EP0787833A1 - Conductor arrangement for electrolytic cells - Google Patents
Conductor arrangement for electrolytic cells Download PDFInfo
- Publication number
- EP0787833A1 EP0787833A1 EP96810051A EP96810051A EP0787833A1 EP 0787833 A1 EP0787833 A1 EP 0787833A1 EP 96810051 A EP96810051 A EP 96810051A EP 96810051 A EP96810051 A EP 96810051A EP 0787833 A1 EP0787833 A1 EP 0787833A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cell
- busbar
- current
- partial
- busbars
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 title claims description 5
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 claims abstract description 4
- 239000000969 carrier Substances 0.000 claims 2
- 239000004411 aluminium Substances 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 47
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 6
- 229910001338 liquidmetal Inorganic materials 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 230000005291 magnetic effect Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/16—Electric current supply devices, e.g. bus bars
Definitions
- the invention relates to a rail arrangement for guiding the direct electrical current from the cathode bar ends of a longitudinal electrolysis cell, in particular for the production of aluminum, via conductor rails to the traverse ends of the subsequent cell.
- the electrolysis cell In normal operation, the electrolysis cell is usually operated periodically, even if there is no anode effect by breaking in the crust and adding alumina.
- the cathode bars are embedded in the carbon bottom of the electrolysis cell, the ends of which penetrate the electrolysis tank on both long sides. These iron bars collect the Electrolysis current, which flows via the busbars arranged outside the cell, the risers, the anode bars or traverses and the anode rods to the carbon anodes of the subsequent cell.
- the ohmic resistance from the cathode bars to the anodes of the subsequent cell causes energy losses in the order of up to 1 kWh / kg of aluminum produced. There have therefore been repeated attempts to optimize the arrangement of the busbars with respect to the ohmic resistance.
- the vertical components of magnetic induction formed must also be taken into account, which - together with the horizontal current density components - generate a force field in the liquid metal obtained through the reduction process.
- the current is conducted from cell to cell as follows:
- the direct electrical current emerges from cathode bars arranged in the carbon bottom of the cell.
- the ends of the cathode bars are connected to the busbars via flexible bands, which run parallel to the row of electrolytic cells. From these busbars running along the long sides of the cells, the current is led via other flexible belts and via risers to the two ends of the traverse of the subsequent cell.
- the current distribution between the nearer and the far end of the traverse based on the general current direction of the cell row, varies from 100/0% to 50/50%.
- the vertical anode rods which carry the carbon anodes and feed with electrical current, are attached to the crossbar by means of locks.
- the inventor has set himself the task of providing a rail arrangement of the type mentioned at the outset with which the greatest possible compensation of the electromagnetic force fields generated by the various current flows can be achieved.
- a part of the cathode bar ends on each long side of the cell is combined to form a partial current bar, the partial current bars being brought together under the subsequent cell to form a common current bar and the common current bar under the cell in the longitudinal direction thereof to the downstream end of the traverse is led.
- the rail arrangement according to the invention for longitudinal electrolysis cells is suitable for arrangements with currents up to 170 KA.
- the partial current rails are arranged under each cell in the longitudinal center thereof and perpendicular to the longitudinal axis thereof, and the busbar runs in the longitudinal axis of the cell.
- the partial busbars expediently run under each cell between support supports of the cathode trough, the busbar crossing the support supports.
- the arrangement of partial busbars and busbars is preferably arranged approximately halfway up the height of the support beams.
- both the stationary state of the cell is improved by reducing the level differences in the liquid metal surface and the stability of the cell in the non-stationary state is reduced by the interference influences during cell operation.
- an electrolysis cell 10 has a steel trough 12 which is lined with thermal insulation 14 and receives a carbon base 16.
- Cathode bars 18 are embedded in the carbon base 16, the ends of which extend through the steel trough 12 on both longitudinal sides.
- the cathode bars 18 are connected to busbars 22 via flexible current strips 20.
- the steel trough 12 is arranged at a distance h from the floor 26 and rests on steel supports 24.
- FIG. 2 has the arrangement according to the invention for a series of electrolytic cells 10 with a nominal current strength of 140 KA.
- the general direction of the direct electrical current is designated I.
- the numbers in parentheses in FIG. 2 refer to the number of cathode bars, which are each brought together to form individual busbars.
- the current distribution within a cell depends on the current strength for the same cell type. Since there is no linear relationship between current intensity and current distribution, the current distribution, i.e. the exact number of cathode bar units combined to form individual busbars for a specific current density is calculated using magnetohydrodynamic models.
