EP0818557B1 - Method and apparatus for forming a coating on a substrate - Google Patents
Method and apparatus for forming a coating on a substrate Download PDFInfo
- Publication number
- EP0818557B1 EP0818557B1 EP97870100A EP97870100A EP0818557B1 EP 0818557 B1 EP0818557 B1 EP 0818557B1 EP 97870100 A EP97870100 A EP 97870100A EP 97870100 A EP97870100 A EP 97870100A EP 0818557 B1 EP0818557 B1 EP 0818557B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- substrate
- coating
- zone
- process according
- reaction zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 68
- 238000000576 coating method Methods 0.000 title claims abstract description 41
- 239000011248 coating agent Substances 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims abstract description 52
- 238000000151 deposition Methods 0.000 claims abstract description 51
- 230000008021 deposition Effects 0.000 claims abstract description 41
- 150000002500 ions Chemical class 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- 238000001704 evaporation Methods 0.000 claims description 10
- 230000008020 evaporation Effects 0.000 claims description 10
- 238000004544 sputter deposition Methods 0.000 claims description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 238000009833 condensation Methods 0.000 claims description 4
- 230000005494 condensation Effects 0.000 claims description 4
- 238000007738 vacuum evaporation Methods 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims 1
- 239000007943 implant Substances 0.000 claims 1
- 230000001939 inductive effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 claims 1
- 239000002344 surface layer Substances 0.000 claims 1
- 238000009434 installation Methods 0.000 abstract description 12
- 229910045601 alloy Inorganic materials 0.000 abstract description 3
- 239000000956 alloy Substances 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 238000005468 ion implantation Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 16
- 239000011521 glass Substances 0.000 description 9
- 238000002513 implantation Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- -1 argon ions Chemical class 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005034 decoration Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000011532 electronic conductor Substances 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
Definitions
- the present invention relates to a method for depositing, on a substrate, a coating consisting essentially of a compound electronic conductor.
- One of the essential aims of the present invention is to propose a process of the aforementioned type making it possible to perform at high speed a coating on a substrate, electrically conductive or not, and this essentially of relatively large thickness.
- said coating is formed by alternately producing, on the one hand, in at least one depot area, one or more deposits of a determined thickness of a conductive element electronic, such as a metal, an alloy, a semiconductor of the type doped N, on the substrate and, on the other hand, in at least one reaction zone, one or more reactions of the element thus deposited with ions of a gas reagent which are implanted in the deposition of the above element on substantially all this thickness determined so as to form with substantially the majority and preferably the total amount of this element, said compound, the aforesaid ions being subjected to a kinetic energy lower than 2000V, of preferably 200 to 900V, while the aforementioned thickness of the deposit of the element is determined according to the applied kinetic energy of a in such a way that implantation of these ions can take place on substantially all of this thickness.
- a conductive element electronic such as a metal, an alloy, a semiconductor of the type doped N
- the above-mentioned reaction is carried out.
- the element deposited on the substrate with the aforementioned reactive gas by creating, in look and near the surface of the latter presenting the deposit of the element, a plasma into which the aforementioned reactive gas is introduced, so as to thereby form ions penetrating into the deposit of the element, substantially over a depth corresponding to the thickness of this deposit to make them react with the deposited element.
- a negative potential is applied to the substrate in the reaction zone by compared to an anode.
- the deposit of the element by evaporation preferably under vacuum, is followed by a condensation on the substrate.
- the element is deposited on the substrate by cathode sputtering.
- a coating on the substrate consisting of a layer of a compound electronic conductive ceramic, for example a compound of the TiN type, ZrN, TiCN, CrN, VN, NbN, InSnO, obtained by the reaction of at least one metal and a reactive gas, by first performing, in the deposition zone, a depositing said metal on the substrate and then, in the reaction zone, a ionization of the gas, in a plasma, formed opposite this deposit, and a implantation of ionized particles of this gas in this metal deposit, this the latter being set to a negative potential with respect to the ionized gas.
- a compound electronic conductive ceramic for example a compound of the TiN type, ZrN, TiCN, CrN, VN, NbN, InSnO, obtained by the reaction of at least one metal and a reactive gas, by first performing, in the deposition zone, a depositing said metal on the substrate and then, in the reaction zone, a ionization of the gas, in a plasma,
- the invention also relates to a particular installation for the implementation of the above method.
- This installation is characterized in that it includes at minus a deposit area, in which a deposit of a electronic conductive element on the substrate, this deposition zone being followed by at least one reaction zone separate from this deposition zone, where an implantation can be created in the above-mentioned deposit of particles which react with this element to form the electronic conductive compound, means being provided for moving, preferably in a manner continues, the substrate from the deposition zone to the reaction zone.
- Figure 1 is a schematic elevational view of a first embodiment, according to the invention, of an installation for the formation of a coating on a substrate.
- Figure 2 is a schematic view, similar to that of the FIG. 1, of a second embodiment, according to the invention, of a installation for the formation of a coating on a substrate.
- Figure 3 is also a schematic view similar to that of FIGS. 1 and 2, of a third embodiment, according to the invention, an installation for the formation of a coating on a substrate.
- Figure 4 is still a schematic view of a fourth embodiment, according to the invention, of an installation for training of a coating on a substrate.
- the invention consists in proposing a process for depositing a coating consisting of a substrate essentially of an electronic conductive compound.
- the substrate can for example be formed from steel sheets at parade, plates of flat glass, sheets of paper or films plastic.
- the coating can be obtained by mass production layers, for example, of metallic or ceramic compounds of which the thickness is generally of the order of 500 to 2000 ⁇ .
- the process according to the invention is characterized by the fact that one first forms a separate layer on the substrate in an element deposition area electronic conductor, such as a metal, alloy, or semiconductor of the N doped type, of a relatively reduced determined thickness. Then, in a reaction zone, which is separate from the deposition zone, a reactive gas containing ions which not only can react with the aforementioned element, but which also have sufficient energy kinetics to be able to be implanted on all the aforementioned determined thickness deposit or layer of the element on the substrate.
- an element deposition area electronic conductor such as a metal, alloy, or semiconductor of the N doped type
- This kinetic energy is advantageously maintained in below 2000 V, preferably between 200 and 900 V, while the aforementioned determined thickness is such that the implantation of the ions of the gas reagent can take place over substantially this entire thickness and that these ions can react with the entire element forming this layer of deposit.
- a plasma into which the aforementioned reactive gas is introduced so as to form there ions which can react, by implantation, with the deposited element previously on the substrate.
- the deposit of the aforementioned conductive element can be formed by evaporation, preferably under vacuum, followed by condensation on the substrate, by sputtering, by a combination of a evaporation and sputtering or by means of a ion gun.
- Figure 1 schematically shows an embodiment in which the deposit of the element is formed by vacuum evaporation. It is a particular embodiment for covering one of the faces of a substrate 1 in the form of a continuous sheet, which moves in a substantially continuous manner in the direction of the arrow 2, d 'first through a first zone 3 where the evaporation takes place under vacuum of a metal 4 kept in fusion in a crucible 5. In this zone, a film or a layer 6 of this metal is condensed on the face of the face facing the crucible 5. The substrate 1 with this film 6 then moves to a second zone 7, separated from the first, in which a plasma 8 is produced, in a reactive gas for example N 2 , CH 4 makes it possible to form ions in this gas. These ions are implanted in the film 6 to react with the metal of which it is made, and thus form a coating 9 of an electronic conductive compound obtained by the reaction of the metal forming the film with the ions produced.
- a reactive gas for example N 2 , CH 4 makes it
- the kinetic energy necessary for penetrate the entire thickness of the film 6 apply to the substrate 1, in the zone 7, a negative potential with respect to an anode 10 arranged opposite of this substrate.
