EP0815553B1 - Verfahren zur erkennung einer signalpause zwischen zwei mustern, welche in einem zeitvarianten mess-signal vorhanden sind - Google Patents
Verfahren zur erkennung einer signalpause zwischen zwei mustern, welche in einem zeitvarianten mess-signal vorhanden sind Download PDFInfo
- Publication number
- EP0815553B1 EP0815553B1 EP96905679A EP96905679A EP0815553B1 EP 0815553 B1 EP0815553 B1 EP 0815553B1 EP 96905679 A EP96905679 A EP 96905679A EP 96905679 A EP96905679 A EP 96905679A EP 0815553 B1 EP0815553 B1 EP 0815553B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pause
- signal
- pattern
- measurement signal
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/78—Detection of presence or absence of voice signals
Definitions
- Pattern recognition is achieved in many technical processes is becoming increasingly important as this increases the degree of automation can be achieved.
- Let pattern recognition processes are usually reduced to a time-varying measurement signal, which from the patterns to be recognized in a suitable manner is derived.
- these measurement signals not in a pure form, but often from stationary ones or are overlaid by transient interference signals.
- these interference components the measurement signal, for example by background noise, Breathing noises, machine noises, or even through the recording medium and the transmission path become.
- the measurement signal is never in pure form it is particularly important between the components of the measurement signal, which contain the pattern to be recognized and between other proportions in which there is no pattern differentiate. So it is for better recognition of the patterns especially important to know exactly when pattern in the measurement signal and when there are no samples, i.e. not from the pattern originating signals are present as pause signals in the measurement signal are.
- a pause detection is e.g. also important to a reduction the amount of data transmitted, for example in the case of voice communication channels and also in satellite broadcasting to achieve the general useful interference signal decision signal processing, or the end of an utterance to be found in automatic speech recognition systems.
- a robust pause detector serves to improve performance of voice-controlled systems. Especially applies this for speech recognition systems since it is about a spoken utterance as a pattern with an existing one Compare version.
- the problem of determining breaks is particularly detailed in automatic speech recognition described by Rabiner [1]. It also has an algorithm specified for break detection. There are pause detection Information taken into account which comes straight from the sampled time signal (energy, Zero crossing rate ETC.). This approach is everyone known pause detectors together [2].
- the object underlying the invention is a improved method for pause detection between patterns specify which are present in a measurement signal and which were modeled with the help of hidden Markov models.
- An advantage of the method according to the invention is that that for the first time information in different signal processing levels be won and the one after the other occur for pause detection.
- the means the pause information is compared by comparing one special pause model with the feature vectors of the measurement signal won in a comparison level and at the feature extraction level the pattern recognition, so that in another time slice in the feature extraction level the pause status is taken into account in the measurement signal analysis can be.
- the method according to the invention advantageously uses the Information that certain sample groups belong together, for example, in the case of words, these are phoneme pattern groups it is ensured that at least according to the sample group there must be a pause.
- This information will follow advantageously first in the feature extraction level Processing stage of the process exploited.
- the method according to the invention also ensured that one to be recognized before arrival Sequence must have been a break. This fact is also used in pattern recognition.
- the method according to the invention can advantageously also be used known methods for pause detection can be combined, what properties of the measurement signal in the time domain and in Evaluate the spectral range. This way, a higher one Detection rate in pattern recognition can be achieved.
- Speech patterns, writing patterns or signaling patterns are analyzed as they are used in a wide range of technical applications occur and be appropriately modeled can.
- the method according to the invention can advantageously be used ensure that if no patterns are detected, there must be a pause, this will increase Detection rate achieved in the pattern recognition, since with it the Feature extraction level makes pause information even more reliable can be made available.
- FIG. 1 shows a schematic example of a speech recognition system equipped with pause recognition.
- Figure 2 illustrates the pause detection process using various hidden Markov models.
- the method according to the invention is based in particular on that the signal states and the feature vectors of one time slice to the other time slice of the analysis interval do not change excessively.
- information can is obtained in the classification class Klass by, for example it is found that when comparing the hidden Markov models more likely to pause than for a pattern to be recognized, to the feature extraction level are forwarded as pause information Pa. It’s very likely that the time slice in which the pause is detected, another time slice is included Follow pause. This procedure allows the measurement signal existing undesirable disturbances in the formation of the feature vectors even with a low signal-to-noise ratio great security can be suppressed.
- This Knowledge can, for example, from a speech signal about the acoustic phonetic modeling level (hidden Markov models), who already have a lot of training data for speech recognition has been trained.
- a speech signal about the acoustic phonetic modeling level hidden Markov models
- acoustic phonetic modeling level hidden Markov models
- Modeling is more refined and therefore better taking into account the phoneme context, i.e. the Know which phoneme is following another.
- One links for example the pause decision of the acoustically phonetic Modeling level with common criteria for the Break estimation is an improvement in the break decision achievable.
- the various Viterbi paths V1 to V3 are for different hidden Markov models are shown.
- the measurement signal which for example a voice signal, a write signal, or a Signal that is emitted by signaling methods via a suitable signal transformation or several signal transformations transformed into a feature vector space.
- the measurement signal which for example a voice signal, a write signal, or a Signal that is emitted by signaling methods via a suitable signal transformation or several signal transformations transformed into a feature vector space.
- the method according to the invention can be used for training, for example realized with the method of the hidden Markov models become.
- the pause detection method can be equally with other pattern recognition methods, such as e.g. dynamic programming, or neural networks carry out.
- Hidden Markov models can be applied, e.g. for example the distribution functions of the feature vectors be estimated for each recognition unit.
- recognition units are in this context in the automatic Speech recognition Speech sounds (phonemes) meant.
- the procedure was, for example, automatic Realized speech recognition, but it is conceivable that it can be used for any kind of pattern recognition can. Just make sure that signal patterns are provided and that there are pause conditions in which the interference signals can be determined in order to to train the hidden Markov models for break states.
- Some such examples of other pattern recognition methods are, for example, the patterns used when signing a document in the form of pressure or time-dependent Write signals occur, or signal sequences that occur with automatic telecommunications signaling method applied become.
- the recognition phase for example, a continuous pattern comparison in every analysis interval or time slice the probability of generation for each recognition unit to calculate.
- An easy solution is to evaluate this Probabilities. Is the probability of pause, So for the hidden Markov model for break or its Correspondence highest, so the relevant analysis interval to re-estimate the distribution functions, or can be used to filter out noise suppression.
- the method according to the invention becomes even more robust if the result of a pattern recognizer is taken into account as an additional source of knowledge. Assuming, for example, that the pattern recognizer is able to recognize every possible useful signal, the method according to the invention can take advantage of this and define all other analysis intervals, which are not classified as useful signals, as pauses. Such a time period is designated T p in FIG. If there is no requirement for real-time processing with respect to the method, as is the case, for example, in simulations, the method according to the invention can hereby already be considered sufficient for pattern recognition. In practice, real-time criteria are to be used in the applications mentioned and the earliest possible assignment to the useful or noise signal. The method must therefore be integrated into the recognition process itself, for example.
- the recognition method is thus expanded in accordance with the invention in such a way that after each analysis step, for example, it is evaluated which of the patterns, for example words, composed of the recognition units is the most likely.
- the probability that it contains a signal pause is calculated over a larger analysis interval, for example.
- the analysis interval is dimensioned such that it is in any case longer than short pauses, for example plosive pauses, in the useful signal. This probability is then compared with that of the most probable pattern, and they are related to an equally long time interval. The result of this comparison can already be used as a decision.
- the existing in the different time slices Information about the presence of a pause in the classifier Class of the feature extraction level Merk supplied.
- a dynamic one takes place during the recognition Pattern comparison, in which on the basis of the feature vectors in one Analysis window or a time slice an assignment to the pre-trained models is accomplished.
- a global one Search strategy e.g. realized by the Viterbi algorithm, finds the most likely sequence of pre-trained Model states representing the incoming sequence of feature vectors reproduces [6].
- the classifier can be used for the classifier Information about pause / non-pause can be tapped and be fed to a pause detector in another stage.
