[go: up one dir, main page]

EP0784413B1 - N x N wavelength router and associated optical routing method and communication network - Google Patents

N x N wavelength router and associated optical routing method and communication network Download PDF

Info

Publication number
EP0784413B1
EP0784413B1 EP96402801A EP96402801A EP0784413B1 EP 0784413 B1 EP0784413 B1 EP 0784413B1 EP 96402801 A EP96402801 A EP 96402801A EP 96402801 A EP96402801 A EP 96402801A EP 0784413 B1 EP0784413 B1 EP 0784413B1
Authority
EP
European Patent Office
Prior art keywords
router
inputs
outputs
couplers
routers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96402801A
Other languages
German (de)
French (fr)
Other versions
EP0784413A1 (en
Inventor
Jean-Pierre Laude
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Highwave Optical Technologies SA
Original Assignee
Highwave Optical Technologies SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9600170A external-priority patent/FR2743430A1/en
Application filed by Highwave Optical Technologies SA filed Critical Highwave Optical Technologies SA
Publication of EP0784413A1 publication Critical patent/EP0784413A1/en
Application granted granted Critical
Publication of EP0784413B1 publication Critical patent/EP0784413B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching

Definitions

  • the present invention relates to a router N x N of length wave, as well as an associated routing method, more particularly for a communications network.
  • the telecommunications networks thus obtained make necessary the realization of commutations in great number by the through complex devices of the optical switch type.
  • router N x N wavelength or WDM Widelength Division Multiplexer
  • WDM Widelength Division Multiplexer
  • N diffracting input elements respectively at the inputs
  • N diffracting output elements arranged opposite the input diffracting elements and connected respectively at the outputs.
  • Each of the diffracting elements input is able to produce for a given signal transmitted to a wavelength, an image arranged in a focal plane corresponding to any of the diffracting output elements.
  • the selection of the output element is subject to the length signal wave.
  • each input fiber-output fiber pair is therefore associated transmission wavelength.
  • the global spectrum of transmission of the entire router N x N is thus presented under the shape of a comb with teeth located at these wavelengths.
  • 2N-1 lengths separate waveforms are used in the transmission spectrum.
  • the wavelength ranges between the teeth are lost areas. Since the tape spectral usability is limited, this results in a limitation of the number of transmission wavelengths. The possible number users is thus considerably restricted. For example, for a total spectral band limited to 30 nm, and the spacing between two transmission wavelengths being 1 nm, the number of transmission wavelengths cannot exceed 30, which restricts the number of users to fifteen.
  • the teeth of the transmission spectrum have a width at half height or FWHM (Full Width Half-Maximum) usually small compared to length spacing transmission wave, which makes it difficult to select a emission wavelength, because positioning in a spectrum tooth requires high precision.
  • FWHM Full Width Half-Maximum
  • the ratio R of the width at half height of the teeth on their spacing indeed increases with the ratio of the diameter of the heart fibers over their distance.
  • the ratio R reach a value of 0.4 when fibers with hearts of diameter 10 ⁇ m are spaced successively by 22 ⁇ m.
  • the present invention relates to an N x N wavelength router valid for a large number of users, implying low losses and simple to carry out and to implement.
  • the present invention is also directed towards a method of optical routing easy to implement and avoiding interference between signals.
  • the invention also aims at a communications network based on optical means, valid for a large number user-friendly, reliable, involving low energy losses, and simple to make and use.
  • the invention relates to a router N x N of length waveform with N inputs and N outputs, intended to transmit optical signals each having a wavelength, inputs to the exits.
  • the N x N router also includes means switch capable of routing each of the optical signals of one any of the N inputs to any of the N outputs in function of the signal wavelength.
  • the combs of the m routers n x n are different from each other, so as to make selection possible wavelength function for any of the N inputs of the router N x N, one of the m routers n x n and one of the n outputs of this router n x n.
  • the transmission spectrum of an optical router is called the spectral distribution of the light flux at its outputs, produced by a luminous flux of spectrum extended over the entire band of operation of the router applied to all of its inputs.
  • the router according to the invention implements different spectra according to the different routers n x n making it possible to select the wavelength, for a given input, of the router n x n concerned and within it, the intended exit route.
  • This device therefore no time multiplexing required and allows upstream use n x n routers, a simple assembly of channel switches such as that claims.
  • the router N X N can admit a spectrum of transmission in the form of a comb with very close teeth.
  • the number N input and output can be significantly increased, without risk of crosstalk and without any particular technical problem.
  • the ratio R for the overall transmission spectrum can be greatly increased.
  • the relative widening of the width of teeth therefore allows a selection of emission wavelengths less strict than in existing devices.
  • the transmission spectrum of each of the m routers n x n includes wavelength bands and each of these bands comprising teeth, the transmission spectra of m n x n routers have their bands interspersed.
  • This configuration makes it possible to obtain a spectrum of transmission with complementary bands from different n x n routers. This can be particularly advantageous when transmission wavelengths are grouped by packets in each of the n x n routers.
  • the teeth of the overall transmission spectrum alternatively come from a separate n x n router, which allows to obtain with respect to each of the routers n x n taken in isolation, a the closer the teeth, the greater the number of routers n x n is large.
  • the ratio R can thus be multiplied by m.
  • the comb of each of m routers n x n has teeth completely dissociated from the teeth other combs.
  • the teeth of the global transmission spectrum can thus be clearly distinguished from each other, while being close. of the overlapping teeth from different spectra of routers n x n are however also possible.
  • each couplers m x m is an achromatic coupler with distribution uniform energy between its outputs.
  • each of the couplers m x m is a wavelength distribution coupler capable of transmitting energy of an optical signal having a wavelength, only by the output of the coupler m x m connected to the router n x n whose comb understands this wavelength.
  • This second embodiment is advantageous in that it avoids any loss of energy due to the m x m couplers, by channeling the signals upstream from the routers n x n as a function of the length waveform of the optical signal.
  • the m x m couplers are composed of 2 x 2 couplers each having two inputs and two outputs.
  • the router N x N advantageously includes a first level of 2 x 2 couplers whose inputs are the inputs of the router N x N, and a last level of 2 x 2 couplers whose outputs are connected to the inputs n x n routers.
  • the inputs of the 2 x 2 couplers which do not belong to the first level, are connected to outputs of 2 x 2 couplers, and the outputs of the 2 x 2 couplers which do not belong not at the last level, are connected to 2 x 2 coupler inputs.
  • the N x N router has couplers with Y each having a main arm and two secondary arms, the inputs and outputs of the router N x N being connected to the arms main couplers in Y.
  • the router N x N allows to send optical signals simultaneously from its inputs to its outputs and from its outputs to its inputs, the optical signals flowing in opposite directions in the two secondary arms of each of Y couplers.
  • the invention also relates to an optical routing method implemented by means of an N ⁇ N router according to the invention.
  • this process we send optical signals each having a wavelength, from the inputs of the N x N router to its outputs.
  • the method according to the invention is characterized in that for ability to simultaneously send optical signals of at least two of the m inputs of at least one of the n couplers m x m, in direction of the same one of the N outputs of the router N x N without risk of interference, optical signals have different wavelengths each other.
  • the output of the router N x N being one of the n outputs of one of the m routers n x n and the comb of the router n x n having teeth, the wavelengths of the optical signals are distributed in one of the teeth.
  • the invention also relates to a communications network.
  • a communications network comprising at least one N x N router having any one of the preceding characteristics, or more of them in association, or implementing any of previous features of the routing process.
  • a basic 4 x 4 router used in an N x N router according to the invention, comprises a diffraction grating 50 disposed opposite of a plan 62 of fibers, as can be seen in FIG. 1A.
  • the 4 x 4 router also includes focusing optics such as than a lens 59.
  • Input fibers 51, 52, 53, 54 lead to the plan 62 of fibers being arranged in line, as well as output fibers 55, 56, 57, 58, the plane 62 of fibers being shown from the front in Figure 1B.
  • Input fibers 51-54 are arranged parallel to the output fibers 55-58 and facing each other in the plan 62.
  • the network 50 is capable of producing any input fibers 51-54 an image arranged in a focal plane which matches any of the output fibers 55-58 function of The wavelength.
  • An incident ray 60 containing information transmitted by one of the input fibers from a user transmitter is thus transformed into a returned ray 61 by means of the lens 59 and the network 50 which is directed towards a receiving user through one of the output fibers.
  • any of the four sending users can communicate with any of the four receiving users.
  • the relationships giving the wavelengths which make it possible to pass from any of the input fibers to any of the output fibers can be shown diagrammatically in a 4 ⁇ 4 matrix of the type shown below.
  • the rows correspond to the input fibers 51-54 and the columns to the output fibers 55-58.
  • All communications through the 4 x 4 router require 7 wavelengths ⁇ i , i varying from 1 to 7, classified in ascending order.
  • nxn router similar to that described, with any n, can be carried out as for the 4 x 4 router.
  • the fibers are identical and periodically spaced, 2n-1 transmission wavelengths are required.
  • the diffraction grating 50 can be replaced or supplemented by a set of multi-dielectric filters, or by a set of phased array grating.
  • a rung of Michelson, very effective for wavelengths of orders can also be used.
  • one or more strips of lasers can be used as a means of referral input, and one or more photodetector arrays like output reception means.
  • a single strip of input and output fibers can also be employed.
  • this includes a mirror and a diffraction grating, the mirror, the network and the fibers being fixed in a block of solid silica.
  • a input fiber strip and output fiber strip parallels are placed in front of a photoetched slot on a plane reflection grating, perpendicular to grooves.
  • a mirror concave is able to transform a divergent beam coming from any of the input fibers in a parallel bundle.
  • the network is able to transform this beam by dispersing it angularly towards the concave mirror.
  • This beam then has an image formed at one end of one of the output fibers in a position which depends on the wavelength.
  • This configuration is aplanatic, afocal and has an amplification of 1.
  • the network is advantageously in a Littrow configuration.
  • the component uses a strip of fibers entering the home of the dispersive network device, so that no light can be coupled directly to the output fibers at a wavelength corresponding to a Littrow condition.
  • the output fiber strip is arranged for this above that of the input fibers.
  • An 8 x 8 router referenced 1 according to the invention, shown in Figure 2, has eight inputs E1-E8 and eight outputs S1-S8.
  • This 8 x 8 router is intended to transmit optical signals from any input E i to any output S i , in direction 5, the path of the optical signal being determined by its wavelength.
  • Router 1 has two 4 x 4 routers referenced 30 and 40 respectively, which are 4 x 4 routers such as the one previously described ( Figures 1A and 1B). Optionally, it can also be traditional 4 x 4 routers.
  • the routers 30 and 40 each include four inputs 31-34 and 41-44 respectively, and four outputs 35-38 and 45-48. The outputs 35-38, 45-48 of routers 30 and 40 lead directly to outputs S1-S8 of router 1.
  • Router 1 also has four couplers achromatic in X referenced 10, 15, 20, 25 each having respectively two inputs 11, 12; 16, 17; 21, 22 and 26, 27, and two outputs 13, 14; 18, 19; 23, 24 and 28, 29.
  • Entries 11, 12; 16, 17; 21, 22; 26, 27 of couplers 10, 15, 20, 25 in X correspond respectively to the inputs E1-E8 of router 1.
  • Each of the couplers 10, 15, 20, 25 also has one of its outputs, respectively 13, 18, 23, 28, connected to one of the inputs, respectively 31, 32, 33, 34, of a first router 30, and its other output, respectively 14, 19, 24, 29, connected to one of the inputs, 41, 42, 43, 44, respectively, of the second router 40.
  • the respective transmission spectra 67 and 68 of the routers 30 and 40 are in the form of combs with teeth, respectively 71-73 and 74-76.
  • the spectra 67 and 68 being plotted along axes 65 and 66, respectively of wavelengths ⁇ and of transmission T, have their teeth 71-76 centered on the transmission wavelengths of routers 30 and 40.
  • the teeth 71, 72 and 73 of the spectrum 67 are, for example, respectively centered on the wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 , the wavelengths ⁇ i being classified in ascending order .
  • the teeth 74, 75 and 76 of the spectrum 68 are centered on the wavelengths ⁇ ' 1 , ⁇ ' 2 , ⁇ ' 3 .
  • the teeth 71-76 have heights approximately identical and equal to H.
  • Special features of the spectra 67 and 68 are constituted by the widths L of the teeth 71-76 at mid-height H / 2 and by the spacings D between the successive transmission wavelengths ⁇ i .
  • the widths L at mid-height are similar for all the teeth, as well as the spacings D.
  • the routers 30 and 40 are chosen so that their transmission wavelengths ⁇ i and ⁇ ' i are interposed. So we have: ⁇ ' 1 ⁇ 1 ⁇ ' 2 ⁇ 2 ⁇ ' 3 ⁇ 3
  • a signal at a given wavelength arrives at any one of the inputs E i of the router 1, then at one of the couplers 10, 15, 20, 25.
  • the signal is then transmitted to the two outputs of this coupler with in each an energy divided by two, the couplers being achromatic.
  • the optical signal thus reaches an input from each of the routers 30, 40. Since the signal wavelength corresponds to a transmission wavelength of only one of the spectra 67, 68 of the routers 30, 40 , the signal is only transmitted in this router, to the appropriate output selected according to the wavelength.
  • the targeted output S j is thus reached by the signal.
  • Router 1 therefore has a global transmission spectrum which jointly admits teeth 71-76 of the two spectra 67 and 68 routers 30 and 40.
  • the spacing D between transmission wavelengths is thus significantly reduced, this reduction being able to go up to a factor 2.
  • the number of transmission wavelengths can therefore be multiplied by 2, and therefore also the number of users.
  • the R report can itself be multiplied by 2, making selection easier of a transmission wavelength.
  • a second example of embodiment of an N x N router according to the invention is provided by a 12 x 12 wavelength router referenced 2, shown in Figure 4.
  • This router has twelve inputs P1-P12 and twelve outputs P13-P24. It also includes four 3 x 3 wavelength routers referenced 130, 140, 150, 160, each having three entries 131-133, 141-143 respectively, 151-153, 161-163 and three outputs 134-136, 144-146, 154-156 and 164-166.
  • the outputs of routers 130, 140, 150, 160 correspond respectively at outputs P13-P24 of router 2.
  • Router 2 also has three couplers 4 x 4 achromatic, referenced 80, 90 and 100. These couplers each have four entries, respectively 81-84, 91-94 and 101-104 and four outputs, respectively 85-88, 95-98 and 105-108.
  • the inputs of couplers 80, 95, 100 correspond respectively to the inputs P1-P12 of router 2, and the four outputs of each of the couplers 80, 90, 100 are each connected to an input from one of the routers 130, 140, 150, 160.
  • Each of the couplers 80, 90, 100 is actually made up of from four couplers in X. So, as we can see on the Figure 5, the coupler 80 has four 2 x 2 couplers referenced 111-114 each comprising two inputs, respectively 81, 82; 83, 84; 125, 126; 127, 128 and two outputs, respectively 121, 122; 123, 124; 85, 86; 87, 88.
  • Two of the X couplers, 111, 112 are arranged on a first level, their entries 81-84 being those of coupler 80.
  • the other two couplers in X, 113 and 114 are arranged on a second level, their outputs 85-88 being those of the coupler 80.
  • each of the two couplers 111, 112 of the first level are each connected to a input 125-128 of one of the couplers 113, 114 of the second level.
  • the two other 4 x 4 couplers, 90 and 100, are made so similar.
  • Router 2 also includes 24 achromatic couplers in Referenced 120 there, each of them comprising a main arm 115 and two secondary arms 116 and 117. Each of the inputs P1-P12 and of outputs P13-P24 of router 2 is connected to the main arm 115 of one of the Y couplers 120.
  • the 120 couplers are intended for serve as means of transmission, with two-way propagation, two branches 116, 117 of each of the couplers 120 being provided for opposite directions 118, 119 of signal propagation.
  • the router 2 is thus intended for signal transmissions, both in one direction 3 from inputs P1-P12 to outputs P13-P24, and in an opposite direction 4.
  • the routers 130, 140, 150, 160 have transmission spectra 175, 180, 183, 186 having comb shapes comprising teeth, respectively 176-178; 181, 182; 184, 185; 187, 188, centered on wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 ; ⁇ ' 1 , ⁇ ' 2 ; ⁇ '' 1 , ⁇ '' 2 ; ⁇ ''' 1 , ⁇ '' 2 .
  • a signal at a given wavelength reaches one of the inputs of one of the couplers 80, 90 or 100 and is transmitted to the four outputs of this 4 x 4 coupler with a reduction energy by a factor of 4.
  • the optical signal is thus transmitted to a input of each of the four routers 130, 140, 150, 160.
  • the signal wavelength is only a wavelength transmission of only one of the spectra 175, 180, 183, 186 of 3 x 3 routers, signal transmission only takes place in this router, to the selected output according to the wavelength of the signal.
  • Router 2 therefore has a general transmission spectrum having the set of teeth 176-178, 181, 182, 184, 185, 187, 188 spectra 175, 180, 183, 186 of the four routers 130, 140, 150, 160.
  • the width at mid-height of the teeth is thus preserved, and the inter-wavelength spacing of transmission substantially reduced, this reduction being able to reach a factor of 4.
  • signals can come simultaneously from outputs P13-P24 to inputs P1-P12, according to the same principle.
  • the same wavelength can thus be used in both directions of communication between two users, which doubles the router capabilities 2.
  • routers 1 and 2 are low, corresponding to factors of the order of 2 and 4 respectively.
  • the presence of optical amplifiers in the switching compensates for the effects of these losses. It is however possible to make losses due to couplers negligible, in combination with couplers and selection means wavelengths.
  • couplers negligible, in combination with couplers and selection means wavelengths.
  • These means can be obtained, for example, by a two-wave interferometer, such as a Michelson which can be placed in an integrated optical plate. In this case, the optical signal leaving one of the couplers is not transmitted selectively only to the router having a wavelength of transmission corresponding to the wavelength of the signal.
  • the teeth of the combs of separate n x n routers have been shown dissociated, they can also overlap, the important thing being the centering of each of the teeth over a length given transmission wave.
  • the alternation of spectral components from one router to another can relate to bands and no longer teeth, each band comprising several teeth. This configuration is advantageous in particular if the spacing Inter-wavelength transmission is irregular, the teeth being grouped by packages.
  • the invention can be applied in cascade on two or more levels.
  • router 1 previously described ( Figure 2), it is desirable that several any of the inputs E1-E8 can communicate simultaneously with the same outputs S1-S8.
  • a first embodiment consists in sending, respectively at E1 and E2, signals having distinct wavelengths, but arranged on the same tooth of the transmission spectrum 67 of the router 30, as shown in the Figure 7.
  • tooth 71 of spectrum 67 corresponds to an optical path from input 31 of router 30 to output S1
  • the wavelength for E1 is equal to ⁇ 1a and that for E2, ⁇ 1b .
  • the wavelengths ⁇ 1a , ⁇ 1b are arranged so as to produce on the tooth 71 preferably high amplitudes of transmission, that is to say close to the maximum value 70 reached approximately for the wavelength ⁇ 1 average, on which the tooth 71 is centered.
  • the lengths ⁇ 1a and ⁇ 1b are therefore preferably close to ⁇ 1 . What is more, they are advantageously symmetrical with respect to ⁇ 1 , so that the corresponding transmission amplitudes are equal or close.
  • the signals received simultaneously in S1 from E1 and E2 can be reconstructed by separation of the wavelengths ⁇ 1a and ⁇ 1b .
  • This separation can, for example, be carried out by means of a coherent detection filter.
  • routing method for simultaneously send signals from E1 and E2 to S1, we choose respectively two wavelengths of distinct orders, allowing both signals to be routed from input 31 of router 30 to its exit 35.
  • This method of implementation is, like the first, applicable to all of the inputs E1-E8, the two modes can be possibly combined.
  • one or the other can be used according to the spectrum teeth.
  • the routing method described consisting of sending to the inputs of the same signal coupler with wavelengths separate, to transmit them simultaneously to the same output of the router N X N, is also valid for m greater than 2.
  • signals from the four inputs P1-P4 can be sent simultaneously associated with coupler 80 to the same output P13 of router 2.
  • the four signals corresponding respectively to the four P1-P4 inputs have separate wavelengths.
  • the four wavelengths are distributed in the tooth of the spectrum 175 associated with the transmission of a signal from the input 131 of the router 130 to its output 134, this tooth being, for example , that referenced 176.
  • the four wavelengths are advantageously arranged close to ⁇ 1 , and symmetrically with respect to it.
  • the light sources connected to the P1-P12 inputs of router 2 and the detection means connected to the outputs P13-P24 are however preferably provided for respectively transmitting and detecting automatically signals at defined distinct wavelengths in the routing process chosen, which allows recognition signals in all cases.
  • the router of the invention can be implemented in a technology based on optical fibers or in integrated optics.
  • the router N x N of the invention can be the subject of an implementation partial work, only part of its N entries being used to receive optical signals.
  • the number of N entries actually in service being equal to M, with M ⁇ N, the router N x N then behaves like an M x N router.
  • the router according to the invention is a 40 x 40 router comprising two 20 x 20 routers and 20 achromatic couplers in X.
  • Each of the 20 x 20 routers corresponds to a silica component, with a focal length of 119.512 mm, a network of 600 lines / mm, with a fiber holder with double strip of fibers spaced 42.54 ⁇ m apart.
  • the first router is in collimation in the center of the field for 1548.5145 nm, and the second router has a spectrum shifted by half a period thanks to a stickers at 1548.5145 ⁇ 0.4 nm.
  • a double bar of 20 equally spaced fibers is disposed at the hearth.
  • the transmission wavelengths of the first router 20 x 20 range from 1533.2 nm to 1563.9 nm with inter-length spacing 0.8 nm transmission wave.
  • the spacing between transmission wavelengths (equal 0.8 nm) is chosen constant, which avoids additional losses up to 3 dB.
  • 20 x 20 routers are compatible with data rates of 10 Gbit / second on each channel.
  • the 20 x 20 wavelength matrix of the first 20 X router 20 was calculated taking into account the exact silica index of each wavelength, by iterative adjustment to values of reference.
  • the matrix obtained is shown in Figure 8; the 20 columns corresponding to the inputs, and the 20 rows to the outputs.
  • the indicated values are expressed in nm.
  • the default of adjustment remains less than 0.008 nm, which is negligible.
  • An 80 x 80 router includes two 40 x 40 and 40 routers achromatic couplers in X.
  • These 40 x 40 routers are compatible with data rates of Gbit / second on each channel.
  • a 6 x 6 router has two 3 x 3 routers made using 6 multiplexers each made in technology with shared optical function with focal length 119.512 mm, space between fibers 32 ⁇ m and network of 300 lines / mm.
  • the multiplexers of the first 3 x 3 router are associated with wavelengths 1552.517 nm, 1550.916 nm and 1549.315 nm. Those the second 3 x 3 router, at the same wavelengths offset by ⁇ 0.8 nm.
  • the 6 x 6 router also has 3 X couplers made in fused fibers technique with close hearts (fused coupler).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)

Description

La présente invention concerne un routeur N x N de longueur d'onde, ainsi qu'un procédé de routage associé, plus particulièrement destinés à un réseau de communications.The present invention relates to a router N x N of length wave, as well as an associated routing method, more particularly for a communications network.

Les importants développements de télétransmissions par voie optique amènent à connecter chaque usager à un centre d'émission ou de relais par l'intermédiaire de fibres optiques de transmission munies, à chacune de leurs extrémités, d'un composant optique destiné à relier l'émetteur de lumière modulée à la fibre pour y faire pénétrer la lumière, ou bien à l'autre extrémité, à recueillir la lumière pour la diriger vers un détecteur qui décodera le signal optique pour le transformer en un signal électrique ou électronique utilisable dans un récepteur usuel.Significant developments in teletransmission by channel optics connect each user to a transmission center or relay via fiber optic transmission fitted with an optical component at each of their ends intended to connect the modulated light emitter to the fiber to make penetrate the light, or at the other end, to collect the light to direct it towards a detector which will decode the optical signal for transform it into an electrical or electronic signal usable in a usual receiver.

Les réseaux de télécommunications ainsi obtenus rendent nécessaire la réalisation de commutations en grand nombre par le biais de dispositifs complexes du type autocommutateur optique.The telecommunications networks thus obtained make necessary the realization of commutations in great number by the through complex devices of the optical switch type.

Pour parvenir à un tel autocommutateur optique, on a développé des composants spécifiques à N entrées et N sorties, aptes à relier une entrée quelconque à une sortie quelconque par ajustement de longueur d'onde. Ce composant, appelé routeur N x N de longueur d'onde ou WDM (Wavelength Division Multiplexer), comporte habituellement N éléments diffractants d'entrée reliés respectivement aux entrées, et N éléments diffractants de sortie disposés vis-à-vis des éléments diffractants d'entrée et reliés respectivement aux sorties. Chacun des éléments diffractants d'entrée est apte à produire pour un signal donné transmis à une longueur d'onde, une image disposée dans un plan focal correspondant à l'un quelconque des éléments diffractants de sortie. La sélection de l'élément de sortie est subordonnée à la longueur d'onde du signal.To achieve such an optical switch, we have developed specific components for N inputs and N outputs, able to connect any input to any output by wavelength adjustment. This component, called router N x N wavelength or WDM (Wavelength Division Multiplexer), usually has N connected diffracting input elements respectively at the inputs and N diffracting output elements arranged opposite the input diffracting elements and connected respectively at the outputs. Each of the diffracting elements input is able to produce for a given signal transmitted to a wavelength, an image arranged in a focal plane corresponding to any of the diffracting output elements. The selection of the output element is subject to the length signal wave.

A chaque couple fibre d'entrée-fibre de sortie, est donc associée une longueur d'onde de transmission. Le spectre global de transmission de l'ensemble du routeur N x N se présente ainsi sous la forme d'un peigne avec des dents situées à ces longueurs d'onde. Pour des éléments diffractants identiques disposés à intervalles égaux dans une ligne d'entrée et une ligne de sortie, 2N-1 longueurs d'onde distinctes sont utilisées dans le spectre de transmission.At each input fiber-output fiber pair, is therefore associated transmission wavelength. The global spectrum of transmission of the entire router N x N is thus presented under the shape of a comb with teeth located at these wavelengths. For identical diffracting elements arranged at intervals equal in an input line and an output line, 2N-1 lengths separate waveforms are used in the transmission spectrum.

Un inconvénient de ces routeurs traditionnels est leur encombrement et leur complexité, 2N éléments diffractants étant nécessaires.One drawback of these traditional routers is their size and complexity, 2N diffracting elements being required.

De plus, les plages de longueurs d'onde situées entre les dents constituent des zones perdues. Etant donné que la bande spectrale utilisable est restreinte, il en résulte une limitation du nombre de longueurs d'onde de transmission. Le nombre possible d'usagers est ainsi considérablement restreint. A titre d'exemple, pour une bande spectrale totale limitée à 30 nm, et l'espacement entre deux longueurs d'onde de transmission étant de 1 nm, le nombre de longueurs d'onde de transmission ne peut dépasser 30, ce qui restreint le nombre d'usagers à une quinzaine.In addition, the wavelength ranges between the teeth are lost areas. Since the tape spectral usability is limited, this results in a limitation of the number of transmission wavelengths. The possible number users is thus considerably restricted. For exemple, for a total spectral band limited to 30 nm, and the spacing between two transmission wavelengths being 1 nm, the number of transmission wavelengths cannot exceed 30, which restricts the number of users to fifteen.

D'autre part, les dents du spectre de transmission ont une largeur à mi-hauteur ou FWHM (Full Width Half-Maximum) habituellement faible par rapport à l'espacement entre longueurs d'onde de transmission, ce qui rend délicate la sélection d'une longueur d'onde d'émission, du fait que le positionnement dans une dent du spectre nécessite une grande précision.On the other hand, the teeth of the transmission spectrum have a width at half height or FWHM (Full Width Half-Maximum) usually small compared to length spacing transmission wave, which makes it difficult to select a emission wavelength, because positioning in a spectrum tooth requires high precision.

Pour diminuer les zones perdues et augmenter la zone utile en longueurs d'onde, un moyen consiste à rapprocher le coeur des fibres. Le rapport R de la largeur à mi-hauteur des dents sur leur espacement augmente en effet avec le rapport du diamètre du coeur des fibres sur leur distance. Ainsi, le rapport R peut-il atteindre une valeur de 0,4 lorsque des fibres ayant des coeurs de diamètre 10 µm sont espacées successivement de 22 µm.To decrease the lost areas and increase the useful area by wavelengths, one way is to bring the core closer to fibers. The ratio R of the width at half height of the teeth on their spacing indeed increases with the ratio of the diameter of the heart fibers over their distance. Thus, can the ratio R reach a value of 0.4 when fibers with hearts of diameter 10 µm are spaced successively by 22 µm.

Cependant, de tels rapprochements de fibres s'avèrent techniquement limités, et entraínent de plus un phénomène de diaphotie, la lumière passant directement d'un coeur de fibre à un autre voisin.However, such fiber reconciliations are found technically limited, and lead moreover to a phenomenon of diaphotia, the light passing directly from a fiber core to a another neighbor.

Afin d'augmenter les capacités des routeurs, il a été proposé d'associer plusieurs routeurs élémentaires. Dans des dispositifs existants, les routeurs sont reliés en entrée à des coupleurs achromatiques par l'intermédiaire d'unités de multiplexage et de démultiplexage temporels. Les entrées de chacun des coupleurs peuvent ainsi être reliées aux entrées de chacun des routeurs au moyen d'un réseau d'interconnexions. La capacité du routeur ainsi obtenu est sensiblement accrue par rapport à celle des routeurs élémentaires, le nombre total d'usagers étant la somme des usagers prévus pour les différents routeurs élémentaires.In order to increase the capacities of the routers, it has been proposed to associate several elementary routers. In devices existing routers are connected as input to couplers achromatic through multiplexing units and temporal demultiplexing. The inputs of each of the couplers can thus be linked to the inputs of each of the routers by means of an interconnection network. The capacity of the router thus obtained is significantly increased compared to that of basic routers, the total number of users being the sum of users planned for the different basic routers.

Cependant, un tel réseau produit des pertes importantes. De plus, il implique la mise en oeuvre de procédés complexes afin d'effectuer le multiplexage temporel. Par ailleurs, le problème précédemment évoqué de sélections de longueurs d'onde reste présent.However, such a network produces significant losses. Moreover, it involves the implementation of complex processes in order to carry out the time multiplexing. Furthermore, the problem previously mentioned wavelength selections remain present.

Le document SHARONY: « Broadcast and Switch » - « A new class of WDM networks for high switching-speed, high connectivity applications», PHOTONICS IN SWITCHING, vol. 16, 15 Mars 1993, PALM SPRINGS US, pages 196-198, divulgue un routeur optique à deux étages dont les « Wavelength Selective Switches » du deuxième étage reçoivent des signaux optiques multiplexés en provenance de chacun des coupleurs en étoile du premier étage.The SHARONY document: "Broadcast and Switch" - "A new class of WDM networks for high switching-speed, high connectivity applications ”, PHOTONICS IN SWITCHING, vol. March 16, 15, 1993, PALM SPRINGS US, pages 196-198, discloses an optical router with two floors including the “Wavelength Selective Switches” on the second stage receive multiplexed optical signals from each of the star couplers on the first stage.

La présente invention vise un routeur N x N de longueur d'onde valable pour un grand nombre d'usagers, impliquant de faibles pertes et simple à réaliser et à mettre en oeuvre.The present invention relates to an N x N wavelength router valid for a large number of users, implying low losses and simple to carry out and to implement.

La présente invention a également pour but un tel routeur N x N évitant tout problème de diaphotie, et ayant un rapport largeur à mi-hauteur sur espacement entre longueurs d'onde de transmission élevé.The present invention also aims at such an N x N router. avoiding any problem of crosstalk, and having a width to half height ratio on spacing between high transmission wavelengths.

La présente invention est également orientée vers un procédé de routage optique facile à mettre en oeuvre et évitant du brouillage entre signaux.The present invention is also directed towards a method of optical routing easy to implement and avoiding interference between signals.

L'invention a aussi pour objectif un réseau de communications reposant sur des moyens optiques, valable pour un grand nombre d'usagers, fiable, impliquant de faibles pertes d'énergie, et simple à réaliser et à utiliser.The invention also aims at a communications network based on optical means, valid for a large number user-friendly, reliable, involving low energy losses, and simple to make and use.

A cet effet, l'invention concerne un routeur N x N de longueur d'onde comportant N entrées et N sorties, destiné à transmettre des signaux optiques ayant chacun une longueur d'onde, des entrées vers les sorties. Le routeur N x N comporte également des moyens d'aiguillage aptes à aiguiller chacun des signaux optiques de l'une quelconque des N entrées vers l'une quelconque des N sorties en fonction de la longueur d'onde du signal.To this end, the invention relates to a router N x N of length waveform with N inputs and N outputs, intended to transmit optical signals each having a wavelength, inputs to the exits. The N x N router also includes means switch capable of routing each of the optical signals of one any of the N inputs to any of the N outputs in function of the signal wavelength.

Les moyens d'aiguillage comportent:

  • n coupleurs m x m ayant chacun m entrées et m sorties, N étant égal à n X m et les N entrées des n coupleurs m x m étant les entrées du routeur N x N,
  • m routeurs n x n ayant chacun n entrées et n sorties, chacune des n entrées étant reliée à une des sorties de, respectivement les n coupleurs m x m et les N sorties des m routeurs n x n étant les sorties du routeur N x N. Chacun des routeurs n x n est apte à aiguiller un signal optique ayant une longueur d'onde, de l'une quelconque de ses n entrées vers l'une quelconque de ses n sorties, en fonction de la longueur d'onde du signal, le routeur n x n ayant un spectre de transmission en fonction de la longueur d'onde sous forme d'un peigne.
The referral means include:
  • n mxm couplers each having m inputs and m outputs, N being equal to n X m and the N inputs of the n mxm couplers being the inputs of the router N x N,
  • m nxn routers each having n inputs and n outputs, each of the n inputs being connected to one of the outputs of, respectively the n mxm couplers and the N outputs of the m routers nxn being the outputs of the router N x N. Each of the routers nxn is able to route an optical signal having a wavelength, from any of its n inputs to any of its n outputs, depending on the wavelength of the signal, the router nxn having a spectrum of transmission as a function of the wavelength in the form of a comb.

Selon l'invention, les peignes des m routeurs n x n sont différents les uns des autres, de manière à rendre possible une sélection en fonction de la longueur d'onde pour une quelconque des N entrées du routeur N x N, à la fois d'un des m routeurs n x n et d'une des n sorties de ce routeur n x n.According to the invention, the combs of the m routers n x n are different from each other, so as to make selection possible wavelength function for any of the N inputs of the router N x N, one of the m routers n x n and one of the n outputs of this router n x n.

On appelle spectre de transmission d'un routeur optique, la répartition spectrale du flux lumineux au niveau de ses sorties, produite par un flux lumineux de spectre étendu sur toute la bande de fonctionnement du routeur appliqué à l'ensemble de ses entrées.The transmission spectrum of an optical router is called the spectral distribution of the light flux at its outputs, produced by a luminous flux of spectrum extended over the entire band of operation of the router applied to all of its inputs.

Le routeur selon l'invention met en oeuvre des spectres différents selon les différents routeurs n x n rendant possible une sélection de la longueur d'onde, pour une entrée donnée, du routeur n x n concerné et au sein de celui-ci, de la voie de sortie visée. Ce dispositif ne rend donc nécessaire aucun multiplexage temporel et permet d'utiliser, en amont des routeurs n x n, un simple montage d'aiguillage de voies tel que celui revendiqué.The router according to the invention implements different spectra according to the different routers n x n making it possible to select the wavelength, for a given input, of the router n x n concerned and within it, the intended exit route. This device therefore no time multiplexing required and allows upstream use n x n routers, a simple assembly of channel switches such as that claims.

Dans sa globalité, le routeur N X N peut admettre un spectre de transmission sous forme de peigne avec des dents très rapprochées. Pour une plage donnée de longueurs d'onde utilisable, le nombre N d'entrée et de sorties peut ainsi être sensiblement augmenté, sans risque de diaphotie et sans problème technique particulier. As a whole, the router N X N can admit a spectrum of transmission in the form of a comb with very close teeth. For a given range of usable wavelengths, the number N input and output can be significantly increased, without risk of crosstalk and without any particular technical problem.

De plus, le rapport R pour le spectre de transmission global peut être considérablement accru. L'élargissement relatif de la largeur des dents permet donc une sélection de longueurs d'onde d'émission moins stricte que dans les dispositifs existants.In addition, the ratio R for the overall transmission spectrum can be greatly increased. The relative widening of the width of teeth therefore allows a selection of emission wavelengths less strict than in existing devices.

Plus le nombre de routeur n x n est grand, plus les dents de ce spectre peuvent être rapprochées, mais au prix d'une complexité accrue du montage.The greater the number of router n x n, the more the teeth of this spectrum can be brought together, but at the cost of increased complexity of the assembly.

Préférentiellement, le spectre de transmission de chacun des m routeurs n x n comprend des bandes de longueur d'onde et chacune de ces bandes comprenant des dents, les spectres de transmission des m routeurs n x n ont leurs bandes intercalées.Preferably, the transmission spectrum of each of the m routers n x n includes wavelength bands and each of these bands comprising teeth, the transmission spectra of m n x n routers have their bands interspersed.

Cette configuration permet d'obtenir globalement un spectre de transmission comportant des bandes complémentaires en provenance des différents routeurs n x n. Ceci peut être particulièrement avantageux lorsque des longueurs d'onde de transmission sont regroupées par paquets dans chacun des routeurs n x n.This configuration makes it possible to obtain a spectrum of transmission with complementary bands from different n x n routers. This can be particularly advantageous when transmission wavelengths are grouped by packets in each of the n x n routers.

Dans un mode de réalisation avantageux de cette configuration, les peignes des m routeurs n x n ont leurs dents intercalées.In an advantageous embodiment of this configuration, the combs of the m x n routers have their teeth inserted.

Dans ce cas, les dents du spectre global de transmission proviennent alternativement d'un routeur n x n distinct, ce qui permet d'obtenir par rapport à chacun des routeurs n x n pris isolément, un rapprochement des dents d'autant plus grand que le nombre de routeurs n x n est grand. Le rapport R peut être ainsi multiplié par m.In this case, the teeth of the overall transmission spectrum alternatively come from a separate n x n router, which allows to obtain with respect to each of the routers n x n taken in isolation, a the closer the teeth, the greater the number of routers n x n is large. The ratio R can thus be multiplied by m.

Dans une forme avantageuse de réalisation, le peigne de chacun des m routeurs n x n a des dents complètement dissociées des dents des autres peignes.In an advantageous embodiment, the comb of each of m routers n x n has teeth completely dissociated from the teeth other combs.

Les dents du spectre global de transmission peuvent ainsi être distinguées clairement les unes des autres, tout en étant proches. Des chevauchements des dents provenant des différents spectres des routeurs n x n sont cependant également possibles.The teeth of the global transmission spectrum can thus be clearly distinguished from each other, while being close. of the overlapping teeth from different spectra of routers n x n are however also possible.

Selon un premier mode de réalisation du routeur N X N, chacun des coupleurs m x m est un coupleur achromatique à répartition uniforme d'énergie entre ses sorties. According to a first embodiment of the router N X N, each couplers m x m is an achromatic coupler with distribution uniform energy between its outputs.

On utilise de la sorte des éléments peu coûteux et usuels.Inexpensive and customary elements are used in this way.

Selon une seconde forme de réalisation, chacun des coupleurs m x m est un coupleur à répartition de longueur d'onde apte à transmettre de l'énergie d'un signal optique ayant une longueur d'onde, uniquement par la sortie du coupleur m x m reliée au routeur n x n dont le peigne comprend cette longueur d'onde.According to a second embodiment, each of the couplers m x m is a wavelength distribution coupler capable of transmitting energy of an optical signal having a wavelength, only by the output of the coupler m x m connected to the router n x n whose comb understands this wavelength.

Ce second mode de réalisation est avantageux en ce qu'il évite toute perte d'énergie due aux coupleurs m x m, en canalisant les signaux en amont des routeurs n x n en fonction de la longueur d'onde du signal optique.This second embodiment is advantageous in that it avoids any loss of energy due to the m x m couplers, by channeling the signals upstream from the routers n x n as a function of the length waveform of the optical signal.

Dans une forme de réalisation préférée du routeur N x N, les coupleurs m x m sont composés de coupleurs 2 x 2 ayant chacun deux entrées et deux sorties.In a preferred embodiment of the N x N router, the m x m couplers are composed of 2 x 2 couplers each having two inputs and two outputs.

De tels coupleurs 2 x 2, dits aussi coupleurs en X, sont des éléments couramment disponibles et aisément utilisables en association.Such 2 x 2 couplers, also known as X couplers, are elements commonly available and easily usable in association.

Dans ce mode de réalisation préféré, le routeur N x N comprend avantageusement un premier niveau de coupleurs 2 x 2 dont les entrées sont les entrées du routeur N x N, et un dernier niveau de coupleurs 2 x 2 dont les sorties sont reliées aux entrées des routeurs n x n. Les entrées des coupleurs 2 x 2 qui n'appartiennent pas au premier niveau, sont reliées à des sorties de coupleurs 2 x 2, et les sorties des coupleurs 2 x 2 qui n'appartiennent pas au dernier niveau, sont reliées à des entrées de coupleurs 2 x 2.In this preferred embodiment, the router N x N advantageously includes a first level of 2 x 2 couplers whose inputs are the inputs of the router N x N, and a last level of 2 x 2 couplers whose outputs are connected to the inputs n x n routers. The inputs of the 2 x 2 couplers which do not belong to the first level, are connected to outputs of 2 x 2 couplers, and the outputs of the 2 x 2 couplers which do not belong not at the last level, are connected to 2 x 2 coupler inputs.

Il est intéressant que le routeur N x N comporte des coupleurs en Y ayant chacun un bras principal et deux bras secondaires, les entrées et les sorties du routeur N x N étant reliées aux bras principaux des coupleurs en Y. Le routeur N x N permet d'envoyer des signaux optiques simultanément de ses entrées vers ses sorties et de ses sorties vers ses entrées, les signaux optiques circulant en sens opposés dans les deux bras secondaires de chacun des coupleurs en Y.It is interesting that the N x N router has couplers with Y each having a main arm and two secondary arms, the inputs and outputs of the router N x N being connected to the arms main couplers in Y. The router N x N allows to send optical signals simultaneously from its inputs to its outputs and from its outputs to its inputs, the optical signals flowing in opposite directions in the two secondary arms of each of Y couplers.

Ce dernier dispositif permet de gagner un facteur 2 dans le nombre d'entrées et de sorties disponibles, car une même longueur d'onde permet des communications dans un sens et dans l'autre du routeur N x N. La caractéristique revendiquée contribue donc à accroítre le nombre d'usagers d'un système de transmission, de façon simple.This last device allows to gain a factor 2 in the number of inputs and outputs available, because the same length wave allows communications in one direction and in the other router N x N. The claimed characteristic therefore contributes to increase the number of users of a transmission system, simple way.

Préférentiellement, chacun des routeurs n x n comprend :

  • un support de transmission comprenant une première rangée des n entrées et une seconde rangée des n sorties, les première et seconde rangées étant disposées parallèlement et le support de transmission ayant une surface de transmission plane,
  • un élément diffractant disposé en regard de la surface de transmission,
  • une optique de focalisation placée entre le support de transmission et l'élément diffractant,
l'élément diffractant et l'optique de focalisation étant aptes à produire de l'une quelconque des entrées une image correspondant à l'une quelconque des sorties, en fonction de la longueur d'onde des signaux optiques.Preferably, each of the nxn routers comprises:
  • a transmission medium comprising a first row of the n inputs and a second row of the n outputs, the first and second rows being arranged in parallel and the transmission medium having a planar transmission surface,
  • a diffracting element placed opposite the transmission surface,
  • focusing optics placed between the transmission support and the diffracting element,
the diffracting element and the focusing optics being capable of producing from any of the inputs an image corresponding to any of the outputs, as a function of the wavelength of the optical signals.

Cette configuration des routeurs n x n est à la fois compacte et économique.This configuration of n x n routers is both compact and economic.

L'invention a aussi pour objet un procédé de routage optique mis en oeuvre au moyen d'un routeur N x N selon l'invention. Dans ce procédé, on envoie des signaux optiques ayant chacun une longueur d'onde, des entrées du routeur N x N vers ses sorties.The invention also relates to an optical routing method implemented by means of an N × N router according to the invention. In this process, we send optical signals each having a wavelength, from the inputs of the N x N router to its outputs.

Le procédé selon l'invention est caractérisé en ce que pour pouvoir envoyer simultanément des signaux optiques d'au moins deux des m entrées d'au moins un des n coupleurs m x m, en direction d'une même des N sorties du routeur N x N sans risque de brouillage, les signaux optiques ont des longueurs d'onde distinctes les unes des autres.The method according to the invention is characterized in that for ability to simultaneously send optical signals of at least two of the m inputs of at least one of the n couplers m x m, in direction of the same one of the N outputs of the router N x N without risk of interference, optical signals have different wavelengths each other.

Ainsi, le couplage des signaux d'entrée dans le coupleur m x m concerné n'empêche pas un discernement de ces signaux en sortie du routeur N x N.Thus, the coupling of the input signals in the coupler m x m concerned does not prevent a discernment of these output signals from router N x N.

Selon un premier mode préféré de mise en oeuvre de ce procédé, la sortie du routeur N x N étant une des n sorties d'un des m routeurs n x n et le peigne du routeur n x n ayant des dents, les longueurs d'onde des signaux optiques sont réparties dans une des dents.According to a first preferred embodiment of this method, the output of the router N x N being one of the n outputs of one of the m routers n x n and the comb of the router n x n having teeth, the wavelengths of the optical signals are distributed in one of the teeth.

Selon un second mode préféré de mise en oeuvre de ce procédé, les longueurs d'onde des signaux optiques ont des ordres distincts.According to a second preferred embodiment of this process the wavelengths of the optical signals have orders distinct.

L'invention concerne également un réseau de communications comprenant au moins un routeur N x N présentant l'une quelconque des caractéristiques précédentes, ou plusieurs d'entre elles en association, ou mettant en oeuvre l'une quelconque des caractéristiques précédentes du procédé de routage. The invention also relates to a communications network. comprising at least one N x N router having any one of the preceding characteristics, or more of them in association, or implementing any of previous features of the routing process.

L'invention sera mieux comprise en se référant à des applications particulières données à titre d'exemples et représentées par les dessins annexés :

  • les Figures 1A et 1B sont des représentations schématiques d'un routeur 4 x 4 de longueur d'onde utilisé dans un routeur N x N selon l'invention, la Figure 1A montrant une vue d'ensemble du routeur 4 x 4 et la Figure 1B, une vue de face de son plan de fibres ;
  • la Figure 2 représente un routeur 8 x 8 de longueur d'onde selon l'invention, comportant quatre coupleurs 2 x 2 et deux routeurs 4 x 4 tels que celui schématisés sur les Figures 1A et 1B ;
  • la Figure 3 montre les spectres de transmission respectifs des deux routeurs 4 x 4 du routeur 8 x 8 de la Figure 2 ;
  • la Figure 4 est une représentation schématique d'un routeur 12 x 12 de longueur d'onde selon l'invention, comportant trois coupleurs 4 x 4 et quatre routeurs 3 x 3, et à double sens de transmission ;
  • la Figure 5 est une vue détaillée d'un des coupleurs 4 x 4 du routeur 12 x 12 de la Figure 4 ;
  • la Figure 6 montre les spectres de transmission respectifs des quatre routeurs 3 x 3 du routeur 12 x 12 de la Figure 4 ;
  • la Figure 7 montre les spectres de transmission respectifs des deux routeurs 4 x 4 du routeur 8 x 8 de la Figure 2, et représente les longueurs d'onde des signaux transmis dans un mode préféré de mise en oeuvre du procédé de routage ;
  • la Figure 8 montre dans un mode de mise en oeuvre la matrice de longueur d'onde 20 X 20 d'un routeur 20 x 20.
The invention will be better understood by referring to particular applications given by way of examples and represented by the appended drawings:
  • Figures 1A and 1B are schematic representations of a 4 x 4 wavelength router used in an N x N router according to the invention, Figure 1A showing an overview of the 4 x 4 router and Figure 1B, a front view of its plane of fibers;
  • Figure 2 shows an 8 x 8 wavelength router according to the invention, comprising four 2 x 2 couplers and two 4 x 4 routers such as the one shown in Figures 1A and 1B;
  • Figure 3 shows the respective transmission spectra of the two 4 x 4 routers of the 8 x 8 router of Figure 2;
  • Figure 4 is a schematic representation of a 12 x 12 wavelength router according to the invention, comprising three 4 x 4 couplers and four 3 x 3 routers, and with two directions of transmission;
  • Figure 5 is a detailed view of one of the 4 x 4 couplers of the 12 x 12 router of Figure 4;
  • Figure 6 shows the respective transmission spectra of the four 3 x 3 routers of the 12 x 12 router of Figure 4;
  • Figure 7 shows the respective transmission spectra of the two 4 x 4 routers of the 8 x 8 router of Figure 2, and shows the wavelengths of the signals transmitted in a preferred embodiment of the routing method;
  • Figure 8 shows in a mode of implementation the 20 X 20 wavelength matrix of a 20 x 20 router.

Un routeur 4 x 4 élémentaire, utilisé dans un routeur N x N selon l'invention, comporte un réseau 50 de diffraction disposé vis-à-vis d'un plan 62 de fibres, comme on peut le voir sur la Figure 1A. Le routeur 4 x 4 comporte également une optique de focalisation telle qu'une lentille 59. Des fibres d'entrée 51, 52, 53, 54 aboutissent au plan 62 de fibres en étant disposées en ligne, de même que des fibres de sortie 55, 56, 57, 58, le plan 62 de fibres étant représenté de face sur la Figure 1B. Les fibres d'entrée 51-54 sont disposées parallèlement aux fibres de sortie 55-58 et en vis-à-vis dans le plan 62. Le réseau 50 est apte à produire d'une quelconque des fibres d'entrée 51-54 une image disposée dans un plan focal qui correspond à l'une quelconque des fibres de sortie 55-58 fonction de la longueur d'onde. Un rayon incident 60 contenant des informations transmises par une des fibres d'entrée en provenance d'un usager émetteur est ainsi transformé en un rayon renvoyé 61 au moyen de la lentille 59 et du réseau 50 qui est dirigé vers un usager récepteur par une des fibres de sortie. Selon la longueur d'onde du signal émis, l'un quelconque des quatre usagers émetteurs peut communiquer avec l'un quelconque des quatre usagers récepteurs.A basic 4 x 4 router, used in an N x N router according to the invention, comprises a diffraction grating 50 disposed opposite of a plan 62 of fibers, as can be seen in FIG. 1A. The 4 x 4 router also includes focusing optics such as than a lens 59. Input fibers 51, 52, 53, 54 lead to the plan 62 of fibers being arranged in line, as well as output fibers 55, 56, 57, 58, the plane 62 of fibers being shown from the front in Figure 1B. Input fibers 51-54 are arranged parallel to the output fibers 55-58 and facing each other in the plan 62. The network 50 is capable of producing any input fibers 51-54 an image arranged in a focal plane which matches any of the output fibers 55-58 function of The wavelength. An incident ray 60 containing information transmitted by one of the input fibers from a user transmitter is thus transformed into a returned ray 61 by means of the lens 59 and the network 50 which is directed towards a receiving user through one of the output fibers. Depending on the wavelength of the signal emitted, any of the four sending users can communicate with any of the four receiving users.

Les relations donnant les longueurs d'onde qui permettent de passer de l'une quelconque des fibres d'entrée à l'une quelconque des fibres de sortie peuvent être schématisées dans une matrice 4 x 4 du type de celle représentée ci-dessous. Les lignes correspondent aux fibres d'entrée 51-54 et les colonnes aux fibres de sortie 55-58. L'ensemble des communications à travers le routeur 4 x 4 nécessitent 7 longueurs d'onde λi, i variant de 1 à 7, classées en ordre croissant.

Figure 00100001
The relationships giving the wavelengths which make it possible to pass from any of the input fibers to any of the output fibers can be shown diagrammatically in a 4 × 4 matrix of the type shown below. The rows correspond to the input fibers 51-54 and the columns to the output fibers 55-58. All communications through the 4 x 4 router require 7 wavelengths λ i , i varying from 1 to 7, classified in ascending order.
Figure 00100001

La réalisation d'un routeur n x n élémentaire, similaire à celui décrit, avec n quelconque, peut être menée comme pour le routeur 4 x 4. Dans ce cas, si les fibres sont identiques et périodiquement espacées,
2n-1 longueurs d'onde de transmission sont nécessaires.
The realization of a basic nxn router, similar to that described, with any n, can be carried out as for the 4 x 4 router. In this case, if the fibers are identical and periodically spaced,
2n-1 transmission wavelengths are required.

Le réseau 50 de diffraction peut être remplacé ou complété par un ensemble de filtres multi-diélectriques, ou encore par un ensemble de réseaux de phase (phased array grating). Un échelon de Michelson, très efficace pour des longueurs d'onde d'ordres élevés, peut aussi être employé.The diffraction grating 50 can be replaced or supplemented by a set of multi-dielectric filters, or by a set of phased array grating. A rung of Michelson, very effective for wavelengths of orders can also be used.

De plus, au lieu des fibres, une ou plusieurs barrettes de lasers peuvent être employées comme moyens d'aiguillage en entrée, et une ou plusieurs barrettes de photodétecteurs comme moyens de réception en sortie.In addition, instead of fibers, one or more strips of lasers can be used as a means of referral input, and one or more photodetector arrays like output reception means.

Une unique barrette de fibres d'entrée et de sortie peut aussi être employée.A single strip of input and output fibers can also be employed.

Dans un mode de réalisation particulier d'un routeur n x n, celui-ci comprend un miroir et un réseau de diffraction, le miroir, le réseau et les fibres étant fixés dans un bloc de silice solide. Une barrette de fibres d'entrée et une barrette de fibres de sortie parallèles sont placées en face d'une fente photogravée sur un réseau de réflexion plan, perpendiculaire à des rainures. Un miroir concave est apte à transformer un faisceau divergent provenant de l'une quelconque des fibres d'entrée en un faisceau parallèle. Le réseau est quant à lui apte à transformer ce faisceau en le dispersant angulairement vers le miroir concave. Ce faisceau a alors une image formée à une extrémité d'une des fibres de sortie en une position qui dépend de la longueur d'onde. Cette configuration est aplanétique, afocale et a une amplification de 1. Ainsi, tous angles de et vers les fibres étant identiques, les meilleures conditions sont obtenues avec une grande efficacité de couplage, l'achromatisme est parfait et les aberrations sont pratiquement nulles quand le miroir est parabolique.In a particular embodiment of an n x n router, this includes a mirror and a diffraction grating, the mirror, the network and the fibers being fixed in a block of solid silica. A input fiber strip and output fiber strip parallels are placed in front of a photoetched slot on a plane reflection grating, perpendicular to grooves. A mirror concave is able to transform a divergent beam coming from any of the input fibers in a parallel bundle. The network is able to transform this beam by dispersing it angularly towards the concave mirror. This beam then has an image formed at one end of one of the output fibers in a position which depends on the wavelength. This configuration is aplanatic, afocal and has an amplification of 1. Thus, all angles from and towards fibers being identical, the best conditions are obtained with high coupling efficiency, the achromatism is perfect and the aberrations are practically zero when the mirror is parabolic.

Pour le calcul de spécifications, le réseau est avantageusement dans une configuration de Littrow. De plus, on utilise préférentiellement une configuration de type OP (Out of Plane) pour éviter un retour direct vers un amplificateur optique situé à courte distance. Dans cette configuration, le composant utilise une barrette de fibres d'entrée au foyer du dispositif dispersif de réseau, de telle sorte qu'aucune lumière ne peut être couplée directement aux fibres de sortie à une longueur d'onde correspondant à une condition de Littrow. La barrette des fibres de sortie est disposée pour ceci au-dessus de celle des fibres d'entrée.For the calculation of specifications, the network is advantageously in a Littrow configuration. In addition, we preferentially use an OP (Out of Plane) configuration to avoid a direct return to an optical amplifier located short distance. In this configuration, the component uses a strip of fibers entering the home of the dispersive network device, so that no light can be coupled directly to the output fibers at a wavelength corresponding to a Littrow condition. The output fiber strip is arranged for this above that of the input fibers.

Un routeur 8 x 8 référencé 1 conforme à l'invention, représenté sur la Figure 2, comporte huit entrées E1-E8 et huit sorties S1-S8. Ce routeur 8 x 8 est destiné à transmettre des signaux optiques d'une entrée quelconque Ei vers une sortie quelconque Si, dans le sens 5, le trajet du signal optique étant déterminé par sa longueur d'onde. Le routeur 1 comporte deux routeurs 4 x 4 référencés respectivement 30 et 40 qui sont des routeurs 4 x 4 tels que celui précédemment décrit (Figures 1A et 1B). Eventuellement, il peut aussi s'agir de routeurs 4 x 4 traditionnels. Les routeurs 30 et 40 comprennent chacun respectivement quatre entrées 31-34 et 41-44, et quatre sorties 35-38 et 45-48. Les sorties 35-38, 45-48 des routeurs 30 et 40 conduisent directement aux sorties S1-S8 du routeur 1.An 8 x 8 router referenced 1 according to the invention, shown in Figure 2, has eight inputs E1-E8 and eight outputs S1-S8. This 8 x 8 router is intended to transmit optical signals from any input E i to any output S i , in direction 5, the path of the optical signal being determined by its wavelength. Router 1 has two 4 x 4 routers referenced 30 and 40 respectively, which are 4 x 4 routers such as the one previously described (Figures 1A and 1B). Optionally, it can also be traditional 4 x 4 routers. The routers 30 and 40 each include four inputs 31-34 and 41-44 respectively, and four outputs 35-38 and 45-48. The outputs 35-38, 45-48 of routers 30 and 40 lead directly to outputs S1-S8 of router 1.

Le routeur 1 comporte également quatre coupleurs achromatiques en X référencés 10, 15, 20, 25 ayant chacun respectivement deux entrées 11, 12 ; 16, 17 ; 21, 22 et 26, 27, et deux sorties 13, 14 ; 18, 19 ; 23, 24 et 28, 29. Les entrées 11, 12 ; 16, 17 ; 21, 22 ; 26, 27 des coupleurs 10, 15, 20, 25 en X correspondent respectivement aux entrées E1-E8 du routeur 1. Chacun des coupleurs 10, 15, 20, 25 a de plus l'une de ses sorties, respectivement 13, 18, 23, 28, reliées à l'une des entrées, respectivement 31, 32, 33, 34, d'un premier routeur 30, et son autre sortie, respectivement 14, 19, 24, 29, reliée à l'une des entrées, respectivement 41, 42, 43, 44, du second routeur 40.Router 1 also has four couplers achromatic in X referenced 10, 15, 20, 25 each having respectively two inputs 11, 12; 16, 17; 21, 22 and 26, 27, and two outputs 13, 14; 18, 19; 23, 24 and 28, 29. Entries 11, 12; 16, 17; 21, 22; 26, 27 of couplers 10, 15, 20, 25 in X correspond respectively to the inputs E1-E8 of router 1. Each of the couplers 10, 15, 20, 25 also has one of its outputs, respectively 13, 18, 23, 28, connected to one of the inputs, respectively 31, 32, 33, 34, of a first router 30, and its other output, respectively 14, 19, 24, 29, connected to one of the inputs, 41, 42, 43, 44, respectively, of the second router 40.

Les spectres 67 et 68 de transmission respectifs des routeurs 30 et 40, représentés sur la Figure 3, se présentent sous forme de peignes avec des dents, respectivement 71-73 et 74-76. Les spectres 67 et 68 étant tracés selon des axes 65 et 66, respectivement de longueurs d'onde λ et de transmission T, ont leurs dents 71-76 centrées sur des longueurs d'onde de transmission des routeurs 30 et 40. En reprenant la matrice de correspondance précédemment donnée, les dents 71, 72 et 73 du spectre 67 sont, par exemple, respectivement centrées sur les longueurs d'onde λ1, λ2, λ3, les longueurs d'onde λi étant classées en ordre croissant. De façon similaire, les dents 74, 75 et 76 du spectre 68 sont centrées sur les longueurs d'onde λ'1, λ'2, λ'3.The respective transmission spectra 67 and 68 of the routers 30 and 40, represented in FIG. 3, are in the form of combs with teeth, respectively 71-73 and 74-76. The spectra 67 and 68 being plotted along axes 65 and 66, respectively of wavelengths λ and of transmission T, have their teeth 71-76 centered on the transmission wavelengths of routers 30 and 40. By taking up the correspondence matrix previously given, the teeth 71, 72 and 73 of the spectrum 67 are, for example, respectively centered on the wavelengths λ 1 , λ 2 , λ 3 , the wavelengths λ i being classified in ascending order . Similarly, the teeth 74, 75 and 76 of the spectrum 68 are centered on the wavelengths λ ' 1 , λ' 2 , λ ' 3 .

Dans l'exemple de réalisation, les dents 71-76 ont des hauteurs approximativement identiques et égales à H. Des particularités des spectres 67 et 68 sont constituées par les largeurs L des dents 71-76 à mi-hauteur H / 2 et par les espacements D entre les longueurs d'onde λi de transmission successives. En première approximation, les largeurs L à mi-hauteur sont voisines pour l'ensemble des dents, ainsi que les espacements D. Le rapport R = L / D est significatif des capacités des routeurs 30 et 40. Plus ce rapport est grand, plus les capacités de traitement des routeurs 30 et 40 sont élevées.In the embodiment, the teeth 71-76 have heights approximately identical and equal to H. Special features of the spectra 67 and 68 are constituted by the widths L of the teeth 71-76 at mid-height H / 2 and by the spacings D between the successive transmission wavelengths λ i . As a first approximation, the widths L at mid-height are similar for all the teeth, as well as the spacings D. The ratio R = L / D is significant for the capacities of the routers 30 and 40. The larger this ratio, the more the processing capacities of routers 30 and 40 are high.

Les routeurs 30 et 40 sont choisis de telle sorte que leurs longueurs d'onde de transmission λi et λ'i soient intercalées. On a donc: λ'1 < λ1 < λ'2 < λ2 < λ'3 < λ3 The routers 30 and 40 are chosen so that their transmission wavelengths λ i and λ ' i are interposed. So we have: λ ' 1 <λ 1 <λ ' 2 <λ 2 <λ ' 3 3

En fonctionnement, un signal à une longueur d'onde donnée parvient à l'une quelconque des entrées Ei du routeur 1, puis à l'un des coupleurs 10, 15, 20, 25. Le signal est alors transmis aux deux sorties de ce coupleur avec dans chacune une énergie divisée par deux, les coupleurs étant achromatiques. Le signal optique parvient ainsi à une entrée de chacun des routeurs 30, 40. Etant donné que la longueur d'onde du signal correspond à une longueur d'onde de transmission de l'un seulement des spectres 67, 68 des routeurs 30, 40, le signal n'est transmis que dans ce routeur, vers la sortie appropriée sélectionnée en fonction de la longueur d'onde. La sortie Sj visée est ainsi atteinte par le signal.In operation, a signal at a given wavelength arrives at any one of the inputs E i of the router 1, then at one of the couplers 10, 15, 20, 25. The signal is then transmitted to the two outputs of this coupler with in each an energy divided by two, the couplers being achromatic. The optical signal thus reaches an input from each of the routers 30, 40. Since the signal wavelength corresponds to a transmission wavelength of only one of the spectra 67, 68 of the routers 30, 40 , the signal is only transmitted in this router, to the appropriate output selected according to the wavelength. The targeted output S j is thus reached by the signal.

Le routeur 1 dispose donc d'un spectre global de transmission qui admet conjointement les dents 71-76 des deux spectres 67 et 68 des routeurs 30 et 40. A largeur à mi-hauteur constante, égale à L, l'espacement D inter-longueurs d'onde de transmission est ainsi sensiblement réduit, cette réduction pouvant aller jusqu'à un facteur 2. Pour une bande spectrale disponible donnée, le nombre de longueurs d'onde de transmission peut donc être multiplié par 2, et par conséquent également le nombre d'usagers. Le rapport R peut lui-même être multiplié par 2, ce qui rend plus aisée la sélection d'une longueur d'onde de transmission.Router 1 therefore has a global transmission spectrum which jointly admits teeth 71-76 of the two spectra 67 and 68 routers 30 and 40. At constant width at half height, equal to L, the spacing D between transmission wavelengths is thus significantly reduced, this reduction being able to go up to a factor 2. For a given available spectral band, the number of transmission wavelengths can therefore be multiplied by 2, and therefore also the number of users. The R report can itself be multiplied by 2, making selection easier of a transmission wavelength.

Un second exemple de réalisation d'un routeur N x N selon l'invention est fourni par un routeur 12 x 12 de longueur d'onde référencé 2, représenté sur la Figure 4. Ce routeur comporte douze entrées P1-P12 et douze sorties P13-P24. Il comprend également quatre routeurs 3 x 3 de longueur d'onde référencés 130, 140, 150, 160, ayant chacun respectivement trois entrées 131-133, 141-143, 151-153, 161-163 et trois sorties 134-136, 144-146, 154-156 et 164-166. Les sorties des routeurs 130, 140, 150, 160 correspondent respectivement aux sorties P13-P24 du routeur 2.A second example of embodiment of an N x N router according to the invention is provided by a 12 x 12 wavelength router referenced 2, shown in Figure 4. This router has twelve inputs P1-P12 and twelve outputs P13-P24. It also includes four 3 x 3 wavelength routers referenced 130, 140, 150, 160, each having three entries 131-133, 141-143 respectively, 151-153, 161-163 and three outputs 134-136, 144-146, 154-156 and 164-166. The outputs of routers 130, 140, 150, 160 correspond respectively at outputs P13-P24 of router 2.

Le routeur 2 comporte également trois coupleurs achromatiques 4 x 4, référencés 80, 90 et 100. Ces coupleurs comportent chacun quatre entrées, respectivement 81-84, 91-94 et 101-104 et quatre sorties, respectivement 85-88, 95-98 et 105-108. Les entrées des coupleurs 80, 95, 100 correspondent respectivement aux entrées P1-P12 du routeur 2, et les quatre sorties de chacun des coupleurs 80, 90, 100 sont reliées chacune à une entrée d'un des routeurs 130, 140, 150, 160.Router 2 also has three couplers 4 x 4 achromatic, referenced 80, 90 and 100. These couplers each have four entries, respectively 81-84, 91-94 and 101-104 and four outputs, respectively 85-88, 95-98 and 105-108. The inputs of couplers 80, 95, 100 correspond respectively to the inputs P1-P12 of router 2, and the four outputs of each of the couplers 80, 90, 100 are each connected to an input from one of the routers 130, 140, 150, 160.

Chacun des coupleurs 80, 90, 100 est en réalité constitué à partir de quatre coupleurs en X. Ainsi, comme on peut le voir sur la Figure 5, le coupleur 80 comporte quatre coupleurs 2 x 2 référencés 111-114 comprenant chacun deux entrées, respectivement 81, 82 ; 83, 84 ; 125, 126 ; 127, 128 et deux sorties, respectivement 121, 122 ; 123, 124 ; 85, 86 ; 87, 88. Deux des coupleurs en X, 111, 112, sont disposés à un premier niveau, leurs entrées 81-84 étant celles du coupleur 80. Les deux autres coupleurs en X, 113 et 114, sont disposés à un second niveau, leurs sorties 85-88 étant celles du coupleur 80. De plus, les sorties 121-124 de chacun des deux coupleurs 111, 112 du premier niveau sont chacune reliées à une entrée 125-128 d'un des coupleurs 113, 114 du second niveau. Les deux autres coupleurs 4 x 4, 90 et 100, sont réalisés de façon similaire.Each of the couplers 80, 90, 100 is actually made up of from four couplers in X. So, as we can see on the Figure 5, the coupler 80 has four 2 x 2 couplers referenced 111-114 each comprising two inputs, respectively 81, 82; 83, 84; 125, 126; 127, 128 and two outputs, respectively 121, 122; 123, 124; 85, 86; 87, 88. Two of the X couplers, 111, 112, are arranged on a first level, their entries 81-84 being those of coupler 80. The other two couplers in X, 113 and 114, are arranged on a second level, their outputs 85-88 being those of the coupler 80. In addition, the outputs 121-124 of each of the two couplers 111, 112 of the first level are each connected to a input 125-128 of one of the couplers 113, 114 of the second level. The two other 4 x 4 couplers, 90 and 100, are made so similar.

Le routeur 2 comprend de plus 24 coupleurs achromatiques en Y référencés 120, chacun d'eux comprenant un bras principal 115 et deux bras secondaires 116 et 117. Chacune des entrées P1-P12 et des sorties P13-P24 du routeur 2 est reliée au bras principal 115 de l'un des coupleurs en Y 120. Les coupleurs 120 sont destinés à servir de moyens de transmission, à double sens de propagation, les deux branches 116, 117 de chacun des coupleurs 120 étant prévues pour des sens 118, 119 opposés de propagation de signaux. Le routeur 2 est ainsi destiné à des transmissions de signaux, à la fois dans un sens 3 des entrées P1-P12 vers les sorties P13-P24, et dans un sens 4 opposé.Router 2 also includes 24 achromatic couplers in Referenced 120 there, each of them comprising a main arm 115 and two secondary arms 116 and 117. Each of the inputs P1-P12 and of outputs P13-P24 of router 2 is connected to the main arm 115 of one of the Y couplers 120. The 120 couplers are intended for serve as means of transmission, with two-way propagation, two branches 116, 117 of each of the couplers 120 being provided for opposite directions 118, 119 of signal propagation. The router 2 is thus intended for signal transmissions, both in one direction 3 from inputs P1-P12 to outputs P13-P24, and in an opposite direction 4.

Les routeurs 130, 140, 150, 160 ont des spectres 175, 180, 183, 186 de transmission présentant des formes de peignes comportant des dents, respectivement 176-178 ; 181, 182 ; 184, 185 ; 187, 188, centrées sur des longueurs d'onde λ1, λ2, λ3 ; λ'1, λ '2 ; λ''1, λ''2 ; λ'''1, λ'''2.The routers 130, 140, 150, 160 have transmission spectra 175, 180, 183, 186 having comb shapes comprising teeth, respectively 176-178; 181, 182; 184, 185; 187, 188, centered on wavelengths λ 1 , λ 2 , λ 3 ; λ ' 1 , λ'2; λ '' 1 , λ ''2; λ ''' 1 , λ''' 2 .

Les dents des quatre spectres 175, 180, 183, 186 des routeurs 130, 140, 150, 160 sont alternées, c'est-à-dire que l'on a : λ1 < λ'1 < λ''1 < λ'''1 < λ2 < λ'2 < λ"2 < λ'"2 < λ3 The teeth of the four spectra 175, 180, 183, 186 of the routers 130, 140, 150, 160 are alternated, that is to say that we have: λ 1 <λ ' 1 <λ '' 1 <λ ''' 1 <λ 2 <λ ' 2 <λ " 2 <λ '" 2 3

En fonctionnement, un signal à une longueur d'onde donnée parvient à l'une des entrées d'un des coupleurs 80, 90 ou 100 et est transmis aux quatre sorties de ce coupleur 4 x 4 avec une réduction d'énergie par un facteur 4. Le signal optique est ainsi transmis à une entrée de chacun des quatre routeurs 130, 140, 150, 160. Etant donné que la longueur d'onde du signal n'est qu'une longueur d'onde de transmission d'un seulement des spectres 175, 180, 183, 186 des routeurs 3 x 3, la transmission du signal n'a lieu que dans ce routeur, vers la sortie sélectionnée en fonction de la longueur d'onde du signal.In operation, a signal at a given wavelength reaches one of the inputs of one of the couplers 80, 90 or 100 and is transmitted to the four outputs of this 4 x 4 coupler with a reduction energy by a factor of 4. The optical signal is thus transmitted to a input of each of the four routers 130, 140, 150, 160. Being since the signal wavelength is only a wavelength transmission of only one of the spectra 175, 180, 183, 186 of 3 x 3 routers, signal transmission only takes place in this router, to the selected output according to the wavelength of the signal.

Le routeur 2 présente donc un spectre général de transmission ayant l'ensemble des dents 176-178, 181, 182, 184, 185, 187, 188 des spectres 175, 180, 183, 186 des quatre routeurs 130, 140, 150, 160. La largeur à mi-hauteur des dents est ainsi conservée, et l'espacement inter-longueurs d'onde de transmission sensiblement réduit, cette réduction pouvant atteindre un facteur 4. Qui plus est, des signaux peuvent parvenir simultanément des sorties P13-P24 vers les entrées P1-P12, selon le même principe. Une même longueur d'onde peut ainsi être utilisée dans les deux sens de communication entre deux usagers, ce qui multiplie par deux les capacités du routeur 2.Router 2 therefore has a general transmission spectrum having the set of teeth 176-178, 181, 182, 184, 185, 187, 188 spectra 175, 180, 183, 186 of the four routers 130, 140, 150, 160. The width at mid-height of the teeth is thus preserved, and the inter-wavelength spacing of transmission substantially reduced, this reduction being able to reach a factor of 4. Furthermore, signals can come simultaneously from outputs P13-P24 to inputs P1-P12, according to the same principle. The same wavelength can thus be used in both directions of communication between two users, which doubles the router capabilities 2.

Les pertes d'énergie des routeurs 1 et 2 sont faibles, correspondant respectivement à des facteurs de l'ordre de 2 et de 4. La présence d'amplificateurs optiques dans les dispositifs de commutation permet de compenser les effets de ces pertes. Il est cependant possible de rendre les pertes dues aux coupleurs négligeables, en association les coupleurs à des moyens de sélection de longueurs d'onde. Ces moyens peuvent être obtenus, par exemple, par un interféromètre à deux ondes, tel qu'un interféromètre de Michelson qui peut être disposé dans une plaquette optique intégrée. Dans ce cas, le signal optique sortant d'un des coupleurs n'est transmis sélectivement que vers le routeur ayant une longueur d'onde de transmission correspondant à la longueur d'onde du signal.The energy losses of routers 1 and 2 are low, corresponding to factors of the order of 2 and 4 respectively. The presence of optical amplifiers in the switching compensates for the effects of these losses. It is however possible to make losses due to couplers negligible, in combination with couplers and selection means wavelengths. These means can be obtained, for example, by a two-wave interferometer, such as a Michelson which can be placed in an integrated optical plate. In this case, the optical signal leaving one of the couplers is not transmitted selectively only to the router having a wavelength of transmission corresponding to the wavelength of the signal.

Bien que les dents des peignes de routeurs n x n distincts aient été représentées dissociées, elles peuvent également de chevaucher, l'important étant le centrage de chacune des dents sur une longueur d'onde de transmission donnée. Dans les exemples représentés, on a montré des spectres dont les dents des différents routeurs sont intercalées; Cependant, tout autre moyen d'obtenir un recouvrement complémentaire du spectre peut convenir. En particulier, l'alternance de composantes spectrales d'un routeur à l'autre peut concerner des bandes et non plus des dents, chaque bande comprenant plusieurs dents. Cette configuration est avantageuse en particulier si l'espacement inter-longueurs d'onde de transmission est irrégulier, les dents étant regroupées par paquets.Although the teeth of the combs of separate n x n routers have been shown dissociated, they can also overlap, the important thing being the centering of each of the teeth over a length given transmission wave. In the examples shown, we have shown spectra whose teeth of different routers are interleaved; However, any other means of obtaining recovery complementary to the spectrum may be suitable. In particular, the alternation of spectral components from one router to another can relate to bands and no longer teeth, each band comprising several teeth. This configuration is advantageous in particular if the spacing Inter-wavelength transmission is irregular, the teeth being grouped by packages.

On conçoit que les routeurs 4 x 4 et 3 x 3 élémentaires respectivement employés dans les routeurs 1 et 2 peuvent être eux-mêmes des routeurs selon l'invention.We can see that the basic 4 x 4 and 3 x 3 routers respectively used in routers 1 and 2 can be themselves routers according to the invention.

Cette possibilité s'avère surtout intéressante en présence d'un nombre n plus élevé d'entrées et de sorties, l'invention pouvant être appliquée en cascade sur deux niveaux ou davantage.This possibility is especially interesting in the presence of a higher number n of inputs and outputs, the invention can be applied in cascade on two or more levels.

Une version améliorée du procédé de routage mis en oeuvre avec le routeur N x N de l'invention peut être réalisée.An improved version of the routing process implemented with the router N x N of the invention can be implemented.

Considérant, par exemple, le routeur 1 précédemment décrit (Figure 2), il est souhaitable que plusieurs quelconques des entrées E1-E8 puissent communiquer simultanément avec une même des sorties S1-S8. Dans la version de base précédemment exposée, la transmission de signaux provenant de deux entrées associées à un même coupleur 2 x 2, par exemple les entrées E1 et E2 et le coupleur 10, et dirigés vers une même sortie, par exemple S1, provoque un brouillage entre les deux signaux.Considering, for example, router 1 previously described (Figure 2), it is desirable that several any of the inputs E1-E8 can communicate simultaneously with the same outputs S1-S8. In the basic version previously exposed, the transmission of signals from two inputs associated with a same 2 x 2 coupler, for example the inputs E1 and E2 and the coupler 10, and directed to the same output, for example S1, causes a interference between the two signals.

Pour y remédier, un premier mode de mise en oeuvre consiste à envoyer, respectivement en E1 et E2, des signaux ayant des longueurs d'onde distinctes, mais disposés sur une même dent du spectre 67 de transmission du routeur 30, comme représenté sur la Figure 7. Ainsi, si la dent 71 du spectre 67 correspond à un chemin optique de l'entrée 31 du routeur 30 vers la sortie S1, la longueur d'onde pour E1 vaut λ1a et celle pour E2, λ1b. Les longueurs d'onde λ1a, λ1b sont disposées de façon à produire sur la dent 71 des amplitudes de transmission de préférence élevées, c'est-à-dire proches de la valeur maximale 70 atteinte approximativement pour la longueur d'onde λ1 moyenne, sur laquelle est centrée la dent 71. Les longueurs λ1a et λ1b sont donc préférentiellement proches de λ1. Qui plus est, elles sont avantageusement symétriques par rapport à λ1, de façon à ce que les amplitudes de transmission correspondantes soient égales ou voisines.To remedy this, a first embodiment consists in sending, respectively at E1 and E2, signals having distinct wavelengths, but arranged on the same tooth of the transmission spectrum 67 of the router 30, as shown in the Figure 7. Thus, if tooth 71 of spectrum 67 corresponds to an optical path from input 31 of router 30 to output S1, the wavelength for E1 is equal to λ 1a and that for E2, λ 1b . The wavelengths λ 1a , λ 1b are arranged so as to produce on the tooth 71 preferably high amplitudes of transmission, that is to say close to the maximum value 70 reached approximately for the wavelength λ 1 average, on which the tooth 71 is centered. The lengths λ 1a and λ 1b are therefore preferably close to λ 1 . What is more, they are advantageously symmetrical with respect to λ 1 , so that the corresponding transmission amplitudes are equal or close.

Grâce à cette dissociation des longueurs d'onde des signaux envoyés en E1 et E2, les signaux reçus simultanément en S1 à partir de E1 et E2 peuvent être reconstitués par séparation des longueurs d'onde λ1a et λ1b. Cette séparation peut, par exemple, être menée au moyen d'un filtre de détection cohérente.Thanks to this dissociation of the wavelengths of the signals sent in E1 and E2, the signals received simultaneously in S1 from E1 and E2 can be reconstructed by separation of the wavelengths λ 1a and λ 1b . This separation can, for example, be carried out by means of a coherent detection filter.

Il est clair que le même mode de mise en oeuvre est applicable à l'ensemble des entrées E1-E8 du routeur 1, par dissociation systématique des deux longueurs d'onde correspondant respectivement aux deux entrées de chacun des coupleurs 2 x 2, 10, 15, 20, 25, et à une des dents 71-76 d'un des spectres 67, 68, selon la sortie S1-S8 visée.It is clear that the same mode of implementation is applicable to all of the inputs E1-E8 of router 1, by dissociation systematic of the two corresponding wavelengths respectively to the two inputs of each of the 2 x 2, 10, 15, 20, 25 couplers, and to one of teeth 71-76 from one of spectra 67, 68, according to output S1-S8 referred.

Selon un mode de mise en oeuvre du procédé de routage, pour envoyer simultanément des signaux des E1 et E2 vers S1, on choisit respectivement deux longueurs d'onde d'ordres distincts, permettant toutes deux aux signaux d'être dirigés de l'entrée 31 du routeur 30 vers sa sortie 35.According to an embodiment of the routing method, for simultaneously send signals from E1 and E2 to S1, we choose respectively two wavelengths of distinct orders, allowing both signals to be routed from input 31 of router 30 to its exit 35.

En pratique, des ordres élevés sont nécessaires, ce qui rend avantageuse la présence d'un échelon de Michelson dans le routeur 30. In practice, high orders are necessary, which makes advantageous the presence of a Michelson echelon in router 30.

Ce mode de mise en oeuvre est, comme le premier, applicable à l'ensemble des entrées E1-E8, les deux modes pouvant être éventuellement combinés. Par exemple, l'un ou l'autre peut être employé selon les dents du spectre.This method of implementation is, like the first, applicable to all of the inputs E1-E8, the two modes can be possibly combined. For example, one or the other can be used according to the spectrum teeth.

Le procédé de routage décrit, consistant à envoyer vers les entrées d'un même coupleur des signaux avec des longueurs d'onde distinctes, pour les transmettre simultanément vers une même sortie du routeur N X N, est valable également pour m supérieur à 2.The routing method described, consisting of sending to the inputs of the same signal coupler with wavelengths separate, to transmit them simultaneously to the same output of the router N X N, is also valid for m greater than 2.

Par exemple, dans le routeur 2 décrit précédemment (Figure 4), on peut envoyer simultanément des signaux des quatre entrées P1-P4 associées au coupleur 80 vers la même sortie P13 du routeur 2. Pour ce faire, les quatre signaux correspondant respectivement aux quatre entrées P1-P4 ont des longueurs d'onde distinctes.For example, in router 2 described above (Figure 4), signals from the four inputs P1-P4 can be sent simultaneously associated with coupler 80 to the same output P13 of router 2. For this do, the four signals corresponding respectively to the four P1-P4 inputs have separate wavelengths.

Dans le premier mode de mise en oeuvre, les quatre longueurs d'onde sont réparties dans la dent du spectre 175 associée à la transmission d'un signal de l'entrée 131 du routeur 130 vers sa sortie 134, cette dent étant, par exemple, celle référencée 176. Les quatre longueurs d'onde sont avantageusement disposées à proximité de λ1, et symétriquement par rapport à elle.In the first embodiment, the four wavelengths are distributed in the tooth of the spectrum 175 associated with the transmission of a signal from the input 131 of the router 130 to its output 134, this tooth being, for example , that referenced 176. The four wavelengths are advantageously arranged close to λ 1 , and symmetrically with respect to it.

Dans le second mode de mise en oeuvre, elles ont des ordres distincts.In the second mode of implementation, they have orders distinct.

Bien sûr, il est possible qu'une partie seulement des quatre entrées P1-P4 reçoivent des signaux simultanément, en direction de la sortie P13.Of course, it is possible that only part of the four inputs P1-P4 receive signals simultaneously, towards the output P13.

Les sources lumineuses reliées aux entrées P1-P12 du routeur 2 et les moyens de détection reliés aux sorties P13-P24 sont cependant de préférence prévus pour respectivement émettre et détecter automatiquement des signaux aux longueurs d'onde distinctes définies dans le procédé de routage choisi, ce qui permet une reconnaissance des signaux dans tous les cas de figure.The light sources connected to the P1-P12 inputs of router 2 and the detection means connected to the outputs P13-P24 are however preferably provided for respectively transmitting and detecting automatically signals at defined distinct wavelengths in the routing process chosen, which allows recognition signals in all cases.

Le routeur de l'invention peut être réalisé dans une technologie à base de fibres optiques ou encore en optique intégrée.The router of the invention can be implemented in a technology based on optical fibers or in integrated optics.

Le routeur N x N de l'invention peut faire l'objet d'une mise en oeuvre partielle, seule une partie de ses N entrées étant utilisées pour recevoir des signaux optiques. Le nombre des N entrées effectivement en service étant égal à M, avec M < N, le routeur N x N se comporte alors comme un routeur M x N.The router N x N of the invention can be the subject of an implementation partial work, only part of its N entries being used to receive optical signals. The number of N entries actually in service being equal to M, with M <N, the router N x N then behaves like an M x N router.

Exemple 1Example 1

Dans ce premier exemple d'application, le routeur selon l'invention est un routeur 40 x 40 comprenant deux routeurs 20 x 20 et 20 coupleurs achromatiques en X. Chacun des routeurs 20 x 20 correspond à un composant en silice, avec une focale de 119,512 mm, un réseau de 600 traits/mm, avec un porte-fibre à double barrette de fibres espacées de 42,54 µm. Le premier routeur est en autocollimation au centre du champ pour 1548,5145 nm, et le second routeur a un spectre décalé d'une demi-période grâce à une autocollimation à 1548,5145 ± 0,4 nm. Une double barrette de 20 fibres également espacées est disposée au foyer.In this first application example, the router according to the invention is a 40 x 40 router comprising two 20 x 20 routers and 20 achromatic couplers in X. Each of the 20 x 20 routers corresponds to a silica component, with a focal length of 119.512 mm, a network of 600 lines / mm, with a fiber holder with double strip of fibers spaced 42.54 µm apart. The first router is in collimation in the center of the field for 1548.5145 nm, and the second router has a spectrum shifted by half a period thanks to a stickers at 1548.5145 ± 0.4 nm. A double bar of 20 equally spaced fibers is disposed at the hearth.

Les longueurs d'onde de transmission du premier routeur 20 x 20 vont de 1533,2 nm à 1563,9 nm avec un espacement inter-longueurs d'onde de transmission de 0,8 nm.The transmission wavelengths of the first router 20 x 20 range from 1533.2 nm to 1563.9 nm with inter-length spacing 0.8 nm transmission wave.

Les spectres des routeurs 20 x 20 sont tels que la largeur à mi-hauteur des dents, qui ont approximativement une forme gaussienne, vaut 0,25 nm ± 0,02 nm. De plus, les routeurs 20 x 20 ont les propriétés suivantes :

  • pertes de 4 dB ± 1 dB;
  • diaphotie intrinsèque < - 55 dB d'une voie à une autre ;
  • perte retour < - 25 dB ;
  • sensibilité de polarisation < 1 dB ;
  • élargissement d'impulsion dû au réseau égal à 38,6 ps ;
  • précision de voie de longueur d'onde : ± 0,05 nm.
The spectra of the 20 x 20 routers are such that the width at half height of the teeth, which have approximately a Gaussian shape, is 0.25 nm ± 0.02 nm. In addition, 20 x 20 routers have the following properties:
  • losses of 4 dB ± 1 dB;
  • intrinsic crosstalk <- 55 dB from one channel to another;
  • return loss <- 25 dB;
  • polarization sensitivity <1 dB;
  • pulse widening due to the network equal to 38.6 ps;
  • wavelength channel accuracy: ± 0.05 nm.

L'espacement entre longueurs d'onde de transmission (valant 0,8 nm) est choisi constant, ce qui évite des pertes additionnelles pouvant atteindre 3 dB. The spacing between transmission wavelengths (equal 0.8 nm) is chosen constant, which avoids additional losses up to 3 dB.

Les routeurs 20 x 20 sont compatibles avec des débits de 10 Gbit/seconde sur chaque voie.20 x 20 routers are compatible with data rates of 10 Gbit / second on each channel.

La matrice de longueur d'onde 20 x 20 du premier routeur 20 X 20 a été calculée en prenant en compte l'indice exact de silice de chaque longueur d'onde, par ajustement itératif à des valeurs de référence. La matrice obtenue est représentée sur la Figure 8 ; les 20 colonnes correspondant aux entrées, et les 20 lignes aux sorties. Les valeurs indiquées sont exprimées en nm. Le défaut d'ajustement reste inférieur à 0,008 nm, ce qui est négligeable.The 20 x 20 wavelength matrix of the first 20 X router 20 was calculated taking into account the exact silica index of each wavelength, by iterative adjustment to values of reference. The matrix obtained is shown in Figure 8; the 20 columns corresponding to the inputs, and the 20 rows to the outputs. The indicated values are expressed in nm. The default of adjustment remains less than 0.008 nm, which is negligible.

Exemple 2Example 2

Un routeur 80 x 80 comprend deux routeurs 40 x 40 et 40 coupleurs achromatiques en X.An 80 x 80 router includes two 40 x 40 and 40 routers achromatic couplers in X.

Les routeurs 40 x 40 vérifient les spécifications qui suivent :

  • espacement inter-longueurs d'onde de transmission : 0,4 nm
  • largeur à mi-hauteur des dents : 0,25 nm ± 0,03 nm
  • pertes < 7 dB ± 2 dB ;
  • diaphotie d'une voie à une autre < - 60 dB.
The 40 x 40 routers verify the following specifications:
  • transmission wavelength spacing: 0.4 nm
  • width at mid-height of the teeth: 0.25 nm ± 0.03 nm
  • losses <7 dB ± 2 dB;
  • crosstalk from one channel to another <- 60 dB.

Ces routeurs 40 x 40 sont compatibles avec des débits de Gbit/seconde sur chaque voie.These 40 x 40 routers are compatible with data rates of Gbit / second on each channel.

Exemple 3Example 3

Un routeur 6 x 6 comporte deux routeurs 3 x 3 réalisés à l'aide de 6 multiplexeurs faits chacun en technologie à fonction optique partagée avec focale 119,512 mm, espace entre fibres 32 µm et réseau de 300 traits/mm.A 6 x 6 router has two 3 x 3 routers made using 6 multiplexers each made in technology with shared optical function with focal length 119.512 mm, space between fibers 32 µm and network of 300 lines / mm.

Les multiplexeurs du premier routeur 3 x 3 sont associés aux longueurs d'onde 1552,517 nm, 1550,916 nm et 1549,315 nm. Ceux du second routeur 3 x 3, aux mêmes longueurs d'onde décalées de ±0,8 nm.The multiplexers of the first 3 x 3 router are associated with wavelengths 1552.517 nm, 1550.916 nm and 1549.315 nm. Those the second 3 x 3 router, at the same wavelengths offset by ± 0.8 nm.

Le routeur 6 x 6 comporte également 3 coupleurs en X réalisés en technique de fibres fusionnées à coeurs rapprochés (fused coupler).The 6 x 6 router also has 3 X couplers made in fused fibers technique with close hearts (fused coupler).

Claims (15)

  1. An N x N wavelength router (1, 2) comprising N inputs (E1-E8, P1-P12) and N outputs (S1-S8, P13-P24) provided to transmit optical signals each having a wavelength from the inputs to the outputs, the N x N router (1, 2) also comprising switching means capable of directing each of the optical signals from any one of the N inputs to any one of the N outputs according to the wavelength of said signal, the switching means comprising :
    n m x m couplers (10, 15, 20, 25, 80, 90, 100) each having m inputs (11, 12, 16, 17, 21, 22, 26, 27, 81-84, 91-94, 101-104) et m outputs (13, 14, 18, 19, 23, 24, 28, 29, 85-88, 95-98, 105-108), N being equal to n x m and the N inputs of the n m x m couplers (10, 15, 20, 25, 80, 90, 100) being the inputs (E1-E8, P1-P12) of the N x N router (1,2),
    m n x n routers (30, 40, 130, 140, 150, 160) each having n inputs (31-34, 41-44, 131-133, 141-143, 151-153, 161-163) and n outputs (35-38, 45-48, 134-136, 144-146, 154-156, 164-166), each of said n inputs being connected to one of the outputs of, respectively, the n m x m couplers (10, 15, 20, 25, 80, 90, 100) and the N outputs of the m n x n routers (30, 40, 130, 140, 150, 160) being the outputs (S1-S8, P13-P24) of the N x N router, each of the n x n routers being capable of switching an optical signal having a wavelength, from any one of its n inputs to any one of its n outputs, according to the wavelenght of said signal, said n x n router (30, 40, 130, 140, 150, 160) having a transmission spectrum (67, 68, 175, 180, 183, 186) according to the wavelength in the form of a series of peaks, characterized in that the series of peaks of the m n x n routers are different one another in order to allow a selection according to the wavelength for any one of said N inputs (E1-E8, P1-P12) of the N x N router (1, 2), both one of the m n x n routers and one of the n outputs of said n x n router.
  2. An N x N router according to Claim 1, characterized in that the transmission spectrum (67, 68, 175, 180, 183, 186) of each of the m n x n routers (30, 40, 130, 140, 150, 160) comprising wavelength bands and each of said bands comprising series of peaks (71-76, 176-178, 181, 182, 184, 185, 187, 188), the transmission spectra of m n x n routers comprise intercalated bands.
  3. An N x N router according to Claim 2, wherein the series of peaks (67, 68, 175, 180, 183, 186) of the m n x n routers (30, 40, 130, 140, 150, 160) have their peaks (71-76, 176-178, 181, 182, 184, 185, 187, 188) intercalated.
  4. An N x N router according to any one of the previous claims characterized in that the series of peaks (67, 68, 175, 180, 183, 186) of the m n x n routers (30, 40, 130, 140, 150, 160) have peaks (71-76, 176-178, 181, 182, 184, 185, 187, 188) which are completely dissociated from peaks of others series of peaks.
  5. An N x N router according to any one of the previous claims characterized in that each of the m x m couplers (10, 15, 20, 25, 80, 90, 100) is an achromatic coupler with uniform distribution of energy between the outputs thereof (13, 14, 18, 19, 23, 24, 28, 29, 85-88, 95-98, 105-108).
  6. An N x N router according to any one of claims 1 to 4, characterized in that each of the m x m couplers (10, 15, 20, 25, 80, 90, 100) is a wavelength distribution coupler capable of transmitting the energy of an optical signal having a wavelength, only through the output of said in x m coupler connected to the n x n router (30, 40, 130, 140, 150, 160) whose series of peaks (67, 68, 175, 180, 183, 186) includes said wavelength.
  7. An N x N router according to any one of the previous claims characterized in that the m x m couplers (10, 15, 20, 80, 90, 100) are made up of 2 x 2 couplers (10, 15, 20, 111-114), each having two inputs (11, 12, 16, 17, 21, 22, 26, 27, 81-84, 125-128) and two outputs (13, 14, 18, 19, 23, 24, 28, 29, 85-88, 121-124).
  8. An N x N router according to Claim 7, characterized in that it comprises a first level of 2 x 2 couplers (111, 112) whose inputs (81-84) are the inputs (P1-P4) of the N x N router (2), and a final level of 2 x 2 couplers (113-114) whose outputs (85-88) are connected to the inputs (131, 141, 151, 161) of the n x n routers (130, 140, 150, 160), the inputs (125-128) of the 2 x 2 couplers (113, 114) which do not belong to said first level being connected to the outputs (121-124) of 2 x 2 couplers (111, 112) and the outputs (121-124) of the 2 x 2 couplers (111, 112) which do not belong to said final level being connected to the inputs (125-128) of 2 x 2 couplers (113, 114).
  9. An N x N router according to any one of the previous claims characterized in that it comprises Y couplers (120) each having a main arm (115) and two secondary arms (116, 117), the inputs (P1-P12) and the outputs (P13-P24) of the N x N router (2) being connected to the main arms (115) of said Y couplers (120), said N x N router (2) allowing the sending of optical signals simultaneously from its inputs to its outputs and from its outputs to its inputs, said optical signals circulating in opposite directions (3, 4) in the two secondary arms (116, 117) of each of the Y couplers.
  10. An N x N router according to any one of the previous claims characterized in that each of the n x n routers comprises :
    a transmission medium comprising a first row of n inputs and a second row of n outputs, the first and second rows being arranged in parallel and the transmission medium having a planar transmission surface,
    a diffracting element positioned opposite said transmission surface,
    a focusing lens positioned between the transmission medium and the diffracting element,
    the diffracting element and the focusing lens being capable of producing, from any one of the inputs, an image corresponding to any one of the outputs, according to the wavelength of said optical signals.
  11. A method of optical routing carried out by means of an N x N router (1, 2) according to any one of the previous claims, wherein optical signals, each having a wavelength, are sent from the inputs (E1-E8, P1-P12) of the N x N router to its outputs (S1-S8, P13-P24) characterized in that to be able to send optical signals simultaneously from at least two of the m inputs (11, 12, 16, 17, 21, 22, 26, 27, 81-84, 91-94-101-104) of at least one of the n m x m couplers (10, 15, 20, 25, 80, 90, 100) in the direction of the same of N outputs (S1-S8, P13-P24) of the N x N router (1, 2) without risk of interference, said optical signals have wavelengths which are distinct one from another.
  12. A method of optical routing according to Claim 11, characterized in that said output (S1-S8) of the N x N router (1) being one of n outputs (35-38, 45-48) from one of the m n x n routers (30, 40) and the series of peaks (67, 68) of said n x n router (30, 40) having peaks (71-76), the wavelengths of said optical signals are distributed within one of said peaks (71-76).
  13. A method of optical routing according to Claim 11, characterized in that the wavelengths of said optical signals have distinct orders.
  14. A communication network comprising at least one N x N router (1, 2) according to any one of claims 1 to 10.
  15. A communication network comprising at least one N x N router (1, 2) implementing a routing method according to any one of claims 11 to 13.
EP96402801A 1996-01-09 1996-12-18 N x N wavelength router and associated optical routing method and communication network Expired - Lifetime EP0784413B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9600170A FR2743430A1 (en) 1996-01-09 1996-01-09 Switching matrix router for optical communications networks
FR9600170 1996-01-09
FR9602496 1996-02-28
FR9602496A FR2743424B1 (en) 1996-01-09 1996-02-28 WAVELENGTH ROUTER N X N, OPTICAL ROUTING PROCESS AND ASSOCIATED COMMUNICATIONS NETWORK

Publications (2)

Publication Number Publication Date
EP0784413A1 EP0784413A1 (en) 1997-07-16
EP0784413B1 true EP0784413B1 (en) 2002-10-30

Family

ID=26232426

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96402801A Expired - Lifetime EP0784413B1 (en) 1996-01-09 1996-12-18 N x N wavelength router and associated optical routing method and communication network

Country Status (4)

Country Link
US (1) US5838848A (en)
EP (1) EP0784413B1 (en)
DE (1) DE69624551T2 (en)
FR (1) FR2743424B1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631018B1 (en) 1997-08-27 2003-10-07 Nortel Networks Limited WDM optical network with passive pass-through at each node
US6525850B1 (en) 1998-07-17 2003-02-25 The Regents Of The University Of California High-throughput, low-latency next generation internet networks using optical label switching and high-speed optical header generation, detection and reinsertion
US6580537B1 (en) 1998-07-17 2003-06-17 Regents Of The University Of California, The High-throughput, low-latency next generation internet networks using optical label switching and high-speed optical header generation, detection and reinsertion
US6111673A (en) 1998-07-17 2000-08-29 Telcordia Technologies, Inc. High-throughput, low-latency next generation internet networks using optical tag switching
US6307653B1 (en) * 1999-03-24 2001-10-23 Tellium, Inc Optical matrix protection system
CA2371100C (en) * 1999-04-30 2012-10-02 University Of Southampton An optical fibre arrangement
US6304692B1 (en) 1999-09-03 2001-10-16 Zolo Technologies, Inc. Echelle grating dense wavelength division multiplexer/demultiplexer with two dimensional single channel array
US6519062B1 (en) * 2000-02-29 2003-02-11 The Regents Of The University Of California Ultra-low latency multi-protocol optical routers for the next generation internet
US6426831B1 (en) 2000-02-29 2002-07-30 Massachusetts Institute Of Technology EIT based optical switch/wavelength converter
US6366717B1 (en) * 2000-03-22 2002-04-02 Marconi Communications, Inc. Apparatus for distributing optical fiber transmission paths
US6594437B1 (en) 2000-08-15 2003-07-15 Fci Americas Technology, Inc. Optical fiber separation and regrouping device
US6597452B1 (en) 2000-11-17 2003-07-22 Jobin Yvon, Inc. Compact littrow-type scanning spectrometer
US6757496B2 (en) 2001-01-30 2004-06-29 The Regents Of The University Of California Optical layer multicasting using a single sub-carrier header and an optical multicasting switch
US6768871B2 (en) 2001-01-30 2004-07-27 The Regents Of The University Of California Optical layer multicasting using a multicast switch to effect survivability and security
US6813276B2 (en) 2001-01-30 2004-11-02 The Regents Of The University Of California Optical layer multicasting using a single sub-carrier header with active header detection, deletion, and re-insertion via a circulating optical path
US6819666B2 (en) 2001-01-30 2004-11-16 The Regents Of The University Of California Optical layer multicasting using multiple sub-carrier headers with header detection, deletion, and insertion via reflective single sideband optical processing
US6850515B2 (en) 2001-01-30 2005-02-01 The Regents Of The University Of California Optical layer multicasting using a single sub-carrier header and a multicast switch with active header insertion via light circulation
US6934472B2 (en) * 2001-01-30 2005-08-23 The Regents Of The University Of California Optical layer multicasting using a single sub-carrier header and a multicast switch with active header insertion
US6757497B2 (en) 2001-01-30 2004-06-29 The Regents Of The University Of California Optical layer multicasting using a single sub-carrier header and a multicast switch with active header insertion via reflective single sideband optical processing
US6850707B1 (en) 2001-01-30 2005-02-01 The Regents Of The University Of California Secure optical layer multicasting to effect survivability
US6873797B2 (en) 2001-01-30 2005-03-29 The Regents Of The University Of California Optical layer multicasting
US6754450B2 (en) 2001-01-30 2004-06-22 The Regents Of The University Of California Optical layer multicasting using a single sub-carrier header with active header detection, deletion, and new header insertion via opto-electrical processing
KR100399049B1 (en) * 2001-04-16 2003-09-26 한국전자통신연구원 High wavelength selector, and multi-channel selector for space and wavelength in high speed optical integrated circuit using the High wavelength selector
US8086101B2 (en) * 2002-03-08 2011-12-27 Altera Corporation Multi-city DWDM wavelength link architectures and methods for upgrading
US6813408B2 (en) * 2002-03-08 2004-11-02 Pts Corporation Methods for performing in-service upgrades of optical wavelength cross connects
US6990268B2 (en) * 2002-03-08 2006-01-24 Pts Corporation Optical wavelength cross connect architectures using wavelength routing elements
AU2003218086A1 (en) * 2002-03-08 2003-09-22 Pts Corporation Optical wavelength cross connect architectures using wavelength routing elements and methods for performing in-service upgrades
US7079723B2 (en) * 2002-03-08 2006-07-18 Pts Corporation Optical wavelength cross connect architectures using wavelength routing elements
US7149425B2 (en) * 2002-04-30 2006-12-12 Lucent Technologies Inc. Monitoring system for an optical transmitter
JP4291281B2 (en) * 2005-02-03 2009-07-08 富士通株式会社 Information processing system, calculation node, and information processing system control method
EP2083298B1 (en) 2008-01-23 2017-05-10 Yenista Optics Optical device comprising a compact dispersing system
US8625994B2 (en) * 2008-03-11 2014-01-07 Ciena Corporation Directionless reconfigurable optical add-drop multiplexer systems and methods
US8849115B2 (en) 2008-03-11 2014-09-30 Ciena Corporation Directionless optical architecture and highly available network and photonic resilience methods
US9331807B2 (en) * 2012-10-15 2016-05-03 Telefonaktiebolaget L M Ericsson (Publ) Service edge hub device and methods in an optical network node
WO2020086744A1 (en) * 2018-10-23 2020-04-30 The Regents Of The University Of California Wavelength-division multiplexer comprising cascaded optical couplers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485297A (en) * 1992-10-09 1996-01-16 Alcatel N.V. Optical switching matrix
US5657406A (en) * 1994-09-23 1997-08-12 United Technologies Corporation Efficient optical wavelength multiplexer/de-multiplexer
US5668652A (en) * 1995-02-24 1997-09-16 Nippon Telegraph & Telephone Corporation Optical WDM (wavelength division multiplexing) transmission system and method for configuring the same

Also Published As

Publication number Publication date
EP0784413A1 (en) 1997-07-16
DE69624551T2 (en) 2003-09-04
DE69624551D1 (en) 2002-12-05
US5838848A (en) 1998-11-17
FR2743424A1 (en) 1997-07-11
FR2743424B1 (en) 1998-03-27

Similar Documents

Publication Publication Date Title
EP0784413B1 (en) N x N wavelength router and associated optical routing method and communication network
US8320769B2 (en) Transverse-mode multiplexing for optical communication systems
US6269203B1 (en) Holographic optical devices for transmission of optical signals
FR2741494A1 (en) METHOD AND APPARATUS FOR BLURRING POLARIZATION OF SIGNAL LIGHTS FORMING MULTIPLEXED SIGNAL LIGHT BY WAVELENGTH DISTRIBUTION
US7509048B2 (en) Method and apparatus for optical signal processing using an optical tapped delay line
EP0005093B1 (en) Optical demultiplexing integrated circuit and process for the manufacture of this circuit
FR2609180A1 (en) MULTIPLEXER-DEMULTIPLEXER USING AN ELLIPTICAL CONCAVE NETWORK AND REALIZED IN INTEGRATED OPTICS
CN1290433A (en) Optical device for monitoring multi-wavelength signals
EP1014607B1 (en) Method for reducing intensity distortions caused by cross-phase modulation in an optical WDM transmission system
FR2788596A1 (en) PHASE NETWORK DEVICE MODULE AND DEVICE FOR MONITORING AN OPTICAL SIGNAL USING THE MODULE
WO2001095540A2 (en) Device and method for optical performance monitoring in an optical communications network
FR2731573A1 (en) Optical multiplexer-demultiplexer e.g. for telephone signals
FR2743430A1 (en) Switching matrix router for optical communications networks
FR2829629A1 (en) LOW NOISE OPTICAL AMPLIFIER AND OPTICAL COMMUNICATION SYSTEM USING THE SAME
EP0487391A1 (en) Multiple way bidirectional optical transceiver module and optical repeater using this module
US20030091276A1 (en) Grating-based MUX/DMUX with expanded waveguides
EP1867086B1 (en) Optical transmission between a first unit and a plurality of second units interconnected by means of a passive optical access network
EP1433006B1 (en) Optical component with spectral separation
FR3139396A1 (en) Optical router for optical signal distribution
CN119254332A (en) A dense wavelength division multiplexing underwater wireless optical communication system
Dianov et al. Wavelength-division multiplexing of channels in fiber-opticcommunication lines
FR2832882A1 (en) Communications network cyclic router having wavelength band spectral dispersion mechanism with cyclic router made up from non cyclic router with input port division
EP2282430B1 (en) Device for multipath dropping of WDM channels
US20020033976A1 (en) Method and device for switching wavelength division multiplexed optical signals using gratings
CA2266116C (en) Multiplexors with a flat top spectral channel shape

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19980116

17Q First examination report despatched

Effective date: 19990305

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HIGHWAVE OPTICAL TECHNOLOGIES

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021129

Year of fee payment: 7

REF Corresponds to:

Ref document number: 69624551

Country of ref document: DE

Date of ref document: 20021205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021218

Year of fee payment: 7

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030130

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST