EP0783619B1 - Method of operating a gas and steam turbine plant - Google Patents
Method of operating a gas and steam turbine plant Download PDFInfo
- Publication number
- EP0783619B1 EP0783619B1 EP95931137A EP95931137A EP0783619B1 EP 0783619 B1 EP0783619 B1 EP 0783619B1 EP 95931137 A EP95931137 A EP 95931137A EP 95931137 A EP95931137 A EP 95931137A EP 0783619 B1 EP0783619 B1 EP 0783619B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- steam
- turbine
- gas turbine
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
- F01K23/106—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
- F01K23/103—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
Definitions
- the invention relates to a method for operating a gas and steam turbine plant according to the preamble of Claim 1. Such a method is from the patents DE 38 15 536 C 1 and US 4,852,344 known.
- the steam generator is suitable for the combined process with a downstream one Heat recovery steam generator especially for retrofitting one already existing gas turbine plant.
- a new system usually a number of gas turbines with a corresponding one Number of heat recovery steam generators on a common Steam turbine switched. Because in this combination process steam generation is limited to pure heat recovery, the overall efficiency of the system is also only limited. In addition, it is also problematic with this combination process when a replacement is required or desired the gas turbine against a gas turbine with a comparatively high Performance to find a suitable gas turbine model.
- the invention is therefore based on the object of a method to operate a gas and steam turbine plant, with a particularly high overall efficiency the plant uses one of a variety of gas turbines freely selectable gas turbine of different output sizes is possible.
- a first partial flow of the exhaust gas is generated to generate steam the gas turbine for burning a fossil fuel used.
- a second partial flow of the exhaust gas from the gas turbine is used to generate waste heat, with both the Steam generation by burning the fossil fuel as also waste heat generation in a common water-steam cycle the steam turbine.
- the preheating of a second partial flow of the Feed water takes place by means of the second, the heat recovery steam generator flowing part of the exhaust gas from the Gas turbine.
- a third sub-stream of the feed water is preheated from the steam turbine by means of bleed steam.
- the three partial flows of the feed water are preheated expediently multi-stage, the preheating of the first Partial stream and the third partial stream in a common second preheating stage by means of combustion of the flue gas produced from fossil fuel.
- the invention is based on the consideration that by the combination of pure waste heat use and use as Combustion air divides these types of use of the exhaust gas from the gas turbine regardless of its output size best possible with regard to the overall efficiency of the system is tunable if additionally in the exhaust gas from the gas turbine and in the combustion of fossil fuel Flue gas contained and not for steam generation more usable residual heat is used for preheating the feed water becomes.
- the fired steam generator can advantageously large range of fuels are used.
- fuels for example as fossil fuel oil, gas, coal or special fuels, such as. Garbage, wood or waste oil can be used.
- Garbage, wood or waste oil can be used.
- the exhaust gas temperature behind the Gas turbine at around 500 ° C for coal drying under certain circumstances is too high, can suitably as combustion air serving first partial flow of the exhaust gas from the Gas turbine be mixed with a cold air stream.
- the oxygen-containing exhaust gas from the gas turbine for example 15% oxygen content serves as the sole combustion air for those to be burned in the fired steam generator fossil fuels, the fired steam generator expediently only with the one required for combustion Exhaust gas volume is applied.
- a possible one Flue gas cleaning system must therefore only for the first partial flow of the exhaust gas from the gas turbine and not for the whole Exhaust gas volume can be designed, this as combustion air serving first partial flow of the exhaust gas from the gas turbine along with that when burning the fossil The resulting flue gas is cleaned.
- the advantages achieved with the invention are in particular in that by combining a fired steam generator and a heat recovery steam generator at the same time Distribution of the exhaust gas from the gas turbine in the steam generators supplied partial streams not only in the fired steam generator a wide range of fuels, e.g. Coal, heavy oil, Low gases or special fuels, e.g. Garbage, wood or Waste oil, can be used. Rather, it can decrease Boiler output of the fired steam generator as a result a fuel conversion of e.g. Oil on coal or as a result of Conversion to a low nitrogen oxide firing is still a special one high steam turbine output and thus a higher system efficiency due to the additional steam generator output be maintained from the heat recovery steam generator.
- fuels e.g. Coal, heavy oil, Low gases or special fuels, e.g. Garbage, wood or Waste oil
- FIG. 1 An embodiment of the invention is based on a Drawing explained in more detail.
- the figure shows a circuit diagram a combined gas and steam turbine system with the gas turbine downstream of both a fossil-fired Steam generator as well as a heat recovery steam generator.
- the gas and steam turbine plant 1 comprises a Gas turbine system with a gas turbine 2 with coupled Air compressor 3 and one of the gas turbine 2 upstream Combustion chamber 4, which is connected to a fresh air line 5 of the air compressor 3 is connected.
- a combustion chamber 4 of the gas turbine 2 opens a fuel or fuel gas line 6.
- Die Gas turbine 2 and the air compressor 3 and a generator 7 sit on a common shaft 8.
- the gas and steam turbine system 1 further comprises a steam turbine system with a steam turbine 10 with coupled Generator 11 and in a water-steam cycle 12 one of the Steam turbine 10 downstream capacitor 13 and a fired steam generator 14 and a heat recovery steam generator 15.
- the steam turbine 10 consists of a high pressure part 10a and a medium pressure part 10b and a low pressure part 10c, which drive the generator 11 via a common shaft 16.
- a first partial flow line 18 is connected to an inlet 14a of the fired steam generator 14 in order to supply working fluid or exhaust gas A relaxed in the gas turbine 2 to the fired steam generator 14.
- a first partial flow t 1 of the exhaust gas A from the gas turbine 2 with an oxygen content of approx. 15%, which is conducted via the partial flow line 18, serves as combustion air during the combustion of a gaseous, liquid or solid fuel B. This is fired via an inlet 14b Steam generator 14 connected fuel line 20 led into the fired steam generator 14.
- a control flap 22 connected to the partial flow line 18 is provided for setting the first partial flow t 1 .
- the flue gas cleaning system 26 comprises a flue gas desulfurization device and a denitrification device (DeNO x system) and a dedusting device in a manner not shown.
- a second partial flow line 28 with a control flap 29 is connected to an inlet 15a of the waste heat steam generator 15.
- the partial flow t 2 of the relaxed exhaust gas A from the gas turbine 2 leaves the heat recovery steam generator 15 via its outlet 15b in the direction of the chimney.
- a third partial flow line or bypass line 30 with a flap 32 is - e.g. when starting and stopping the system 1 - neither for the fired steam generator 14 nor for the waste heat steam generator 15 required exhaust gas A from the gas turbine 2 led.
- this bypass line 30 is used to discharge the exhaust gas A from the gas turbine 2, if operated alone in so-called single-cycle operation becomes.
- a fresh air line 34 into which a blower 36 and a steam-heated heat exchanger 38 and a flap 40 are connected, opens into the partial flow line t 1 .
- cold fresh air KL can be mixed into the partial stream t 1 of the exhaust gas A from the gas turbine 2 via this fresh air line 34.
- the heat recovery steam generator 15 comprises a preheater as heating surfaces 42, between its inlet and outlet a circulation pump 44 is switched.
- the preheater 42 is on the input side connected to the output of a condensate preheater 46, which in turn on the input side via a condensate pump 48 with the Capacitor 13 is connected.
- the condensate preheater 46 will via one with the low pressure part 10c of the steam turbine 10 connected tap 50 heated with steam.
- Two the condensate preheater 46 downstream and also over with the Low pressure part 10c connected tap lines 52 and 54 heated Preheaters 56 and 58 are in the heat recovery steam generator 15 arranged preheater 42 connected in parallel and on the output side connected to a feed water tank 60.
- the heat recovery steam generator 15 further comprises heating surfaces a medium pressure preheater or economizer 62 and one Medium pressure evaporator 64 and a medium pressure superheater 66, the output side to one with the high pressure part 10a Steam turbine 10 connected steam line 68 and with a reheater 70 is connected.