- a special hidden Markov model for pause with the incoming feature vectors is compared if a higher probability for Pause occurs than for other patterns, so it becomes a pause information for example to the feature extraction level Merk passed on and leads there to the decision that currently there is a pause. That means with this pause information can also be an existing one in the extraction stage
- Pause detector can be controlled to set pause.
- This pause decision can be probability-weighted, for example and is based on a decision that other sources of knowledge within the inventive method considered.
- Such other sources of knowledge are for example statistics of the measurement signal and phoneme context the Viterbi process. Because of the sequential structure a recognizer must, for example, when the Information on a pause detection level for the suppression of noise, e.g. the delay by an analysis window be taken into account. If you link the pause decision the acoustic phonetic modeling level speech recognition with common criteria for pause estimation, so is an improvement in the break decision achievable. Take the frame-by-frame detection, for example the breaks completely, so there is another source of knowledge in the detection system for the pause estimation.
- the inventive method is in one Main program that is limited by main and end.
- This main program essentially contains a do-loop as a time loop.
- a signal_analysis procedure a transformation of the measurement signal into a feature area carried out.
- a special time slice of the measurement signal is analyzed and feature vectors from this time slice created.
- the created feature vectors are then analyzed in a subroutine calculate_word_wk.
- the for each reference word Probability, e.g. with hidden Markov models and with Calculated using Viterbi decoding. For example the association probability that all previous Feature vectors were emitted, calculated.
- calculate_pause_wk becomes the probability calculated for pause for the last P time steps.
- the association probability is calculated that the last P feature vectors from the model for pause were issued.
- pause information is generated if the probability for pause is higher than for the best word, otherwise the pause information is not generated. For example here a standardization of the probability to be taken into account performed for the same period of time P.
- a standardization of the probability to be taken into account performed for the same period of time P.
Landscapes
- Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Telephonic Communication Services (AREA)
- Image Analysis (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Radar Systems Or Details Thereof (AREA)
Description
Figur 2 veranschaulicht den Pausenerkennungsvorgang anhand verschiedener Hidden-Markov-Modelle.
- Eigenschaften des Signals im Zeitbereich, wie z.B. Nulldurchgangsrate und Pegel, sowie
- im Spektralbereich, z.B. die Leistung und das Korrelationsmaß einschließlich des logarithmischen und/oder Merkmalsbereiches.
- Zusätzlich wird durch das erfindungsgemäße Verfahren die Pause detektiert, indem eine Rückführung von der Erkennungsstufe zur Merkmalsextraktionstufe realisiert wird.
Claims (11)
- Verfahren zur Erkennung einer Signalpause zwischen zwei Mustern, welche auf einem zeitvarianten Meßsignal vorhanden sind und die mit Hilfe von hidden Markov Modellen erkannt werden mit folgenden Merkmalen:a) in einer ersten Signalverarbeitungsstufe (Merk) werden zur Mustererkennung periodisch Merkmalsvektoren (m) gebildet, welche den Signalverlauf des Meßsignales (Spr) innerhalb einer Zeitscheibe beschreiben und es wird von einem darin enthaltenen Pausendetektor in einer ersten Zeit scheibe anhand vorhandener Merkmale eines ersten Merkmalsvektors keine Sprachpause detektiert,b) in einer zweiten Signalverarbeitungsstufe (Klass) des Verfahrens wird in einer zweiten Zeitscheibe, welche auf die erste Zeitscheibe folgt der erste Merkmalsvektor mit mindestens zwei hidden Markov Modellen verglichen (HMM), von denen mindestens eines auf ein zu erkennendes Muster und ein weiteres auf ein für eine Pause charakteristisches Muster trainiert wurde,c) falls sich beim Vergleich des ersten Merkmalsvektors (m) mit den hidden Markov Modellen (HMM) eine größere Wahrscheinlichkeit für das vorliegen einer Pause ergibt, so wird die Information über das Vorhandensein einer Pause, die Pauseninformation (Pa), an den Pausendetektor in der ersten Signalverarbeitungsstufe weitergegeben und dort wird mindestens in der zweiten Zeit scheibe das Meßsignal als Signalpause behandelt.