- the reactive gas is introduced into the plasma 8 by injectors 11 shown schematically in FIG. 1 and generally called “showers”.
- the density of the ions entering the film 6 is further increased by the presence of a magnetic confinement circuit on the side of the substrate covered by this film.
- This magnetic circuit is created by magnets permanent or possibly electromagnets 12 mounted on a mild steel plate, shown schematically in Figure 1, arranged at proximity of the substrate 1, on the side opposite to that on which the film 6 is formed.
- Figure 2 is a schematic representation of a second embodiment of the invention which relates to training a coating on one of the faces of rigid plates, in particular of glass 1 moving substantially continuously, in the direction of the arrow 2, on driven rollers 13, earthed, successively through the deposition zone 3 and the reaction zone 7.
- the deposition of the film 6 in the deposition zone 3 is formed by sputtering.
- this technique which is known per se, provision is made in this zone 3, opposite the glass plates 1, a target of magnetron sputtering 14 provided, on the side directed towards these glass plates, a layer of the metal of which the film 6 is made.
- This target layer 14 is bombarded with inert gas ions, such as argon ions, formed in a plasma 15, which eject atoms of metal of this target 14 and form the aforementioned film on the substrate 6.
- This gas inert is introduced into deposition zone 3 by inclined injectors down.
- Target 14 is set to a negative potential, while the rollers 13 are also grounded.
- Reaction zone 7 where the implantation of this ion film takes place from the reactive gas, is substantially identical to that of FIG. 1 and is separated from the deposition zone by a wall 20 in which is arranged an opening 21 for the passage of the glass plates 1 from the zone of deposit 3 to reaction zone 7.
- Figure 3 is a schematic representation of a third embodiment which differs from that shown in Figure 2 by the nature of the substrate 1, of the technique applied for the formation of the metal film 6 in the depot area and means of transport of the substrate 1 through deposition zones 3 and 7.
- the substrate is formed of a flexible sheet 1, of a metal, or of a flexible sheet of paper or plastic, such as polyethylene or polypropylene, which is driven by drums 16 rotating in synchronism around their axis 17 in the direction of the arrows 2.
- the film 6 is formed on the substrate 1 by applying the combined technique of vacuum evaporation and sputtering, as described in the Belgian patent application 09501052 of December 20, 1996 from the same applicant.
- the metal 4 is kept in the state liquid in a crucible 5 maintained at a negative potential, below which are arranged magnets 12 forming a magnetic circuit exactly as in reaction zone 7 of the embodiments previous.
- reaction zone 7 which follows the deposition zone 3 is separated of the latter by a wall 20, as in the second form of production.
- This reaction zone 7 differs from the embodiments previous by the fact that the sheet 1 forming the substrate is driven on a drum 16 and that the magnets 12, forming the magnetic circuit, are arranged inside the drum, opposite the place where the sheet 1 is in contact with the latter.
- One of the advantages of the installation according to FIG. 3 is that it allows easy cooling of the substrate both in the area deposition only in the reaction zone by means of a coolant flowing inside the drums. This can be useful in some cases, for example for the treatment of substrates with relatively softening point low or subject to phase transformations.
- Figure 4 is a schematic representation of a fourth embodiment of the invention in which the formation of film 6 on the substrate 1 in the deposition areas 3 can be produced by example as in the previous embodiments.
- a specific drop zone is separate from the drop zone subsequent deposition by at least two separate consecutive reaction zones.
- two deposition zones 3 are shown, three consecutive reaction zones 7a, 7b, 7c where the substrate 1 is subjected to a potential that differs from a reaction zone to the reaction zone subsequent, preferably at a decreasing potential, in the direction of displacement 2 of the substrate 1, from a reaction zone to the reaction zone next.
- the potential difference in area 7a can by example being of the order of 3000 V, that in zone 7b of 1000 V and that in zone 7c of 500 V.
- This example concerns the formation of a coating of decoration of zirconium nitride on a steel sheet making use of it of an installation as illustrated in FIG. 1 in which however a zirconium film 6 is deposited on the sheet 1, from a zirconium target 14, by sputtering, as in the installation shown in the figure 2.
- the 0.2 mm thick sheet moved through the zones 3 and 7 at a speed of the order of 400 m / minute.
- the width of the target of zirconium 14 in reaction zones 3, in the direction of movement 2 of sheet 1, was 30 cm.
- the passage time of the sheet 1 ahead of target 14 was 0.045 sec.
- argon was injected at a pressure of 0.667 Pa (5.10 -3 Torr), while the power density dissipated at the target was 75 W / cm 2 .
- reaction zone 7 also called implantation zone
- nitrogen was also injected at a pressure of 0.667 Pa (5.10 -3 Torr), while the power density dissipated on the substrate during the implantation of the zirconium film was 20 W / cm 3 .
- the voltage between the sheet and the anode was 450 V.
- This example concerns the formation of an oxide layer indium and tin (InSnO), also called "ITO", on plates glass, making use of the installation as illustrated schematically by Figure 2 but, but in which, however, the deposit area 3 corresponded to that of the embodiment shown in FIG. 1.
- ITO oxide layer indium and tin
- the surface liquid metal in each of these crucibles, exposed to the plates of scrolling glass next to these, was 30 cm wide in the direction of travel As in the first example, the speed of displacement of the plates was 400 m / minute.
- argon was injected at a pressure of 0.667 Pa (5.10 -3 Torr), while the power density dissipated at the targets was 50 W / cm 2 .
- Example 2 As in Example 1, these plates were passed through glass through ten identical deposition zones between each of which was the same reaction zone. This made it possible to obtain plaques of glass covered with a homogeneous and transparent final layer of oxide indium and tin with a thickness of 1000 ⁇ .
- This example concerns the formation of a nitride coating of titanium on a flexible sheet of aluminum with a thickness of 0.3 mm in using an installation of the type shown in Figure 3.
- the working conditions and parameters in the areas of deposition and reaction corresponded substantially to those of Example 1. This made it possible to obtain a homogeneous coating of titanium nitride of a thickness of 500 ⁇ after ten successive passes through an area of depot and a reaction zone.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
La présente invention est relative à un procédé pour le dépôt, sur un substrat, d'un revêtement constitué essentiellement d'un composé conducteur électronique.The present invention relates to a method for depositing, on a substrate, a coating consisting essentially of a compound electronic conductor.
Suivant une des techniques connues jusqu'à présent, l'on forme un tel revêtement par pulvérisation cathodique réactive, encore appelée "sputtering réactif". Une telle technique est par exemple décrite dans "HANDBOOK OF DEPOSITION TECHNOLOGIES FOR FILMS AND COATINGS", ROINTAN F. BUNSWAH, NOYES PUBLICATIONS, p. 302-306. Un tel procédé présente surtout l'inconvénient d'une vitesse de dépôt relativement lente par suite de la contamination des cibles utilisées à partir desquelles la pulvérisation est réalisée.According to one of the techniques known so far, we forms such a reactive sputtering coating, again called "reactive sputtering". Such a technique is for example described in "HANDBOOK OF DEPOSITION TECHNOLOGIES FOR FILMS AND COATINGS", ROINTAN F. BUNSWAH, NOYES PUBLICATIONS, p. 302-306. Above all, such a method has the disadvantage relatively slow deposition rate due to contamination of targets used from which the spray is made.