- the medium pressure heating surfaces 62, 64, 66 are via the reheater 70 to one in the Medium pressure part 10b of the steam turbine 10 opening steam line 72 connected.
- the medium pressure heating surfaces 62, 64, 66 as well the reheater 70 and the medium pressure part 10b of the Steam turbine 10 thus form a medium pressure stage of the water-steam cycle 12th
- the heat recovery steam generator 15 further comprises in a high pressure stage two high-pressure preheaters connected in series as heating surfaces or -Economizer 74 and 75 as well as a high pressure evaporator 76 and a high pressure superheater 78.
- the High-pressure superheater 78 is on the output side via a steam line 80 with the entrance of the high pressure part 10a of the steam turbine 10 connected.
- the medium-pressure economizer 62 and the high-pressure economizers 74, 75 are arranged within the heat recovery steam generator 15 in the region of the same exhaust gas temperature
- the high-pressure evaporator 76 and the high-pressure superheater 78 are in the flow direction of the partial flow t 2 of the exhaust gas A from the gas turbine 2 arranged before the series connection of the medium-pressure evaporator 64 and the medium-pressure superheater 66, the intermediate superheater 70 and the high-pressure superheater 78 being arranged in the region of the same exhaust gas temperature.
- the feed water tank 60 is via a high pressure pump 82 and a heat exchanger arrangement with a series connection from three preheaters 84, 86, 88 with the fired Steam generator 14 connected.
- the feed water tank 60 is also via a medium pressure pump 90 with the medium pressure economizer 62 connected.
- a partial flow line 92a connected via a boiler part economizer 94 between preheaters 86 and 88 the feed water line 92 is connected. This is also via a further partial flow line 92b with the high-pressure economizer 74 connected.
- the boiler parts economizer 94 and the preheater or boiler economizer 88 are in the Flue gas line 24 of the fired steam generator 14 switched.
- the fired steam generator 14 is on the output side via a High-pressure superheater 96, the steam line on the outlet side 80 is connected to the input of the high pressure part 10a of the steam turbine 10 connected.
- One in the heat recovery steam generator 15 arranged reheaters 70 connected in parallel Intermediate heater 98 is on the input side via the Steam line 68 with the outlet of the high pressure part 10a and on the output side with the medium pressure part 10b of the steam turbine 10 connected.
- the preheaters 84 and 86 are via steam lines 100 and 102 using bleed steam from the medium pressure section 10b or the high pressure part 10a of the steam turbine 10 is heated.
- a fuel B ′ is supplied to the combustion chamber 4 of the gas turbine 2 in a manner not shown in detail via the fuel line 6.
- the fuel B ' is burned in the combustion chamber 4 with compressed fresh air L from the air compressor 3.
- the hot combustion gas V formed during the combustion is conducted into the gas turbine 2 via a gas line 6a. There it relaxes and drives the gas turbine 2, which in turn drives the air compressor 3 and the generator 7.
- the hot exhaust gas A emerging from the gas turbine 2 is conducted in the first partial flow t 1 via the partial flow line 18 as combustion air into the fired steam generator 14.
- the second partial flow t 2 of the hot exhaust gas A from the gas turbine 2 is conducted via the partial flow line 28 and through the heat recovery steam generator 15.
- the hot flue gas R which arises when the partial flow t 1 of the exhaust gas A from the gas turbine 2 is produced during the combustion of the fossil fuel B is used there to generate steam and then leaves the fired steam turbine 14 via the flue gas line 24 in the direction of the flue gas cleaning system 26, previously has first been cooled in the boiler economizer 88 and then in the boiler part economizer 94 by heat exchange with feed water from the feed water tank 60.
- the feed water is preheated in three partial flows S 1 to S 3 .
- a first partial flow S 1 of the feed water under high pressure which is adjustable by means of a valve 104 connected to the partial flow line 92 a, is passed through the boiler part economizer 94 and preheated by means of the flue gas R and the partial flow t 1 of the exhaust gas A of the gas turbine 2.
- a second partial flow S 2 which can be set by means of a valve 106 connected to the partial flow line 92b, is led through the high-pressure economizers 74 and 75 and preheated by heat exchange with the second partial flow t 2 of the exhaust gas A from the gas turbine 2.
- the preheating of the feed water both for the fired steam generator 14 and for the waste heat steam generator 15 is thus carried out in several stages.
- a two-stage preheating of the feed water partial stream S 2 takes place within the waste heat steam generator 15 in the high pressure economizers 74 and 75 connected in series on the water / steam side.
- the feed water for the fired steam generator 15 is preheated in three stages.
- the third partial flow S 3, which is preheated in two stages in the preheaters 84 and 86, is then preheated together with the partial flow S 1 preheated in parallel in the boiler part economizer 94 in the boiler economizer 88 in the common third stage.
- This multi-stage preheating of the feed water in three partial streams S 1 to S 3 enables a particularly advantageous distribution or division of the feed water between the two steam generators 14 and 15, so that undesired evaporation within their gas-heated preheaters 74, 75 and 88, 94 as a result of an increased Heat input from the partial streams t 1 and t 2 of the exhaust gas A from the gas turbine 2 and from the flue gas R is practically avoided even when using a particularly powerful gas turbine 2.
- the steam generated in the heat recovery steam generator 15 in the high pressure evaporator 76 and superheated in the high pressure superheater 78 is conducted together with the steam generated in the fired steam generator 14 and superheated in the superheater 96 into the high pressure part 10a of the steam turbine 10.
- the steam which is partially expanded in the high pressure part 10a is partly overheated again in the superheater 70 arranged in the waste heat steam generator 15 and partly in the intermediate superheater 98 of the fired steam generator 14 and then fed to the medium pressure part 10b of the steam turbine 10.
- the steam which is further expanded in the medium-pressure part 10b is used partly for heating the feed water in the feed-water tank 60 and partly for preheating the feed-water partial flow S 3 passed through the preheater 84, and partly directly into the low-pressure part 10c of the steam turbine 10.
- the steam released in the low-pressure part 10c is used via the bleed lines 50 to 54 for preheating condensate K fed into the feed water tank 60.
- the steam emerging from the low-pressure part 10c is condensed in the condenser 13 and conveyed as condensate K via the condensate pump 48 and the preheaters 46, 56 and 58 into the feed water tank 60.
- the water-steam circuit 12 common to the fired steam generator 14 and the waste heat steam generator 15 is thus closed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
Die Erfindung bezieht sich auf ein Verfahren zum Betreiben
einer Gas- und Dampfturbinenanlage gemäß dem Oberbegriff des
Anspruchs 1. Ein derartiges Verfahren ist aus den Patentschriften
DE 38 15 536 C 1 und US 4,852,344 bekannt.The invention relates to a method for operating
a gas and steam turbine plant according to the preamble of
Bei der Kombination eines Dampfturbinenprozesses und eines Gasturbinenprozesses gibt es prinzipiell zwei Möglichkeiten, das Abgas aus der Gasturbine zur Dampferzeugung zu nutzen. Wie in dem Aufsatz "Kombinierte Gas-/Dampfturbinenprozesse" in Brennstoff-Wärme-Kraft (BWK) 31 (1979), Nr. 5, Mai, beschrieben, dienen bei einem möglichen Kombiprozeß mit nachgeschaltetem Dampferzeuger die sauerstoffreichen Abgase der Gasturbine als Verbrennungsluft für den fossil befeuerten Dampferzeuger. Bei einem anderen Kombiprozeß mit nachgeschaltetem Abhitzedampferzeuger werden Gasturbinen- und Dampfturbinenprozeß kombiniert, indem die Abwärme der Gasturbine im Abhitzedampferzeuger verwertet wird. Ein Gas- und Dampfturbinenkraftwerk mit Abhitzedampferzeuger und solar beheiztem Dampferzeuger sowie mit einem einer Zusatzbrennkammer nachgeschalteten fossil beheizten Wärmetauscher ist aus der DE-OS 41 26 036 bekannt. When combining a steam turbine process and one Gas turbine process there are basically two ways to use the exhaust gas from the gas turbine to generate steam. As in the article "Combined gas / steam turbine processes" described in fuel-thermal power (BWK) 31 (1979), No. 5, May, serve in a possible combination process with downstream Steam generator the oxygen-rich exhaust gases from the Gas turbine as combustion air for the fossil-fired Steam generator. In another combination process with a downstream Heat recovery steam generators become gas turbine and steam turbine processes combined by the waste heat of the gas turbine in the Heat recovery steam generator is used. A gas and steam turbine power plant with heat recovery steam generator and solar heated Steam generator and with an additional combustion chamber downstream Fossil heated heat exchanger is out of the DE-OS 41 26 036 known.