- Verfahren nach Anspruch 1, bei dem eine definierte Folge von Mustern, eine Musterfolge, zu erkennen ist und bei dem nach dem Erkennen der Musterfolge über mehrere Zeitscheiben hinweg, die Pauseninformation weitergegeben wird, so daß in der ersten Signalverarbeitungsstufe mindestens in der auf die Musterfolge folgenden Zeitscheibe das Meßsignal als Signalpause und nicht als zu erkennendes Muster behandelt wird.
- Verfahren nach Anspruch 2, bei dem so viele Merkmalsvektoren zwischengespeichert werden bis eine Musterfolge erkannt wurde und bei dem nach dem Erkennen der Musterfolge die Pauseninformation weitergegeben wird, so daß in der ersten Signalverarbeitungsstufe mindestens in der vor die Musterfolge liegenden Zeitscheibe das Meßsignal als Signalpause und nicht als zu erkennendes Muster behandelt wird.
- Verfahren nach einem der vorangehenden Ansprüche, bei dem in der ersten Signalverarbeitungsstufe zur Pauseerkennung Eigenschaften des Meßsignals im Zeitbereich ausgewertet werden.
- Verfahren nach einem der vorangehenden Ansprüche, bei dem in der ersten Signalverarbeitungsstufe zur Pauseerkennung Eigenschaften des Meßsignals im Spektralbereich ausgewertet werden.
- Verfahren nach einem der vorangehenden Ansprüche, bei dem kontextmodellierte Hidden Markov Modelle verwendet werden.
- Verfahren nach einem der vorangehenden Ansprüche, bei dem das Meßsignal gesprochene Sprache repräsentiert.
- Verfahren nach Anspruch 7, bei dem Störungen in der Merkmalsextraktionsstufe eines Sprachverarbeitungssystems unterdrückt werden
- Verfahren nach einem der Ansprüche 7 oder 8, bei dem eine Kanaladaption eines Sprachkanales durchgeführt wird.
- Verfahren nach einem der Ansprüche 1 bis 6, bei dem das Meßsignal Schreibbewegungen auf einer Unterlage repräsentiert.
- Verfahren nach einem der Ansprüche 1 bis 6, bei dem das Meßsignal Signalfolgen eines nachrichtentechnischen Signalisierungsverfahrens repräsentiert.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19508711 | 1995-03-10 | ||
DE19508711A DE19508711A1 (de) | 1995-03-10 | 1995-03-10 | Verfahren zur Erkennung einer Signalpause zwischen zwei Mustern, welche in einem zeitvarianten Meßsignal vorhanden sind |
PCT/DE1996/000379 WO1996028808A2 (de) | 1995-03-10 | 1996-03-04 | Verfahren zur erkennung einer signalpause zwischen zwei mustern, welche in einem zeitvarianten mess-signal vorhanden sind |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0815553A2 EP0815553A2 (de) | 1998-01-07 |
EP0815553B1 true EP0815553B1 (de) | 1999-06-02 |
Family
ID=7756346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96905679A Expired - Lifetime EP0815553B1 (de) | 1995-03-10 | 1996-03-04 | Verfahren zur erkennung einer signalpause zwischen zwei mustern, welche in einem zeitvarianten mess-signal vorhanden sind |
Country Status (4)
Country | Link |
---|---|
US (1) | US5970452A (de) |
EP (1) | EP0815553B1 (de) |
DE (2) | DE19508711A1 (de) |
WO (1) | WO1996028808A2 (de) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19705471C2 (de) * | 1997-02-13 | 1998-04-09 | Sican F & E Gmbh Sibet | Verfahren und Schaltungsanordnung zur Spracherkennung und zur Sprachsteuerung von Vorrichtungen |
DE19824353A1 (de) * | 1998-05-30 | 1999-12-02 | Philips Patentverwaltung | Vorrichtung zur Verifizierung von Signalen |
DE19824354A1 (de) * | 1998-05-30 | 1999-12-02 | Philips Patentverwaltung | Vorrichtung zur Verifizierung von Signalen |
DE19824355A1 (de) * | 1998-05-30 | 1999-12-02 | Philips Patentverwaltung | Vorrichtung zur Verifizierung von Signalen |