Une autre technique connue est celle de l'évaporation sous vide activée appelée "ARE" (Activated Reactive Evaporation). Une telle technique est par exemple décrite dans "ADVANCED TECHNIQUES FOR SURFACE ENGINEERING", W. GRISSLER et H.A. JEHN, KLUWER ACADEMIC PUBLISHERS, p.. Cette technique pose également un problème de contamination du système d'évaporation, ce qui réduit considérablement le rendement de dépôt.Another known technique is that of evaporation under activated vacuum called "ARE" (Activated Reactive Evaporation). Such a technique is for example described in "ADVANCED TECHNIQUES FOR SURFACE ENGINEERING", W. GRISSLER and H.A. JEHN, KLUWER ACADEMIC PUBLISHERS, p .. This technique also poses a problem of system contamination evaporation, which considerably reduces the deposit yield.
Un des buts essentiels de la présente invention est de proposer un procédé du type précité permettant de réaliser à grande vitesse un revêtement sur un substrat, conducteur d'électricité ou non, et ceci essentiellement d'épaisseur relativement importante.One of the essential aims of the present invention is to propose a process of the aforementioned type making it possible to perform at high speed a coating on a substrate, electrically conductive or not, and this essentially of relatively large thickness.
Il s'agit, plus particulièrement, d'un procédé de production de masse de couches de composés conducteurs de l'électricité ayant une épaisseur de l'ordre de 1000 Å sur un substrat formé par exemple d'acier au défilé, de verre plat, d'une feuille de papier ou d'un film de plastique.It is, more particularly, a process for producing mass of layers of electrically conductive compounds having a thickness of the order of 1000 Å on a substrate formed for example of steel parade, flat glass, a sheet of paper or a plastic film.
A cet effet, suivant l'invention, l'on forme ledit revêtement en produisant alternativement, d'une part, dans au moins une zone de dépôt, un ou plusieurs dépôts d'une épaisseur déterminée d'un élément conducteur électronique, tel qu'un métal, un alliage, un semi-conducteur du type dopé N, sur le substrat et, d'autre part, dans au moins une zone de réaction, une ou plusieurs réactions de l'élément ainsi déposé avec des ions d'un gaz réactif qui sont implantés dans le dépôt de l'élément susdit sur sensiblement toute cette épaisseur déterminée de manière à former avec sensiblement la majorité et de préférence la quantité totale de cet élément, ledit composé, les ions susdits étant soumis à une énergie cinétique inférieure à 2000V, de préférence de 200 à 900V, tandis que l'épaisseur précitée du dépôt de l'élément est déterminée en fonction de l'énergie cinétique appliquée d'une manière telle à ce que l'implantation de ces ions puisse avoir lieu sur sensiblement toute cette épaisseur.To this end, according to the invention, said coating is formed by alternately producing, on the one hand, in at least one depot area, one or more deposits of a determined thickness of a conductive element electronic, such as a metal, an alloy, a semiconductor of the type doped N, on the substrate and, on the other hand, in at least one reaction zone, one or more reactions of the element thus deposited with ions of a gas reagent which are implanted in the deposition of the above element on substantially all this thickness determined so as to form with substantially the majority and preferably the total amount of this element, said compound, the aforesaid ions being subjected to a kinetic energy lower than 2000V, of preferably 200 to 900V, while the aforementioned thickness of the deposit of the element is determined according to the applied kinetic energy of a in such a way that implantation of these ions can take place on substantially all of this thickness.
Avantageusement, l'on effectue la réaction précitée de l'élément déposé sur le substrat avec le gaz réactif précité en créant, en regard et à proximité de la surface de ce dernier présentant le dépôt de l'élément, un plasma dans lequel on introduit le gaz réactif précité, de manière à y former ainsi des ions pénétrant dans le dépôt de l'élément, sensiblement sur une profondeur correspondant à l'épaisseur de ce dépôt pour les faire réagir avec l'élément déposé.Advantageously, the above-mentioned reaction is carried out. the element deposited on the substrate with the aforementioned reactive gas by creating, in look and near the surface of the latter presenting the deposit of the element, a plasma into which the aforementioned reactive gas is introduced, so as to thereby form ions penetrating into the deposit of the element, substantially over a depth corresponding to the thickness of this deposit to make them react with the deposited element.
Suivant une forme de réalisation particulière de l'invention, l'on applique, dans la zone de réaction, au substrat un potentiel négatif par rapport à une anode.According to a particular embodiment of the invention, a negative potential is applied to the substrate in the reaction zone by compared to an anode.
Suivant une forme de réalisation avantageuse, le dépôt de l'élément par évaporation, de préférence sous vide, est suivi d'une condensation sur le substrat.According to an advantageous embodiment, the deposit of the element by evaporation, preferably under vacuum, is followed by a condensation on the substrate.
Suivant une forme de réalisation particulièrement avantageuse, l'on forme le dépôt de l'élément sur le substrat par pulvérisation cathodique.According to a particularly embodiment advantageous, the element is deposited on the substrate by cathode sputtering.
Suivant une forme de réalisation préférée de l'invention, on forme sur le substrat un revêtement constitué d'une couche d'un composé céramique conducteur électronique, par exemple un composé du type TiN, ZrN, TiCN, CrN, VN, NbN, InSnO, obtenu par la réaction d'au moins un métal et d'un gaz réactif, en effectuant d'abord, dans la zone de dépôt, un dépôt dudit métal sur le substrat et, ensuite, dans la zone de réaction, une ionisation du gaz, dans un plasma, formé en regard de ce dépôt, et une implantation de particules ionisées de ce gaz dans ce dépôt de métal, ce dernier étant mis à un potentiel négatif par rapport au gaz ionisé.According to a preferred embodiment of the invention, it is forms a coating on the substrate consisting of a layer of a compound electronic conductive ceramic, for example a compound of the TiN type, ZrN, TiCN, CrN, VN, NbN, InSnO, obtained by the reaction of at least one metal and a reactive gas, by first performing, in the deposition zone, a depositing said metal on the substrate and then, in the reaction zone, a ionization of the gas, in a plasma, formed opposite this deposit, and a implantation of ionized particles of this gas in this metal deposit, this the latter being set to a negative potential with respect to the ionized gas.
L'invention concerne également une installation particulière pour la mise en oeuvre du procédé précité.The invention also relates to a particular installation for the implementation of the above method.
Cette installation est caractérisée en ce qu'elle comprend au moins une zone de dépôt, dans laquelle peut se former un dépôt d'un élément conducteur électronique sur le substrat, cette zone de dépôt étant suivie d'au moins une zone de réaction séparée de cette zone de dépôt, où peut être créée une implantation, dans le dépôt susdit de particules pouvant réagir avec cet élément pour former le composé conducteur électronique, des moyens étant prévus pour déplacer, de préférence d'une manière continue, le substrat de la zone de dépôt vers la zone de réaction.This installation is characterized in that it includes at minus a deposit area, in which a deposit of a electronic conductive element on the substrate, this deposition zone being followed by at least one reaction zone separate from this deposition zone, where an implantation can be created in the above-mentioned deposit of particles which react with this element to form the electronic conductive compound, means being provided for moving, preferably in a manner continues, the substrate from the deposition zone to the reaction zone.
D'autres détails et particularités de l'invention ressortiront de la description donnée ci-après, à titre d'exemples non limitatifs, de quelques formes de réalisation particulières de l'invention avec référence aux dessins annexés.Other details and features of the invention will emerge from the description given below, by way of nonlimiting examples, of some particular embodiments of the invention with reference to the drawings attached.
La figure 1 est une vue schématique en élévation d'une première forme de réalisation, suivant l'invention, d'une installation pour la formation d'un revêtement sur un substrat.Figure 1 is a schematic elevational view of a first embodiment, according to the invention, of an installation for the formation of a coating on a substrate.
