[go: up one dir, main page]

EP0812383B1 - Reciprocating piston type internal combustion engine with variable compression ratio - Google Patents

Reciprocating piston type internal combustion engine with variable compression ratio Download PDF

Info

Publication number
EP0812383B1
EP0812383B1 EP96902207A EP96902207A EP0812383B1 EP 0812383 B1 EP0812383 B1 EP 0812383B1 EP 96902207 A EP96902207 A EP 96902207A EP 96902207 A EP96902207 A EP 96902207A EP 0812383 B1 EP0812383 B1 EP 0812383B1
Authority
EP
European Patent Office
Prior art keywords
gear
engine
internal combustion
crankshaft
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96902207A
Other languages
German (de)
French (fr)
Other versions
EP0812383A1 (en
Inventor
Siegfried Franz Leithinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TK Design AG
Original Assignee
TK Design AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TK Design AG filed Critical TK Design AG
Publication of EP0812383A1 publication Critical patent/EP0812383A1/en
Application granted granted Critical
Publication of EP0812383B1 publication Critical patent/EP0812383B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/048Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable crank stroke length

Definitions

  • the present invention relates to an internal combustion engine of the reciprocating engine type with a variable compression ratio according to the preamble of the claim.
  • the combustion engines in use today are very predominant of the type of the reciprocating engine. With the compression ratio on such Reciprocating engine is the ratio between the remaining combustion chamber, when the piston is at top dead center and the total cylinder volume, when the piston is at bottom dead center.
  • the combustion processes are in such reciprocating piston engines or more generally in internal combustion engines very complex and are influenced by several parameters. This applies to gasoline engines same as for diesel engines or those that use other fuels operate.
  • This is how the intimacy of the mixing of the Fuel-air mixture matters as well as the exact time and the way its ignition in the course of the piston movement.
  • the pressure curve during the Combustion plays an important role, as does its timing in and of itself. If an engine is running under high load, the combustion pressures are higher than at idle. If the engine is running quickly, there is considerably less time available for combustion than with a low number of tours.
  • the improved fuels especially the improved gasoline types and the better ones Materials enable higher combustion temperatures and pressures and therefore resulted compared to a trend towards a higher compression ratio in modern engines earlier. Compression also plays a role in the combustion of the fuel mixture and thus play a decisive role in the efficiency of an engine.
  • the maximum compression finds its limit on knock resistance by the fuel mixture if the compression is too high, it ignites itself and thus uncontrolled burns insert at the wrong time. The engine knocks and is damaged.
  • the present invention is based on the knowledge that when optimizing the combustion processes the compression is optimized to a fixed ratio that however, their variable adaptation to the operating states is not taken into account when optimizing is left.
  • the selected fixed compression ratio forms in today's engine technology always a finely chosen compromise across the range of operating conditions of the motor. The higher the compression, the higher the power density or the liter output of the engine, but the more problematic the knock resistance and the stress of the parts and therefore the lifespan of the engine.
  • variable compression offers considerable fuel savings potential.
  • the design effort for variable compression has so far been too great for implementation in series production.
  • a disadvantage of the above-mentioned solution with a secondary chamber is also that the combustion chamber is no longer compact when the compression is low, which has a disadvantageous effect on the combustion processes and the exhaust gas behavior.
  • Another proposal for the implementation of a variable compression comes from Louis Damblanc from Paris in accordance with his German Reich Patent No. 488'059 dated December 5, 1929.
  • An eccentric connecting rod bearing bush placed on the crank pin can be adjusted from the crankshaft by means of a differential gear.
  • This differential gear includes a shaft that runs concentrically to the crankshaft inside.
  • An internally toothed wheel is driven by the crankshaft and drives three internal satellite gearwheels, which are distributed around its inner circumference and are mounted on bolts on a disk which acts as a toothed sector and are approximately three times smaller in diameter, all of which mesh with a central gearwheel, which is located on said one , through the inside of the crankshaft shaft.
  • the tooth sector can be adjusted by means of a further gear wheel acting on its circumference.
  • This differential gear is particularly expensive because of the shaft required inside the crankshaft. In any case, this construction for adjusting the compression ratio has not been widely used.
  • the object of the invention is therefore to create an internal combustion engine which has a variable compression ratio by means of an eccentric crank pin and which, therefore, adapted to the current operating states of the engine, can be optimized over its range and thus to an overall increase in engine efficiency and contributes to its smoothness.
  • an internal combustion engine of the reciprocating piston type in which the compression ratio is variable in that the piston stroke can be adjusted because the connecting rod is supported on an eccentric crank pin on the crankshaft side, the eccentric crank pin being adjustable about its axis of rotation while the engine is running by control means, and which is characterized in that the eccentric crank pin is formed by at least two one-piece shells, which are arranged around the crank arm shaft of the crank shaft, and these shells each have a gear segment, which segments also the crank arm shaft Enclose crankshaft, and that the gearwheel formed by these segments runs as an outer wheel in a ring gear of larger diameter, which is mounted concentrically around the crankshaft axis of the crankshaft and is adjustable in its rotational position when the engine is running, in such a way that the outer wheel when rolling in the H ohlrad, if it is in a certain stationary setting position, executes exactly one turn during handling, such that the movement of the effective center of the lower connecting rod bearing always describes an ellipse depending on the setting
  • FIG. 1 the internal combustion engine is shown using a schematic diagram, here on Example of a single cylinder.
  • the whole principle can be easily applied to multi-cylinder Realize engines, regardless of whether the cylinders are in line, V-shaped or in boxer position are arranged to each other.
  • Shown here is a cylinder 10 with an inlet valve 11 and an outlet valve 12 on the cylinder head, and the piston 7 mounted in the cylinder 10, which over the Connecting rod 9 is connected to crankshaft 14.
  • At 8 is the fixed axis of the crankshaft Designated 14.
  • the Crank 25 itself now has a very special crank pin 1 in a conventional one Engine runs the crank pin at right angles to the crank arm rotation level and describes a concentric circle with the engine running. So he has a defined one and therefore always constant distance from the crankshaft axis 8, that is to say Axis 8, which drives the crank.
  • the crank pin according to the Invention in relation to the conventional crank pin axis 2, that is, in relation to the conventional axis 2 of the crank pin, an eccentric 1.
  • This eccentric 1 can be turn the conventional crank pin axis 2.
  • the end of the connecting rod on the crankshaft side 9 encloses this eccentric 1 with the connecting rod bearing, so that the eccentric 1 is rotatable in the connecting rod bearing.
  • this eccentric 1 is constructive shown example solved so that the eccentric crank pin 1 of two shells 26,27 is formed which arranged around the crank arm shaft 15 of the crankshaft 14 enclose it and thus form an eccentric crank pin 1.
  • These shells 26, 27 are each connected to a gear segment 28, 29, which segments 28, 29 also the crank arm shaft 15 enclose the crankshaft 14.
  • the one formed by these segments 28, 29 Gear 3 runs as an external gear 3 in a ring gear 4 of larger diameter, which is mounted concentrically about the crank axis 8 on the crankshaft 14 and rotates freely is adjustable in its rotational position. If the ring gear 4 is stationary, the outer gear leads 3 exactly one turn when rolling inside the ring gear during handling to yourself out.
  • this workpiece which forms the outer wheel 3 and the eccentric 1, is in a) in an elevation and in b) in a plan view of the lower part 27, 29 of the workpiece shown.
  • the gear 3 is round, but cut in half in two segments 28, 29, and these have on their front side the half-shells 26, 27 which are put together form an eccentric 1 with respect to the axis of rotation of the gear 3.
  • These two parts of the Workpiece are around the crank shaft axis, i.e. around the conventional crank pin assembled a crankshaft and the connecting rod is around the now formed Eccentric 1 attached.
  • the lower connecting rod bearing holds the two parts together precisely.
  • Figure 2b shows the lower part of the workpiece in a plan view, the plane "Cut" area is hatched.
  • the workpiece is made of a suitable hardened steel alloy manufactured as it is common for stressed gears. Its inside shows a white metal coating and is hardened and ground to prevent abrasion avoid. This inside runs on the crank pin 15, which consists of a cast steel.
  • the outside of the workpiece that is to say the outside of the shells 26, 27, is hard chrome plated. These outer sides of the shells 26, 27 are enclosed by the connecting rod bearing.
  • the connecting rods are mostly made of aluminum, and in this case is a hard chrome plating the outside of the shells 26, 27 is sufficient to avoid abrasion.
  • the two-part workpiece is still shown in a perspective view. You can see the two shells 26, 27 and the two gear segments 28, 29. Composed these segments form a circular gear 3 and the shells 26, 27 one Eccentric 1 with respect to the gear axis. So if you turn this gear 3, it turns the eccentric 1 also around the gear axis.
  • the lower connecting rod bearing which encloses the eccentric 1 and moves the connecting rod up and down, depending on Position of the eccentric 1.
  • the location on the eccentric 1, which with respect to its axis of rotation has the largest radius, is designated by the number 16 and forms a to some extent Nose.
  • the workpiece could also consist of more parts, For example, be made from three segments, each extending through 120 °.
  • this nose 16 formed by the eccentric 1 is directed upwards. That's why the piston 7 assumes the highest possible position in this position and accordingly the volume of the combustion chamber is small. The compression is in this position Eccentric 1 the highest.
  • the gear 3 is designed as an outer gear, so it has a toothed Scope and runs with this in the ring gear 4.
  • This ring gear 4 consists of a Disc 17, which is rotatably mounted about the crankshaft 14. On the outside of the pane there is a projection 18, on the inside of which there is a toothing 19.
  • the gear 3 forms the outer wheel to this toothing 19 and thus runs along the inner edge this overhang 18 on the toothing 19, the teeth 20 of the Engage the outer wheel 3 in that 19 of the ring gear 4.
  • the ratio of the amount of gearing 19 of the ring gear 4 to that of the outer gear 3 is 2: 1. This turns it Outer gear once through 360 °, while it is around the entire circumference of the ring gear teeth 19 expires, and accordingly by only 180 °, if it is only half the circumference of the Ring gear teeth 19 expires.
  • the eccentric 1 which is fixed with the Gear 3 is connected, this means that from the position shown in Figure 1, where the nose 16 of the eccentric 1 points upwards and thus the compression is maximum, this Nose 16 changes position as follows when crankshaft 14 rotates one revolution turns: The gear 3 as a whole and with it the crank pin shaft move in with respect to the crankshaft 14, for example, clockwise around it, with the gear 3 itself rotates counterclockwise.
  • crank arm length takes this in the intermediate positions, such as that shown in Figure 4 Position, an intermediate value.
  • the crank arm length reaches here in top dead center of the piston 7 takes a maximum, takes a minimum after a 90 ° rotation and then comes to a maximum towards bottom dead center. The it experiences the same variation until it reaches the top dead center of the piston 7. Die Crank no longer describes a circle, but a standing ellipse.
  • the nose 16 shows here with respect to the crankshaft axis 8 radially outwards and correspondingly the effective one Crank arm of maximum length.
  • the piston 7 has one with this setting of the compression minimal stroke.
  • the suction path is minimal, the volume of the combustion chamber is maximum and thus the compression ratio is minimal.
  • the crank describes one lying ellipse. By adjusting the eccentric 1 in the bandwidth between these two the compression ratio can be freely selected. In In the intermediate settings, the crank always describes a uniform ellipse, however, this is then neither standing nor lying, but at an oblique angle with respect to the Piston direction of movement.
  • FIG 9 are the different curves which the center of the eccentric 1 at different Settings describes, shown.
  • the piston moves in the directions as indicated by the arrows.
  • the setting is the highest Compression ratio shown.
  • the crank describes a standing ellipse.
  • the crank circuit is indicated by dashed lines in a conventional engine.
  • the piston stroke is longer with this setting.
  • Both the suction path and the Compression path is longer and at the same time is the volume of the combustion chamber reduced.
  • the compression ratio is greatest with this setting. Because with increasing Compression increases the efficiency of the engine, the increase in small loads is greatest, this setting is used somewhere in a petrol engine Partial load range used, while the compression ratio is slightly reduced under full load becomes. In the diesel engine, it is advantageous to use the maximum compression ratio Stop starting the engine and then lower it for operation.
  • the actual adjustment of the eccentric 1 is done by turning the gear 3 by means of the ring gear 4. So that the eccentric 1 by 180 ° from the one maximum position can be rotated into the other, the ring gear 4 must be turned a quarter turn the crankshaft axis 8 are rotated. This rotation of the ring gear 4 can by different adjustment means can be realized.
  • Figures 1 and 4 to 8 and 10 is a Example shown.
  • the ring gear 3 has on the flat, facing away from the projection Back of the disc 17 on a concentric gear 5 fixedly connected to it, that acts as a spur gear.
  • Helical gear 5 engages the toothing 23 of a control gear 6, which is arranged laterally arranged shaft 24 is rotatable.
  • control gear 6 has a radius more than twice as large as the spur gear 5, the control gear for adjustment from one maximum position to another by only about 40 ° Degrees.
  • control gears With several cylinders, which are arranged in a row, sit several such control gears on a common side shaft 24.
  • V-motor With a V-motor a central shaft can be arranged between the V-legs, of which can be operated from the hollow gears 4 to each cylinder.
  • boxer engine so that the same side shaft as the ring gears controls to the opposite cylinders.
  • the actuation of the control gear 6 can be done in many different ways.
  • This stepper motor is advantageously controlled by a microprocessor.
  • the one for the Control microprocessor can be used with several parameters electronically be fed.
  • the engine load on the gearbox can be electronic be measured as this data also for the switching of some automatic Gearboxes can be determined anyway.
  • the engine speed can be more relevant Parameters are recorded electronically and also for the regulation of the compression ratio be taken into account.
  • the signals from a knock sensor that is on many modern vehicle engines already exist can be processed.
  • the combustion pressure and the combustion temperature can also be calculated will.
  • all of this data is ultimately used a multi-dimensional map processed to an output signal, which finally controls the stepper motor to change the position of the control gear or gears.
  • FIG. 10 shows a representation of the motor viewed from the side, here two pistons 7 are shown with their crank drives.
  • the construction for the adjustment the compression ratio includes as already described on the crankshaft 14 seated ring gear 4, which is freewheel mounted on the crankshaft 14.
  • These ring gears 4 are shown here partially cut away for better understanding.
  • the flat back of the disk 17 facing away from the cantilever carries in concentrically Gear wheel 5 firmly connected to it. Inside the internally toothed projection of the ring gear 4 runs a gear 3, which is firmly connected to an eccentric 1. This eccentric 1 encloses the crank arm shaft 15 and is freely rotating on it.
  • the lower connecting rod bearing 25 of the connecting rod 9 encloses the eccentric 1, the nose 16 of the left piston 7 points upwards and with the right piston 7 points downwards.
  • the left is accordingly Piston 7 slightly raised, the right one slightly lowered.
  • the gear 5 with the ring gear 4 rotates, the eccentric 1 also rotates stationary, so that the eccentric formed by it Nose 16 shifts its position.
  • the gear 3 rolls inside the ring gear 4 as an outer wheel and causes the eccentric 1 to rotate around the crankshaft rotates exactly 360 °. So if the crankshaft rotates 180 °, the crankshaft also rotates Eccentric 1 by 180 ° and accordingly the nose 16 formed by it points downwards, as can be seen on the crankshaft section shown on the right.
  • the ring gear 4 can have teeth on its outer circumference and be adjusted by means of a gearwheel that engages directly in this toothing.
  • the ring gear remains stationary while the engine is running. It is also conceivable to let the ring gear run with the crankshaft. In this In this case, the rotational position of the eccentric would always remain the same over one revolution, so that So the effective crank arm length would always be the same for the entire revolution. Corresponding the center of the eccentric would no longer be an ellipse but a circle describe. The adjustment would then be made so that the rotational position of the ring gear with respect the crank axis would have to be changed.
  • the engine according to the invention enables by regulating the compression ratio taking into account another important parameter, which is the characteristic and power delivery of a motor significantly influenced.
  • the modification can start from the existing engines, only the crankshafts and in certain If the engine blocks have to be adapted for new series, and not a complete one Redesign of an engine is necessary. In many cases, the existing engine block can even be used if there is enough space to arrange the gears and the sideshaft is present. So the cylinders, pistons, connecting rods and the peripheral remain Components of an engine such as ignition and injection as well as the auxiliary units from this modification in principle unaffected.
  • the internal combustion engine with variable Compression promises a significantly improved performance while at the same time better smoothness and due to the increased efficiency a further optimized fuel consumption, due to the optimized combustion also the pollutant emissions can be further reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PCT No. PCT/CH96/00062 Sec. 371 Date Aug. 20, 1997 Sec. 102(e) Date Aug. 20, 1997 PCT Filed Feb. 28, 1996 PCT Pub. No. WO96/27079 PCT Pub. Date Sep. 6, 1996The compression ratio is variable in that the piston hub may be adjusted, since the connecting rod is mounted at the crankshaft side on an eccentric pin. The eccentric crank pin can be adjusted around its axis of rotation by control means while the engine is running. The control means include a toothed wheel that turns concentrically to the axis of rotation of the eccentric crank pin and is fixed thereto. This toothed wheel acts as an external gear inside a larger diameter internal gear inside which it rolls. The internal gear is concentrically mounted around the axis of the crankshaft and its rotating position may be adjusted. The external gear turns exactly once upon itself every time it rolls round the internal gear.