Bei einem Kombiprozeß sind die Leistungen der Dampfturbine und der Gasturbine sowie des befeuerten Dampferzeugers voneinander abhängig, so daß sie bei einer Auslegung einer derartigen Anlage aufeinander abgestimmt werden müssen. Dies gilt nicht nur bei einer Nachrüstung einer bereits bestehenden Dampfturbinenanlage, sondern auch für eine Neuanlage. Die Abstimmung erfolgt dabei üblicherweise derart, daß bei Nennlastbetrieb der Sauerstoffbedarf des gefeuerten Dampferzeugers durch die Abgase der Gasturbine gedeckt werden kann. Es werden allerdings Gasturbinen mit nur wenigen unterschiedlichen Leistungsgrößen, beispielsweise mit 50 MW, 150 MW oder 200 MW, hergestellt und angeboten, so daß deren Anpassung an die Leistung der Dampfturbine und die des Dampferzeugers äußerst schwierig ist. Daher liefert - bei einer vorgegebenen Anlagengröße - die Gasturbine im Vergleich zur als Verbrennungsluft benötigten Abgasmenge für den gefeuerten Dampferzeuger im Vollastbereich entweder eine zu große oder eine zu kleine Abgasmenge. Bei einer zu kleinen Abgasmenge ist im Vollastbereich nur ein geringer Wirkungsgrad der Anlage zu erreichen, der dann im Teillastbereich besser wird.In a combined process, the performance of the steam turbine and the gas turbine and the fired steam generator from each other dependent, so that when interpreting such System must be coordinated. This does not only apply to retrofitting an existing one Steam turbine plant, but also for a new plant. The Coordination usually takes place in such a way that during nominal load operation the oxygen demand of the fired steam generator can be covered by the exhaust gases from the gas turbine. It However, gas turbines with only a few different ones Output sizes, for example with 50 MW, 150 MW or 200 MW, manufactured and offered, so that their adaptation to the performance of the steam turbine and that of the steam generator is extremely difficult. Therefore delivers - at a given Plant size - the gas turbine compared to that used as combustion air required amount of exhaust gas for the fired steam generator in the full load range either too large or too small amount of exhaust gas. If the amount of exhaust gas is too small, Full load range only a low efficiency of the system reach, which then gets better in the partial load range.
Dagegen kann eine zu große Abgasmenge aus der Gasturbine dazu führen, daß im Falle eines Kombiprozesses, bei dem die überschüssigen Abgase aus der Gasturbine an einer Brennkammer des gefeuerten Dampferzeugers vorbei zu einem Kessel- oder Speisewasservorwärmer (Economizer) geleitet werden, dieser durch den zu hohen Wärmeeintrag in unerwünschter Weise bereits in die Verdampfung gerät. Oder es muß bei einer zu großen Abgasmenge im Teillastbereich bereits zu einem frühen Zeitpunkt die Leistung der Gasturbine reduziert werden. Mit zunehmender Reduzierung der Leistung der Gasturbine nimmt allerdings der Wirkungsgrad der Anlage im Teillastbereich ab. Mit anderen Worten: In beiden Fällen ist der erzielte Gesamtwirkungsgrad nur begrenzt. Insbesondere bei der Nachrüstung einer bereits bestehenden Dampfturbinenanlage muß daher auf einen Leistungszuwachs aus der Gasturbine verzichtet werden, wenn die Abgaswärme der Gasturbine nicht vollständig genutzt oder ein akzeptables Teillastverhalten nicht erreicht werden kann.In contrast, an excessive amount of exhaust gas from the gas turbine can do this cause that in the case of a combination process in which the excess Exhaust gases from the gas turbine at a combustion chamber of the fired steam generator over to a boiler or feed water preheater (Economizer) are passed through this the excessive heat input in an undesirable manner the evaporation begins. Or it has to be with a too large amount of exhaust gas at an early stage in the partial load range the performance of the gas turbine can be reduced. With increasing However, the reduction in the power of the gas turbine takes place Efficiency of the system in the partial load range. With others Words: In both cases, the overall efficiency achieved only limited. Especially when retrofitting one Existing steam turbine plant must therefore have an increase in performance be dispensed with from the gas turbine if the Exhaust heat of the gas turbine is not fully used or an acceptable part-load behavior cannot be achieved.
Im Gegensatz zum Kombiprozeß mit nachgeschaltetem gefeuerten Dampferzeuger eignet sich der Kombiprozeß mit nachgeschaltetem Abhitzedampferzeuger besonders zur Nachrüstung einer bereits bestehenden Gasturbinenanlage. Bei einer Neuanlage werden üblicherweise eine Anzahl von Gasturbinen mit einer entsprechenden Anzahl von Abhitzedampferzeugern auf eine gemeinsame Dampfturbine geschaltet. Da sich bei diesem Kombiprozeß die Dampferzeugung auf eine reine Abhitzenutzung beschränkt, ist der Gesamtwirkungsgrad der Anlage ebenfalls nur begrenzt. Darüber hinaus ist es auch bei diesem Kombiprozeß problematisch, bei einem erforderlichen oder gewünschten Austausch der Gasturbine gegen eine Gasturbine mit vergleichsweise hoher Leistung ein geeignetes Gasturbinen-Modell zu finden. Denn bei einer vorgegebenen Leistung der Dampfturbine und damit vorgegebener Auslegung des Abhitzedampferzeugers wäre der Wärmeeintrag mit dem Abgas aus einer vergleichsweise großen Gasturbine in den Abhitzedampferzeuger zu groß, so daß insbesondere in innerhalb des Dampferzeugers angeordneten Vorwärmern (Economizer) in unerwünschter Weise bereits eine Verdampfung stattfinden würde.In contrast to the combined process with downstream fired The steam generator is suitable for the combined process with a downstream one Heat recovery steam generator especially for retrofitting one already existing gas turbine plant. When creating a new system usually a number of gas turbines with a corresponding one Number of heat recovery steam generators on a common Steam turbine switched. Because in this combination process steam generation is limited to pure heat recovery, the overall efficiency of the system is also only limited. In addition, it is also problematic with this combination process when a replacement is required or desired the gas turbine against a gas turbine with a comparatively high Performance to find a suitable gas turbine model. Because with a given power of the steam turbine and thus given design of the heat recovery steam generator would be the Heat input with the exhaust gas from a comparatively large Gas turbine in the heat recovery steam generator too large, so in particular in preheaters arranged inside the steam generator (Economizer) already evaporation in an undesirable manner would take place.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage anzugeben, bei dem bei gleichzeitig besonders hohem Gesamtwirkungsgrad der Anlage der Einsatz einer aus einer Vielzahl von Gasturbinen unterschiedlicher Leistungsgröße frei wählbaren Gasturbine möglich ist. The invention is therefore based on the object of a method to operate a gas and steam turbine plant, with a particularly high overall efficiency the plant uses one of a variety of gas turbines freely selectable gas turbine of different output sizes is possible.