La figure 2 est une vue schématique, analogue à celle de la figure 1, d'une deuxième forme de réalisation, suivant l'invention, d'une installation pour la formation d'un revêtement sur un substrat.Figure 2 is a schematic view, similar to that of the FIG. 1, of a second embodiment, according to the invention, of a installation for the formation of a coating on a substrate.
La figure 3 est également une vue schématique analogue à celle des figures 1 et 2, d'une troisième forme de réalisation, suivant l'invention, d'une installation pour la formation d'un revêtement sur un substrat.Figure 3 is also a schematic view similar to that of FIGS. 1 and 2, of a third embodiment, according to the invention, an installation for the formation of a coating on a substrate.
La figure 4 est encore une vue schématique d'une quatrième forme de réalisation, suivant l'invention, d'une installation pour la formation d'un revêtement sur un substrat.Figure 4 is still a schematic view of a fourth embodiment, according to the invention, of an installation for training of a coating on a substrate.
Dans les différentes figures, les mêmes chiffres de référence concernent des éléments analogues ou identiques.In the different figures, the same reference numbers relate to similar or identical elements.
D'une façon générale, l'invention consiste à proposer un procédé pour le dépôt, sur un substrat, d'un revêtement constitué essentiellement d'un composé conducteur électronique.In general, the invention consists in proposing a process for depositing a coating consisting of a substrate essentially of an electronic conductive compound.
Le substrat peut par exemple être formé de tôles d'acier au défilé, de plaques de verre plat, de feuilles de papier ou de films en matière plastique. The substrate can for example be formed from steel sheets at parade, plates of flat glass, sheets of paper or films plastic.
Le revêtement peut être obtenu par la production de masse de couches, par exemple, de composés métalliques ou céramiques dont l'épaisseur est généralement de l'ordre de 500 à 2000 Å. A cet égard, le procédé suivant l'invention, se caractérise par le fait que l'on forme d'abord une couche séparée sur le substrat dans une zone de dépôt d'un élément conducteur électronique, tel qu'un métal, un alliage ou un semi-conducteur du type dopé N, d'une épaisseur déterminée relativement réduite. Ensuite, dans une zone de réaction, qui est séparée de la zone de dépôt, on crée un gaz réactif contenant des ions qui non seulement peuvent réagir avec l'élément précité, mais qui, de plus, possèdent suffisamment d'énergie cinétique pour pouvoir s'implanter sur toute l'épaisseur déterminée précitée du dépôt ou de la couche de l'élément sur le substrat.The coating can be obtained by mass production layers, for example, of metallic or ceramic compounds of which the thickness is generally of the order of 500 to 2000 Å. In this regard, the process according to the invention, is characterized by the fact that one first forms a separate layer on the substrate in an element deposition area electronic conductor, such as a metal, alloy, or semiconductor of the N doped type, of a relatively reduced determined thickness. Then, in a reaction zone, which is separate from the deposition zone, a reactive gas containing ions which not only can react with the aforementioned element, but which also have sufficient energy kinetics to be able to be implanted on all the aforementioned determined thickness deposit or layer of the element on the substrate.
Cette énergie cinétique est avantageusement maintenue en dessous de 2000 V, de préférence entre 200 et 900 V, tandis que l'épaisseur déterminée précitée est telle que l'implantation des ions du gaz réactif puisse avoir lieu sur sensiblement toute cette épaisseur et que ces ions puissent réagir avec la totalité de l'élément formant cette couche de dépôt. Ces étapes de dépôt et de réaction subséquente sont répétées autant de fois jusqu'à obtention de l'épaisseur finale désirée du revêtementThis kinetic energy is advantageously maintained in below 2000 V, preferably between 200 and 900 V, while the aforementioned determined thickness is such that the implantation of the ions of the gas reagent can take place over substantially this entire thickness and that these ions can react with the entire element forming this layer of deposit. These deposition and subsequent reaction steps are repeated as many times until the desired final coating thickness is obtained
Suivant une forme de réalisation avantageuse de l'invention, on crée, dans la zone de réaction, en regard et à proximité du substrat, un plasma, dans lequel on introduit le gaz réactif précité de manière à y former des ions pouvant réagir, par implantation, avec l'élément déposé préalablement sur le substrat.According to an advantageous embodiment of the invention, creating, in the reaction zone, facing and near the substrate, a plasma, into which the aforementioned reactive gas is introduced so as to form there ions which can react, by implantation, with the deposited element previously on the substrate.
Pour obtenir l'énergie cinétique nécessaire pour l'implantation des ions du gaz réactif dans la couche de dépôt de l'élément, l'on applique de préférence un potentiel négatif au substrat dans la zone de réaction pour polariser négativement le dépôt déjà formé sur ce substrat et l'on crée, de plus, un circuit de confinement magnétique pour les électrons formés à proximité de la surface du substrat sur laquelle le revêtement est formé.To obtain the kinetic energy necessary for implantation reactive gas ions in the element's deposition layer, we apply preferably a negative potential to the substrate in the reaction zone for negatively polarize the deposit already formed on this substrate and we create, from plus, a magnetic confinement circuit for the electrons formed at proximity to the surface of the substrate on which the coating is formed.
Le dépôt de l'élément conducteur précité peut être formé par évaporation, de préférence sous vide, suivie d'une condensation sur le substrat, par pulvérisation cathodique, par une combinaison d'une évaporation et d'une pulvérisation cathodique ou encore au moyen d'un canon à ions.The deposit of the aforementioned conductive element can be formed by evaporation, preferably under vacuum, followed by condensation on the substrate, by sputtering, by a combination of a evaporation and sputtering or by means of a ion gun.
La technique de la combinaison d'une évaporation et d'une pulvérisation cathodique fait l'objet de la demande de brevet belge n° 09501052 (brevet n° 1009838) du même déposant, tandis que les autres techniques constituent généralement des techniques connues en soi. A cet égard, il y a lieu de noter que le canon à ions est généralement moins intéressant que les autres techniques citées.The technique of combining evaporation and cathode sputtering is the subject of Belgian patent application no. 09501052 (patent n ° 1009838) by the same applicant, while the other techniques constitute generally techniques known per se. In this regard, there is reason to note that the ion gun is generally less interesting than the other techniques cited.