Description

Die vorliegende Erfindung betrifft einen Verbrennungsmotor vom Typ des Hubkolbenmotors mit einem variablen Verdichtungsverhältnis gemäss Oberbegriff des Patentanspruches. Mit sehr überwiegendem Anteil sind die heute im Einsatz stehenden Verbrennungsmotoren vom Typ des Hubkolbenmotors. Beim Verdichtungsverhältnis an einem solchen Hubkolbenmotor handelt es sich um das Verhältnis zwischen dem freibleibenden Verbrennungsraum, wenn der Kolben sich im oberen Totpunkt befindet, und dem gesamten Zylindervolumen, wenn sich der Kolben im unteren Totpunkt befindet. Die Verbrennungsvorgänge in solchen Hubkolbenmotoren oder ganz allgemein in Verbrennungsmotoren sind sehr komplex und werden von mehreren Parametern beeinflusst. Dies gilt für Benzinmotoren gleichermassen wie für Dieselmotoren oder solche, die mit noch anderen Treibstoffen betrieben werden. Grundsätzlich wird die optimale Verbrennung des Treibstoffes und damit die höchste Effizienz eines Verbrennungsmotors von der angesaugten oder geladenen Luftmenge, deren Temperatur, Feuchtigkeit und Verdichtung, von der Art und der Qualität des eingespritzten Treibstoffs, sowie der Art und Weise dessen Vermischung mit der Luft und der Entzündung des Gemisches beeinflusst. So spielt die Innigkeit der Vermischung des Treibstoff-Luftgemisches eine Rolle wie auch der genaue Zeitpunkt und die Art und Weise dessen Entzündung im Ablauf der Kolbenbewegung. Auch der Druckverlauf während der Verbrennung spielt eine wesentliche Rolle, wie auch deren zeitlicher Ablauf an und für sich. Läuft ein Motor unter hoher Last, so sind die Verbrennungsdrucke höher als im Leerlauf. Läuft der Motor rasch, so steht für die Verbrennung wesentlich weniger Zeit zur Verfugung als bei niedriger Tourenzahl. Zusätzlich zu diesen von den Betriebszuständen des Motors abhängigen Variablen kommen die äusseren klimatischen Bedingungen dazu, welche den Motorlauf und die Effizienz der Verbrennung beeinflussen. So ist es nicht einerlei, ob ein Motor auf Meereshöhe oder in hohen Lagen mit geringem Luftdruck betrieben wird. Die Aussentemperatur und die wetterabhängige Feuchtigkeit der Luft spielen ebenfalls eine Rolle. The present invention relates to an internal combustion engine of the reciprocating engine type with a variable compression ratio according to the preamble of the claim. The combustion engines in use today are very predominant of the type of the reciprocating engine. With the compression ratio on such Reciprocating engine is the ratio between the remaining combustion chamber, when the piston is at top dead center and the total cylinder volume, when the piston is at bottom dead center. The combustion processes are in such reciprocating piston engines or more generally in internal combustion engines very complex and are influenced by several parameters. This applies to gasoline engines same as for diesel engines or those that use other fuels operate. Basically, the optimal combustion of the fuel and thus the highest efficiency of an internal combustion engine from the inducted or charged Air volume, its temperature, humidity and compression, on the type and quality of the injected fuel and the way it is mixed with the air and affects the inflammation of the mixture. This is how the intimacy of the mixing of the Fuel-air mixture matters as well as the exact time and the way its ignition in the course of the piston movement. The pressure curve during the Combustion plays an important role, as does its timing in and of itself. If an engine is running under high load, the combustion pressures are higher than at idle. If the engine is running quickly, there is considerably less time available for combustion than with a low number of tours. In addition to these from the operating conditions of the engine dependent variables are added the external climatic conditions, which the Engine running and the efficiency of combustion affect. So it doesn't matter if one Engine is operated at sea level or in high altitudes with low air pressure. The Outside temperature and the weather-dependent humidity of the air also play a role Role.

In den letzten Jahren wurden in bezug auf die Optimierung der Verbrennungsvorgänge in Motoren bedeutende Fortschritte erzielt, die im wesentlichen einerseits den immer grösseren Möglichkeiten der zur Verfügung stehenden Mikroprozessor-Steuerungen sowie andrerseits den Errungenschaften der Werkstofftechnik mitzuverdanken sind. So wird heute bei vielen Motoren die Gemischaufbereitung von einem Mikroprozessor gesteuert. Zum Beispiel wird die angesaugte Luftmenge, deren Temperatur und Feuchtigkeit gemessen und die zur Einspritzung kommende Treibstoffmenge wird abhängig von diesen Kennwerten für jede Einspritzung neu errechnet und optimiert. Darüberhinaus wird auch der Zündzeitpunkt und der Zeitpunkt und die Dauer der Einspritzung jedes Mal neu von einem Mikroprozessor errechnet, wobei auch die Motordrehzahl berücksichtigt wird. Die verbesserten Werkstoffe ermöglichten auch den Einzug der Vierventil-Technik in Motoren für den Alltagsgebrauch, während diese aufwendige Technik früher den Hochleistungsmotoren vorbehalten blieb. Die verbesserten Treibstoffe, insbesondere die verbesserten Benzinsorten und die besseren Werkstoffe ermöglichen höhere Verbrennungstemperaturen und -drucke und führten daher zu einer tendenziell höheren Verdichtungszahl bei modernen Motoren im Vergleich zu früher. Auch die Verdichtung spielt für die Verbrennung des Treibstoffgemisches und damit für den Wirkungsgrad eines Motors eine entscheidende Rolle. Je höher das Verdichtungsverhältnis, umso besser ist im allgemeinen die Effizienz der Verbrennung. Die maximale Verdichtung findet ihre Grenze an der Klopffestigkeit, indem das Treibstoffgemisch bei zu hoher Verdichtung sich selbst entzündet und damit unkontrollierte Verbrennungen zum falschen Zeitpunkt einsetzen. Der Motor klopft dann und nimmt Schaden.In recent years, in terms of optimizing the combustion processes in Motors has made significant progress, essentially the one that is becoming ever greater Possibilities of the available microprocessor controls as well as on the other hand thanks to the achievements of materials technology. That's how it is with many today Motors the mixture preparation controlled by a microprocessor. For example the amount of air sucked in, its temperature and humidity measured and that for The amount of fuel coming in depends on these parameters for each Injection recalculated and optimized. In addition, the ignition timing and the timing and duration of the injection each time anew by a microprocessor calculated, taking into account the engine speed. The improved materials also enabled the introduction of four-valve technology in engines for everyday use, while this complex technology was previously reserved for high-performance engines. The improved fuels, especially the improved gasoline types and the better ones Materials enable higher combustion temperatures and pressures and therefore resulted compared to a trend towards a higher compression ratio in modern engines earlier. Compression also plays a role in the combustion of the fuel mixture and thus play a decisive role in the efficiency of an engine. The higher the compression ratio, the combustion efficiency is generally the better. The maximum compression finds its limit on knock resistance by the fuel mixture if the compression is too high, it ignites itself and thus uncontrolled burns insert at the wrong time. The engine knocks and is damaged.

