter 25 geglättet und anschließend einer Normierungseinrichtung 26 zugeführt, in der die von typischen Wachstumsfehlern hervorgerufenen Temperaturabweichungen von dem normalen Temperaturniveau auf einen Wertebereich zwischen Null und Eins begrenzt sind. Der so erhaltene normierte Temperaturwert TA(i) wird dann der Mustererkennungseinrichtung 11 zugeführt.FIG. 11 shows a block diagram of such a device 22 for processing measured values. The temperature values T (i) measured in a time step i are, depending on different system and operating conditions, relatively constant between approx. 100 ° C. and 200 ° C. under normal casting conditions. Adhesives and cracks cause deviations of up to 50 ° C from this constant offset temperature T 0 . The pattern recognition device 11 can only recognize adhesive and cracking patterns if they start from a constant temperature level. To achieve this, an offset temperature T 0 is determined by means of a first-order time-discrete filter 23 and subtracted from the current temperature value T (i) in a subtracting device 24. The temperature thus obtained T A (i) = T (i) -T 0 (i) is optionally smoothed to suppress noise in a filter 25 and then fed to a normalization device 26, in which the temperature deviations caused by typical growth errors from the normal temperature level are limited to a value range between zero and one. The normalized temperature value T A (i) thus obtained is then fed to the pattern recognition device 11.

Die Mustererkennungseinrichtung 11 erhält weiterhin die zeitliche Änderung der Temperatur ΔTA(i), die in einer Einrichtung 27 mittels des Differenzenquotienten aus dem Ausgangssignal der Subtrahiereinrichtung 24 gebildet wird und nachfolgend in einer weiteren Normierungseinrichtung 28 auf einen Wertebereich zwischen Null und Eins normiert wird.The pattern recognition device 11 also receives the temporal change in the temperature ΔT A (i), which is formed in a device 27 by means of the difference quotient from the output signal of the subtracting device 24 and subsequently normalized to a value range between zero and one in a further normalization device 28.

Wie bereits obenstehend erläutert wurde, kann auch die zeitliche Änderung der Gießgeschwindigkeit eine Eingangsvariable der Mustererkennungseinrichtung 11 sein. Sie verändert dort die Regeln für die Mustererkennung in der Weise, daß Kleber und Cracks auch dann noch sicher erkannt werden können, wenn ihre Muster aufgrund der Gießgeschwindigkeitsänderung verzerrt sind. Die zeitliche Änderung der Gießgeschwindigkeit Δv(i) wird in einer Einrichtung 29 mittels des Differenzenquotienten aus der Gießgeschwindigkeit v(i) bestimmt. Oftmals wird die Gießgeschwindigkeit v(i) nicht stetig, sondern sprunghaft erhöht. Der resultierende Temperaturanstieg, der durch die geringere Abkühlzeit in der Kokille 5 entsteht, erfolgt jedoch stetig über einen gewissen Zeitraum hinweg. Um dann während des gesamten Temperaturanstiegs eine entsprechende Veränderung der Regeln für die Mustererkennung zu erreichen, muß der Wert Δv(i) während des Temperaturanstiegs auf einen entsprechend hohen Wert gesetzt werden, der einen stetigen Anstieg der Gießgeschwindigkeit v(i) vortäuscht. Dies geschieht mit einem Maximalwert-Halteglied 30, das ausgangsseitig jeweils den größten positiven Wert von Δv(i) aus den letzten k Zeitschritten erzeugt. Es gilt also: ΔvA(i) = max(Δv(i-k),..., Δv(i) für Δv(i)>0 und ΔvA(i) = Δv(i) für Δv(i)≤0. As already explained above, the change in the casting speed over time can also be an input variable of the pattern recognition device 11. There it changes the rules for pattern recognition in such a way that adhesives and cracks can still be reliably recognized even if their patterns are distorted due to the change in casting speed. The change in the casting speed Δv (i) over time is determined in a device 29 by means of the difference quotient from the casting speed v (i). Often the casting speed v (i) is not increased steadily, but in leaps and bounds. The resulting temperature rise, which arises from the shorter cooling time in the mold 5, however, takes place continuously over a certain period of time. In order to achieve a corresponding change in the rules for pattern recognition during the entire temperature rise, the value Δv (i) must be set to a correspondingly high value during the temperature rise, which simulates a steady increase in the casting speed v (i). This is done with a maximum value holding element 30 which on the output side generates the greatest positive value of Δv (i) from the last k time steps. So the following applies: Δv A (i) = max (Δv (ik), ..., Δv (i) for Δv (i)> 0 and Δv A (i) = Δv (i) for Δv (i) ≤0.