La figure 1 montre schématiquement une forme de réalisation
dans laquelle le dépôt de l'élément est formé par évaporation sous vide. Il
s'agit d'une forme de réalisation particulière pour le recouvrement d'une des
faces d'un substrat 1 en forme d'une feuille continue, qui se déplace d'une
manière sensiblement continue dans le sens de la flèche 2, d'abord à
travers d'une première zone 3 où a lieu l'évaporation sous vide d'un métal 4
maintenu en fusion dans un creuset 5. Dans cette zone, un film ou une
couche 6 de ce métal est condensé sur la face de la tôte en regard du
creuset 5. Le substrat 1 avec ce film 6 se déplace ensuite vers une
deuxième zone 7, séparée de la première, dans laquelle on produit, dans un
gaz réactif par exemple N2, CH4, un plasma 8 qui permet de former dans ce
gaz des ions. Ces ions s'implantent dans le film 6 pour réagir avec le métal,
dont il est constitué, et former ainsi un revêtement 9 d'un composé
conducteur électronique obtenu par la réaction du métal formant le film avec
les ions produits.Figure 1 schematically shows an embodiment in which the deposit of the element is formed by vacuum evaporation. It is a particular embodiment for covering one of the faces of a
Afin de donner aux ions l'énergie cinétique nécessaire pour
pénétrer dans toute l'épaisseur du film 6, on applique au substrat 1, dans la
zone 7, un potentiel négatif par rapport à une anode 10 agencée en regard
de ce substrat.In order to give the ions the kinetic energy necessary for
penetrate the entire thickness of the film 6, apply to the
Signalons encore que le gaz réactif est introduit dans le
plasma 8 par des injecteurs 11 montrés schématiquement à la figure 1 et
appelés généralement "douches".It should also be noted that the reactive gas is introduced into the
plasma 8 by
La densité des ions pénétrant dans le film 6 est encore accrue
par la présence d'un circuit de confinement magnétique du côté du substrat
couvert par ce film. Ce circuit magnétique est créé par des aimants
permanents ou éventuellement des électro-aimants 12 montés sur une
plaque d'acier doux, représentés schématiquement à la figure 1, disposés à
proximité du substrat 1, du côté opposé à celui où est formé le film 6.The density of the ions entering the film 6 is further increased
by the presence of a magnetic confinement circuit on the side of the substrate
covered by this film. This magnetic circuit is created by magnets
permanent or possibly
La figure 2 est une représentation schématique d'une
deuxième forme de réalisation de l'invention qui se rapporte à la formation
d'un revêtement sur une des faces de plaques rigides notamment de verre 1
se déplaçant d'une manière sensiblement continue, dans le sens de la
flèche 2, sur des rouleaux entraínés 13, mises à la masse, successivement
à travers la zone de dépôt 3 et la zone de réaction 7.Figure 2 is a schematic representation of a
second embodiment of the invention which relates to training
a coating on one of the faces of rigid plates, in particular of
Dans cette forme de réalisation, le dépôt du film 6 dans la
zone de dépôt 3 est formé par pulvérisation cathodique.In this embodiment, the deposition of the film 6 in the
Suivant cette technique, qui est connue en soi, on prévoit
dans cette zone 3, en regard des plaques de verre 1, une cible de
pulvérisation cathodique magnétron 14 pourvue, du côté dirigé vers ces
plaques de verre, d'une couche du métal dont le film 6 est constitué. Cette
couche de la cible 14 est bombardée par des ions de gaz inerte, tels que
des ions d'argon, formés dans un plasma 15, qui éjectent des atomes de
métal de cette cible 14 et forment sur le substrat le film précité 6. Ce gaz
inerte est introduit dans la zone de dépôt 3 par des injecteurs inclinés
vers le bas.According to this technique, which is known per se, provision is made
in this
La cible 14 est mise à un potentiel négatif, tandis que les
rouleaux 13 sont également mis à la masse.
La zone de réaction 7, où a lieu l'implantation de ce film d'ions
provenant du gaz réactif, est sensiblement identique à celle de la figure 1 et
est séparée de la zone de dépôt par une paroi 20 dans laquelle est agencée
une ouverture 21 pour le passage des plaques de verre 1 de la zone de
dépôt 3 vers la zone de réaction 7.
La figure 3 est une représentation schématique d'une
troisième forme de réalisation qui diffère de celle représentée à la figure 2
par la nature du substrat 1, de la technique appliquée pour la formation du
film de métal 6 dans la zone de dépôt et des moyens de transport du
substrat 1 à travers les zones de dépôt 3 et 7. Dans cette troisième forme de
réalisation, le substrat est formé d'une feuille flexible 1, d'un métal, ou d'une
feuille souple de papier ou d'une matière plastique, telle que du
polyéthylène ou polypropylène, qui est entraínée par des tambours 16
tournant en synchronisme autour de leur axe 17 dans le sens des flèches 2. Figure 3 is a schematic representation of a
third embodiment which differs from that shown in Figure 2
by the nature of the
Dans la zone de dépôt 3 le film 6 est formé sur le substrat 1
par l'application de la technique combinée d'évaporation sous vide et de
pulvérisation cathodique, telle que décrite dans la demande de brevet belge
09501052 du 20 décembre 1996 du même déposant.In the
Par conséquent, dans ce cas le métal 4 est maintenu à l'état
liquide dans un creuset 5 maintenu à un potentiel négatif, en dessous
duquel sont agencés des aimants 12 formant un circuit magnétique exactement
comme dans la zone de réaction 7 des formes de réalisation
précédentes.Therefore, in this case the metal 4 is kept in the state
liquid in a
La zone de réaction 7, qui suit la zone de dépôt 3 est séparée
de cette dernière par une paroi 20, comme dans la deuxième forme de
réalisation. Cette zone de réaction 7 se différencie des formes de réalisation
précédentes par le fait que la feuille 1 formant le substrat est entraínée sur
un tambour 16 et que les aimants 12, formant le circuit magnétique, sont
agencés à l'intérieur du tambour, en regard de l'endroit où la feuille 1 est en
contact avec ce dernier.The
Un des avantages de l'installation suivant la figure 3 est qu'elle permet un refroidissement aisé du substrat aussi bien dans la zone de dépôt que dans la zone de réaction au moyen d'un liquide refroidisseur circulant à l'intérieur des tambours. Ceci peut être utile dans certains cas, par exemple pour le traitement de substrats à point de ramollissement relativement bas ou sujet à des transformations de phases.One of the advantages of the installation according to FIG. 3 is that it allows easy cooling of the substrate both in the area deposition only in the reaction zone by means of a coolant flowing inside the drums. This can be useful in some cases, for example for the treatment of substrates with relatively softening point low or subject to phase transformations.
La figure 4 est une représentation schématique d'une
quatrième forme de réalisation de l'invention dans laquelle la formation du
film 6 sur le substrat 1 dans les zones de dépôt 3 peut être réalisée par
exemple comme dans les formes de réalisation précédentes.Figure 4 is a schematic representation of a
fourth embodiment of the invention in which the formation of
film 6 on the
Ce qui est, toutefois, typique dans cette quatrième forme de
réalisation est qu'une zone de dépôt déterminée est séparée de la zone de
dépôt subséquente par au moins deux zones de réaction consécutives distinctes.
Ainsi, dans la figure 4 on a représenté entre deux zones de dépôt 3,
trois zones de réaction consécutives 7a, 7b, 7c où le substrat 1 est soumis à
un potentiel qui diffère d'une zone de réaction à la zone de réaction
subséquente, de préférence à un potentiel décroissant, dans le sens de
déplacement 2 du substrat 1, d'une zone de réaction à la zone de réaction
suivante. Concrètement, la différence de potentiel dans la zone 7a peut par
exemple être de l'ordre de 3000 V, celui dans la zone 7b de 1000 V et celui
dans la zone 7c de 500 V.What is, however, typical in this fourth form of
realization is that a specific drop zone is separate from the drop zone
subsequent deposition by at least two separate consecutive reaction zones.
Thus, in FIG. 4, two
L'invention est illustrée davantage par quelques exemples de réalisation concrets décrits ci-après.The invention is further illustrated by a few examples of concrete achievements described below.