All die eingangs erwähnten Parameter stehen in einem komplizierten Zusammenspiel. Ein Fahrzeugmotor wird auf ständig ändernden Drehzahlen und mit unterschiedlichen Lasten betrieben. Dazu kommen die unterschiedlichen äusseren Bedingungen, namentlich die schwankenden Lufttemperaturen, Luft drucke und Luftfeuchtigkeiten. Ein herkömmlicher Motor mit festem Verdichtungsverhältnis kann daher niemals ideal oder optimal laufen. Höchstens auf einem einzelnen fixen Arbeitspunkt kann die in ihm ablaufende Verbrennung einigermassen optimiert werden. Mit einer variablen Verdichtung können die Verbrennungsprozesse über den ganzen Einsatzbereich des Motors weiter optimiert werden. All of the parameters mentioned at the beginning are in a complicated interplay. A Vehicle engine is running at constantly changing speeds and with different loads operated. Then there are the different external conditions, namely the fluctuating air temperatures, air pressures and air humidity. A conventional one An engine with a fixed compression ratio can therefore never run ideally or optimally. The combustion taking place in it can only be at a single fixed working point be optimized to some extent. With a variable compression, the combustion processes can be further optimized across the entire field of application of the engine.

Die vorliegende Erfindung geht von der Erkenntnis aus, dass bei der Optimierung der Verbrennungsvorgänge die Verdichtung zwar auf ein festes Verhältnis hin optimiert wird, dass deren variable Anpassung an die Betriebszustände jedoch bei der Optimierung ausser acht gelassen wird. Das gewählte feste Verdichtungsverhältnis bildet bei der heutigen Motorentechnik stets einen fein gewählten Kompromiss über die Bandbreite der Betriebszustände des Motors. Je höher die Verdichtung, umso höher die Leistungsdichte oder die Literleistung des Motors, aber umso problematischer die Klopffestigkeit sowie die Beanspruchung der Teile und damit die Lebensdauer des Motors.The present invention is based on the knowledge that when optimizing the combustion processes the compression is optimized to a fixed ratio that however, their variable adaptation to the operating states is not taken into account when optimizing is left. The selected fixed compression ratio forms in today's engine technology always a finely chosen compromise across the range of operating conditions of the motor. The higher the compression, the higher the power density or the liter output of the engine, but the more problematic the knock resistance and the stress of the parts and therefore the lifespan of the engine.

Es gab in der Vergangenheit eine Reihe von Vorschlägen zur Realisierung einer variablen Verdichtung an einem Verbrennungsmotor. Zum Beispiel wird die Kurbelwelle gegenüber dem Zylinder angehoben, oder es wird mit in der Länge variablen Zylindern gearbeitet. Bekanntgeworden ist auch ein System, bei welchem die Kolbenlänge variiert werden kann. In der deutschen Fachzeitschrift Automobil-Industrie 4/85 wird von einem Versuch von Volkswagen berichtet, bei dem ein VW Golf mit 1.6 Liter Einspritzmotor mit einer variablen Verdichtung ausgerüstet wurde. Das wurde realisiert mit einer im Zylinderkopf angeordneten Nebenkammer. Das Volumen dieser Nebenkammer und damit auch das Verdichtungsverhältnis wurde mit Hilfe eines in dieser Nebenkammer beweglichen Kolbens verändert, sodass das Verdichtungsverhältnis zwischen ε = 9.5 und ε = 15.5 elektromechanisch in Abhängigkeit vom Lastzustand des Motors verändert werden konnte. Im Teillastbereich (ECE-Stadtzyklus) wurden Kraftstoffeinsparungen von bis zu 12.7% gegenüber dem optimierten Serienmotor gemessen. Im Drittel-Mix betrug die Einsparung immerhin 9.6%. Die variable Verdichtung birgt somit ein erhebliches Kraftstoff-Einsparungspotential. Der konstruktive Aufwand für die variable Verdichtung war jedoch bisher noch zu gross für eine Umsetzung in der Serie. Ein Nachteil der obenerwähnten Lösung mit einer Nebenkammer ist auch, dass der Brennraum bei niedriger Verdichtung nicht mehr kompakt ist, was sich nachteilig auf die Verbrennungsvorgänge und das Abgasverhalten auswirkt. Ein weiterer Vorschlag zur Realisierung einer variablen Verdichtung stammt von Louis Damblanc aus Paris gemäss seinem deutschen Reichspatent Nr. 488'059 vom 5. Dezember 1929. Eine auf den Kurbelzapfen gesetzte exzentrische Pleuelstangenlagerbuchse ist von der Kurbelwelle aus mittels eines Differentialgetriebes verstellbar. Dieses Differentialgetriebe schliesst eine Welle ein, die konzentrisch zur Kurbelwelle in deren Innerem verläuft. Ein innenverzahntes Rad ist von der Kurbelwelle angetrieben und treibt drei innenliegende, um seinen inneren Umfang verteilt angeordnete, an Bolzen auf einer als Zahnsektor wirkenden Scheibe gelagerte Satelliten-Zahnräder von etwa dreimal kleinerem Durchmesser an, die alle ein zentrales Zahnrad kämmen, welches auf der besagten, durch das Innere der Kurbelwelle verlaufenden Welle sitzt. Der Zahnsektor ist über ein weiteres, an seinem Umfang wirkendes Zahnrad verstellbar. Dieses Differentialgetriebe ist vorallem wegen der im Innern der Kurbelwelle nötigen Welle aufwendig. Diese Konstruktion zum Verstellen des Verdichtungsverhältnisses hat jedenfalls keine Verbreitung gefunden.
Die Erfindung stellt sich daher zur Aufgabe, einen Verbrennungsmotor zu schaffen, welcher ein variables Verdichtungsverhältnis mittels eines exzentrischen Kurbelzapfens aufweist und das daher, angepasst an die aktuellen Betriebszustände des Motors, über deren Bandbreite hin optimierbar ist und so zu einer ingesamten Steigerung der Motor-Effizienz und dessen Laufruhe beiträgt.
Diese Aufgabe wird gelöst von einem Verbrennungsmotor vom Typ Hubkolbenmotor, bei dem das Verdichtungsverhältnis variabel ist, indem der Kolbenhub verstellbar ist, weil die Pleuelstange kurbelwellenseits an einem exzentrischen Kurbelzapfen gelagert ist, wobei der exzentrische Kurbelzapfen während des Motorlaufes von Steuermitteln um seine Drehachse verstellbar ist, und der sich dadurch auszeichnet, dass der exzentrische Kurbelzapfen von mindestens zwei je einstückigen Schalen gebildet wird, die um die Kurbelarm-Welle der Kurbelwelle angeordnet diese umschliessen, und dass diese Schalen je ein Zahnrad-Segment aufweisen, welche Segmente ebenfalls die Kurbelarm-Welle der Kurbelwelle umschliessen, sowie dass das von diesen Segmenten gebildete Zahnrad als Aussenrad in einem Hohlrad grösseren Durchmessers abläuft, welches konzentrisch um die Kurbelachse der Kurbelwelle gelagert ist und in seiner Drehlage bei laufendem Motor verstellbar ist, derart, dass das Aussenrad beim Abrollen im Hohlrad, wenn sich dieses in einer bestimmten stationären Einstell-Lage befindet, während eines Umganges genau eine Umdrehung ausführt, derart, dass die Bewegung des effektiven Zentrums des unteren Pleuelstangenlagers je nach Einstell-Lage stets eine Ellipse beschreibt, wobei diese zwischen einer stehenden und liegenden Ellipse stufenlos alle zwischenliegenden Einstell-Lagen einnehmen kann.
Ein Verbrennungsmotor vom Typ Hubkolbenmotor als beispielsweise Ausführung der Erfindung ist in den Figuren dargestellt und wird in der nachfolgenden Beschreibung im einzelnen beschrieben, wobei die Funktion dieser Ausführung der Erfindung erläutert wird.
There have been a number of proposals in the past for realizing variable compression on an internal combustion engine. For example, the crankshaft is raised in relation to the cylinder, or cylinders with variable length are used. A system has also become known in which the piston length can be varied. The German trade magazine Automobil-Industrie 4/85 reports a test by Volkswagen in which a VW Golf with 1.6 liter injection engine was equipped with a variable compression. This was realized with a secondary chamber arranged in the cylinder head. The volume of this secondary chamber and thus also the compression ratio was changed with the help of a piston movable in this secondary chamber, so that the compression ratio between ε = 9.5 and ε = 15.5 could be changed electromechanically depending on the load condition of the engine. In the partial load range (ECE city cycle), fuel savings of up to 12.7% compared to the optimized series engine were measured. In the third mix, the savings were 9.6%. The variable compression therefore offers considerable fuel savings potential. However, the design effort for variable compression has so far been too great for implementation in series production. A disadvantage of the above-mentioned solution with a secondary chamber is also that the combustion chamber is no longer compact when the compression is low, which has a disadvantageous effect on the combustion processes and the exhaust gas behavior. Another proposal for the implementation of a variable compression comes from Louis Damblanc from Paris in accordance with his German Reich Patent No. 488'059 dated December 5, 1929. An eccentric connecting rod bearing bush placed on the crank pin can be adjusted from the crankshaft by means of a differential gear. This differential gear includes a shaft that runs concentrically to the crankshaft inside. An internally toothed wheel is driven by the crankshaft and drives three internal satellite gearwheels, which are distributed around its inner circumference and are mounted on bolts on a disk which acts as a toothed sector and are approximately three times smaller in diameter, all of which mesh with a central gearwheel, which is located on said one , through the inside of the crankshaft shaft. The tooth sector can be adjusted by means of a further gear wheel acting on its circumference. This differential gear is particularly expensive because of the shaft required inside the crankshaft. In any case, this construction for adjusting the compression ratio has not been widely used.
The object of the invention is therefore to create an internal combustion engine which has a variable compression ratio by means of an eccentric crank pin and which, therefore, adapted to the current operating states of the engine, can be optimized over its range and thus to an overall increase in engine efficiency and contributes to its smoothness.
This object is achieved by an internal combustion engine of the reciprocating piston type, in which the compression ratio is variable in that the piston stroke can be adjusted because the connecting rod is supported on an eccentric crank pin on the crankshaft side, the eccentric crank pin being adjustable about its axis of rotation while the engine is running by control means, and which is characterized in that the eccentric crank pin is formed by at least two one-piece shells, which are arranged around the crank arm shaft of the crank shaft, and these shells each have a gear segment, which segments also the crank arm shaft Enclose crankshaft, and that the gearwheel formed by these segments runs as an outer wheel in a ring gear of larger diameter, which is mounted concentrically around the crankshaft axis of the crankshaft and is adjustable in its rotational position when the engine is running, in such a way that the outer wheel when rolling in the H ohlrad, if it is in a certain stationary setting position, executes exactly one turn during handling, such that the movement of the effective center of the lower connecting rod bearing always describes an ellipse depending on the setting position, this being between a standing and lying position Ellipse can continuously take up all intermediate setting positions.
An internal combustion engine of the reciprocating piston type as an example embodiment of the invention is shown in the figures and is described in detail in the following description, the function of this embodiment of the invention being explained.

Es zeigt:

Figur 1:
Ein Prinzipschema des Hubkolbenmotors mit mechanischer Regulierung des Verdichtungsverhältnisses, wobei der Kolben mit der Einstellung des maximalen Verdichtungsverhältnisses gerade im oberen Totpunkt steht;
Figur 2:
Ein zweiteiliges Werkstück als Zahnrad und Exzenter;
Figur 3:
Das zweiteilige Werkstück in perspektivischer Ansicht;
Figur 4:
Das Prinzipschema mit der Einstellung des maximalen Verdichtungsverhältnisses, wobei der Kolben gerade in der Mitte zwischen dem oberen und dem unteren Totpunkt steht;
Figur 5:
Das Prinzipschema mit der Einstellung des maximalen Verdichtungsverhältnisses, wobei der Kolben gerade im unteren Totpunkt steht;
Figur 6:
Das Prinzipschema mit der Einstellung des minimalen Verdichtungsverhältnisses, wobei der Kolben gerade im oberen Totpunkt steht;
Figur 7:
Das Prinzipschema mit der Einstellung des minimalen Verdichtungsverhältnisses, wobei der Kolben gerade in der Mitte zwischen dem oberen und dem unteren Totpunkt steht;
Figur 8:
Das Prinzipschema mit der Einstellung des minimalen Verdichtungsverhältnisses, wobei der Kolben im unteren Totpunkt steht;
Figur 9:
Die elliptischen Bewegungskurven, welche das Zentrum des exzentrisch angeordneten Kurbelzapfens bei verschiedenen Einstellungen des Verdichtungsverhältnisses beschreibt;
Figur 10:
Die Konstruktion für die Verstellung des Verdichtungsverhältnisses von der Seite her gesehen.
It shows:
Figure 1:
A schematic diagram of the reciprocating piston engine with mechanical regulation of the compression ratio, the piston being at top dead center with the setting of the maximum compression ratio;
Figure 2:
A two-part workpiece as a gear and eccentric;
Figure 3:
The two-part workpiece in a perspective view;
Figure 4:
The principle diagram with the setting of the maximum compression ratio, with the piston standing exactly in the middle between the top and bottom dead center;
Figure 5:
The basic scheme with the setting of the maximum compression ratio, with the piston just at the bottom dead center;
Figure 6:
The basic scheme with the setting of the minimum compression ratio, with the piston just at top dead center;
Figure 7:
The basic scheme with the setting of the minimum compression ratio, with the piston standing exactly in the middle between the top and bottom dead center;
Figure 8:
The basic scheme with the setting of the minimum compression ratio, with the piston at bottom dead center;
Figure 9:
The elliptical movement curves, which describe the center of the eccentrically arranged crank pin with different settings of the compression ratio;
Figure 10:
The construction for the adjustment of the compression ratio seen from the side.