- the electrolytic cell 10 n is equipped with 20 cathode bar ends on each longitudinal side of the cell, of which 26 cathode bar units feed the upstream end of the anode bar or the traverse 28 of the subsequent cell 10 n + 1 and 14 units the downstream end.
- 3 cathode bar units from each long side of the cell 10 n are combined to form a partial busbar A, B and are guided along the longitudinal center m of the subsequent cell 10 n + 1 below the cell to its longitudinal axis x.
- the two partial busbars A, B unite to form a busbar C which leads along the longitudinal axis x to the downstream end of the traverse 28.
- the two partial busbars A, B run between the steel beams 24.
- the busbar C crosses the steel beams 24 in openings 25 provided for this purpose.
- the arrangement consisting of the partial busbars A, B and the busbar C, which has the shape of a "T", is located at a height a above the floor 26, which corresponds to approximately half the height h of the steel beams 24.
- the magnetic influence of the partial busbars A, B and the busbar C is increased by the proximity of the electrolysis metal and by the ferromagnetic environment present as a result of the steel trough 12 and the steel support 24.
- the small distance between the busbars A, B and the busbar C to the electrolysis metal allows the current to be reduced by dividing the busbars into a "T”. Magnetohydrodynamic calculations in the present case lead to the results summarized in the table below.
- the calculated values clearly show the superiority of the conductor rail arrangement according to the invention in the form of a “T” compared to a conventional rail arrangement.
- the most important information comes from the stability analysis.
- the maximum of the growth factor associated with the excitation states is for the magnetically optimized rail guide in the form of a "T” by a factor of 3 less than the rail guide without "T". This results in a significant improvement in the stability of the electrolytic cell.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Fuel Cell (AREA)
Abstract
Description
Die Erfindung betrifft eine Schienenanordnung zum Leiten des elektrischen Gleichstromes von den Kathodenbarrenenden einer längsgestellten Elektrolysezelle, insbesondere zur Herstellung von Aluminium, über Stromschienen zu den Traversenenden der Folgezelle.The invention relates to a rail arrangement for guiding the direct electrical current from the cathode bar ends of a longitudinal electrolysis cell, in particular for the production of aluminum, via conductor rails to the traverse ends of the subsequent cell.
Für die Gewinnung von Aluminium durch Elektrolyse von Aluminiumoxid wird dieses in einer Fluoridschmelze gelöst, die zum grössten Teil aus Kryolith besteht. Das kathodisch abgeschiedene Aluminium sammelt sich unter der Fluoridschmelze auf dem Kohleboden der Zelle, wobei die Oberfläche des flüssigen Aluminiums die Kathode bildet. In die Schmelze tauchen von oben an Anodenbalken bzw. Traversen befestigte Anoden ein, die bei konventionellen Verfahren aus amorphem Kohlenstoff bestehen. An den Kohleanoden entsteht durch die elektrolytische Zersetzung des Aluminiumoxids Sauerstoff, der sich mit dem Kohlenstoff der Anoden zu CO2 und CO verbindet. Die Elektrolyse findet im allgemeinen in einem Temperaturbereich von etwa 940 bis 970°C statt. Im Laufe der Elektrolyse verarmt der Elektrolyt an Aluminiumoxid. Bei einer unteren Konzentration von 1 bis 2 Gew.-% Aluminiumoxid im Elektrolyten kommt es zum Anodeneffekt, der sich in einer Erhöhung der Spannung von beispielsweise 4 bis 5 V auf 30 V und darüber auswirkt. Spätestens dann muss die aus erstarrtem Elektrolytmaterial gebildete Kruste eingeschlagen und die Aluminiumoxidkonzentration durch Zugabe von neuem Aluminiumoxid angehoben werden.For the production of aluminum by electrolysis of aluminum oxide, this is dissolved in a fluoride melt, which largely consists of cryolite. The cathodically deposited aluminum collects under the fluoride melt on the carbon bottom of the cell, the surface of the liquid aluminum forming the cathode. Anodes, which are attached to anode bars or traverses and which consist of amorphous carbon in conventional processes, are immersed in the melt. The electrolytic decomposition of the aluminum oxide produces oxygen at the carbon anodes, which combines with the carbon of the anodes to form CO 2 and CO. The electrolysis generally takes place in a temperature range from about 940 to 970 ° C. In the course of electrolysis, the electrolyte becomes poor in aluminum oxide. At a lower concentration of 1 to 2% by weight of aluminum oxide in the electrolyte, there is an anode effect, which results in an increase in the voltage from, for example, 4 to 5 V to 30 V and above. Then, at the latest, the crust formed from solidified electrolyte material must be hammered in and the aluminum oxide concentration increased by adding new aluminum oxide.