Cet exemple concerne la formation d'un revêtement de
décoration de nitrure de zirconium sur une tôle d'acier en faisant usage
d'une installation telle qu'illustrée par la figure 1 dans laquelle toutefois un
film de zirconium 6 est déposé sur la tôle 1, à partir d'une cible de zirconium
14, par pulvérisation cathodique, comme dans l'installation montrée à la
figure 2.This example concerns the formation of a coating of
decoration of zirconium nitride on a steel sheet making use of it
of an installation as illustrated in FIG. 1 in which however a
zirconium film 6 is deposited on the
La tôle d'une épaisseur de 0,2 mm se déplaçait à travers les
zones 3 et 7 à une vitesse de l'ordre de 400 m/minute. La largeur de la cible
de zirconium 14 dans les zones de réaction 3, suivant le sens de déplacement
2 de la tôle 1, était de 30 cm. Ainsi, le temps de passage de la tôle 1
devant la cible 14 était de 0,045 sec.The 0.2 mm thick sheet moved through the
Dans cette zone de dépôt 3, on a injecté de l'argon à une
pression de 0,667 Pa (5.10-3 Torr), tandis que la densité de puissance dissipée à la
cible était de 75 W/cm2.In this
Dans la zone de réaction 7, encore appelée zone
d'implantation, on a injecté de l'azote également à une pression de 0,667 Pa (5.10-3
Torr), alors que la densité de puissance dissipée au substrat lors de
l'implantation du film de zirconium était de 20 W/cm3. La tension entre la tôle
et l'anode était de 450 V.In
En faisant passer la tôle à travers dix sections de ce type, c'est-à-dire une zone de dépôt suivie d'une zone de réaction, on obtenait une tôle recouverte d'une couche finale homogène de nitrure de zirconium d'une épaisseur totate de 700Å pouvant convenir parfaitement pour la décoration.Passing the sheet through ten sections of this type, i.e. a drop zone followed by a drop zone reaction, we got a sheet covered with a homogeneous final layer of zirconium nitride with a total thickness of 700Å which may be suitable perfectly for decoration.
Cet exemple concerne la formation d'une couche d'oxyde
d'indium et d'étain (InSnO), encore appelée "ITO", sur des plaques de
verre, en faisant usage de l'installation telle qu'illustrée schématiquement
par la figure 2 mais, mais dans laquelle, toutefois, la zone de dépôt 3
correspondait à celle de la forme de réalisation montrée à la figure 1. Ainsi,
on avait prévu deux creusets successifs formant des cibles, un creuset
contenant de l'étain liquide, l'autre contenant de l'indium liquide. La surface
du métal liquide dans chacun de ces creusets, exposée aux plaques de
verre défilant en regard de ces derniers, présentait une largeur de 30 cm
dans le sens de défilement Comme dans le premier exemple, la vitesse de
déplacement des plaques était de 400 m/minute.This example concerns the formation of an oxide layer
indium and tin (InSnO), also called "ITO", on plates
glass, making use of the installation as illustrated schematically
by Figure 2 but, but in which, however, the
Dans la zone de dépôt, on a injecté de l'argon à une pression de 0,667 Pa (5.10-3 Torr), tandis que la densité de puissance dissipée aux cibles était de 50 W/cm2.In the deposition zone, argon was injected at a pressure of 0.667 Pa (5.10 -3 Torr), while the power density dissipated at the targets was 50 W / cm 2 .
La largeur de la zone de réaction, notamment du circuit magnétique défini par les aimants formant un magnétron, était de 30 cm.The width of the reaction zone, in particular of the circuit magnetic defined by the magnets forming a magnetron, was 30 cm.
Dans cette zone, on a injecté de l'oxygène à une pression de 0,667 Pa (5.10-3 Torr).In this area, oxygen was injected at a pressure of 0.667 Pa (5.10 -3 Torr).
La tension dans cette zone entre le film composé d'indium et d'étain, préalablement formé dans la zone de dépôt sur les plaques de verre entrant dans la zone de réaction, était de 600 V et la densité de puissance dissipée sur le substrat était de 30 W/cm2.The voltage in this zone between the film composed of indium and tin, previously formed in the deposition zone on the glass plates entering the reaction zone, was 600 V and the power density dissipated on the substrate was 30 W / cm 2 .
Comme dans l'Exemple 1, on a fait passer ces plaques de verre à travers dix zones de dépôt identiques entre chacune desquelles était intercalée une même zone de réaction. Ceci a permis d'obtenir des plaques de verre recouvertes d'une couche finale homogène et transparente d'oxyde d'indium et d'étain d'une épaisseur de 1000 Å.As in Example 1, these plates were passed through glass through ten identical deposition zones between each of which was the same reaction zone. This made it possible to obtain plaques of glass covered with a homogeneous and transparent final layer of oxide indium and tin with a thickness of 1000 Å.
Cet exemple concerne la formation d'un revêtement de nitrure de titane sur une feuille flexible d'aluminium d'une épaisseur de 0,3 mm en faisant usage d'une installation du type de celle représentée à la figure 3.This example concerns the formation of a nitride coating of titanium on a flexible sheet of aluminum with a thickness of 0.3 mm in using an installation of the type shown in Figure 3.
Les conditions de travail et paramètres dans les zones de dépôt et de réaction correspondaient sensiblement à celles de l'Exemple 1. Ceci a permis d'obtenir un revêtement homogène de nitrure de titane d'une épaisseur de 500 Å après dix passages successifs à travers une zone de dépôt et une zone de réaction.The working conditions and parameters in the areas of deposition and reaction corresponded substantially to those of Example 1. This made it possible to obtain a homogeneous coating of titanium nitride of a thickness of 500 Å after ten successive passes through an area of depot and a reaction zone.
Claims (17)
- Process for depositing a coating (6) comprising an electronically conducting compound on a substrate (1), in which process the coating is formed, firstly, by depositing, in at least one deposition zone (3), one or more coatings of a predetermined thickness of an electronically conducting element and, secondly, by carrying out, in at least one reaction zone (7) in which an anode (10) is located, one or more reactions between the electronically conducting element thus deposited and ions of a reactive gas in order to implant them in the coating of the abovementioned element over most of this predetermined thickness so as to form with most of this element the said electronically conducting compound, and in which a negative potential with respect to the anode (10) is applied to the deposited coating (6) in the reaction zone (7) .
- Process according to Claim 1, in which the negative potential is applied to the deposited coating by applying to the substrate a negative potential with respect to the anode.
- Process according to Claim 1, in which the negative potential is applied to the deposited coating by earthing the rolls (13) which are in contact with the coating.
- Process according to any one of Claims 1 to 3, in which the ions are subjected to a potential difference of less than 2000 V, preferably from 200 to 900 V.
- Process according to any one of Claims 1 to 4, in which the aforementioned reaction between the element deposited on the substrate and the aforementioned reactive gas is carried out by creating, opposite and close to that surface of the substrate having the coating of the element, a plasma into which the aforementioned reactive gas is introduced so as in this way to form therein ions which penetrate the coating of the element approximately to a depth corresponding to the thickness of this coating in order to make them react with the element.
- Process according to any one of Claims 1 to 5, in which the element is deposited on the substrate by evaporation, preferably vacuum evaporation, followed by condensation.
- Process according to any one of Claims 1 to 6, in which the element is deposited on the substrate by sputtering.
- Process according to any one of Claims 5 to 7, in which a coating consisting of a layer of an electronically conducting ceramic compound, for example a compound of the TiN, ZrN, TiCN, CrN, VN, NbN type obtained by the reaction of a metal and a reactive gas, is formed on the substrate by firstly depositing, in the deposition zone, a coating of the said metal on the substrate and, thereafter, in the reaction zone, inducing ionization of the gas in a plasma, formed opposite this coating, and implanting ionized particles of this gas into this metal coating, the latter being at a negative potential with respect to the ionized gas.
- Process according to any one of Claims 1 to 8, in which a magnetic circuit for electron confinement is created on that side of the substrate where the reaction between the deposited element and the aforementioned reactive gas takes place.
- Process according to any one of Claims 1 to 9, in which at least two separate successive reaction zones are provided after each deposition zone for depositing the aforementioned element, the substrate being subjected to a potential which differs from one reaction zone to the next reaction zone.
- Process according to any one of Claims 1 to 10, in which the substrate is formed by a continuous web moving, preferably in an approximately continuous manner, through the aforementioned successive zones.