In Figur 1 ist der Verbrennungsmotor anhand eines Prinzipschemas dargestellt, hier am Beispiel eines einzelnen Zylinders. Das gesamte Prinzip lässt sich ohne weiteres an mehrzylindrigen Motoren realisieren, egal ob die Zylinder in Reihe, V-förmig oder in Boxer-Stellung zueinander angeordnet sind. Gezeigt ist hier ein Zylinder 10 mit Ein- 11 und Auslassventil 12 am Zylinderkopf, sowie der im Zylinder 10 gelagerte Kolben 7, welcher über die Pleuelstange 9 mit der Kurbelwelle 14 verbunden ist. Mit 8 ist die ortsfeste Achse der Kurbelwelle 14 bezeichnet. An der Kurbelwelle 14 befindet sich eine Schwungmasse 13, die fest mit der Kurbelwelle 14 verbunden ist und die Gegenmasse zur Kurbelmasse bildet. Die Kurbel 25 selbst weist nun einen ganz speziellen Kurbelzapfen 1 auf Bei einem herkömmlichen Motor verläuft der Kurbelzapfen rechtwinklig zur Kurbelarm-Drehebene und beschreibt bei laufendem Motor einen konzentrischen Kreis. Er weist also einen definierten und daher immer gleichbleibenden Abstand zur Kurbelwellenachse 8 auf, das heisst zur Achse 8, welche die Kurbel antreibt. Im Gegensatz hierzu ist der Kurbelzapfen gemäss der Erfindung in bezug auf die herkömmliche Kurbelzapfenachse 2, das heisst in bezug auf die herkömmliche Achse 2 des Kurbelzapfens, ein Exzenter 1. Dieser Exzenter 1 lässt sich um die herkömmliche Kurbelzapfenachse 2 verdrehen. Das kurbelwellenseitige Ende der Pleuelstange 9 umschliesst diesen Exzenter 1 mit dem Pleuelstangen-Lager, sodass der Exzenter 1 im Pleuelstangen-Lager drehbar ist. Konstruktiv ist die Anordnung dieses Exzenters 1 im gezeigten Beispiel so gelöst, dass der exzentrische Kurbelzapfen 1 von zwei Schalen 26,27 gebildet wird, die um die Kurbelarm-Welle 15 der Kurbelwelle 14 angeordnet diese umschliessen und so einen exzentrischen Kurbelzapfen 1 bilden. Diese Schalen 26,27 sind je mit einem Zahnrad-Segment 28,29 verbunden, welche Segmente 28,29 ebenfalls die Kurbelarm-Welle 15 der Kurbelwelle 14 umschliessen. Das von diesen Segmenten 28,29 gebildete Zahnrad 3 läuft als Aussenrad 3 in einem Hohlrad 4 grösseren Durchmessers ab, welches konzentrisch um die Kurbelachse 8 an der Kurbelwelle 14 frei drehbar gelagert ist und in seiner Drehlage verstellbar ist. Wenn das Hohlrad 4 stationär ist, so führt das Aussenrad 3 beim Abrollen im Inneren des Hohlrades während eines Umganges genau eine Umdrehung um sich selbst aus. In Figure 1, the internal combustion engine is shown using a schematic diagram, here on Example of a single cylinder. The whole principle can be easily applied to multi-cylinder Realize engines, regardless of whether the cylinders are in line, V-shaped or in boxer position are arranged to each other. Shown here is a cylinder 10 with an inlet valve 11 and an outlet valve 12 on the cylinder head, and the piston 7 mounted in the cylinder 10, which over the Connecting rod 9 is connected to crankshaft 14. At 8 is the fixed axis of the crankshaft Designated 14. There is a flywheel 13 on the crankshaft 14, which is fixed is connected to the crankshaft 14 and forms the counter mass to the crank mass. The Crank 25 itself now has a very special crank pin 1 in a conventional one Engine runs the crank pin at right angles to the crank arm rotation level and describes a concentric circle with the engine running. So he has a defined one and therefore always constant distance from the crankshaft axis 8, that is to say Axis 8, which drives the crank. In contrast, the crank pin according to the Invention in relation to the conventional crank pin axis 2, that is, in relation to the conventional axis 2 of the crank pin, an eccentric 1. This eccentric 1 can be turn the conventional crank pin axis 2. The end of the connecting rod on the crankshaft side 9 encloses this eccentric 1 with the connecting rod bearing, so that the eccentric 1 is rotatable in the connecting rod bearing. The arrangement of this eccentric 1 is constructive shown example solved so that the eccentric crank pin 1 of two shells 26,27 is formed which arranged around the crank arm shaft 15 of the crankshaft 14 enclose it and thus form an eccentric crank pin 1. These shells 26, 27 are each connected to a gear segment 28, 29, which segments 28, 29 also the crank arm shaft 15 enclose the crankshaft 14. The one formed by these segments 28, 29 Gear 3 runs as an external gear 3 in a ring gear 4 of larger diameter, which is mounted concentrically about the crank axis 8 on the crankshaft 14 and rotates freely is adjustable in its rotational position. If the ring gear 4 is stationary, the outer gear leads 3 exactly one turn when rolling inside the ring gear during handling to yourself out.

In Figur 2 ist dieses Werkstück, welches das Aussenrad 3 und den Exzenter 1 bildet, in a) in einem Aufriss sowie in b) in einer Draufsicht auf das untere Teil 27,29 des Werkstückes gezeigt. Das Zahnrad 3 ist rund, jedoch in der Mitte in zwei Segmente 28,29 entzweigeschnitten, und diese tragen auf ihrer Stirnseite die Halbschalen 26,27, die zusammengesetzt einen Exzenter 1 bezüglich der Drehachse des Zahnrades 3 bilden. Diese beiden Teile des Werkstückes werden um die Kurbel-Wellenachse, also um den herkömmlichen Kurbelzapfen einer Kurbelwelle zusammengefügt und die Pleuelstange wird um den nun gebildeten Exzenter 1 angebaut. Das untere Pleuelstangenlager hält die beiden Teile passgenau zusammen.In Figure 2, this workpiece, which forms the outer wheel 3 and the eccentric 1, is in a) in an elevation and in b) in a plan view of the lower part 27, 29 of the workpiece shown. The gear 3 is round, but cut in half in two segments 28, 29, and these have on their front side the half-shells 26, 27 which are put together form an eccentric 1 with respect to the axis of rotation of the gear 3. These two parts of the Workpiece are around the crank shaft axis, i.e. around the conventional crank pin assembled a crankshaft and the connecting rod is around the now formed Eccentric 1 attached. The lower connecting rod bearing holds the two parts together precisely.

Die Figur 2b) zeigt den unteren Teil des Werkstückes in einer Draufsicht, wobei die ebene "Schnitt"-fläche schraffiert ist. Das Werkstück ist aus einer geeigneten gehärteten Stahllegierung hergestellt, wie sie für beanspruchte Zahnräder üblich ist. Seine Innenseite weist eine Weissmetall-Beschichtung auf und ist gehärtet und geschliffen, um einen Abrieb zu vermeiden. Diese Innenseite läuft ja auf dem Kurbelzapfen 15, der aus einem Stahlguss besteht. Die Aussenseite des Werkstückes, das heisst die Aussenseite der Schalen 26,27, ist hartverchromt. Diese Aussenseiten der Schalen 26,27 werden ja vom Pleuellager umschlossen. Die Pleuelstangen sind meist aus Aluminium, und in diesem Fall ist eine Hartverchromung der Aussenseiten der Schalen 26,27 hinreichend, um einen Abrieb zu vermeiden.Figure 2b) shows the lower part of the workpiece in a plan view, the plane "Cut" area is hatched. The workpiece is made of a suitable hardened steel alloy manufactured as it is common for stressed gears. Its inside shows a white metal coating and is hardened and ground to prevent abrasion avoid. This inside runs on the crank pin 15, which consists of a cast steel. The outside of the workpiece, that is to say the outside of the shells 26, 27, is hard chrome plated. These outer sides of the shells 26, 27 are enclosed by the connecting rod bearing. The connecting rods are mostly made of aluminum, and in this case is a hard chrome plating the outside of the shells 26, 27 is sufficient to avoid abrasion.

In Figur 3 ist das zweiteilige Werkstück noch in einer perspektivischen Ansicht gezeigt. Man sieht die beiden Schalen 26,27, sowie die beiden Zahnrad-Segmente 28,29. Zusammengesetzt bilden diese Segmente ein kreisrundes Zahnrad 3 und die Schalen 26,27 einen Exzenter 1 bezüglich der Zahnrad-Achse. Dreht man also dieses Zahnrad 3, so dreht sich der Exzenter 1 ebenfalls um die Zahnradachse. Dabei wird das untere Pleuelstangen-Lager, welches den Exzenter 1 umschliesst, und die Pleuelstange, auf- und abwärts bewegt, je nach Stellung des Exzenters 1. Die Stelle am Exzenter 1, welche bezüglich seiner Drehachse den grössten Radius aufweist, ist mit der Ziffer 16 bezeichnet und bildet gewissermassen eine Nase. In einer Alternative könnte das Werkstück statt aus zwei Teilen auch aus mehr Teilen, zum Beispiel aus drei Segmenten hergestellt sein, die sich je um 120° erstrecken. In Figure 3, the two-part workpiece is still shown in a perspective view. You can see the two shells 26, 27 and the two gear segments 28, 29. Composed these segments form a circular gear 3 and the shells 26, 27 one Eccentric 1 with respect to the gear axis. So if you turn this gear 3, it turns the eccentric 1 also around the gear axis. The lower connecting rod bearing, which encloses the eccentric 1 and moves the connecting rod up and down, depending on Position of the eccentric 1. The location on the eccentric 1, which with respect to its axis of rotation has the largest radius, is designated by the number 16 and forms a to some extent Nose. In an alternative, instead of two parts, the workpiece could also consist of more parts, For example, be made from three segments, each extending through 120 °.