Im normalen Betrieb wird die Elektrolysezelle üblicherweise periodisch bedient, auch wenn kein Anodeneffekt auftritt, indem die Kruste eingeschlagen und Tonerde zugegeben wird.In normal operation, the electrolysis cell is usually operated periodically, even if there is no anode effect by breaking in the crust and adding alumina.
Im Kohleboden der Elektrolysezelle sind die Kathodenbarren eingebettet, wobei deren Enden die Elektrolysewanne auf beiden Längsseiten durchgreifen. Diese Eisenbarren sammeln den Elektrolysestrom, welcher über die ausserhalb der Zelle angeordneten Stromschienen, die Steigleitungen, die Anodenbalken bzw. Traversen und die Anodenstangen zu den Kohleanoden der Folgezelle fliesst. Durch den ohmschen Widerstand von den Kathodenbarren bis zu den Anoden der Folgezelle werden Energieverluste verursacht, die in der Grössenordnung von bis 1 kWh/kg produziertes Aluminium liegen. Es ist deshalb wiederholt versucht worden, die Anordnung der Stromschienen in bezug auf den ohmschen Widerstand zu optimieren. Dabei müssen jedoch auch die gebildeten Vertikalkomponenten der magnetischen Induktion berücksichtigt werden, welche --zusammen mit den horizontalen Stromdichtekomponenten -- im durch den Reduktionsprozess gewonnenen flüssigen Metall ein Kraftfeld erzeugen.The cathode bars are embedded in the carbon bottom of the electrolysis cell, the ends of which penetrate the electrolysis tank on both long sides. These iron bars collect the Electrolysis current, which flows via the busbars arranged outside the cell, the risers, the anode bars or traverses and the anode rods to the carbon anodes of the subsequent cell. The ohmic resistance from the cathode bars to the anodes of the subsequent cell causes energy losses in the order of up to 1 kWh / kg of aluminum produced. There have therefore been repeated attempts to optimize the arrangement of the busbars with respect to the ohmic resistance. However, the vertical components of magnetic induction formed must also be taken into account, which - together with the horizontal current density components - generate a force field in the liquid metal obtained through the reduction process.
In einer Aluminiumhütte mit längsgestellten Elektrolysezellen erfolgt die Stromführung von Zelle zu Zelle wie folgt: Der elektrische Gleichstrom tritt aus im Kohleboden der Zelle angeordneten Kathodenbarren aus. Die Enden der Kathodenbarren sind über flexible Bänder mit den Sammel- bzw. Stromschienen verbunden, welche parallel zu der Elektrolysezellenreihe verlaufen. Aus diesen entlang der Längsseiten der Zellen verlaufenden Stromschienen wird der Strom über andere flexible Bänder und über Steigleitungen zu den beiden Enden der Traverse der Folgezelle geführt. Je nach Ofentyp variiert die Stromverteilung zwischen dem näheren und dem entfernteren Ende der Traverse, bezogen auf die allgemeine Stromrichtung der Zellenreihe, von 100/0% bis 50/50%. Mittels Schlössern sind an der Traverse die vertikalen Anodenstangen befestigt, welche die Kohleanoden tragen und mit elektrischem Strom speisen.In an aluminum smelter with longitudinal electrolysis cells, the current is conducted from cell to cell as follows: The direct electrical current emerges from cathode bars arranged in the carbon bottom of the cell. The ends of the cathode bars are connected to the busbars via flexible bands, which run parallel to the row of electrolytic cells. From these busbars running along the long sides of the cells, the current is led via other flexible belts and via risers to the two ends of the traverse of the subsequent cell. Depending on the type of furnace, the current distribution between the nearer and the far end of the traverse, based on the general current direction of the cell row, varies from 100/0% to 50/50%. The vertical anode rods, which carry the carbon anodes and feed with electrical current, are attached to the crossbar by means of locks.
In magnetischer Hinsicht ist die gegenwärtig übliche Speisung mit elektrischem Gleichstrom nicht besonders günstig. Durch Ueberlagerung von drei Strömungskomponenten entstehen Bewegungen im flüssigen Metall:
- Die erste Strömungskomponente, welche im Prinzip eine Zirkulationsbewegung entlang der inneren Zellenwände ist, hat besonders schädliche Auswirkungen in bezug auf die Stabilität der Elektrolysezelle. Diese erste Komponente entsteht durch den Einfluss der benachbarten Elektrolysezellenreihe, welche den elektrischen Strom zum Gleichrichter zurückführt. Der Drehsinn der Rotation hängt davon ab, ob die benachbarten Zellenreihe links oder rechts, bezogen auf die allgemeine Richtung des Gleichstromes, von der Zelle liegt.
- Die zweite Strömungskomponente besteht darin, dass in jeder Zellenhälfte (in bezug auf die Längsrichtung) je eine Zirkularströmung entsteht, wobei die Strömungsrichtungen gegenläufig sind. Diese Rotationsart hängt von der Stromverteilung zwischen den Steigleitungen ab.
- Die dritte Strömungskomponente schliesslich besteht aus vier in den Zellenquadranten ausgebildeten Rotationen, wobei die diagonal gegenüberliegenden Rotationsrichtungen gleich sind. Diese Rotationen entstehen durch die ungleiche Stromverteilung in den Stromschienen und der Traverse von einem Zellenende zum anderen.
- The first flow component, which is in principle a circulation movement along the inner cell walls, has particularly harmful effects with regard to the stability of the electrolytic cell. This first component is created by the influence of the neighboring row of electrolytic cells, which returns the electrical current to the rectifier. The direction of rotation of the rotation depends on whether the neighboring row of cells is on the left or right of the cell in relation to the general direction of the direct current.
- The second flow component is that a circular flow occurs in each cell half (with respect to the longitudinal direction), the flow directions being opposite. This type of rotation depends on the current distribution between the risers.
- Finally, the third flow component consists of four rotations formed in the cell quadrants, the diagonally opposite directions of rotation being the same. These rotations result from the uneven distribution of current in the busbars and the crossbar from one end of the cell to the other.
Die Ueberlagerung dieser drei Strömungskomponenten bewirkt, dass die Geschwindigkeit der Metallströmungen innerhalb der Zelle stark unterschiedlich ist. Wo alle drei Strömungskomponenten in gleicher Richtung verlaufen, entsteht eine hohe Metallgeschwindigkeit.The superimposition of these three flow components causes the speed of the metal flows within the cell to differ greatly. Where all three flow components run in the same direction, there is a high metal speed.
Angesichts dieser Gegebenheiten hat sich der Erfinder die Aufgabe gestellt, eine Schienenanordnung der eingangs erwähnten Art bereitzustellen, mit der eine möglichst weitgehende Kompensation der durch die verschiedenen Stromflüsse erzeugten elektromagnetischen Kraftfelder erzielt werden kann.In view of these circumstances, the inventor has set himself the task of providing a rail arrangement of the type mentioned at the outset with which the greatest possible compensation of the electromagnetic force fields generated by the various current flows can be achieved.
Zur erfindungsgemässen Lösung der Aufgabe führt, dass ein Teil der Kathodenbarrenenden an jeder Längsseite der Zelle zu je einer Teilstromschiene zusammengefasst ist, wobei die Teilstromschienen unter der Folgezelle zu einer Sammelstromschiene zusammengeführt sind und die Sammelstromschiene unter der Zelle in deren Längsrichtung zum stromab liegenden Ende der Traverse geführt ist.To achieve the object according to the invention, a part of the cathode bar ends on each long side of the cell is combined to form a partial current bar, the partial current bars being brought together under the subsequent cell to form a common current bar and the common current bar under the cell in the longitudinal direction thereof to the downstream end of the traverse is led.
Die erfindungsgemässe Schienenanordnung für längsgestellte Elektrolysezellen eignet sich für Anordnungen mit Stromstärken bis zu 170 KA.The rail arrangement according to the invention for longitudinal electrolysis cells is suitable for arrangements with currents up to 170 KA.
Bei einer bevorzugten Schienenanordnung sind die Teilstromschienen unter jeder Zelle in deren Längsmitte sowie senkrecht zu deren Längsachse angeordnet und die Sammelschiene verläuft in der Längsachse der Zelle.In a preferred rail arrangement, the partial current rails are arranged under each cell in the longitudinal center thereof and perpendicular to the longitudinal axis thereof, and the busbar runs in the longitudinal axis of the cell.
Zweckmässigerweise verlaufen die Teilstromschienen unter jeder Zelle zwischen Stützträgern der Kathodenwanne, wobei die Sammelstromschiene die Stützträger quert. Die Anordnung aus Teilstromschienen und Sammelstromschienen ist bevorzugt etwa in halber Höhe zur Höhe der Stützträger angeordnet.The partial busbars expediently run under each cell between support supports of the cathode trough, the busbar crossing the support supports. The arrangement of partial busbars and busbars is preferably arranged approximately halfway up the height of the support beams.
Mit der erfindungsgemässen Stromschienenkonfiguration wird sowohl der stationäre Zustand der Zelle durch Verminderung der Niveauunterschiede der flüssigen Metallobefläche als auch die Stabilität der Zelle im nicht-stationären Zustand durch Abnahme der Störungseinflüsse während des Zellenbetriebs verbessert.With the busbar configuration according to the invention, both the stationary state of the cell is improved by reducing the level differences in the liquid metal surface and the stability of the cell in the non-stationary state is reduced by the interference influences during cell operation.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung; diese zeigt schematisch in
- - Fig. 1
- einen Querschnitt durch eine Elektrolysezelle;
- - Fig. 2
- das Prinzip der magnetischen Kompensation.
- - Fig. 1
- a cross section through an electrolytic cell;
- - Fig. 2
- the principle of magnetic compensation.
Eine Elektrolysezelle 10 weist gemäss Fig. 1 eine Stahlwanne 12 auf, die mit einer thermischen Isolation 14 ausgekleidet ist und einen Kohleboden 16 aufnimmt. Im Kohleboden 16 sind Kathodenbarren 18 eingebettet, deren Enden die Stahlwanne 12 auf beiden Längsseiten durchgreifen. Die Kathodenbarren 18 sind über flexible Strombänder 20 an Stromschienen 22 angeschlossen. Die Stahlwanne 12 ist in einem Abstand h zum Boden 26 angeordnet und ruht auf Stahlträgern 24.According to FIG. 1, an
Das Prinzip der magnetischen Kompensation durch die spezielle Stromschienenführung ergibt sich aus der Betrachtung der Fig. 2, welche die erfindungsgemässe Anordnung für eine Reihe von Elektrolysezellen 10 mit einer nominalen Stromstärke von 140 KA aufweist. Die allgemeine Richtung des elektrischen Gleichstromes ist mit I bezeichnet. Die in Fig. 2 in Klammern gesetzten Ziffern beziehen sich auf die Anzahl der Kathodenbarren, die jeweils zu einzelnen Sammelschienen zusammengeführt sind. Die Stromverteilung innerhalb einer Zelle richtet sich bei gleichem Zellentyp nach der Stromstärke. Da kein linearer Zusammenhang zwischen Stromstärke und Stromverteilung besteht, wird die Stromverteilung, d.h. die genaue Anzahl der jeweils zu einzelnen Sammelschienen zusammengeführten Kathodenbarreneinheiten, für eine bestimmte Stromdichte anhand von magnetohydrodynamischen Modellen berechnet.The principle of magnetic compensation by means of the special conductor rail guidance results from the consideration of FIG. 2, which has the arrangement according to the invention for a series of
Im vorliegenden Beispiel ist die Elektrolysezelle 10n mit je 20 Kathodenbarrenenden an jeder Zellenlängsseite ausgestattet, wovon 26 Kathodenbarreneinheiten das stromauf liegende Ende des Anodenbarrens bzw. der Traverse 28 der Folgezelle 10n+1 speisen und 14 Einheiten das stromab liegende Ende. Je 3 Kathodenbarreneinheiten von jeder Längsseite der Zelle 10n sind zu je einer Teilstromschiene A, B zusammengefasst und entlang der Längsmitte m der Folgezelle 10n+1 unter der Zelle zu deren Längsachse x geführt. In der Mitte der Zellenlängsachse x vereinigen sich die beiden Teilstromschienen A, B zu einer Sammelstromschiene C, die entlang der Längsachse x zum stromab liegenden Ende der Traverse 28 führt.In the present example, the
Die beiden Teilstromschienen A, B verlaufen zwischen den Stahlträgern 24. Die Sammelstromschiene C durchquert die Stahlträger 24 in hierfür vorgesehenen Durchbrüchen 25. Die aus den Teilstromschienen A, B sowie der Sammelstromschiene C bestehende Anordnung, die die Form eines "T" aufweist, befindet sich auf einer Höhe a über dem Boden 26, die etwa der halben Höhe h der Stahlträger 24 entspricht.The two partial busbars A, B run between the steel beams 24. The busbar C crosses the steel beams 24 in
Der magnetische Einfluss der Teilstromschienen A, B sowie der Sammelstromschiene C wird durch die Nähe des Elektrolysemetalls und durch die als Folge der Stahlwanne 12 und der Stahlträger 24 vorhandenen ferromagnetischen Umgebung verstärkt. Der geringe Abstand der Teilstromschienen A, B sowie der Sammelstromschiene C zum Elektrolysemetall lässt eine Herabsetzung des Stromes durch Aufteilung der Stromschienen zu einem "T" zu. Magnetohydrodynamische Berechnungen führen im vorliegenden Fall zu den in der nachfolgenden Tabelle zusammengestellten Ergebnissen.
Vmetal = mittlere quadratische Geschwindigkeit im flüssigen Metall
Δh = Niveauunterschied der flüssigen Metalloberfläche
Vmetal = mean quadratic velocity in the liquid metal
Δh = level difference of the liquid metal surface
Die errechneten Werte zeigen deutlich die Ueberlegenheit der erfindungsgemässen Stromschienenführung in Form eines "T" im Vergleich zu einer konventionellen Schienenführung. Die wichtigste Information ergibt sich aus der Stabilitätsanalyse. Das Maximum des mit den Anregungszuständen verknüpften Zuwachsfaktors ist für die in magnetischer Hinsicht optimierte Schienenführung in Form eines "T" gegenüber der Schienenführung ohne "T" um den Faktor 3 geringer. Daraus ergibt sich eine wesentliche Verbesserung der Stabilität der Elektrolysezelle.The calculated values clearly show the superiority of the conductor rail arrangement according to the invention in the form of a “T” compared to a conventional rail arrangement. The most important information comes from the stability analysis. The maximum of the growth factor associated with the excitation states is for the magnetically optimized rail guide in the form of a "T" by a factor of 3 less than the rail guide without "T". This results in a significant improvement in the stability of the electrolytic cell.
Claims (4)
dadurch gekennzeichnet,
dass ein Teil der Kathodenbarrenenden an jeder Längsseite der Zelle (10n) zu je einer Teilstromschiene (A,B) zusammengefasst ist, wobei die Teilstromschienen unter der Folgezelle (10n+1) zu einer Sammelstromschiene (C) zusammengeführt sind und die Sammelstromschiene unter der Zelle in deren Längsrichtung (x) zum stromab liegenden Ende der Traverse (28) geführt ist.Rail arrangement for guiding the direct electrical current from the cathode bar ends of a longitudinal electrolysis cell, in particular for the production of aluminum, via conductor rails to the traverse ends of the subsequent cell,
characterized,
that a part of the cathode bar ends on each long side of the cell (10 n ) is combined to form a partial busbar (A, B), the partial busbars under the subsequent cell (10n + 1 ) being brought together to form a busbar (C) and the busbar below the cell is guided in the longitudinal direction (x) to the downstream end of the crossmember (28).
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96810051A EP0787833B1 (en) | 1996-01-26 | 1996-01-26 | Conductor arrangement for electrolytic cells |
DE59607944T DE59607944D1 (en) | 1996-01-26 | 1996-01-26 | Rail arrangement for electrolysis cells |
US08/773,762 US5830335A (en) | 1996-01-26 | 1996-12-24 | Busbar arrangement for electrolytic cells |
AU76455/96A AU693391B2 (en) | 1996-01-26 | 1996-12-24 | Busbar arrangement for electrolytic cells |
RU96124395A RU2118410C1 (en) | 1996-01-26 | 1996-12-25 | Bus arrangement system of electrolyzer |
CA002194832A CA2194832A1 (en) | 1996-01-26 | 1997-01-10 | Busbar arrangement for electrolytic cells |
ZA97246A ZA97246B (en) | 1996-01-26 | 1997-01-13 | Busbar arrangement for electrolytic cells |
IS4414A IS4414A (en) | 1996-01-26 | 1997-01-16 | Arrangement of rails for electrolytic tanks |
SK91-97A SK282829B6 (en) | 1996-01-26 | 1997-01-21 | Busbar for direct current conduction |
NO19970328A NO317172B1 (en) | 1996-01-26 | 1997-01-24 | Rail device for electrolytic cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96810051A EP0787833B1 (en) | 1996-01-26 | 1996-01-26 | Conductor arrangement for electrolytic cells |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0787833A1 true EP0787833A1 (en) | 1997-08-06 |
EP0787833B1 EP0787833B1 (en) | 2001-10-17 |
Family
ID=8225538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96810051A Expired - Lifetime EP0787833B1 (en) | 1996-01-26 | 1996-01-26 | Conductor arrangement for electrolytic cells |
Country Status (10)
Country | Link |
---|---|
US (1) | US5830335A (en) |
EP (1) | EP0787833B1 (en) |
AU (1) | AU693391B2 (en) |
CA (1) | CA2194832A1 (en) |
DE (1) | DE59607944D1 (en) |
IS (1) | IS4414A (en) |
NO (1) | NO317172B1 (en) |
RU (1) | RU2118410C1 (en) |
SK (1) | SK282829B6 (en) |
ZA (1) | ZA97246B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU9652798A (en) * | 1997-10-13 | 1999-05-03 | Suparator B.V. | Device for continuously skimming off a floating toplayer |
FR2871479B1 (en) * | 2004-06-10 | 2006-08-11 | Solvay Sa Sa Belge | ELECTRICAL CIRCUIT OF A BIPOLAR ELECTROLYSET ELECTRODES AND BIPOLAR ELECTROLYSIS ELECTROLYSIS INSTALLATION |
CN100439566C (en) * | 2004-08-06 | 2008-12-03 | 贵阳铝镁设计研究院 | Five power-on bus distributing style with different current |
FR2882887B1 (en) * | 2005-03-01 | 2007-04-27 | Solvay | ELECTRIC CIRCUIT OF ELECTROLYSER AND METHOD FOR REDUCING ELECTROMAGNETIC FIELDS IN THE VICINITY OF THE ELECTROLYSER |
FR2882888B1 (en) * | 2005-03-01 | 2007-04-27 | Solvay | ELECTRIC CIRCUIT OF ELECTROLYSER AND METHOD FOR REDUCING ELECTROMAGNETIC FIELDS IN THE VICINITY OF THE ELECTROLYSER |
US20080143189A1 (en) * | 2006-02-27 | 2008-06-19 | Solvay (Societe Anonyme) | Electrical Circuit Of An Electrolyzer And Method For Reducing The Electromagnetic Fields In The Vicinity Of The Electrolyzer |
FI121472B (en) * | 2008-06-05 | 2010-11-30 | Outotec Oyj | Method for Arranging Electrodes in the Electrolysis Process, Electrolysis System and Method Use, and / or System Use |
RU2536577C2 (en) * | 2012-02-17 | 2014-12-27 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Basbar of powerful aluminium electrolyser with their lateral arrangement in housing |
US9896773B2 (en) | 2012-07-17 | 2018-02-20 | United Company RUSAL Engineering and Technology Centre LLC | Busbar arrangement for aluminum electrolysers with a longitudinal position |
RU2505626C1 (en) * | 2012-10-25 | 2014-01-27 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Bus arrangement of electrolysis cell for producing aluminium |
RU2566120C1 (en) * | 2014-07-24 | 2015-10-20 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Aluminium electrolyser busbar |
CA3031717C (en) | 2016-07-26 | 2021-04-20 | Cobex Gmbh | Cathode current collector/connector for a hall-heroult cell |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2001344A (en) * | 1977-07-14 | 1979-01-31 | Ardal Og Sunndal Verk | Conductor arrangement for compensating for horizontal magnetic fields in pots containing a molten electrolytic bath |
EP0084142A2 (en) * | 1982-01-18 | 1983-07-27 | ALUMINIA S.p.A. | Method and apparatus for electric current supply of pots for electrolytic production of metals, particularly aluminium |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4196067A (en) * | 1978-02-07 | 1980-04-01 | Swiss Aluminium Ltd. | Absorption of magnetic field lines in electrolytic reduction cells |
DE3009098C2 (en) * | 1979-12-21 | 1983-02-24 | Schweizerische Aluminium AG, 3965 Chippis | Method of conducting electricity between electrolytic furnaces |
-
1996
- 1996-01-26 EP EP96810051A patent/EP0787833B1/en not_active Expired - Lifetime
- 1996-01-26 DE DE59607944T patent/DE59607944D1/en not_active Expired - Lifetime
- 1996-12-24 AU AU76455/96A patent/AU693391B2/en not_active Ceased
- 1996-12-24 US US08/773,762 patent/US5830335A/en not_active Expired - Lifetime
- 1996-12-25 RU RU96124395A patent/RU2118410C1/en not_active IP Right Cessation
-
1997
- 1997-01-10 CA CA002194832A patent/CA2194832A1/en not_active Abandoned
- 1997-01-13 ZA ZA97246A patent/ZA97246B/en unknown
- 1997-01-16 IS IS4414A patent/IS4414A/en unknown
- 1997-01-21 SK SK91-97A patent/SK282829B6/en unknown
- 1997-01-24 NO NO19970328A patent/NO317172B1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2001344A (en) * | 1977-07-14 | 1979-01-31 | Ardal Og Sunndal Verk | Conductor arrangement for compensating for horizontal magnetic fields in pots containing a molten electrolytic bath |
EP0084142A2 (en) * | 1982-01-18 | 1983-07-27 | ALUMINIA S.p.A. | Method and apparatus for electric current supply of pots for electrolytic production of metals, particularly aluminium |
Also Published As
Publication number | Publication date |
---|---|
RU2118410C1 (en) | 1998-08-27 |
SK282829B6 (en) | 2002-12-03 |
NO970328L (en) | 1997-07-28 |
DE59607944D1 (en) | 2001-11-22 |
US5830335A (en) | 1998-11-03 |
EP0787833B1 (en) | 2001-10-17 |
AU693391B2 (en) | 1998-06-25 |
IS4414A (en) | 1997-02-20 |
ZA97246B (en) | 1997-07-23 |
NO317172B1 (en) | 2004-09-06 |
SK9197A3 (en) | 1998-04-08 |
AU7645596A (en) | 1997-07-31 |
CA2194832A1 (en) | 1997-07-27 |
NO970328D0 (en) | 1997-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0787833B1 (en) | Conductor arrangement for electrolytic cells | |
DE3828291A1 (en) | ELECTROLYTIC TREATMENT PROCEDURE | |
DE3436442C2 (en) | ||
DE1083554B (en) | Furnace for fused aluminum electrolysis | |
EP0097613B1 (en) | Bus bars arrangement for electrolytic cells | |
EP0072778B1 (en) | Bus bar arrangement for electrolysis cells | |
CH649317A5 (en) | ELECTROLYSIS CELL WITH COMPENSATED MAGNETIC FIELD COMPONENTS. | |
DE2131473A1 (en) | Conductor arrangement to compensate for harmful magnetic influences of rows of electrolytic cells on neighboring cell rows | |
DE68903033T2 (en) | ARRANGEMENT FOR COMPENSATING DAMAGING MAGNETIC FIELDS IN CROSS-POSITIONED ELECTROLYSIS CELLS. | |
DE2801650C2 (en) | Circuit arrangement for the electrical power supply of electrolytic cells in a longitudinal arrangement | |
CH641209A5 (en) | ELECTROLYSIS CELL. | |
EP0033714B1 (en) | Busbar system for electrolysis cells | |
EP0034117A2 (en) | Asymmetrical busbar system for electrolysis cells | |
EP0030212B1 (en) | Anode supporting system for a fusion electrolysis cell | |
EP0042815A1 (en) | Bus-bar arrangement for electrolytic cells | |
DE68905242T2 (en) | ARRANGEMENT OF THE RAIL FOR LARGE CROSS-SIDED ELECTROLYSIS CELLS. | |
DE102004008813B3 (en) | Process and installation for the electrochemical deposition of copper | |
DE2143603A1 (en) | Cell for the production of aluminum by electrolysis of aluminum oxide in a melt flow | |
DE3012697A1 (en) | METHOD OF STABILIZING AN ALUMINUM METAL LAYER IN AN ALUMINUM ELECTROLYTIC CELL | |
DE2143602A1 (en) | Cell for the production of aluminum by electrolysis of aluminum oxide in a melt flow | |
DE3618588A1 (en) | CONNECTION CIRCUIT FOR MELTFLOW ELECTROLYSIS CELLS | |
DE68904406T2 (en) | BUSBAR ARRANGEMENT FOR CROSS-LAYING ELECTROLYSIS CELLS. | |
CH636908A5 (en) | ARRANGEMENT FOR COMPENSATING MAGNETIC FIELDS IN MELTING MOLDS. | |
DE1758664C (en) | Process to compensate for the magnetic effects in electrolysis furnace with high current strength for the manufacture of aluminum and rail system to carry out the process | |
DE2459930C2 (en) | Electrolytic cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19980206 |
|
17Q | First examination report despatched |
Effective date: 20000623 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB NL |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG |
|
REF | Corresponds to: |
Ref document number: 59607944 Country of ref document: DE Date of ref document: 20011122 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20011228 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20021224 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030116 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040126 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100127 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100124 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20110801 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59607944 Country of ref document: DE Effective date: 20110802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110802 |