US6418411B1 (en) * | 1999-03-12 | 2002-07-09 | Texas Instruments Incorporated | Method and system for adaptive speech recognition in a noisy environment |
DE19939102C1 (de) * | 1999-08-18 | 2000-10-26 | Siemens Ag | Verfahren und Anordnung zum Erkennen von Sprache |
DE10033104C2 (de) * | 2000-07-07 | 2003-02-27 | Siemens Ag | Verfahren zum Erzeugen einer Statistik von Phondauern und Verfahren zum Ermitteln der Dauer einzelner Phone für die Sprachsynthese |
US20020042709A1 (en) * | 2000-09-29 | 2002-04-11 | Rainer Klisch | Method and device for analyzing a spoken sequence of numbers |
JP4759827B2 (ja) * | 2001-03-28 | 2011-08-31 | 日本電気株式会社 | 音声セグメンテーション装置及びその方法並びにその制御プログラム |
WO2003054856A1 (de) * | 2001-12-21 | 2003-07-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Verfahren und vorrichtung zur spracherkennung |
US20080249779A1 (en) * | 2003-06-30 | 2008-10-09 | Marcus Hennecke | Speech dialog system |
JP3909709B2 (ja) * | 2004-03-09 | 2007-04-25 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 雑音除去装置、方法、及びプログラム |
DE102004023824B4 (de) * | 2004-05-13 | 2006-07-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zur Beurteilung einer Güteklasse eines zu prüfenden Objekts |
US20070033041A1 (en) * | 2004-07-12 | 2007-02-08 | Norton Jeffrey W | Method of identifying a person based upon voice analysis |
US20090327036A1 (en) * | 2008-06-26 | 2009-12-31 | Bank Of America | Decision support systems using multi-scale customer and transaction clustering and visualization |
US8255218B1 (en) * | 2011-09-26 | 2012-08-28 | Google Inc. | Directing dictation into input fields |
US8543397B1 (en) | 2012-10-11 | 2013-09-24 | Google Inc. | Mobile device voice activation |
US9473094B2 (en) * | 2014-05-23 | 2016-10-18 | General Motors Llc | Automatically controlling the loudness of voice prompts |
US11283586B1 (en) | 2020-09-05 | 2022-03-22 | Francis Tiong | Method to estimate and compensate for clock rate difference in acoustic sensors |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4481593A (en) * | 1981-10-05 | 1984-11-06 | Exxon Corporation | Continuous speech recognition |
US4587670A (en) * | 1982-10-15 | 1986-05-06 | At&T Bell Laboratories | Hidden Markov model speech recognition arrangement |
US4713777A (en) * | 1984-05-27 | 1987-12-15 | Exxon Research And Engineering Company | Speech recognition method having noise immunity |
US4811399A (en) * | 1984-12-31 | 1989-03-07 | Itt Defense Communications, A Division Of Itt Corporation | Apparatus and method for automatic speech recognition |
FR2581465B1 (fr) * | 1985-05-03 | 1988-05-20 | Telephonie Ind Commerciale | Procede et dispositif de commande de processus par voie sonore |
US5226091A (en) * | 1985-11-05 | 1993-07-06 | Howell David N L | Method and apparatus for capturing information in drawing or writing |
EP0308565B1 (de) * | 1987-09-23 | 1993-02-10 | International Business Machines Corporation | Digitale Paketvermittlungsnetzwerke |
JP2573352B2 (ja) * | 1989-04-10 | 1997-01-22 | 富士通株式会社 | 音声検出装置 |
JPH04362698A (ja) * | 1991-06-11 | 1992-12-15 | Canon Inc | 音声認識方法及び装置 |
US5293452A (en) * | 1991-07-01 | 1994-03-08 | Texas Instruments Incorporated | Voice log-in using spoken name input |
US5465317A (en) * | 1993-05-18 | 1995-11-07 | International Business Machines Corporation | Speech recognition system with improved rejection of words and sounds not in the system vocabulary |
JPH06332492A (ja) * | 1993-05-19 | 1994-12-02 | Matsushita Electric Ind Co Ltd | 音声検出方法および検出装置 |
-
1995
- 1995-03-10 DE DE19508711A patent/DE19508711A1/de not_active Withdrawn
-
1996
- 1996-03-04 WO PCT/DE1996/000379 patent/WO1996028808A2/de active IP Right Grant
- 1996-03-04 DE DE59602095T patent/DE59602095D1/de not_active Expired - Lifetime
- 1996-03-04 EP EP96905679A patent/EP0815553B1/de not_active Expired - Lifetime
- 1996-03-04 US US08/894,977 patent/US5970452A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
WO1996028808A3 (de) | 1996-10-24 |
US5970452A (en) | 1999-10-19 |
DE19508711A1 (de) | 1996-09-12 |
EP0815553A2 (de) | 1998-01-07 |
DE59602095D1 (de) | 1999-07-08 |
WO1996028808A2 (de) | 1996-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0815553B1 (de) | Verfahren zur erkennung einer signalpause zwischen zwei mustern, welche in einem zeitvarianten mess-signal vorhanden sind | |
DE69432943T2 (de) | Verfahren und Vorrichtung zur Sprachdetektion | |
DE69127961T2 (de) | Verfahren zur Spracherkennung | |
DE3876207T2 (de) | Spracherkennungssystem unter verwendung von markov-modellen. | |
DE69816610T2 (de) | Verfahren und vorrichtung zur rauschverminderung, insbesondere bei hörhilfegeräten | |
DE69524036T2 (de) | Vorrichtung zur erkennung von gesprächsthemen | |
DE69326044T2 (de) | Verfahren zur Erkennung von Sprachsignalen | |
DE69807765T2 (de) | Kombination von Frequenzverzerrung und spektraler Formung in einem HMM - basierten Spracherkenner | |
DE69420400T2 (de) | Verfahren und gerät zur sprechererkennung | |
DE69421911T2 (de) | Spracherkennung mit pausedetektion | |
DE69720087T2 (de) | Verfahren und Vorrichtung zur Unterdrückung von Hintergrundmusik oder -geräuschen im Eingangssignal eines Spracherkenners | |
DE69823954T2 (de) | Quellen-normalisierendes Training zur Sprachmodellierung | |
DE69030561T2 (de) | Spracherkennungseinrichtung | |
EP1084490B1 (de) | Anordnung und verfahren zur erkennung eines vorgegebenen wortschatzes in gesprochener sprache durch einen rechner | |
WO1993006591A1 (de) | Verfahren zur erkennung von mustern in zeitvarianten messsignalen | |
EP0076233B1 (de) | Verfahren und Vorrichtung zur redundanzvermindernden digitalen Sprachverarbeitung | |
EP0987683B1 (de) | Spracherkennungsverfahren mit Konfidenzmassbewertung | |
EP1733223B1 (de) | Vorrichtung und verfahren zur beurteilung einer güteklasse eines zu prüfenden objekts | |
DE10030105A1 (de) | Spracherkennungseinrichtung | |
DE69423692T2 (de) | Sprachkodiergerät und Verfahren unter Verwendung von Klassifikationsregeln | |
EP0747880A2 (de) | Spracherkennungssystem | |
DE60018696T2 (de) | Robuste sprachverarbeitung von verrauschten sprachmodellen | |
DE69801493T2 (de) | Sprachanalysessystem | |
DE102010040553A1 (de) | Spracherkennungsverfahren | |
DE69026474T2 (de) | System zur Spracherkennung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970902 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19980921 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 59602095 Country of ref document: DE Date of ref document: 19990708 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990715 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010309 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010327 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020304 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021129 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050304 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59602095 Country of ref document: DE Owner name: LANTIQ DEUTSCHLAND GMBH, DE Free format text: FORMER OWNER: INFINEON TECHNOLOGIES AG, 85579 NEUBIBERG, DE Effective date: 20110325 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150320 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59602095 Country of ref document: DE |