Bezüglich des Verfahrens der eingangs genannten Art wird diese
Aufgabe erfindungsgemäß gelöst durch die kennzeichnenden
Merkmale des Anspruchs 1.With regard to the method of the type mentioned at the beginning, this is
Object achieved by the characterizing
Features of
Zur Dampferzeugung wird ein erster Teilstrom des Abgases aus der Gasturbine für die Verbrennung eines fossilen Brennstoffs verwendet. Ein zweiter Teilstrom des Abgases aus der Gasturbine wird zur Abhitzedampferzeugung genutzt, wobei sowohl die Dampferzeugung durch Verbrennung des fossilen Brennstoffs als auch die Abhitzedampferzeugung in einem gemeinsamen Wasser-Dampf-Kreislauf der Dampfturbine erfolgt. Dabei wird vorteilhafterweise unter hohem Druck stehendes Speisewasser des Wasser-Dampf-Kreislaufs in Teil-strömen vorgewärmt, wobei die Vorwärmung eines ersten Teil-stroms des Speisewassers mittels bei der Verbrennung des fossilen Brennstoffs entstehendem Rauchgas erfolgt. Die Vorwärmung eines zweiten Teilstroms des Speisewassers erfolgt mittels des zweiten, den Abhitzedampferzeuger durchströmenden Teilstroms des Abgases aus der Gasturbine. Ein dritter Teil-strom des Speisewassers wird mittels Anzapfdampf aus der Dampfturbine vorgewärmt. Dabei erfolgt die Vorwärmung der drei Teilströme des Speisewassers zweckmäßigerweise mehrstufig, wobei die Vorwärmung des ersten Teilstroms und des dritten Teilstroms in einer diesen gemeinsamen zweiten Vorwärmstufe mittels des bei der Verbrennung des fossilen Brennstoffs entstehenden Rauchgases erfolgt.A first partial flow of the exhaust gas is generated to generate steam the gas turbine for burning a fossil fuel used. A second partial flow of the exhaust gas from the gas turbine is used to generate waste heat, with both the Steam generation by burning the fossil fuel as also waste heat generation in a common water-steam cycle the steam turbine. This is advantageous pressurized feed water of the water-steam cycle preheated in partial flows, the Preheating a first partial flow of the feed water by means of resulting from the combustion of fossil fuel Flue gas occurs. The preheating of a second partial flow of the Feed water takes place by means of the second, the heat recovery steam generator flowing part of the exhaust gas from the Gas turbine. A third sub-stream of the feed water is preheated from the steam turbine by means of bleed steam. Here the three partial flows of the feed water are preheated expediently multi-stage, the preheating of the first Partial stream and the third partial stream in a common second preheating stage by means of combustion of the flue gas produced from fossil fuel.
Die Erfindung geht dabei von der Überlegung aus, daß durch die Kombination der reinen Abhitzenutzung und der Nutzung als Verbrennungsluft eine Aufteilung dieser Nutzungsarten des Abgases aus der Gasturbine unabhängig von deren Leistungsgröße hinsichtlich des Gesamtwirkungsgrades der Anlage bestmöglich abstimmbar ist, wenn zusätzlich die im Abgas aus der Gasturbine und im bei der Verbrennung des fossilen Brennstoffs entstehenden Rauchgas enthaltene und zur Dampferzeugung nicht mehr verwertbare Restwärme zur Speisewasservorwärmung genutzt wird.The invention is based on the consideration that by the combination of pure waste heat use and use as Combustion air divides these types of use of the exhaust gas from the gas turbine regardless of its output size best possible with regard to the overall efficiency of the system is tunable if additionally in the exhaust gas from the gas turbine and in the combustion of fossil fuel Flue gas contained and not for steam generation more usable residual heat is used for preheating the feed water becomes.
In dem gefeuerten Dampferzeuger kann vorteilhafterweise ein großes Brennstoffspektrum zum Einsatz kommen. So können beispielsweise als fossiler Brennstoff Öl, Gas, Kohle oder Sonderbrennstoffe, wie z.B. Müll, Holz oder Altöl verwendet werden. Da bei der Verwendung von z.B. Kohle als Brennstoff für den gefeuerten Dampferzeuger die Abgastemperatur hinter der Gasturbine mit etwa 500° C für eine Kohletrocknung unter Umständen zu hoch ist, kann zweckmäßigerweise dem als Verbrennungsluft dienenden ersten Teilstrom des Abgases aus der Gasturbine ein Kaltluftstrom zugemischt werden.In the fired steam generator can advantageously large range of fuels are used. For example as fossil fuel oil, gas, coal or special fuels, such as. Garbage, wood or waste oil can be used. Since when using e.g. Coal as fuel for the fired steam generator the exhaust gas temperature behind the Gas turbine at around 500 ° C for coal drying under certain circumstances is too high, can suitably as combustion air serving first partial flow of the exhaust gas from the Gas turbine be mixed with a cold air stream.
Das noch sauerstoffhaltige Abgas aus der Gasturbine mit beispielsweise 15% Sauerstoffgehalt dient als alleinige Verbrennungsluft für die im gefeuerten Dampferzeuger zu verbrennenden fossilen Brennstoffe, wobei der gefeuerte Dampferzeuger zweckmäßigerweise nur mit der zur Verbrennung erforderlichen Abgasmenge beaufschlagt wird. Eine eventuell vorgesehene Rauchgasreinigungsanlage muß daher nur für den ersten Teilstrom des Abgases aus der Gasturbine und nicht für die gesamte Abgasmenge ausgelegt werden, wobei dieser als Verbrennungsluft dienende erste Teilstrom des Abgases aus der Gasturbine zusammen mit dem bei der Verbrennung des fossilen Brennstoffs entstehenden Rauchgas gereinigt wird. The oxygen-containing exhaust gas from the gas turbine, for example 15% oxygen content serves as the sole combustion air for those to be burned in the fired steam generator fossil fuels, the fired steam generator expediently only with the one required for combustion Exhaust gas volume is applied. A possible one Flue gas cleaning system must therefore only for the first partial flow of the exhaust gas from the gas turbine and not for the whole Exhaust gas volume can be designed, this as combustion air serving first partial flow of the exhaust gas from the gas turbine along with that when burning the fossil The resulting flue gas is cleaned.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch die Kombination eines gefeuerten Dampferzeugers und eines Abhitzedampferzeugers bei gleichzeitiger Aufteilung des Abgases aus der Gasturbine in den Dampferzeugern zugeführte Teilströme nicht nur im gefeuerten Dampferzeuger ein großes Brennstoffspektrum, z.B. Kohle, Schweröl, Schwachgase oder Sonderbrennstoffe, wie z.B. Müll, Holz oder Altöl, zum Einsatz kommen kann. Vielmehr kann bei einer sinkenden Kesselleistung des gefeuerten Dampferzeugers infolge eines Brennstoffumbaus von z.B. Öl auf Kohle oder infolge eines Umbaus auf eine stickoxidarme Feuerung dennoch eine besonders hohe Dampfturbinenleistung und damit ein höherer Anlagenwirkungsgrad aufgrund der zusätzlichen Dampferzeugerleistung aus dem Abhitzedampferzeuger aufrechterhalten werden.The advantages achieved with the invention are in particular in that by combining a fired steam generator and a heat recovery steam generator at the same time Distribution of the exhaust gas from the gas turbine in the steam generators supplied partial streams not only in the fired steam generator a wide range of fuels, e.g. Coal, heavy oil, Low gases or special fuels, e.g. Garbage, wood or Waste oil, can be used. Rather, it can decrease Boiler output of the fired steam generator as a result a fuel conversion of e.g. Oil on coal or as a result of Conversion to a low nitrogen oxide firing is still a special one high steam turbine output and thus a higher system efficiency due to the additional steam generator output be maintained from the heat recovery steam generator.
Da der gefeuerte Dampferzeuger nur mit dem zur Verbrennung erforderlichen Abgas aus der Gasturbine beaufschlagt wird, ist auch bei beengten Platzverhältnissen die Aufstellung oder Nachrüstung einer Rauchgasreinigungsanlage unproblematisch, da die Rauchgasreinigungsanlage nur für einen Teilstrom des Abgases aus der Gasturbine und nicht für die gesamte Abgasmenge ausgelegt werden muß. Darüber hinaus können bei Altanlagen mit hohen Leistungsreserven der Dampfturbinenanlage diese Leistungsreserven über die zusätzliche Dampfproduktion im Abhitzedampferzeuger genutzt werden.Because the fired steam generator only with that for combustion required exhaust gas from the gas turbine is applied, is the installation or even in confined spaces Retrofitting a flue gas cleaning system is unproblematic, since the flue gas cleaning system only for a partial flow of the Exhaust gas from the gas turbine and not for the total amount of exhaust gas must be interpreted. In addition, with old systems with high power reserves of the steam turbine system these power reserves through the additional steam production be used in the heat recovery steam generator.
Da die gesamten Abgase der Gasturbine nahezu verlustfrei genutzt werden, wird ein besonders hoher Gesamtnutzungsgrad der Anlage erzielt. Insbesondere kann bei Ersatz eines älteren Gasturbinen-Modells durch ein modernes Aggregat mit einem vergleichsweise hohen Abhitzeangebot diese Abhitze oder überschüssige Restwärme bestmöglich im Abhitzedampferzeuger genutzt werden.Since the entire exhaust gases of the gas turbine are used almost without loss be a particularly high overall utilization of the Plant achieved. In particular, when replacing an older one Gas turbine model by a modern unit with one comparatively high waste heat supply this waste heat or excess Residual heat is used as best as possible in the heat recovery steam generator will.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die Figur ein Schaltschema einer kombinierten Gas- und Dampfturbinenanlage mit der Gasturbine nachgeschaltet sowohl einem fossil gefeuerten Dampferzeuger als auch einem Abhitzedampferzeuger.An embodiment of the invention is based on a Drawing explained in more detail. The figure shows a circuit diagram a combined gas and steam turbine system with the gas turbine downstream of both a fossil-fired Steam generator as well as a heat recovery steam generator.
Die Gas- und Dampfturbinenanlage 1 gemäß der Figur umfaßt eine
Gasturbinenanlage mit einer Gasturbine 2 mit angekoppeltem
Luftverdichter 3 und eine der Gasturbine 2 vorgeschaltete
Brennkammer 4, die an eine Frischluftleitung 5 des Luftverdichters
3 angeschlossen ist. In die Brennkammer 4 der Gasturbine
2 mündet eine Brennstoff- oder Brenngasleitung 6. Die
Gasturbine 2 und der Luftverdichter 3 sowie ein Generator 7
sitzen auf einer gemeinsamen Welle 8.The gas and
Die Gas- und Dampfturbinenanlage 1 umfaßt weiter eine Dampfturbinenanlage
mit einer Dampfturbine 10 mit angekoppeltem
Generator 11 und in einem Wasser-Dampf-Kreislauf 12 einen der
Dampfturbine 10 nachgeschalteten Kondensator 13 sowie einen
gefeuerten Dampferzeuger 14 und einen Abhitzedampferzeuger
15.The gas and
Die Dampfturbine 10 besteht aus einem Hochdruckteil 10a und
einem Mitteldruckteil 10b sowie einem Niederdruckteil 10c,
die über eine gemeinsame Welle 16 den Generator 11 antreiben.The
Zum Zuführen von in der Gasturbine 2 entspanntem Arbeitsmittel
oder Abgas A in den gefeuerten Dampferzeuger 14 ist eine
erste Teilstromleitung 18 an einen Eingang 14a des gefeuerten
Dampferzeugers 14 angeschlossen. Ein über die Teilstromleitung
18 geführter erster Teilstrom t1 des Abgases A aus der
Gasturbine 2 mit einem Sauerstoffgehalt von ca. 15% dient als
Verbrennungsluft bei der Verbrennung eines gasförmigen, flüssigen
oder festen Brennstoffs B. Dieser wird über eine mit
einem Eingang 14b des gefeuerten Dampferzeugers 14 verbundene
Brennstoffleitung 20 in den gefeuerten Dampferzeuger 14 geführt.
Zum Einstellen des ersten Teilstroms t1 ist eine in
die Teilstromleitung 18 geschaltete Steuerklappe 22 vorgesehen.
Bei der Verbrennung des fossilen Brennstoffs B entstehendes
Rauchgas R sowie der als Verbrennungsluft dienende
Teilstrom t1 des Abgases A aus der Gasturbine 2 verlassen den
gefeuerten Dampferzeuger 14 über eine Rauchgasleitung 24 und
nach deren Reinigung in einer Reinigungsanlage 26 in Richtung
auf einen (nicht dargestellten) Kamin. Die Rauchgasreinigungsanlage
26 umfaßt in nicht näher dargestellter Art eine
Rauchgasentschwefelungseinrichtung und eine Entstickungseinrichtung
(DeNOx-Anlage) sowie eine Entstaubungseinrichtung. A first
Zum Zuführen eines zweiten Teilstroms t2 des Abgases A aus
der Gasturbine 2 in den Abhitzedampferzeuger 15 ist eine
zweite Teilstromleitung 28 mit einer Steuerklappe 29 an einen
Eingang 15a des Abhitzedampferzeugers 15 angeschlossen. Der
Teilstrom t2 des entspannten Abgases A aus der Gasturbine 2
verläßt den Abhitzedampferzeuger 15 über dessen Ausgang 15b
in Richtung auf den Kamin.To feed a second partial flow t 2 of the exhaust gas A from the gas turbine 2 into the waste
Über eine dritte Teilstromleitung oder Bypassleitung 30 mit
einer Klappe 32 wird - z.B. beim An- und Abfahren der Anlage
1 - das weder für den gefeuerten Dampferzeuger 14 noch für
den Abhitzedampferzeuger 15 benötigte Abgas A aus der Gasturbine
2 geführt. Insbesondere dient diese Bypassleitung 30 jedoch
zum Abführen des Abgases A aus der Gasturbine 2, wenn
diese im sogenannten Single-Cycle-Betrieb allein betrieben
wird.Via a third partial flow line or
In die Teilstromleitung t1 mündet eine Frischluftleitung 34,
in die ein Gebläse 36 und ein dampfbeheizter Wärmetauscher 38
sowie eine Klappe 40 geschaltet sind. Über diese Frischluftleitung
34 kann im Vergleich zum Abgas A aus der Gasturbine 2
kalte Frischluft KL dem Teilstrom t1 des Abgases A aus der
Gasturbine 2 zugemischt werden.A
Der Abhitzedampferzeuger 15 umfaßt als Heizflächen einen Vorwärmer
42, zwischen dessen Ein- und Ausgang eine Umwälzpumpe
44 geschaltet ist. Der Vorwärmer 42 ist eingangsseitig mit
dem Ausgang eines Kondensatvorwärmers 46 verbunden, der seinerseits
eingangsseitig über eine Kondensatpumpe 48 mit dem
Kondensator 13 verbunden ist. Der Kondensatvorwärmer 46 wird
über eine mit dem Niederdruckteil 10c der Dampfturbine 10
verbundene Anzapfleitung 50 mit Dampf beheizt. Zwei dem Kondensatvorwärmer
46 nachgeschaltete und ebenfalls über mit dem
Niederdruckteil 10c verbundene Anzapfleitungen 52 und 54 beheizte
Vorwärmer 56 bzw. 58 sind dem im Abhitzedampferzeuger
15 angeordneten Vorwärmer 42 parallel geschaltet und ausgangsseitig
mit einem Speisewasserbehälter 60 verbunden. The heat
Der Abhitzedampferzeuger 15 umfaßt weiter als Heizflächen
einen Mitteldruck-Vorwärmer oder -Economizer 62 und einen
Mitteldruck-Verdampfer 64 sowie einen Mitteldruck-Überhitzer
66, der ausgangsseitig an eine mit dem Hochdruckteil 10a der
Dampfturbine 10 verbundene Dampfleitung 68 und mit einem Zwischenüberhitzer
70 verbunden ist. Die Mitteldruck-Heizflächen
62, 64, 66 sind über den Zwischenüberhitzer 70 an eine in den
Mitteldruckteil 10b der Dampfturbine 10 mündende Dampfleitung
72 angeschlossen. Die Mitteldruck-Heizflächen 62, 64, 66 sowie
der Zwischenüberhitzer 70 und der Mitteldruckteil 10b der
Dampfturbine 10 bilden somit eine Mitteldruckstufe des Wasser-Dampf-Kreislaufs
12.The heat
Der Abhitzedampferzeuger 15 umfaßt ferner in einer Hochdruckstufe
als Heizflächen zwei hintereinander geschaltete hochdruck-Vorwärmer
oder -Economizer 74 und 75 sowie einen Hochdruck-Verdampfer
76 und einen Hochdruck-Überhitzer 78. Der
Hochdruck-Überhitzer 78 ist ausgangsseitig über eine Dampfleitung
80 mit dem Eingang des Hochdruckteils 10a der Dampfturbine
10 verbunden.The heat
Während der Mitteldruck-Economizer 62 und die Hochdruck-Economizer
74, 75 innerhalb des Abhitzedampferzeugers 15 im Bereich
gleicher Abgastemperatur angeordnet sind, sind der
Hochdruck-Verdampfer 76 und der Hochdruck-Überhitzer 78 in
Strömungsrichtung des Teilstroms t2 des Abgases A aus der
Gasturbine 2 vor der Hintereinanderschaltung aus dem Mitteldruck-Verdampfer
64 und dem Mitteldruck-Überhitzer 66 angeordnet,
wobei der Zwischenüberhitzer 70 und der Hochdruck-Überhitzer
78 im Bereich gleicher Abgastemperatur angeordnet
sind.While the medium-
Der Speisewasserbehälter 60 ist über eine Hochdruckpumpe 82
und eine Wärmetauscheranordnung mit einer Hintereinanderschaltung
aus drei Vorwärmern 84, 86, 88 mit dem gefeuerten
Dampferzeuger 14 verbunden. Der Speisewasserbehälter 60 ist
außerdem über eine Mitteldruckpumpe 90 mit dem Mitteldruck-Economizer
62 verbunden.The
Auf der Druckseite der Hochdruckpumpe 82 ist an eine in den
gefeuerten Dampferzeuger 14 führende Speisewasserleitung 92
eine Teilstromleitung 92a angeschlossen, die über einen Kessel-Teileconomizer
94 zwischen den Vorwärmern 86 und 88 an
die Speisewasserleitung 92 angeschlossen ist. Diese ist
außerdem über eine weitere Teilstromleitung 92b mit dem Hochdruck-Economizer
74 verbunden. Der Kessel-Teileconomizer 94
und der Vorwärmer oder Kessel-Economizer 88 sind in die
Rauchgasleitung 24 des gefeuerten Dampferzeugers 14 geschaltet.On the pressure side of the
Ausgangsseitig ist der gefeuerte Dampferzeuger 14 über einen
Hochdrucküberhitzer 96, an den ausgangsseitig die Dampfleitung
80 angeschlossen ist, mit dem Eingang des Hochdruckteils
10a der Dampfturbine 10 verbunden. Ein dem im Abhitzedampferzeuger
15 angeordneten Zwischenüberhitzer 70 parallel geschalteter
Zwischenüberhitzer 98 ist eingangsseitig über die
Dampfleitung 68 mit dem Ausgang des Hochdruckteils 10a und
ausgangsseitig mit dem Mitteldruckteil 10b der Dampfturbine
10 verbunden. Die Vorwärmer 84 und 86 werden über Dampfleitungen
100 und 102 mittels Anzapfdampf aus dem Mitteldruckteil
10b bzw. dem Hochdruckteil 10a der Dampfturbine 10 beheizt.The fired
Beim Betrieb der kombinierten Gas- und Dampfturbinenanlage 1
wird der Brennkammer 4 der Gasturbine 2 in nicht näher dargestellter
Art und Weise ein Brennstoff B' über die Brennstoffleitung
6 zugeführt. Der Brennstoff B' wird in der
Brennkammer 4 mit verdichteter Frischluft L aus dem Luftverdichter
3 verbrannt. Das bei der Verbrennung entstehende
heiße Verbrennungsgas V wird über eine Gasleitung 6a in die
Gasturbine 2 geleitet. Dort entspannt es sich und treibt dabei
die Gasturbine 2 an, die wiederum den Luftverdichter 3
und den Generator 7 antreibt. Das aus der Gasturbine 2 austretende
heiße Abgas A wird im ersten Teilstrom t1 über die
Teilstromleitung 18 als Verbrennungsluft in den gefeuerten
Dampferzeuger 14 geleitet. Der zweite Teilstrom t2 des heißen
Abgases A aus der Gasturbine 2 wird über die Teilstromleitung
28 und durch den Abhitzedampferzeuger 15 geführt.When the combined gas and
Das unter Zufuhr des Teilstroms t1 des Abgases A aus der Gasturbine
2 bei der Verbrennung des fossilen Brennstoffs B entstehende
heiße Rauchgas R dient dort zur Dampferzeugung und
verläßt anschließend den gefeuerten Dampfturbine 14 über die
Rauchgasleitung 24 in Richtung auf die Rauchgasreinigungsanlage
26, wobei es zuvor zunächst im Kessel-Economizer 88 und
anschließend im Kessel-Teileconomizer 94 durch Wärmetausch
mit Speisewasser aus dem Speisewasserbehälter 60 abgekühlt
worden ist.The hot flue gas R which arises when the partial flow t 1 of the exhaust gas A from the gas turbine 2 is produced during the combustion of the fossil fuel B is used there to generate steam and then leaves the fired
Die Vorwärmung des Speisewassers erfolgt in drei Teilströmen
S1 bis S3. Dabei wird ein erster, mittels eines in die Teilstromleitung
92a geschalteten Ventils 104 einstellbarer Teilstrom
S1 des unter hohem Druck stehenden Speisewassers durch
den Kessel-Teileconomizer 94 geführt und mittels des Rauchgases
R und des Teilstroms t1 des Abgases A der Gasturbine 2
vorgewärmt. Ein zweiter, mittels eines in die Teilstromleitung
92b geschalteten Ventils 106 einstellbarer Teilstrom S2
wird durch die Hochdruck-Economizer 74 und 75 geführt und
durch Wärmetausch mit dem zweiten Teilstrom t2 des Abgases A
aus der Gasturbine 2 vorgewärmt. Die Vorwärmung eines dritten,
mittels eines in die Speisewasserleitung 92 geschalteten
Ventils 108 einstellbaren Teilstroms S3 des unter hohem Druck
stehenden Speisewassers erfolgt in den Vorwärmern 84 und 86
mittels Anzapfdampf aus der Dampfturbine 10.The feed water is preheated in three partial flows S 1 to S 3 . In this case, a first partial flow S 1 of the feed water under high pressure, which is adjustable by means of a
Die Vorwärmung des Speisewassers sowohl für den gefeuerten
Dampferzeuger 14 als auch für den Abhitzedampferzeuger 15 erfolgt
somit jeweils mehrstufig. Dabei erfolgt eine zweistufige
Vorwärmung des Speisewasser-Teilstroms S2 innerhalb des
Abhitzedampferzeugers 15 in den wasser-/dampfseitig hintereinander
geschalteten Hochdruck-Economizern 74 und 75. Das
Speisewasser für den gefeuerten Dampferzeuger 15 wird in drei
Stufen vorgewärmt. Dabei wird der zunächst in den Vorwärmern
84 und 86 zweistufig vorgewärmte dritte Teilstrom S3 anschließend
zusammen mit dem im Kessel-Teileconomizer 94 parallel
vorgewärmten Teilstrom S1 im Kessel-Economizer 88 in
der gemeinsamen dritten Stufe vorgewärmt. Diese mehrstufige
Vorwärmung des Speisewassers in drei Teilströmen S1 bis S3
ermöglicht eine besonders vorteilhafte Verteilung oder Aufteilung
des Speisewassers auf die beiden Dampferzeuger 14 und
15, so daß eine unerwünschte Verdampfung innerhalb deren gasbeheizten
Vorwärmern 74, 75 bzw. 88, 94 infolge eines erhöhten
Wärmeeintrags aus den Teilströmen t1 und t2 des Abgases A
aus der Gasturbine 2 sowie aus dem Rauchgas R auch bei Einsatz
einer besonders leistungsstarken Gasturbine 2 praktisch
vermieden ist.The preheating of the feed water both for the fired
Der im Abhitzedampferzeuger 15 im Hochdruck-Verdampfer 76 erzeugte
und im Hochdruck-Überhitzer 78 überhitzte Dampf wird
zusammen mit dem im gefeuerten Dampferzeuger 14 erzeugten und
im Überhitzer 96 überhitzten Dampf in den Hochdruckteil 10a
der Dampfturbine 10 geführt. Der in dem Hochdruckteil 10a
teilentspannte Dampf wird zum Teil in dem im Abhitzedampferzeuger
15 angeordneten Überhitzer 70 und zum Teil im Zwischenüberhitzer
98 des gefeuerten Dampferzeugers 14 erneut
überhitzt und anschließend dem Mitteldruckteil 10b der Dampfturbine
10 zugeführt. Der im Mitteldruckteil 10b weiter entspannte
Dampf wird zum Teil zur Aufwärmung des Speisewassers
im Speisewasserbehälter 60 und zum Teil zur Vorwärmung des
durch den Vorwärmer 84 geführten Speisewasser-Teilstroms S3
genutzt sowie zum Teil direkt in den Niederdruckteil 10c der
Dampfturbine 10 geführt. Der im Niederdruckteil 10c entspannte
Dampf wird über die Anzapfleitungen 50 bis 54 zur
Vorwärmung von in den Speisewasserbehälter 60 geführtem Kondensat
K genutzt. Der aus dem Niederdruckteil 10c austretende
Dampf wird im Kondensator 13 kondensiert und als Kondensat K
über die Kondensatpumpe 48 und die Vorwärmer 46, 56 und 58 in
den Speisewasserbehälter 60 gefördert. Somit ist der dem gefeuerten
Dampferzeuger 14 und dem Abhitzedampferzeuger 15 gemeinsame
Wasser-Dampf-Kreislauf 12 geschlossen.The steam generated in the heat
Claims (4)
- Method for operating a gas-turbine and steam-turbine plant (1), in which the oxygenous exhaust gas (A) from the gas turbine (2) is utilized for steam generation, a first part stream (t1) of exhaust gas (A) from the gas turbine (2) being used as combustion air for the combustion of a fossil fuel (B), and a second part stream (t2) of exhaust gas (A) from the gas turbine (2) being utilized for waste-heat steam generation, in which method the steam generation takes place by the combustion of the fossil fuel (B) and the waste-heat steam generation takes place in a common water/steam circuit (12) of the steam turbine (10), feed water of the water/steam circuit (12) being preheated in part streams (S1 to S3), characterized in that the preheating of a first part stream (S1) of feed water takes place by means of flue gas (R, t1) occurring during the combustion of the fossil fuel (B), the preheating of a second part stream (S2) of feed water takes place by means of the second part stream (t2) of exhaust gas (A) from the gas turbine (2) and the preheating of a third part stream (S3) of feed water takes place by means of steam from the steam turbine (10).
- Method according to Claim 1, characterized in that the preheating of the three part streams (S1 to S3) of feed water takes place in a multi-stage manner, the preheating of the first part stream (S1) and of the third part stream (S3) taking place in a second preheating stage (88) common to these by means of the flue gas (R, t1) occurring during the combustion of the fossil fuel (B).
- Method according to Claim 1 or 2, characterized in that a cold-air stream (KL) is admixed with the first part stream (t1) of exhaust gas (A) from the gas turbine (2) serving as combustion air.
- Method according to one of Claims 1 to 3, characterized in that the first part stream (t1) of exhaust gas (A) from the gas turbine (2) serving as combustion air is purified together with the flue gas (R) occurring during the combustion of the fossil fuel (B).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97117410A EP0822320B1 (en) | 1994-09-27 | 1995-09-14 | Gas and steam turbine plant |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4434526 | 1994-09-27 | ||
DE4434526A DE4434526C1 (en) | 1994-09-27 | 1994-09-27 | Process for operating a gas and steam turbine plant and plant operating thereafter |
PCT/DE1995/001263 WO1996010124A1 (en) | 1994-09-27 | 1995-09-14 | Method of operating a gas and steam turbine plant and plant operating according to this method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97117410A Division EP0822320B1 (en) | 1994-09-27 | 1995-09-14 | Gas and steam turbine plant |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0783619A1 EP0783619A1 (en) | 1997-07-16 |
EP0783619B1 true EP0783619B1 (en) | 1998-06-03 |
Family
ID=6529324
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97117410A Expired - Lifetime EP0822320B1 (en) | 1994-09-27 | 1995-09-14 | Gas and steam turbine plant |
EP95931137A Expired - Lifetime EP0783619B1 (en) | 1994-09-27 | 1995-09-14 | Method of operating a gas and steam turbine plant |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97117410A Expired - Lifetime EP0822320B1 (en) | 1994-09-27 | 1995-09-14 | Gas and steam turbine plant |
Country Status (7)
Country | Link |
---|---|
US (1) | US5887418A (en) |
EP (2) | EP0822320B1 (en) |
JP (1) | JPH10506165A (en) |
KR (1) | KR100385372B1 (en) |
CN (1) | CN1067137C (en) |
DE (3) | DE4434526C1 (en) |
WO (1) | WO1996010124A1 (en) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19542917A1 (en) * | 1994-12-21 | 1996-06-27 | Abb Management Ag | Combined turbine generating set |
DE19541914A1 (en) * | 1995-11-10 | 1997-05-15 | Asea Brown Boveri | Cooling air cooler for power plants |
DE19619470C1 (en) * | 1996-05-14 | 1997-09-25 | Siemens Ag | Combined gas-and-steam turbine installation |
DE19626011A1 (en) * | 1996-06-28 | 1998-01-02 | Lentjes Kraftwerkstechnik | Combined gas-steam power plant and process |
DE19720789B4 (en) * | 1997-05-17 | 2006-04-27 | Alstom | Method and apparatus for generating steam |
US6065280A (en) * | 1998-04-08 | 2000-05-23 | General Electric Co. | Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures |
NL1009467C2 (en) * | 1998-06-22 | 1999-12-27 | Stork Eng & Contractors Bv | Cogeneration plant, and method for operating it. |
US6202782B1 (en) * | 1999-05-03 | 2001-03-20 | Takefumi Hatanaka | Vehicle driving method and hybrid vehicle propulsion system |
DE10001997A1 (en) | 2000-01-19 | 2001-07-26 | Alstom Power Schweiz Ag Baden | Composite power plant and method for operating such a composite power plant |
SE0004931D0 (en) * | 2000-12-29 | 2000-12-29 | Addpower Ab | Ways to convert heat into hot flue gases |
US7073337B2 (en) * | 2003-05-30 | 2006-07-11 | General Electric Company | Combined power generation and desalinization apparatus and related method |
CN1948720B (en) * | 2006-10-31 | 2011-08-10 | 章祖文 | Permanent magnet driving low temperature multistage turbogenerator |
USD565893S1 (en) | 2006-12-22 | 2008-04-08 | Electrolux Home Products, Inc. | Portion of a burner assembly |
USD562070S1 (en) | 2006-12-22 | 2008-02-19 | Electrolux Home Products | Portion of a burner assembly |
USD562069S1 (en) | 2006-12-22 | 2008-02-19 | Electrolux Home Products, Inc. | Portion of a burner assembly |
US7871264B2 (en) * | 2006-12-29 | 2011-01-18 | Electrolux Home Products, Inc. | Hub and spoke burner port configuration |
JP4939511B2 (en) * | 2008-10-29 | 2012-05-30 | 三菱重工業株式会社 | Coal gasification combined power generation facility |
ITBS20090224A1 (en) * | 2009-12-16 | 2011-06-17 | Turboden Srl | SYSTEM AND METHOD FOR THE PRODUCTION OF ELECTRIC ENERGY STARTING FROM THERMAL SOURCES AT VARIABLE TEMPERATURE |
DE102011013325A1 (en) * | 2011-03-08 | 2012-09-13 | Rwe Technology Gmbh | Power plant and method for operating a power plant |
US9074494B2 (en) | 2011-10-21 | 2015-07-07 | General Electric Company | System and apparatus for controlling temperature in a heat recovery steam generator |
DE202011107312U1 (en) * | 2011-11-02 | 2012-02-29 | Gammel Engineering Gmbh | Abgasnacherhitzungs device |
US8955322B2 (en) * | 2012-03-05 | 2015-02-17 | Ormat Technologies Inc. | Apparatus and method for increasing power plant efficiency at partial loads |
CN103047047B (en) * | 2013-01-24 | 2015-12-02 | 矫明义 | Engine exhaust power plant and using method |
FR3005143A1 (en) * | 2013-04-25 | 2014-10-31 | Pyraine | THERMAL INSTALLATION FOR THE PRODUCTION OF ELECTRICITY BY COMBUSTION |
DE102013208002A1 (en) * | 2013-05-02 | 2014-11-06 | Siemens Aktiengesellschaft | Thermal water treatment at STIG power plant concepts |
GB2519129A (en) * | 2013-10-10 | 2015-04-15 | Ide Technologies Ltd | Pumping Apparatus |
EP4092253A1 (en) | 2014-06-04 | 2022-11-23 | Pintail Power LLC | Dispatchable solar hybrid power plant |
JP6317652B2 (en) * | 2014-09-12 | 2018-04-25 | 株式会社東芝 | Plant control device and combined cycle power plant |
EP3262284B1 (en) * | 2015-02-24 | 2019-01-02 | Siemens Aktiengesellschaft | Combined cycle power plant having supercritical steam turbine |
WO2017079617A1 (en) | 2015-11-05 | 2017-05-11 | Conlon William M | Dispatchable storage combined cycle power plants |
US10174639B2 (en) * | 2017-01-31 | 2019-01-08 | General Electric Company | Steam turbine preheating system |
US10337357B2 (en) | 2017-01-31 | 2019-07-02 | General Electric Company | Steam turbine preheating system with a steam generator |
US10670334B2 (en) * | 2017-12-01 | 2020-06-02 | Dilip Kumar De | Highly cost effective technology for capture of industrial emissions without reagent for clean energy and clean environment applications |
CN108679587A (en) * | 2018-05-11 | 2018-10-19 | 中国成达工程有限公司 | A kind of combustion gas turbine lack of gas and tandem heat recovery system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1312469A (en) * | 1961-10-03 | 1962-12-21 | Babcock & Wilcox France | Improvements to combined cycle steam and gas energy production facilities |
DE1426443B2 (en) * | 1962-09-21 | 1971-09-09 | THERMAL POWER PLANT | |
DE1426890A1 (en) * | 1963-08-30 | 1969-06-12 | Aeg Kanis Turbinen | Power plant with waste incineration |
DE3815536C1 (en) * | 1988-05-06 | 1989-07-20 | Wolff Walsrode Ag, 3030 Walsrode, De | Heating and power station and method for generating heat energy in the form of steam and generating electrical energy |
US4852344A (en) * | 1988-06-06 | 1989-08-01 | Energy Economics & Development, Inc. | Waste disposal method and apparatus |
DE4029991A1 (en) * | 1990-09-21 | 1992-03-26 | Siemens Ag | COMBINED GAS AND STEAM TURBINE SYSTEM |
JPH04362207A (en) * | 1991-06-10 | 1992-12-15 | Toshiba Corp | Repowering system of steam power generating equipment |
DE4126036A1 (en) * | 1991-08-06 | 1993-02-11 | Siemens Ag | GAS AND STEAM TURBINE POWER PLANT WITH A SOLAR HEATED STEAM GENERATOR |
US5628183A (en) * | 1994-10-12 | 1997-05-13 | Rice; Ivan G. | Split stream boiler for combined cycle power plants |
-
1994
- 1994-09-27 DE DE4434526A patent/DE4434526C1/en not_active Expired - Fee Related
-
1995
- 1995-09-14 JP JP8511259A patent/JPH10506165A/en not_active Ceased
- 1995-09-14 EP EP97117410A patent/EP0822320B1/en not_active Expired - Lifetime
- 1995-09-14 EP EP95931137A patent/EP0783619B1/en not_active Expired - Lifetime
- 1995-09-14 DE DE59508574T patent/DE59508574D1/en not_active Expired - Lifetime
- 1995-09-14 KR KR1019970701998A patent/KR100385372B1/en not_active IP Right Cessation
- 1995-09-14 CN CN95194614A patent/CN1067137C/en not_active Expired - Fee Related
- 1995-09-14 WO PCT/DE1995/001263 patent/WO1996010124A1/en active IP Right Grant
- 1995-09-14 DE DE59502433T patent/DE59502433D1/en not_active Expired - Lifetime
-
1997
- 1997-03-27 US US08/826,240 patent/US5887418A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP0783619A1 (en) | 1997-07-16 |
CN1067137C (en) | 2001-06-13 |
WO1996010124A1 (en) | 1996-04-04 |
EP0822320A1 (en) | 1998-02-04 |
DE59508574D1 (en) | 2000-08-17 |
CN1155318A (en) | 1997-07-23 |
DE59502433D1 (en) | 1998-07-09 |
KR100385372B1 (en) | 2003-08-19 |
US5887418A (en) | 1999-03-30 |
DE4434526C1 (en) | 1996-04-04 |
JPH10506165A (en) | 1998-06-16 |
KR970706444A (en) | 1997-11-03 |
EP0822320B1 (en) | 2000-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0783619B1 (en) | Method of operating a gas and steam turbine plant | |
EP0523467B1 (en) | Method of operating a gas and steam turbines plant and plant for carrying out the method | |
EP0591163B2 (en) | Combined gas and steam turbine plant | |
EP0778397B1 (en) | Method of operating a combined power plant with a waste heat boiler and a steam user | |
EP0750718B1 (en) | Method of operating a gas and steam turbine installation and installation operating according to said method | |
DE10001997A1 (en) | Composite power plant and method for operating such a composite power plant | |
WO1999019608A1 (en) | Gas and steam turbine installation and method for operating an installation of this type | |
EP0898641B1 (en) | Gas and steam turbine plant and method of operating the same | |
EP0515911B1 (en) | Method of operating a gas and steam turbine plant and corresponding plant | |
EP0523466B1 (en) | Method for operating a gas and steam turbine plant and plant for carrying out the method | |
DE4321081A1 (en) | Process for operating a gas and steam turbine plant and a combined cycle gas plant | |
DE10001995A1 (en) | Method for setting or regulating the steam temperature of the live steam and / or reheater steamer in a composite power plant and composite power plant for carrying out the method | |
DE69220240T2 (en) | STEAM SYSTEM FOR A SYSTEM WITH SEVERAL BOILERS | |
EP0595009B1 (en) | Method of operating a power plant and power plant working according to this method | |
EP0840837B1 (en) | Process for running a gas and steam turbine plant and plant run by this process | |
DE19720789B4 (en) | Method and apparatus for generating steam | |
DE19943782C5 (en) | Gas and steam turbine plant | |
DE19627425A1 (en) | Method of operating hybrid solar powered combined plant | |
EP0709561A1 (en) | Power plant | |
EP0931978B1 (en) | Process for preventing steaming in a forced circulation steam generator | |
DE3815993A1 (en) | Binary-vapour turbine plant | |
DE19612921A1 (en) | Power plant and method for operating a power plant | |
DE4409811C1 (en) | Method of driving heat steam producer partic. for gas and steam turbine installation | |
EP1404947B1 (en) | Method for operating a steam power plant and steam power plant for carrying out said method | |
DE19849740A1 (en) | Gas and steam-turbine plant with waste-heat steam generator e.g for power stations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970121 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19970922 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL SE |
|
DX | Miscellaneous (deleted) | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59502433 Country of ref document: DE Date of ref document: 19980709 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19980807 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20001214 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20010913 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010914 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010928 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010930 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030401 |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030603 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050914 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120917 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20121119 Year of fee payment: 18 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130914 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59502433 Country of ref document: DE Effective date: 20140401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140401 |