Schließlich wird der so erhaltene Wert von ΔvA(i) in einer Normierungseinrichtung 31 normiert, bevor er der Mustererkennungseinrichtung 11 zugeführt wird.Finally, the value of Δv A (i) thus obtained is normalized in a normalization device 31 before it is fed to the pattern recognition device 11.

Wie bereits erwähnt wurde, kann der Einfluß von zeitlichen Änderungen der Gießgeschwindigkeit auf die Temperaturverläufe durch Änderung der Regeln für die Mustererkennung berücksichtigt werden. Eine weitere Möglichkeit, den Einfluß der Gießgeschwindigkeit-Änderungen zu verringern, besteht darin, die dadurch hervorgerufenen Temperaturänderungen in den erfaßten Temperaturverläufen noch vor der Mustererkennung zu eliminieren. Dies geschieht, indem man alle von den Temperatursensoren 10 jeweils einer Ebene in der Kokille 5 gleichzeitig gelieferten Temperaturwerte T(i) mittelt und den so erhaltenen Mittelwert MT(i) in einer Subtrahiereinrichtung 32 von den einzelnen Temperaturwerten T(i) subtrahiert. Die so erhaltene Temperaturdifferenz TD(i)=T(i)-MT(i) ist von Temperaturänderungen, die durch Gießgeschwindigkeits-Änderungen verursacht werden, unabhängig und wird im weiteren dem Filter 23 und der Subtrahiereinrichtung 24 zugeführt. In diesem Fall kann auch die Anpassung der Mustererkennung durch ΔvA(i) entfallen, so daß dadurch der Aufbau der Einrichtung zur Durchbruch-Früherkennung einfacher wird.As already mentioned, the influence of changes in the casting speed over time on the temperature profiles can be taken into account by changing the rules for pattern recognition. Another way of reducing the influence of the casting speed changes is to eliminate the temperature changes caused thereby in the recorded temperature profiles before the pattern recognition. This is done by averaging all the temperature values T (i) simultaneously delivered by the temperature sensors 10 on one level in the mold 5 and subtracting the mean value MT (i) thus obtained from the individual temperature values T (i) in a subtractor 32. The temperature difference thus obtained T D (i) = T (i) -MT (i) is independent of temperature changes caused by changes in casting speed and is further supplied to the filter 23 and the subtractor 24. In this case, the adaptation of the pattern recognition by Δv A (i) can also be omitted, so that the structure of the device for early breakthrough detection becomes simpler.

Alternativ kann vorgesehen werden, daß bei konstanter Gießgeschwindigkeit v(i) oder kleinen Änderungen der Gießgeschwindigkeit v(i) ohne die Gießgeschwindigkeits-Kompensation gearbeitet wird, um über den Mittelwert MT(i) keine Störungen in die einzelnen Temperaturverläufe TA(i) hineinzutragen. Hierzu wird der Mittelwert MT(i) der Vergleichseinrichtung 32 über eine steuerbare Schalteinrichtung 33 zugeführt, die den Mittelwert MT(i) nur dann an die Vergleichseinrichtung 32 weiterschaltet, wenn die Änderung der Gießgeschwindigkeit ΔvA(i) einen vorgegebenen Schwellenwert vS überschreitet. Hierzu werden die Werte ΔvA(i) und vS einem Schwellenwertdetektor 34 zugeführt, der ausgangsseitig die steuerbare Schalteinrichtung 33 steuert. Um zu vermeiden, daß durch die Zuschaltung des Mittelwertes MT(i) der Wert TA(i) sich sprungartig ändert, wird der Wert T0(i+1) des Filters 23 über den Ausgang einer Subtrahiereinrichtung 35 mit T0(i+1) = T(i)-MT(i)-TA(i) so gesetzt, daß der Verlauf von TA(i) stetig fortgesetzt wird.Alternatively, it can be provided that at constant pouring speed v (i) or small changes in pouring speed v (i) one works without the pouring speed compensation in order not to introduce disturbances into the individual temperature profiles T A (i) via the mean value MT (i) . For this purpose, the mean value MT (i) of the comparison device 32 is fed via a controllable switching device 33, which switches the mean value MT (i) on to the comparison device 32 only when the change in the casting speed Δv A (i) exceeds a predetermined threshold value v S. For this purpose, the values Δv A (i) and v S are fed to a threshold value detector 34, which controls the controllable switching device 33 on the output side. In order to avoid that the value T A (i) changes abruptly due to the connection of the mean value MT (i), the value T 0 (i + 1) of the filter 23 is added via the output of a subtractor 35 T 0 (i + 1) = T (i) -MT (i) -T A (i) set so that the course of T A (i) continues.

Claims (10)

  1. Device for early detection of break-outs during continuous casting with a mould (5) in which temperature sensors (10) are arranged in a manner distributed around the strand (4), each temperature sensor (10) being assigned a pattern recognition device (11) which, from the temperature (T(i)) detected and an internal state variable (P(i)) representing the temperature curve up to that point, updates the internal state variable (P(i)) on the basis of fuzzy conclusions and generates at the output a current predicted value (P(i+1)) for the break-out probability.
  2. Device according to Claim 1, characterized in that the predicted value (P(i+1)) is identical with the internal state variable.
  3. Device according to Claim 1 or 2, characterized in that each pattern recognition device (11) evaluates the current value (T(i)) and the change (ΔT(i)) of the temperature detected by the respectively associated temperature sensor (10).
  4. Device according to one of the preceding claims, characterized in that, to generate the predicted value (P(i+1)) for the break-out probability, the pattern recognition device (11) additionally evaluates the change in the casting rate (Δv(i)).
  5. Device according to one of the preceding claims, characterized in that between each temperature sensor (10) and the associated pattern recognition device (11) there is a device (22) for measured-value conditioning in which a time average (T0(i)) determined on the basis of the temperature curve up to that point is subtracted from the temperature (T(i)) detected.
  6. Device according to Claim 5, characterized in that an average (MT(i)) which is formed from the temperature values simultaneously detected by all the temperature sensors (10) distributed around the strand (4) in each case in one and the same plane is additionally subtracted from the detected temperature (T(i)) in the device (22) for measured-value conditioning.
  7. Device according to one of the preceding claims, characterized in that the pattern recognition devices (11), which are each assigned to at least two directly adjacent temperature sensors (10), are each connected at the output side to a logic device (19) which links the predicted values (Pa, Pb) supplied by the pattern recognition devices (11) to give a probability value (Ploc) for a local break-out in the region of the adjacent temperature sensors (10).
  8. Device according to Claim 7, characterized in that a respective delay device (20) is arranged on the output side of at least those pattern recognition devices (11), the associated temperature sensors (10) of which are arranged above the remaining temperature sensors (10) in the mould (5).
  9. Device according to Claim 8, characterized in that, on the output side, the delay device (20) generates the respective maximum value of a predetermined number of the predicted values (P(i+1)) last fed to it.
  10. Device according to one of Claims 7 to 9, characterized in that a common logic circuit (21) is arranged on the output side of the logic devices (19) and, from the probabilities (Ploc) for local break-outs, this logic circuit determines a value (Pges) for the overall probability of a break-out.
EP96907513A 1995-04-03 1996-03-28 Device for early detection of run-out in continuous casting Expired - Lifetime EP0819033B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96907513A EP0819033B1 (en) 1995-04-03 1996-03-28 Device for early detection of run-out in continuous casting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP95104909 1995-04-03
EP95104909 1995-04-03
PCT/EP1996/001371 WO1996031304A1 (en) 1995-04-03 1996-03-28 Device for early detection of run-out in continuous casting
EP96907513A EP0819033B1 (en) 1995-04-03 1996-03-28 Device for early detection of run-out in continuous casting