In der Figur 1 ist diese vom Exzenter 1 gebildete Nase 16 nach oben gerichtet. Deshalb nimmt der Kolben 7 in dieser Stellung die höchstmögliche Position ein und entsprechend klein ist das Volumen des Verbrennungsraumes. Die Verdichtung ist in dieser Stellung des Exzenters 1 die höchste. Das Zahnrad 3 ist als Aussenrad ausgebildet, hat also einen gezahnten Umfang und läuft mit diesem im Hohlrad 4 ab. Dieses Hohlrad 4 besteht aus einer Scheibe 17, welche drehbar um die Kurbelwelle 14 gelagert ist. Am Scheibenaussenrand befindet sich eine Auskragung 18, auf deren Innenseite eine Verzahnung 19 vorhanden ist. Das Zahnrad 3 bildet das Aussenrad zu dieser Verzahnung 19 und läuft also längs des Innenrandes dieser Auskragung 18 auf der Verzahnung 19 ab, wobei die Zähne 20 des Aussenrades 3 in jene 19 des Hohlrades 4 eingreifen. Das Verhältnis des Umfanges der Verzahnung 19 des Hohlrades 4 zu jenem des Aussenrades 3 ist 2:1. Dadurch dreht sich das Aussenrad einmal um 360°, während es um den gesamten Umfang der Hohlrad-Verzahnung 19 abläuft, und entsprechend um bloss 180°, wenn es nur um den halben Umfang der Hohlrad-Verzahnung 19 abläuft. In bezug auf den Exzenter 1, welcher ja fest mit dem Zahnrad 3 verbunden ist, bedeutet dies, dass aus der in Figur 1 gezeichneten Position, wo die Nase 16 des Exzenters 1 gegen oben zeigt und somit die Verdichtung maximal ist, diese Nase 16 ihre Position wie folgt verändert, wenn sich die Kurbelwelle 14 um eine Umdrehung dreht: Das Zahnrad 3 als ganzes und mit ihm die Kurbelzapfen-Welle bewegen sich in bezug auf die Kurbelwelle 14 zum Beispiel im Uhrzeigersinn um diese herum, wobei sich das Zahnrad 3 selbst gerade im Gegenuhrzeigersinn dreht. Nach einer solchen Drehung der Kurbelwelle um 90° zeigt die Nase 16 nach links zur Kurbelwellen-Achse hin. Das Zahnrad 3 hat sich also mitsamt dem Exzenter 1 um 90° im Gegenuhrzeigersinn gedreht. Diese neue Situation nach einer solchen 90°-Drehung ist in Figur 4 dargestellt. Der Kurbelarm 25 steht jetzt horizontal und seine effektiv wirksame Länge ist gegenüber der Länge, die er in der Ausgangsposition nach Figur 1 hatte, verkürzt. Nach einer weiteren Drehung um 90° ist der Kurbelarm 25 unten angelangt und die Nase 16 zeigt nach unten. Diese Situation ist in Figur 5 dargestellt. In dieser Stellung ist der Pleuel 9 und Kolben 7 im Vergleich zu einem herkömmlichen Motor gegen unten verschoben. Im Motorlauf ist dadurch auch der Ansaughub des Kolbens 7 gegenüber der bisherigen Konstruktion verlängert, was sich ebenfalls positiv auf das Verdichtungsverhältnis auswirkt. Nach einer weiteren 90°-Drehung zeigt die Nase 16 wiederum in Richtung zur Kurbelwellenachse hin, und nach einer abermaligen Drehung um 90°, also nach einer vollendeten 360°-Drehung, zeigt sie wieder nach oben, wie in der Ausgangsposition gemäss Figur 1 gezeigt. Das Zentrum des Exzenters 1 beschreibt den tatsächlich wirksamen Kurbelweg, weil ja das untere Pleuellager den Exzenter 1 umschliesst.In Figure 1, this nose 16 formed by the eccentric 1 is directed upwards. That's why the piston 7 assumes the highest possible position in this position and accordingly the volume of the combustion chamber is small. The compression is in this position Eccentric 1 the highest. The gear 3 is designed as an outer gear, so it has a toothed Scope and runs with this in the ring gear 4. This ring gear 4 consists of a Disc 17, which is rotatably mounted about the crankshaft 14. On the outside of the pane there is a projection 18, on the inside of which there is a toothing 19. The gear 3 forms the outer wheel to this toothing 19 and thus runs along the inner edge this overhang 18 on the toothing 19, the teeth 20 of the Engage the outer wheel 3 in that 19 of the ring gear 4. The ratio of the amount of gearing 19 of the ring gear 4 to that of the outer gear 3 is 2: 1. This turns it Outer gear once through 360 °, while it is around the entire circumference of the ring gear teeth 19 expires, and accordingly by only 180 °, if it is only half the circumference of the Ring gear teeth 19 expires. With regard to the eccentric 1, which is fixed with the Gear 3 is connected, this means that from the position shown in Figure 1, where the nose 16 of the eccentric 1 points upwards and thus the compression is maximum, this Nose 16 changes position as follows when crankshaft 14 rotates one revolution turns: The gear 3 as a whole and with it the crank pin shaft move in with respect to the crankshaft 14, for example, clockwise around it, with the gear 3 itself rotates counterclockwise. After such a rotation of the Crankshaft by 90 ° points nose 16 to the left towards the crankshaft axis. The gear 3 has thus rotated together with the eccentric 1 by 90 ° counterclockwise. This new one The situation after such a 90 ° rotation is shown in FIG. The crank arm 25 is standing now horizontal and its effective effective length is opposite to the length it is in Starting position according to Figure 1 had shortened. After a further rotation of 90 ° the Crank arm 25 reached below and the nose 16 points down. This situation is in figure 5 shown. In this position, the connecting rod 9 and piston 7 are compared to a conventional one Engine shifted towards the bottom. As a result, the intake stroke is also when the engine is running the piston 7 compared to the previous design extended, which is also positive affects the compression ratio. After a further 90 ° turn the nose shows 16 again towards the crankshaft axis, and after a further rotation by 90 °, i.e. after a complete 360 ° rotation, it points up again, as in the Starting position shown in Figure 1. The center of the eccentric 1 describes the Actually effective crank path, because the lower connecting rod bearing encloses the eccentric 1.

Wie man nun anhand von Figur 1 sieht, wo das Zentrum des Exzenters 1 mit der Ziffer 21 bezeichnet ist, ist dieses Zentrum 21 gegenüber der Achse 2 der Kurbelzapfen-Welle 15, die durch die Drehachse des Zahnrades 3 gebildet wird, nach oben verschoben. Entsprechend ist auch die Pleuelstange 9, welche am Exzenter 1 angelenkt ist und die oben mit dem Kolben 7 verbunden ist, angehoben, und mit ihr natürlich auch der Kolben 7. Somit nimmt der Kolben 7 im oberen Totpunkt wie in Figur 1 gezeigt, eine erhöhte Position ein. Entsprechend wird eine höhere Verdichtung erzielt. Umgekehrt ist der untere Totpunkt des Kolbens 7 wegen der nach unten zeigenden Nase 16 des Exzenters 1 wie in Figur 5 gezeigt im gleichen Masse nach unten versetzt, was wie schon erwähnt einen längeren Ansaughub ermöglicht und das Verdichtungsverhältnis abermals steigert. In bezug auf die wirksame Kurbelarmlänge nimmt diese in den Zwischenpositionen, etwa in der in Figur 4 gezeigten Stellung, einen dazwischenliegenden Wert ein. Die Kurbelarmlänge erreicht also hier im oberen Totpunkt des Kolbens 7 ein Maximum, nimmt nach einer 90°-Drehung ein Minimum ein und kommt dann gegen den unteren Totpunkt hin wieder zu einem Maximum. Die gleiche Variation erfährt sie bis zum Erreichen des oberen Totpunktes des Kolbens 7. Die Kurbel beschreibt also nicht mehr einen Kreis, sondern eine stehende Ellipse.As can now be seen from FIG. 1, where the center of the eccentric 1 is numbered 21 , this center 21 is opposite to the axis 2 of the crank pin shaft 15, the is formed by the axis of rotation of the gear 3, shifted upwards. Corresponding is also the connecting rod 9, which is articulated on the eccentric 1 and the top with the Piston 7 is connected, raised, and of course with it the piston 7. Thus takes the piston 7 at top dead center as shown in Figure 1, an elevated position. Corresponding higher compression is achieved. The bottom dead center of the piston is reversed 7 because of the downward-pointing nose 16 of the eccentric 1 as shown in FIG same mass down, which, as already mentioned, a longer suction stroke enables and increases the compression ratio again. In terms of effective Crank arm length takes this in the intermediate positions, such as that shown in Figure 4 Position, an intermediate value. The crank arm length reaches here in top dead center of the piston 7 takes a maximum, takes a minimum after a 90 ° rotation and then comes to a maximum towards bottom dead center. The it experiences the same variation until it reaches the top dead center of the piston 7. Die Crank no longer describes a circle, but a standing ellipse.

Dieser Verbrennungsmotor kann nun aber verschiedene Verdichtungsverhältnisse annehmen. Hierzu wird das Zahnrad 3 mit dem Exzenter 1 um die Achse 2 der Kurbelzapfen-Welle 15 verdreht. Dies erfolgt mittels Verdrehen des Hohlrades 4 um die Kurbelwelle. In Figur 6 ist die andere Extremposition dargestellt, in welcher die Nase 16 am Exzenter 1 in der obersten Position des Kolbens 7, also in dessen oberem Totpunkt, nach unten zeigt. Das Volumen des Verbrennungsraumes ist mit dieser Einstellung maximal. Rollt nun das Aussenrad 3 aus dieser Ausgangsposition in gleicher Weise am verzahnten Umfang 19 des Hohlrades 4 ab, so erreicht der Exzenter 1 nach einer 90°-Umdrehung der Kurbelwelle im Uhrzeigersinn zunächst die Zwischenposition wie in Figur 7 gezeigt. Die Nase 16 zeigt hier in bezug auf die Kurbelwellenachse 8 radial gegen aussen und entsprechend ist der wirksame Kurbelarm von maximaler Länge. Im unteren Totpunkt des Kolbens 7, wie das in Figur 8 gezeigt ist, nimmt die Nase 16 eine Lage ein, wo sie nach oben zeigt, also zur Kurbelwellenachse 8 hin. Somit hat der Kolben 7 mit dieser Einstellung der Verdichtung einen minimalen Hub. Der Ansaugweg ist minimal, das Volumen des Verbrennungsraumes ist maximal und somit ist das Verdichtungsverhältnis minimal. Die Kurbel beschreibt eine liegende Ellipse. Durch Verstellen des Exzenters 1 in der Bandbreite zwischen diesen beiden beschriebenen Maximalpositionen kann das Verdichtungsverhältnis frei gewählt werden. In den Zwischeneinstellungen beschreibt die Kurbel jeweils immer eine gleichförmige Ellipse, jedoch ist diese dann weder stehend noch liegend, sondern schiefwinklig in bezug auf die Kolben-Bewegungsrichtung.However, this internal combustion engine can now assume different compression ratios. For this purpose, the gear 3 with the eccentric 1 about the axis 2 of the crankpin shaft 15 twisted. This is done by rotating the ring gear 4 around the crankshaft. In FIG. 6 shows the other extreme position, in which the nose 16 on the eccentric 1 in the uppermost position of the piston 7, ie in its top dead center, points downward. The The volume of the combustion chamber is maximum with this setting. Now roll that Outer wheel 3 from this starting position in the same way on the toothed circumference 19 of the Ring gear 4, the eccentric 1 reaches after a 90 ° rotation of the crankshaft in Clockwise first the intermediate position as shown in Figure 7. The nose 16 shows here with respect to the crankshaft axis 8 radially outwards and correspondingly the effective one Crank arm of maximum length. At the bottom dead center of the piston 7, as in Figure 8 is shown, the nose 16 assumes a position where it points upwards, that is to the crankshaft axis 8 out. Thus, the piston 7 has one with this setting of the compression minimal stroke. The suction path is minimal, the volume of the combustion chamber is maximum and thus the compression ratio is minimal. The crank describes one lying ellipse. By adjusting the eccentric 1 in the bandwidth between these two the compression ratio can be freely selected. In In the intermediate settings, the crank always describes a uniform ellipse, however, this is then neither standing nor lying, but at an oblique angle with respect to the Piston direction of movement.

In Figur 9 sind die verschiedenen Kurven, welche das Zentrum des Exzenters 1 bei verschiedenen Einstellungen beschreibt, dargestellt. Der Kolben bewegt sich dabei in den Richtungen wie mit den Pfeilen angegeben. In Figur 9a) ist die Einstellung für das höchste Verdichtungsverhältnis gezeigt. Hier beschreibt die Kurbel eine stehende Ellipse. Zum Vergleich ist der Kurbelkreis bei einem herkömmlichen Motor strichliniert angedeutet. Der Kolbenweg ist mit dieser Einstellung also länger. Sowohl der Ansaugweg wie auch der Verdichtungsweg ist länger und gleichzeitig ist das Volumen des Verbrennungsraumes reduziert. Das Verdichtungsverhältnis ist bei dieser Einstellung am grössten. Weil mit zunehmender Verdichtung der Wirkungsgrad des Motors ansteigt, wobei die Zunahme bei kleinen Lasten am grössten ist, wird diese Einstellung bei einem Benzinmotor irgendwo im Teillastbereich eingesetzt, während das Verdichtungsverhältnis unter Vollast etwas abgesenkt wird. Beim Dieselmotor ist es vorteilhaft, das maximale Verdichtungsverhältnis zum Starten des Motors einzustellen, um es hernach für den Betrieb abzusenken.In Figure 9 are the different curves which the center of the eccentric 1 at different Settings describes, shown. The piston moves in the directions as indicated by the arrows. In Figure 9a) the setting is the highest Compression ratio shown. Here the crank describes a standing ellipse. For comparison the crank circuit is indicated by dashed lines in a conventional engine. The piston stroke is longer with this setting. Both the suction path and the Compression path is longer and at the same time is the volume of the combustion chamber reduced. The compression ratio is greatest with this setting. Because with increasing Compression increases the efficiency of the engine, the increase in small loads is greatest, this setting is used somewhere in a petrol engine Partial load range used, while the compression ratio is slightly reduced under full load becomes. In the diesel engine, it is advantageous to use the maximum compression ratio Stop starting the engine and then lower it for operation.

In Figur 9b) ist die Kurve gezeigt, welche das Zentrum des Exzenters 1 bei der Einstellung des minimalen Verdichtungsverhältnisses beschreibt. Der Kurbelzapfen beschreibt eine identische Ellipse, die hier aber liegt. Der Kolbenweg ist minimal, das heisst sowohl der Ansaugweg wie auch der Verdichtungsweg ist minimal. Gleichzeitig ist wegen des zurückgenommenen oberen Totpunktes auch das Volumen des Verbrennungsraumes vergrössert Entsprechend ist das Verdichtungsverhältnis mit dieser Einstellung minimal. Diese Einstellung eignet sich zum Beispiel für den Leerlauf. In Figure 9b) the curve is shown, which is the center of the eccentric 1 during adjustment of the minimum compression ratio. The crank pin describes one identical ellipse, but this is here. The piston travel is minimal, i.e. both The suction path as well as the compression path is minimal. At the same time is because of the withdrawn top dead center also increases the volume of the combustion chamber Accordingly, the compression ratio is minimal with this setting. This setting is suitable, for example, for idling.

In Figur 9c) ist die Kurve gezeigt, welche das Zentrum des Exzenters 1 bei einer mittleren Zwischeneinstellung beschreibt. Wiederum beschreibt der wirksame Kurbelzapfen dieselbe Ellipse, doch diese steht jetzt schiefwinklig zur Kolben-Bewegungsrichtung. Je nach Umdrehungsrichtung kann der Exzenter 1 bzw. die von ihm gebildete Nase 16 gegen links oder gegen rechts gedreht werden. Die gewünschte Motorcharakteristik wird diktieren, ob bei der gezeigten Ellipse der Motor im Uhrzeiger- oder Gegenuhrzeigersinn laufen soll. Die Laufrichtung im Uhrzeigersinn dürfte sinnvoll sein, weil dann die Verdichtung längst möglich anhält, sodass die Verbrennung optimal ablaufen kann und der Verbrennungsdruck sich dann am effizientesten entfalten kann, das heisst mit maximaler, jedoch mit fortschreitender Umdrehung abnehmender Kurbellänge.In Figure 9c) the curve is shown, which the center of the eccentric 1 at a middle Intermediate setting describes. Again, the effective crank pin describes the same Ellipse, but this is now at an oblique angle to the direction of piston movement. Depending on the direction of rotation can the eccentric 1 or the nose 16 formed by it towards the left or be turned to the right. The desired engine characteristics will dictate whether at the ellipse shown, the motor should run clockwise or counterclockwise. The Running in a clockwise direction should make sense, because then compression has been possible for a long time stops so that the combustion can run optimally and the combustion pressure increases can then unfold most efficiently, i.e. with maximum, but with increasing Revolution of decreasing crank length.

Die eigentliche Verstellung des Exzenters 1 erfolgt ja durch die Verdrehung des Zahnrades 3 mittels des Hohlrades 4. Damit der Exzenter 1 um 180° von der einen Maximal-Position in die andere verdreht werden kann, muss das Hohlrad 4 um eine Viertel-Umdrehung um die Kurbelwellenachse 8 verdreht werden. Diese Verdrehung des Hohlrades 4 kann durch verschiedene Verstellmittel realisiert werden. In den Figuren 1 sowie 4 bis 8 und 10 ist ein Beispiel dazu gezeigt. Das Hohlrad 3 weist auf der flachen, der Auskragung abgewandten Rückseite der Scheibe 17 ein konzentrisches und fest mit ihm verbundenes Zahnrad 5 auf, das als Stirnrad wirkt. In die in der Figur 1 angedeutete Verzahnung 22 des Umfanges dieses Stirnrades 5 greift die Verzahnung 23 eines Steuer-Zahnrades 6 ein, das um eine seitlich angeordnete Welle 24 drehbar ist. Dadurch, dass wie hier gezeigt das Steuer-Zahnrad 6 einen mehr als doppelt so grossen Radius wie das Stirnrad 5 aufweist, muss das Steuer-Zahnrad für die Verstellung von einer Maximalposition zur anderen um bloss noch etwa 40° Grad verdreht werden. Bei mehreren Zylindern, die in Reihe angeordnet sind, sitzen mehrere solche Steuer-Zahnräder auf einer gemeinsamen Seitenwelle 24. Bei einem VMotor kann eine zentrale Welle zwischen den V-Schenkeln angeordnet werden, von welcher aus die Hohlzahnräder 4 zu jedem Zylinder betätigt werden. Eine ähnliche Anordnung ist auch bei einem Boxer-Motor möglich, sodass die gleiche Seitenwelle die Hohlzahnräder zu den jeweils gegenüberliegenden Zylindern steuert. Die Betätigung des Steuer-Zahnrades 6 kann auf verschiedenste Arten erfolgen. Denkbar ist zum Beispiel ein Antrieb über einen Servomotor in Form eines elektrischen Schrittmotors, der direkt oder indirekt, zum Beispiel mittels eines Zahnriemens oder eines Ritzels, auf die Seitenwelle 24 wirkt und mit dem eine rasche Verstellung von der einen zur andern Maximaleinstellung bewerkstelligt werden kann. Dieser Schrittmotor wird vorteilhaft von einem Mikroprozessor gesteuert. Der für die Steuerung zum Einsatz kommende Mikroprozessor kann mit mehreren Parametern elektronisch gespiesen werden. So kann zum Beispiel die Motorlast am Getriebe elektronisch gemessen werden, wie diese Daten auch für die Schaltung von manchen automatischen Getrieben ohnehin ermittelt werden. Weiter kann die Motordrehzahl als massgeblicher Parameter elektronisch erfasst werden und ebenfalls für die Regelung des Verdichtungsverhältnisses berücksichtigt werden. Auch die Signale eines Klopfsensors, der an vielen modernen Fahrzeugmotoren bereits vorhanden ist, können verarbeitet werden. Der Verbrennungsdruck und die Verbrennungstemperatur können ebenfalls zur Verrechnung ermittelt werden. In einem solchen Mikroprozessor werden schliesslich all diese Daten anhand eines mehrdimensionalen Kennfeldes zu einem Ausgangssignal verarbeitet, welches schliesslich den Schrittmotor zur Veränderung der Lage des oder der Steuer-Zahnräder ansteuert.The actual adjustment of the eccentric 1 is done by turning the gear 3 by means of the ring gear 4. So that the eccentric 1 by 180 ° from the one maximum position can be rotated into the other, the ring gear 4 must be turned a quarter turn the crankshaft axis 8 are rotated. This rotation of the ring gear 4 can by different adjustment means can be realized. In Figures 1 and 4 to 8 and 10 is a Example shown. The ring gear 3 has on the flat, facing away from the projection Back of the disc 17 on a concentric gear 5 fixedly connected to it, that acts as a spur gear. In the toothing 22 of the circumference indicated in FIG. 1 Helical gear 5 engages the toothing 23 of a control gear 6, which is arranged laterally arranged shaft 24 is rotatable. The fact that the control gear 6 has a radius more than twice as large as the spur gear 5, the control gear for adjustment from one maximum position to another by only about 40 ° Degrees. With several cylinders, which are arranged in a row, sit several such control gears on a common side shaft 24. With a V-motor a central shaft can be arranged between the V-legs, of which can be operated from the hollow gears 4 to each cylinder. A similar arrangement is also possible with a boxer engine, so that the same side shaft as the ring gears controls to the opposite cylinders. The actuation of the control gear 6 can be done in many different ways. For example, a drive via one is conceivable Servo motor in the form of an electric stepper motor, directly or indirectly, for example by means of a toothed belt or a pinion, acts on the side shaft 24 and with one rapid adjustment from one to the other maximum setting can be accomplished can. This stepper motor is advantageously controlled by a microprocessor. The one for the Control microprocessor can be used with several parameters electronically be fed. For example, the engine load on the gearbox can be electronic be measured as this data also for the switching of some automatic Gearboxes can be determined anyway. Furthermore, the engine speed can be more relevant Parameters are recorded electronically and also for the regulation of the compression ratio be taken into account. Also the signals from a knock sensor that is on many modern vehicle engines already exist can be processed. The combustion pressure and the combustion temperature can also be calculated will. In a microprocessor of this type, all of this data is ultimately used a multi-dimensional map processed to an output signal, which finally controls the stepper motor to change the position of the control gear or gears.

In Figur 10 ist eine Darstellung des Motors von der Seite her gesehen gezeigt, wobei hier zwei Kolben 7 mit ihren Kurbelantrieben dargestellt sind. Die Konstruktion für die Verstellung des Verdichtungsverhältnisses schliesst wie schon beschrieben je ein auf der Kurbelwelle 14 sitzendes Hohlrad 4 ein, welches freilaufend auf der Kurbelwelle 14 gelagert ist. Diese Hohlräder 4 sind hier zum besseren Verständnis teilweise aufgeschnitten dargestellt. Die flache, der Auskragung abgewandte Rückseite der Scheibe 17 trägt konzentrisch ein fest mit ihr verbundenes Zahnrad 5. Innerhalb der innen verzahnten Auskragung des Hohlrades 4 läuft ein Zahnrad 3, das fest mit einem Exzenter 1 verbunden ist. Dieser Exzenter 1 umschliesst die Kurbelarm-Welle 15 und ist darauf freidrehend gelagert. Das untere Pleuellager 25 der Pleuelstange 9 umschliesst den Exzenter 1, dessen Nase 16 beim linken Kolben 7 gegen oben zeigt und beim rechten Kolben 7 gegen unten. Entsprechend ist der linke Kolben 7 etwas angehoben, der rechte etwas erniedrigt. Wird das Zahnrad 5 mit dem Hohlrad 4 verdreht, so dreht sich ortsfest auch der Exzenter 1, sodass die von ihm gebildete · Nase 16 ihre Lage verschiebt. Beim Motorlauf rollt das Zahnrad 3 im Innern des Hohlrades 4 als Aussenrad ab und bewirkt, dass sich der Exzenter 1 um einen Kurbelwellenumgang genau um 360° dreht. Wenn also die Kurbelwelle um 180° dreht, so dreht sich auch der Exzenter 1 um 180° und entsprechend zeigt dann die von ihm gebildete Nase 16 nach unten, wie das am rechts gezeigten Kurbelwellenausschnitt sichtbar ist. Weil die Nase 16 dort nach unten zeigt, ist die untere Kolbenposition erniedrigt. Insgesamt hat man also einen grösseren Kolbenhub und gleichzeitig wird natürlich das Volumen des Verbrennungsraums reduziert. Das Verdichtungsverhältnis ist erhöht. In den Zwischenpositionen ist der wirksame Kurbelarm kleiner. Das effektiv wirksame Zentrum des Kurbelzapfens beschreibt bei erhöhter Verdichtung eine stehende Ellipse.FIG. 10 shows a representation of the motor viewed from the side, here two pistons 7 are shown with their crank drives. The construction for the adjustment the compression ratio includes as already described on the crankshaft 14 seated ring gear 4, which is freewheel mounted on the crankshaft 14. These ring gears 4 are shown here partially cut away for better understanding. The flat back of the disk 17 facing away from the cantilever carries in concentrically Gear wheel 5 firmly connected to it. Inside the internally toothed projection of the ring gear 4 runs a gear 3, which is firmly connected to an eccentric 1. This eccentric 1 encloses the crank arm shaft 15 and is freely rotating on it. The lower connecting rod bearing 25 of the connecting rod 9 encloses the eccentric 1, the nose 16 of the left piston 7 points upwards and with the right piston 7 points downwards. The left is accordingly Piston 7 slightly raised, the right one slightly lowered. The gear 5 with the ring gear 4 rotates, the eccentric 1 also rotates stationary, so that the eccentric formed by it Nose 16 shifts its position. When the engine is running, the gear 3 rolls inside the ring gear 4 as an outer wheel and causes the eccentric 1 to rotate around the crankshaft rotates exactly 360 °. So if the crankshaft rotates 180 °, the crankshaft also rotates Eccentric 1 by 180 ° and accordingly the nose 16 formed by it points downwards, as can be seen on the crankshaft section shown on the right. Because the nose 16 after there shows below, the lower piston position is lowered. So overall you have a bigger one Piston stroke and at the same time, of course, the volume of the combustion chamber is reduced. The compression ratio is increased. In the intermediate positions is the effective one Crank arm smaller. The effective center of the crank pin describes at increased compression a standing ellipse.