- Process according to any one of Claims 1 to 11, in which, the substrate being formed by a sheet, such successive sheets are moved one after the other through the successive zones, the coating formed on these sheets in the deposition zone being at negative potential at least in the reaction zone.
- Process according to any one of Claims 1 to 12, in which a radio-frequency excitation, preferably in the microwave range, is applied in the aforementioned reaction zone near that surface of the substrate on which the coating is formed.
- Apparatus for depositing a coating essentially consisting of an electronically conducting compound on a substrate, especially an apparatus for implementing the process according to any one of Claims 1 to 13, comprising at least one deposition zone, in which an electronically conducting element can be deposited on the substrate, this deposition zone being followed by at least one reaction zone, separate from this deposition zone, in which particles can be implanted into the aforementioned coating, which particles are able to react with this element in order to form the electronically conducting compound, means being provided for moving the substrate from the deposition zone towards the reaction zone, characterized in that means are provided for applying to the coating, at least in the reaction zone, a negative potential with respect to an anode placed in this zone opposite the substrate.
- Apparatus according to Claim 14, in which the aforementioned deposition zone comprises a device for producing evaporation, preferable vacuum evaporation, of the element followed by its condensation on the substrate.
- Apparatus according to Claim 14, in which the deposition zone comprises a target having a surface layer turned towards the substrate and containing the element to be deposited on the latter, means being provided for depositing this element from this target by sputtering.
- Apparatus according to any one of Claims 14 to 16, comprising, in the reaction zone, means for ionizing gas particles that can be implanted into the coating of the aforementioned electronically conducting element.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE9600637 | 1996-07-12 | ||
BE9600637A BE1010420A3 (en) | 1996-07-12 | 1996-07-12 | Method for forming a coating on a substrate and installation for implementing the method. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0818557A1 EP0818557A1 (en) | 1998-01-14 |
EP0818557B1 true EP0818557B1 (en) | 2001-08-29 |
Family
ID=3889877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97870100A Expired - Lifetime EP0818557B1 (en) | 1996-07-12 | 1997-07-08 | Method and apparatus for forming a coating on a substrate |
Country Status (8)
Country | Link |
---|---|
US (2) | US6171659B1 (en) |
EP (1) | EP0818557B1 (en) |
AT (1) | ATE204927T1 (en) |
BE (1) | BE1010420A3 (en) |
DE (1) | DE69706380T2 (en) |
DK (1) | DK0818557T3 (en) |
ES (1) | ES2162670T3 (en) |
PT (1) | PT818557E (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6964731B1 (en) * | 1998-12-21 | 2005-11-15 | Cardinal Cg Company | Soil-resistant coating for glass surfaces |
US6676810B2 (en) * | 2000-01-12 | 2004-01-13 | D2 In-Line Solutions, Llc | Method of coating insulative substrates |
AU2002302168B2 (en) * | 2001-05-22 | 2007-11-08 | Commonwealth Scientific And Industrial Research Organisation | Process and apparatus for producing crystalline thin film buffer layers and structures having biaxial texture |
AUPR515301A0 (en) * | 2001-05-22 | 2001-06-14 | Commonwealth Scientific And Industrial Research Organisation | Process and apparatus for producing crystalline thin film buffer layers and structures having biaxial texture |
US6983925B2 (en) * | 2002-03-29 | 2006-01-10 | D2 In-Line Solutions, Llc | Rotary barrel gate valve |
US7157123B2 (en) | 2002-12-18 | 2007-01-02 | Cardinal Cg Company | Plasma-enhanced film deposition |
ATE483040T1 (en) * | 2002-12-31 | 2010-10-15 | Cardinal Cg Co | COATING DEVICE HAVING A SUBSTRATE CLEANING DEVICE AND COATING PROCESS USING SUCH A COATING DEVICE |
US7128133B2 (en) * | 2003-12-16 | 2006-10-31 | 3M Innovative Properties Company | Hydrofluoroether as a heat-transfer fluid |
US7294404B2 (en) * | 2003-12-22 | 2007-11-13 | Cardinal Cg Company | Graded photocatalytic coatings |
WO2006017349A1 (en) * | 2004-07-12 | 2006-02-16 | Cardinal Cg Company | Low-maintenance coatings |
EP1828072B1 (en) * | 2004-11-15 | 2016-03-30 | Cardinal CG Company | Method for depositing coatings having sequenced structures |
US8092660B2 (en) * | 2004-12-03 | 2012-01-10 | Cardinal Cg Company | Methods and equipment for depositing hydrophilic coatings, and deposition technologies for thin films |
US7923114B2 (en) * | 2004-12-03 | 2011-04-12 | Cardinal Cg Company | Hydrophilic coatings, methods for depositing hydrophilic coatings, and improved deposition technology for thin films |
US7989094B2 (en) | 2006-04-19 | 2011-08-02 | Cardinal Cg Company | Opposed functional coatings having comparable single surface reflectances |
US20080011599A1 (en) | 2006-07-12 | 2008-01-17 | Brabender Dennis M | Sputtering apparatus including novel target mounting and/or control |
WO2008041578A1 (en) * | 2006-09-27 | 2008-04-10 | Hoya Corporation | Method for manufacturing magnetic recording medium and method for manufacturing laminated body |
US7820296B2 (en) | 2007-09-14 | 2010-10-26 | Cardinal Cg Company | Low-maintenance coating technology |
BE1017852A3 (en) * | 2007-11-19 | 2009-09-01 | Ind Plasma Services & Technologies Ipst Gmbh | METHOD AND INSTALLATION OF GALVANIZATION BY PLASMA EVAPORATION |
DE102013110328B4 (en) * | 2013-09-19 | 2018-05-09 | VON ARDENNE Asset GmbH & Co. KG | Coating arrangement and coating method |
US10604442B2 (en) | 2016-11-17 | 2020-03-31 | Cardinal Cg Company | Static-dissipative coating technology |
CN118028762B (en) * | 2024-04-12 | 2024-07-09 | 山东省宝丰镀膜有限公司 | Suspension type winding magnetic control cathode bombardment evaporation film forming system |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3594238A (en) * | 1968-08-15 | 1971-07-20 | United States Steel Corp | Method for treating aluminum surfaces to prevent discoloration |
JPS56163262A (en) * | 1980-05-21 | 1981-12-15 | Ulvac Corp | Method and apparatus for forming oxidation and weather resistant film after surface treatment |
US4478703A (en) * | 1983-03-31 | 1984-10-23 | Kawasaki Jukogyo Kabushiki Kaisha | Sputtering system |
JPS60141869A (en) * | 1983-12-29 | 1985-07-26 | Nissin Electric Co Ltd | Method and device for forming film |
GB8423255D0 (en) * | 1984-09-14 | 1984-10-17 | Atomic Energy Authority Uk | Surface treatment of metals |
US4708037A (en) * | 1985-11-18 | 1987-11-24 | Gte Laboratories Incorporated | Coated cemented carbide tool for steel roughing applications and methods for machining |
GB8626330D0 (en) * | 1986-11-04 | 1986-12-31 | Atomic Energy Authority Uk | Ion assisted coatings |
DE3641718A1 (en) * | 1986-12-06 | 1988-06-16 | Leybold Ag | METHOD FOR PRODUCING WRAPS FROM INSULATING FILMS COATED CONDUCTIVELY IN A VACUUM |
JPS63206464A (en) * | 1987-02-23 | 1988-08-25 | Asahi Glass Co Ltd | Inline type composite surface treatment device |
US4851095A (en) * | 1988-02-08 | 1989-07-25 | Optical Coating Laboratory, Inc. | Magnetron sputtering apparatus and process |
JPH01294861A (en) * | 1988-05-20 | 1989-11-28 | Hitachi Koki Co Ltd | Ion beam mixing method |
US5241152A (en) * | 1990-03-23 | 1993-08-31 | Anderson Glen L | Circuit for detecting and diverting an electrical arc in a glow discharge apparatus |
US5346600A (en) * | 1992-08-14 | 1994-09-13 | Hughes Aircraft Company | Plasma-enhanced magnetron-sputtered deposition of materials |
JP3291088B2 (en) * | 1993-10-06 | 2002-06-10 | 株式会社神戸製鋼所 | Coating method |
-
1996
- 1996-07-12 BE BE9600637A patent/BE1010420A3/en not_active IP Right Cessation
-
1997
- 1997-07-08 PT PT97870100T patent/PT818557E/en unknown
- 1997-07-08 EP EP97870100A patent/EP0818557B1/en not_active Expired - Lifetime
- 1997-07-08 DK DK97870100T patent/DK0818557T3/en active
- 1997-07-08 AT AT97870100T patent/ATE204927T1/en active
- 1997-07-08 DE DE69706380T patent/DE69706380T2/en not_active Expired - Lifetime
- 1997-07-08 ES ES97870100T patent/ES2162670T3/en not_active Expired - Lifetime
- 1997-07-11 US US08/893,578 patent/US6171659B1/en not_active Expired - Lifetime
-
2001
- 2001-01-05 US US09/754,401 patent/US6337005B2/en not_active Expired - Lifetime
Non-Patent Citations (2)
Title |
---|
Advanced techniques for surface engineering, W. Gissler and H. A. Jehn, Kluwer Academic Publishers * |
Handbook of deposition technologies for films and coatings, Rointan F. Bunshah, Noyes publications * |
Also Published As
Publication number | Publication date |
---|---|
US6337005B2 (en) | 2002-01-08 |
US6171659B1 (en) | 2001-01-09 |
EP0818557A1 (en) | 1998-01-14 |
DK0818557T3 (en) | 2002-01-07 |
ES2162670T3 (en) | 2002-01-01 |
DE69706380D1 (en) | 2001-10-04 |
BE1010420A3 (en) | 1998-07-07 |
US20010001948A1 (en) | 2001-05-31 |
ATE204927T1 (en) | 2001-09-15 |
PT818557E (en) | 2002-02-28 |
DE69706380T2 (en) | 2002-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0818557B1 (en) | Method and apparatus for forming a coating on a substrate | |
EP0038294B1 (en) | Method of depositing a hard coating of a metal, deposition target for such a method and piece of jewellery comprising such a coating | |
CA1093910A (en) | Reactive deposit of oxides | |
FR2500852A1 (en) | ||
EP1182272A1 (en) | Process and apparatus for continuous cold plasma deposition of metallic layers | |
FR2578270A1 (en) | PROCESS FOR REACTIVE VAPORIZATION OF OXIDE, NITRIDE, OXYNITRIDE AND CARBIDE LAYERS. | |
KR970003431A (en) | Continuous method for forming an improved titanium nitride containing barrier layer | |
US20030186493A1 (en) | Method and device for making substrates | |
FR2957454A1 (en) | Method for conditioning of ion gun in e.g. ophthalmic lens, treating enclosure, involves operating ion gun in stabilized mode with mask-gun in closing position during stabilized mode, where mask-gun is provided with enclosure | |
EP0413617A1 (en) | Method for depositing thin layers | |
BE1009839A3 (en) | Method and device for cleaning substrate metal. | |
FR2596775A1 (en) | Hard multilayer coating produced by ion deposition of titanium nitride, titanium carbonitride and i-carbon | |
EP2111477B1 (en) | Method for coating a substrate, equipment for implementing said method and metal supply device for such equipment | |
FR2559507A1 (en) | PROCESS FOR PRODUCING LAMINATED MATERIAL OR LAMINATED PIECES | |
CH627791A5 (en) | Process for covering the surface of an electrically conductive article, plant for making use of the process and application of the process | |
AU2002364794A1 (en) | Improved method for coating a support | |
JPH0560904A (en) | Optical parts and production thereof | |
WO1996012389A9 (en) | Apparatus for depositing a layer of material on a substrate | |
WO2004061150A1 (en) | Method for the production of a multilayer wear-resistant coating | |
FR2539881A1 (en) | PROCESS FOR PRODUCING AN OPTICAL COMPONENT, AND COMPONENTS OBTAINED THEREBY | |
RU97112300A (en) | METHOD FOR FORMING WEAR-RESISTANT COATING ON THE SURFACE OF PRODUCTS FROM STRUCTURAL STEEL | |
EP0454584A1 (en) | Process and apparatus for decontamination using ion etching | |
FR2528452A1 (en) | Deposition of metals or their cpds. onto conducting substrates - in ion plating reactor using two glow discharges in inert or reactive gases | |
WO2002097156A1 (en) | Advanced method for covering a support, device and structure associated therewith | |
Matthews | Vapour Deposited Self-Sealing Ceramic Coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;RO;SI |
|
17P | Request for examination filed |
Effective date: 19980330 |
|
AKX | Designation fees paid |
Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19981230 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
REF | Corresponds to: |
Ref document number: 204927 Country of ref document: AT Date of ref document: 20010915 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REF | Corresponds to: |
Ref document number: 69706380 Country of ref document: DE Date of ref document: 20011004 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM & CO. PATENTANWAELTE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 Ref country code: ES Ref legal event code: FG2A Ref document number: 2162670 Country of ref document: ES Kind code of ref document: T3 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20011130 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20011108 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20010402195 Country of ref document: GR |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Opponent name: AICHELIN GESMBH Effective date: 20020406 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: RECHERCHE ET DEVELOPPEMENT DU GROUPE COCKERILL SA Free format text: RECHERCHE ET DEVELOPPEMENT DU GROUPE COCKERILL SAMBRE, EN ABREGE: RD-CS#CAMPUS UNIVERSITAIRE DU SART TILMAN, BOULEVARD DE COLONSTER B 57#4000 LIEGE (BE) -TRANSFER TO- RECHERCHE ET DEVELOPPEMENT DU GROUPE COCKERILL SAMBRE, EN ABREGE: RD-CS#CAMPUS UNIVERSITAIRE DU SART TILMAN, BOULEVARD DE COLONSTER B 57#4000 LIEGE (BE) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69706380 Country of ref document: DE Representative=s name: HOEGER, STELLRECHT & PARTNER PATENTANWAELTE MB, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20160621 Year of fee payment: 20 Ref country code: FI Payment date: 20160622 Year of fee payment: 20 Ref country code: IE Payment date: 20160622 Year of fee payment: 20 Ref country code: ES Payment date: 20160623 Year of fee payment: 20 Ref country code: GR Payment date: 20160622 Year of fee payment: 20 Ref country code: GB Payment date: 20160627 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20160713 Year of fee payment: 20 Ref country code: PT Payment date: 20160630 Year of fee payment: 20 Ref country code: FR Payment date: 20160622 Year of fee payment: 20 Ref country code: BE Payment date: 20160621 Year of fee payment: 20 Ref country code: NL Payment date: 20160623 Year of fee payment: 20 Ref country code: DK Payment date: 20160622 Year of fee payment: 20 Ref country code: SE Payment date: 20160627 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160627 Year of fee payment: 20 Ref country code: DE Payment date: 20160622 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20160622 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69706380 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20170707 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Effective date: 20170708 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20170707 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 204927 Country of ref document: AT Kind code of ref document: T Effective date: 20170708 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MK9A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170718 Ref country code: IE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170708 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170707 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170709 |