Publications (2)

Publication Number Publication Date
EP0819033A1 EP0819033A1 (en) 1998-01-21
EP0819033B1 true EP0819033B1 (en) 1998-09-16

Family

ID=8219152

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96907513A Expired - Lifetime EP0819033B1 (en) 1995-04-03 1996-03-28 Device for early detection of run-out in continuous casting

Country Status (7)

Country Link
US (1) US5904202A (en)
EP (1) EP0819033B1 (en)
CN (1) CN1072065C (en)
CA (1) CA2217156C (en)
DE (1) DE59600581D1 (en)
ES (1) ES2122805T3 (en)
WO (1) WO1996031304A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU731116B2 (en) * 1996-11-28 2001-03-22 Siemens Aktiengesellschaft Method for configuring a fuzzy automatic-control device which is used for comparing a measurement signal with a pattern signal
DE19734711C1 (en) 1997-08-11 1999-04-15 Siemens Ag Controllers with discrete-time, dynamic fuzzy control elements
DE19808998B4 (en) * 1998-03-03 2007-12-06 Siemens Ag Method and device for early breakthrough detection in a continuous casting plant
JP2002521201A (en) 1998-07-21 2002-07-16 ドファスコ インコーポレイテッド A multivariate statistical model-based system for monitoring the operation of a continuous caster to detect the occurrence of impending breakouts
WO2000051762A1 (en) * 1999-03-02 2000-09-08 Nkk Corporation Method and device for predication and control of molten steel flow pattern in continuous casting
CA2414167A1 (en) * 2002-12-12 2004-06-12 Dofasco Inc. Method and online system for monitoring continuous caster start-up operation and predicting start cast breakouts
JP4430411B2 (en) * 2004-01-21 2010-03-10 ヤマハ発動機株式会社 Low pressure casting machine
US6885907B1 (en) 2004-05-27 2005-04-26 Dofasco Inc. Real-time system and method of monitoring transient operations in continuous casting process for breakout prevention
US8990028B2 (en) * 2006-02-01 2015-03-24 Nippon Steel & Sumitomo Metal Corporation Fracture prediction method, device, a program arrangement and computer-accessible medium therefor
DE102008028481B4 (en) * 2008-06-13 2022-12-08 Sms Group Gmbh Method for predicting the formation of longitudinal cracks in continuous casting
CN103209784B (en) * 2010-09-29 2015-09-09 现代制铁株式会社 The Cracks Diagnosis devices and methods therefor of solidified shell in casting mold
JP5673100B2 (en) * 2010-12-28 2015-02-18 Jfeスチール株式会社 Breakout prediction method
US9733657B2 (en) * 2013-06-19 2017-08-15 Nec Corporation Power system with an energy generator and a hybrid energy storage system
DE102018100992A1 (en) * 2018-01-17 2019-07-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Monitoring device for a cooling device
EP4124400A1 (en) * 2021-07-28 2023-02-01 Primetals Technologies Austria GmbH Method for determining a defect probability of a cast product section
CN113887133B (en) * 2021-09-27 2025-01-14 中国计量大学 An automatic cooling method for die casting system based on deep learning

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949777A (en) * 1987-10-02 1990-08-21 Kawasaki Steel Corp. Process of and apparatus for continuous casting with detection of possibility of break out
JPH0722811B2 (en) * 1990-11-02 1995-03-15 新日本製鐵株式会社 Constrained breakout prediction method for continuous casting
JP3035688B2 (en) * 1993-12-24 2000-04-24 トピー工業株式会社 Breakout prediction system in continuous casting.
US5714866A (en) * 1994-09-08 1998-02-03 National Semiconductor Corporation Method and apparatus for fast battery charging using neural network fuzzy logic based control
US5751910A (en) * 1995-05-22 1998-05-12 Eastman Kodak Company Neural network solder paste inspection system

Also Published As

Publication number Publication date
CN1072065C (en) 2001-10-03
CA2217156A1 (en) 1996-10-10
DE59600581D1 (en) 1998-10-22
WO1996031304A1 (en) 1996-10-10
EP0819033A1 (en) 1998-01-21
US5904202A (en) 1999-05-18
ES2122805T3 (en) 1998-12-16
CA2217156C (en) 2006-11-14
CN1189113A (en) 1998-07-29

Similar Documents

Publication Publication Date Title
EP0819033B1 (en) Device for early detection of run-out in continuous casting
DE60311739T2 (en) Method and online monitoring system for casting a continuous casting plant and method for early breakthrough detection in continuous casting of steel
EP0813701B1 (en) Control system for e.g. primary-industry or manufacturing-industry facilities
DE69921602T2 (en) A SYSTEM BASED ON A MULTIVARIABLE STATISTICAL MODEL FOR PRESENTING THE OPERATION OF A CONTINUOUS CASTING SYSTEM AND DETECTING BREAKDOWN
EP2222426B1 (en) Method for controlling or regulating a temperature
DE4008510A1 (en) CONTROL UNIT WITH OPTIMAL DECISION MAKERS
DE102005022922A1 (en) Real-time system and method for monitoring transient events in a continuous casting process for outbreak prevention
WO2009149680A1 (en) Process for predicting the emergence of longitudinal cracks during continuous casting
EP0756219A2 (en) Method for supervising product properties and method for controlling a manufacturing process
EP0897786A2 (en) Regulation process for an injection moulding machine for plastics
WO2012025438A1 (en) Operating method for a roller mill for rolling flat rolled goods having roller wear prediction
DE4131765A1 (en) CONTROL PARAMETER IMPROVEMENT METHOD FOR INDUSTRIAL PLANTS
EP1324845B1 (en) Method for operating an installation of a primary industry
EP1455976B1 (en) Feed opening adjustment of segments for continuous casting systems
DE19881041B4 (en) Method for controlling and presetting a steelworks or parts of a steelworks
EP2476031B1 (en) Method for monitoring a roller in a system for rolling metal
DE10310357A1 (en) Casting mill for producing a steel strip
DE4442087C2 (en) Device for early breakthrough detection in continuous casting
EP4410450A1 (en) Method for manufacturing products of certain steel grades with a specified surface quality in a continuous casting plant including a surface inspection
DE19623671C2 (en) Process and device for carrying out a process in the raw materials industry
EP1431927A1 (en) Method for estimating the remaining lifetime of an apparatus
EP3488948B1 (en) Method for analysing causes of errors in continuous casting
DE10204064A1 (en) Width of mouth regulation on segments for continuous casting plants
EP4454783A1 (en) Method for optimizing the starting temperatures of a metal melt at least on primary and secondary units of a smelting operation with circulating casting ladles
DE19740691A1 (en) Method and apparatus for metal cooling in steelworks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FI FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980216

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FI FR GB

REF Corresponds to:

Ref document number: 59600581

Country of ref document: DE

Date of ref document: 19981022

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2122805

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20110314

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120312

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120518

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120404

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130408

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59600581

Country of ref document: DE

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130328

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130329

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001