Als Alternative kann das Hohlrad 4 an seinem äusseren Umfang eine Verzahnung aufweisen und mittels eines Zahnrades verstellt werden, das direkt in diese Verzahnung eingreift. Bei einer bestimmten Verdichtungseinstellung bleibt das Hohlrad während des Motorlaufs stationär. Es ist auch denkbar, das Hohlrad mit der Kurbelwelle mitlaufen zu lassen. In diesem Fall würde die Drehlage des Exzenters über eine Umdrehung stets dieselbe bleiben, sodass also die wirksame Kurbelarmlänge um die ganze Umdrehung immer dieselbe wäre. Entsprechend würde das Zentrum des Exzenters nicht mehr eine Ellipse, sondern einen Kreis beschreiben. Die Verstellung würde dann so erfolgen, dass die Drehlage des Hohlrades bezüglich der Kurbelachse verändert werden müsste.As an alternative, the ring gear 4 can have teeth on its outer circumference and be adjusted by means of a gearwheel that engages directly in this toothing. At At a certain compression setting, the ring gear remains stationary while the engine is running. It is also conceivable to let the ring gear run with the crankshaft. In this In this case, the rotational position of the eccentric would always remain the same over one revolution, so that So the effective crank arm length would always be the same for the entire revolution. Corresponding the center of the eccentric would no longer be an ellipse but a circle describe. The adjustment would then be made so that the rotational position of the ring gear with respect the crank axis would have to be changed.

Der erfindungsgemässe Motor ermöglicht durch die Regulierung des Verdichtungsverhältnisses die Berücksichtigung eines weiteren wichtigen Parameters, welcher die Charakteristik und Leistungsentfaltung eines Motors massgeblich beeinflusst. Die Modifikation kann dabei von den bestehenden Motoren ausgehen, wobei bloss die Kurbelwellen und in gewissen Fällen die Motorblöcke für neue Serien angepasst werden müssen, und nicht eine gänzliche Neukonstruktion eines Motors nötig ist. In vielen Fällen kann der bestehende Motorblock sogar weiterverwendet werden, wenn genügend Platz zur Anordnung der Zahnräder und der Seitenwelle vorhanden ist. So bleiben die Zylinder, Kolben, Pleuel und die peripheren Bestandteile eines Motors wie Zündung und Einspritzung sowie die Nebenaggregate von dieser Modifikation im Prinzip unberührt. Der Verbrennungsmotor mit variabler Verdichtung verspricht eine bedeutend verbesserte Leistungsentfaltung bei gleichzeitig besserer Laufruhe und wegen der gesteigerten Effizienz einen weiter optimierten Treibstoffverbrauch, wobei infolge der optimierten Verbrennung auch der Schadstoff-Ausstoss weiter reduziert werden kann.The engine according to the invention enables by regulating the compression ratio taking into account another important parameter, which is the characteristic and power delivery of a motor significantly influenced. The modification can start from the existing engines, only the crankshafts and in certain If the engine blocks have to be adapted for new series, and not a complete one Redesign of an engine is necessary. In many cases, the existing engine block can even be used if there is enough space to arrange the gears and the sideshaft is present. So the cylinders, pistons, connecting rods and the peripheral remain Components of an engine such as ignition and injection as well as the auxiliary units from this modification in principle unaffected. The internal combustion engine with variable Compression promises a significantly improved performance while at the same time better smoothness and due to the increased efficiency a further optimized fuel consumption, due to the optimized combustion also the pollutant emissions can be further reduced.

Claims (10)

  1. Reciprocating piston type internal combustion engine with a variable compression ratio in that the piston hub may be adjusted because the connecting rod (9) is mounted on the crankshaft side on an eccentric crank pin (1) with the eccentric crank pin (1) being able to be adjusted around its axis of rotation (2) by control means (3-6) while the engine is running, characterized in that the eccentric crank pin (1) is formed by at least two one-piece shells (26,27) which are arranged around the crankarm-shaft (15) of the crankshaft (14) so as to enclose it, and in that these shells (26,27) each have a toothed gear segment (28,29), said segments (28,29) also enclosing the crankarm shaft (15) of the crankshaft (14), and in that the toothed gear (3) formed by these segments (28,29) acts as an external gear (3) inside a larger diameter internal gear (4) inside which it rolls, said internal gear being concentrically mounted around the axis (8) of the crankshaft (14) and its rotating position may be adjusted with the engine running such that the external gear (3) turns exactly once upon itself every time it rolls round the internal gear (4) when the latter is positioned in a certain stationary adjusted position such that the motion of the effective centre of the bottom connecting rod bearing always traces an ellipse in line with the adjusted position, with this ellipse being capable of steplessly adopting all the intermediate adjusted positions between a vertical and a horizontal ellipse.
  2. The internal combustion engine of claim 1, characterized in that the internal gear (4) is concentrically connected on its flat outside with a spur gear (5) which can be adjusted by another toothed control gear (6) which meshes with this spur gear (5).
  3. The internal combustion engine of claim 1, characterized in that the internal gear (4) has toothing around its outer periphery and can be adjusted by means of a toothed control gear (6) which meshes directly with this toothing.
  4. The internal combustion engine of one of claims 2 or 3, characterized in that the toothed control gear (6) can be turned by means of a separate servomotor and hence the compression ratio of the engine can be varied by changing the crank length, with the servomotor being controlled by a microprocessor in which at least one measured engine operating parameter can be electronically processed.
  5. The internal combustion engine of claim 4, characterized in that the servomotor is an electric stepping motor which drives the toothed control gear (6) via a pinion.
  6. The internal combustion engine of claim 4, characterized in that the servomotor is an electric stepping motor which drives the toothed control gear (6) or its drive axis (24) via a toothed belt.
  7. The internal combustion engine of one of claims 4 to 6, characterized in that there is a microprocessor which is fed with one or several signals indicating the engine load measured in the gearbox, the measured engine speed, the quantity of air sucked or taken in and the signal from a knocking sensor, with which these values can be electronically processed into a control signal for the servomotor.
  8. The internal combustion engine of one of claims 2 to 7, characterized in that in the case of an engine with several cylinders, the toothed control gears (6) are rigidly disposed on a common side-shaft (24) in relation to the individual cylinders.
  9. The internal combustion engine of one of the preceding claims 2 to 8, characterized in that the toothed control gear (6) has a radius which is more than double that of the spur gear (5).
  10. The internal combustion engine of one of the preceding claims, characterized in that the internal gear (4) is designed to run with the crankshaft, but its rotating position relative to the crankshaft can be adjusted such that the effective crank arm length is always the same throughout the full crank revolution.
EP96902207A 1995-02-28 1996-02-28 Reciprocating piston type internal combustion engine with variable compression ratio Expired - Lifetime EP0812383B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH566/95 1995-02-28
CH56695 1995-02-28
PCT/CH1996/000062 WO1996027079A1 (en) 1995-02-28 1996-02-28 Reciprocating piston type internal combustion engine with variable compression ratio

Publications (2)

Publication Number Publication Date
EP0812383A1 EP0812383A1 (en) 1997-12-17
EP0812383B1 true EP0812383B1 (en) 1998-12-16

Family

ID=4189978

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96902207A Expired - Lifetime EP0812383B1 (en) 1995-02-28 1996-02-28 Reciprocating piston type internal combustion engine with variable compression ratio

Country Status (17)

Country Link
US (1) US5908014A (en)
EP (1) EP0812383B1 (en)
JP (1) JPH11506511A (en)
KR (1) KR100403388B1 (en)
CN (1) CN1072767C (en)
AT (1) ATE174661T1 (en)
AU (1) AU699252B2 (en)
BR (1) BR9607054A (en)
CA (1) CA2212935C (en)
CZ (1) CZ289670B6 (en)
DE (1) DE59600999D1 (en)
DK (1) DK0812383T3 (en)
ES (1) ES2128156T3 (en)
GR (1) GR3029473T3 (en)
PL (1) PL184758B1 (en)
RU (1) RU2159858C2 (en)
WO (1) WO1996027079A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19926133C2 (en) * 1999-06-09 2003-04-10 Fev Motorentech Gmbh Piston engine with variable combustion chamber

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1009211C2 (en) 1998-05-19 1999-11-22 L H De Gooijer Holding B V Crank-connecting rod mechanism.
JP2000130101A (en) * 1998-10-29 2000-05-09 Nikko:Kk Four-stroke internal combustion engine
US6289857B1 (en) * 2000-02-23 2001-09-18 Ford Global Technologies, Inc. Variable capacity reciprocating engine
US6564762B2 (en) * 2000-04-28 2003-05-20 Glendal R. Dow Gear train crankshaft
US6450136B1 (en) * 2001-05-14 2002-09-17 General Motors Corporation Variable compression ratio control system for an internal combustion engine
DE10220601C1 (en) * 2002-05-08 2003-12-18 Siemens Ag Engine ignition coil charge time adaption method uses correction function dependent on actual compression ratio for correction of normal charge time for normal compression ratio
DE10220596B3 (en) * 2002-05-08 2004-01-22 Siemens Ag Method for regulating the compression ratio of an internal combustion engine
DE10220598B3 (en) * 2002-05-08 2004-03-04 Siemens Ag IC engine ignition angle adaption method for matching variable compression ratio e.g. for automobile engine, with transition ignition angle used during compression ratio variation phase
DE10220597B3 (en) * 2002-05-08 2004-02-26 Siemens Ag IC engine knock regulation adaption method e.g. for automobile, has knock detection parameters and knock correction parameters corrected via correction functions dependent on actual compression ratio
CZ297764B6 (en) * 2002-06-12 2007-03-21 Device for controlled regulation of compression ratio
US6752105B2 (en) 2002-08-09 2004-06-22 The United States Of America As Represented By The Administrator Of The United States Environmental Protection Agency Piston-in-piston variable compression ratio engine
JP2004183644A (en) * 2002-11-20 2004-07-02 Honda Motor Co Ltd Stroke variable engine
US7007640B2 (en) * 2003-07-25 2006-03-07 Masami Sakita Engine with a variable compression ratio
US6948460B1 (en) 2003-08-01 2005-09-27 Dow Glendal R Crankshaft with variable stroke
DE50309264D1 (en) 2003-10-24 2008-04-10 Ford Global Tech Llc Device for changing the compression ratio of a reciprocating engine
WO2005059330A2 (en) * 2003-12-11 2005-06-30 Dow Glendal R Variable crankshaft
US7174865B2 (en) * 2004-07-19 2007-02-13 Masami Sakita Engine with a variable compression ratio
CN100340750C (en) * 2005-12-02 2007-10-03 李乐 Non-link rod reciprocating piston engine capable of changing output speed
US7625188B2 (en) * 2006-05-17 2009-12-01 Dow Glendal R Heart booster pump
EP1959112A1 (en) * 2007-02-16 2008-08-20 Gomecsys B.V. A reciprocating piston mechanism, a method of assembling this, and an internal combustion engine
US7631620B2 (en) * 2007-03-17 2009-12-15 Victor Chepettchouk Variable compression ratio mechanism for an internal combustion engine
EP2006509A2 (en) * 2007-06-22 2008-12-24 Michael Von Mayenburg Internal combustion engine with variable compression ratio
US7946260B2 (en) * 2007-06-22 2011-05-24 Von Mayenburg Michael Internal combustion engine with variable compression ratio
EP2025893A1 (en) * 2007-08-09 2009-02-18 Gomecsys B.V. A reciprocating piston mechanism
DE102008046821B8 (en) * 2008-09-11 2016-10-06 Audi Ag Crankshaft for a variable compression internal combustion engine and variable compression internal combustion engine
KR100980863B1 (en) 2008-12-02 2010-09-10 현대자동차주식회사 Variable compression ratio device for automobile engine
US8281764B2 (en) * 2009-06-25 2012-10-09 Onur Gurler Half cycle eccentric crank-shafted engine
KR101028181B1 (en) 2009-06-25 2011-04-08 현대자동차주식회사 Variable compression ratio engine
KR101090801B1 (en) * 2009-06-30 2011-12-08 현대자동차주식회사 Variable compression ratio apparatus
KR101510321B1 (en) * 2009-06-30 2015-04-08 현대자동차 주식회사 Variable compression ratio apparatus
FI121283B (en) * 2009-08-17 2010-09-15 Aulis Pohjalainen Controller for cylinder pressure of an engine
US8267055B2 (en) * 2009-09-03 2012-09-18 Manousos Pattakos Variable compression ratio engine
DE102009048716A1 (en) * 2009-10-08 2011-04-14 Daimler Ag Internal combustion engine
US20110155106A1 (en) * 2009-12-29 2011-06-30 Von Mayenburg Michael Internal combustion engine with variable compression ratio
KR101180953B1 (en) 2010-11-16 2012-09-07 현대자동차주식회사 Variable compression ratio apparatus
KR101180955B1 (en) * 2010-11-18 2012-09-07 현대자동차주식회사 Variable compression ratio apparatus
US8967097B2 (en) 2011-05-17 2015-03-03 Lugo Developments, Inc. Variable stroke mechanism for internal combustion engine
CN102230423B (en) * 2011-05-23 2013-07-17 舒锦海 Gear transmission internal combustion engine
EP2620614B1 (en) * 2012-01-24 2016-11-09 Gomecsys B.V. A reciprocating piston mechanism
US8851030B2 (en) 2012-03-23 2014-10-07 Michael von Mayenburg Combustion engine with stepwise variable compression ratio (SVCR)
WO2014037758A1 (en) * 2012-09-07 2014-03-13 Lugo Development Inc. Variable stroke mechanism for internal combustion engine
WO2014056291A1 (en) * 2012-10-08 2014-04-17 Shen Dazi Variable compression ratio device with eccentric self-locking structure suitable for internal combustion engine
US9650952B2 (en) * 2013-02-20 2017-05-16 Nissan Motor Co., Ltd. Variable compression ratio internal combustion engine
US9638117B2 (en) * 2013-03-15 2017-05-02 Honda Motor Co., Ltd. Method for controlling an amount of fuel and vehicle including same
EP2873834A1 (en) 2013-11-13 2015-05-20 Gomecsys B.V. A method of assembling and an assembly of a crankshaft and a crank member
US9422873B2 (en) * 2013-12-12 2016-08-23 Ford Global Technologies, Llc Methods and systems for operating an engine
EP2902603A1 (en) * 2014-01-31 2015-08-05 Gomecsys B.V. An internal combustion engine including variable compression ratio
EP2907986B1 (en) 2014-02-18 2017-05-03 Gomecsys B.V. A four-stroke internal combustion engine with variable compression ratio
CN103925079B (en) * 2014-03-25 2016-06-29 天津大学 Do not destroy crankshaft structure and be suitable for the engine with adjustable compression ratio of any crank degree of overlapping
EP2930329B1 (en) * 2014-04-08 2016-12-28 Gomecsys B.V. An internal combustion engine including variable compression ratio
CN104454159B (en) * 2014-11-12 2017-02-01 董伟冈 Internal combustion engine compression ratio adjusting device and internal combustion engine
FR3035681B1 (en) * 2015-04-28 2017-04-28 Peugeot Citroen Automobiles Sa ECCENTRIC PIECE FOR A COMPRESSION RATE SYSTEM OF A THERMAL ENGINE
RU2595993C1 (en) * 2015-07-22 2016-08-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Device for varying crank radius of crank mechanism
FR3042816B1 (en) 2015-10-22 2017-12-08 Peugeot Citroen Automobiles Sa THERMAL MOTOR PROVIDED WITH A SYSTEM OF VARIATION OF THE COMPRESSION RATE
RU2607436C1 (en) * 2015-11-03 2017-01-10 Александр Алексеевич Семенов Internal combustion engine with variable compression ratio by eccentric mechanism
DE102015223878A1 (en) 2015-12-01 2017-06-01 Schaeffler Technologies AG & Co. KG Arrangement for adjusting a variable compression of the combustion gas in an internal combustion engine
CN106943272A (en) * 2016-01-06 2017-07-14 王继文 It is a kind of applied to being passive exercise device with of respectively organizing of human body
US9896089B2 (en) * 2016-04-07 2018-02-20 Ford Global Technologies, Llc Methods and systems for adjusting engine operation based on weather data
FR3050234B1 (en) * 2016-04-19 2021-01-15 Peugeot Citroen Automobiles Sa KIT FOR THERMAL ENGINE COMPRESSION RATE VARIATION SYSTEM
US10113623B2 (en) * 2016-05-26 2018-10-30 Borislav Zivkovich Orbitual crankshaft with extended constant volume combustion cycle
AT519011B1 (en) * 2016-05-31 2018-03-15 Avl List Gmbh reciprocating engine
CN106438062A (en) * 2016-09-09 2017-02-22 王祖军 A stepless variable compression ratio internal combustion engine
US10119463B2 (en) * 2016-12-09 2018-11-06 Mark Albert Sokalski Infinitely variable compression ratio and single stroke length mechanism or dual stroke length mechanism of reciprocating 2-cycle or 4-cycle internal combustion engine
CN106996332A (en) * 2017-04-10 2017-08-01 陈光明 Eccentric gear gear ring type variable compression ratio engine
CN106930831A (en) * 2017-04-10 2017-07-07 陈光明 Automatically controlled eccentric gear type variable compression ratio engine
DE102017207644A1 (en) 2017-05-05 2018-11-08 Ford Global Technologies, Llc Method for changing a cylinder-related compression ratio e of a spark-ignited internal combustion engine and internal combustion engine for carrying out such a method
CN107201945A (en) * 2017-07-21 2017-09-26 泸州职业技术学院 A kind of variable compression ratio engine
EP3486453B1 (en) * 2017-11-21 2020-08-05 Mark Albert Sokalski Internal combustion engine with infinitely variable compression ratio mechanism
CN108590849B (en) * 2018-01-09 2023-07-14 西华大学 A crank-link mechanism capable of realizing Miller cycle and its control method
KR20200058141A (en) 2018-11-19 2020-05-27 현대자동차주식회사 Piston structure having variable compression ratio
KR20200065795A (en) 2018-11-30 2020-06-09 현대자동차주식회사 cooling structure for piston
WO2020117791A1 (en) * 2018-12-03 2020-06-11 Centerline Manufacturing Llc Duplex drive head
DE102019123601A1 (en) * 2019-09-04 2021-03-04 Bayerische Motoren Werke Aktiengesellschaft Reciprocating internal combustion engine with a variable compression ratio
DE102019126014A1 (en) * 2019-09-26 2021-04-01 Bayerische Motoren Werke Aktiengesellschaft Compression adjustment device with mounted ring gear
CN113494355A (en) * 2020-04-08 2021-10-12 广州汽车集团股份有限公司 Variable compression ratio engine crankshaft device
GR1010047B (en) * 2020-06-16 2021-08-13 Περικλης Γερασιμος Ρασσιας Variable internal combustion engine crank
CN111957868A (en) * 2020-07-09 2020-11-20 蒙特费罗(湖州)电梯部件有限公司 A high strength steel sheet hot stamping forming apparatus for producing for elevator accessories
GEP20227367B (en) 2020-08-06 2022-03-25 Ramzan Goytemirov Engine having compression ratio control mechanism
AT524321B1 (en) * 2021-03-12 2022-05-15 Roland Kirchberger Dipl Ing Dr Techn internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE379257C (en) * 1922-01-17 1923-08-18 Hans Rohrbach Internal combustion engine with variable piston stroke
US1553009A (en) * 1923-07-23 1925-09-08 Stuke Ernest Engine
FR861611A (en) * 1939-07-29 1941-02-13 Internal combustion engine with variable displacement and automatic compression ratio
FR1014314A (en) * 1946-04-10 1952-08-13 Variable displacement internal combustion engine
DE1961142A1 (en) * 1969-10-04 1971-04-15 Filippo Bonetto Crank gear
US4044629A (en) * 1975-12-29 1977-08-30 John Michael Clarke Reciprocating piston machine
PL144411B1 (en) * 1984-11-23 1988-05-31 Politechnika Warszawska Crank mechanism with variable crank radius for a piston-type internal combustion engine
US5158047A (en) * 1990-05-14 1992-10-27 Schaal Jack E Delayed drop power stroke internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19926133C2 (en) * 1999-06-09 2003-04-10 Fev Motorentech Gmbh Piston engine with variable combustion chamber

Also Published As

Publication number Publication date
MX9706427A (en) 1998-07-31
ES2128156T3 (en) 1999-05-01
BR9607054A (en) 1997-12-30
CA2212935C (en) 2007-01-23
AU4661996A (en) 1996-09-18
PL321955A1 (en) 1998-01-05
EP0812383A1 (en) 1997-12-17
RU2159858C2 (en) 2000-11-27
CA2212935A1 (en) 1996-09-06
WO1996027079A1 (en) 1996-09-06
KR19980702582A (en) 1998-07-15
US5908014A (en) 1999-06-01
CZ289670B6 (en) 2002-03-13
CZ269397A3 (en) 1998-01-14
GR3029473T3 (en) 1999-05-28
AU699252B2 (en) 1998-11-26
KR100403388B1 (en) 2003-12-18
ATE174661T1 (en) 1999-01-15
PL184758B1 (en) 2002-12-31
DK0812383T3 (en) 1999-08-23
CN1072767C (en) 2001-10-10
CN1176678A (en) 1998-03-18
JPH11506511A (en) 1999-06-08
DE59600999D1 (en) 1999-01-28

Similar Documents

Publication Publication Date Title
EP0812383B1 (en) Reciprocating piston type internal combustion engine with variable compression ratio
DE102008059870B4 (en) Variable compression ratio device
DE3014005C2 (en)
DE69900821T2 (en) MODIFIED CRANK MECHANISM
DE3030615C2 (en) Internal combustion engine
DE2324088B2 (en) Piston internal combustion engine with a
DE102009006633A1 (en) Internal combustion engine with extended expansion stroke and adjustable compression ratio
DE4019384A1 (en) INTERNAL COMBUSTION ENGINE
EP2772624A1 (en) Internal combustion engine operating according to the real four-stroke Atkinson cycle and method for load control
DE60200787T2 (en) INTERNAL COMBUSTION ENGINE WITH ROTATABLE PLEUELBOLZ
DE2705339A1 (en) MIXED COMPRESSING, EXTERNAL IGNITION COMBUSTION MACHINE WITH COMBINED THROTTLE AND COMPRESSION CONTROL
DE102020100311A1 (en) ENGINE WITH VARIABLE COMPRESSION RATIO
EP3362645B1 (en) Internal combustion engine with double crank drive and variable compression ratio
DE19814870A1 (en) Stroke piston internal combustion engine
DE3420529A1 (en) Axial piston engine with variable stroke
DE102017207644A1 (en) Method for changing a cylinder-related compression ratio e of a spark-ignited internal combustion engine and internal combustion engine for carrying out such a method
DE2514727A1 (en) Reciprocating IC vehicle engine - has adjustable variable profile cam for valves to vary compression ratio
DE3019192A1 (en) ASYMETRIC COUNTERPISTON ENGINE
DE102006000526B4 (en) Apparatus and method for detecting an air-fuel ratio of an internal combustion engine
DE3233314A1 (en) Internal combustion engine
DE3905574A1 (en) Engine with a cylinder and two pistons displaceable therein
DE102015221908A1 (en) Device for changing the compression ratio of a reciprocating internal combustion engine
DE10019959A1 (en) Control method for IC engine uses variation in engine compression and alteration of crankshaft synchronization to change their relative positions
DE4413443C2 (en) Internal combustion engine
DD201927A5 (en) TWO STROKE COMBUSTION ENGINE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980216

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 174661

Country of ref document: AT

Date of ref document: 19990115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59600999

Country of ref document: DE

Date of ref document: 19990128

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FELBER & PARTNER AG PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990215

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2128156

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19990305

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20010222

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20010228

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020901

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20120222

Year of fee payment: 17

Ref country code: FR

Payment date: 20120316

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20120216

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120223

Year of fee payment: 17

Ref country code: GB

Payment date: 20120229

Year of fee payment: 17

Ref country code: IT

Payment date: 20120222

Year of fee payment: 17

Ref country code: DK

Payment date: 20120223

Year of fee payment: 17

Ref country code: GR

Payment date: 20120223

Year of fee payment: 17

Ref country code: BE

Payment date: 20120329

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120229

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120224

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120328

Year of fee payment: 17

BERE Be: lapsed

Owner name: *TK DESIGN A.G.

Effective date: 20130228

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20130828

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130901

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 174661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130228

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 990400570

Country of ref document: GR

Effective date: 20130904

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130228

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130301

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130901

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130828

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130904

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150226

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150429

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59600999

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL