EP0768452B1 - Coolant guiding in a cooling circuit of a liquid cooled internal combustion engine - Google Patents
Coolant guiding in a cooling circuit of a liquid cooled internal combustion engine Download PDFInfo
- Publication number
- EP0768452B1 EP0768452B1 EP96114806A EP96114806A EP0768452B1 EP 0768452 B1 EP0768452 B1 EP 0768452B1 EP 96114806 A EP96114806 A EP 96114806A EP 96114806 A EP96114806 A EP 96114806A EP 0768452 B1 EP0768452 B1 EP 0768452B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coolant
- radiator
- tank
- venting
- circulation system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/028—Deaeration devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/029—Expansion reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0231—Header boxes having an expansion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/08—Cabin heater
Definitions
- the invention relates to a coolant guide in one Cooling circuit of a liquid-cooled internal combustion engine according to the preamble of claim 1.
- Coolant guide generic type In a cooling circuit of a liquid-cooled Internal combustion engine is a coolant cooler with a geodetically arranged water box and inlet side and arranged outlet side for the coolant. Above the coolant cooler is in flow with it connected expansion tank. The inlet side of the coolant cooler is with an outlet connection for heated by the engine Coolant and the outlet side with a coolant pump connected. There is also a vehicle heater in the cooling circuit arranged with a flow line and a return line, the supply line of coolant heated by the engine is fed.
- a disadvantage of coolant guides of the generic type lies in their relatively high construction costs caused by the large number of different coolant and ventilation lines between engine, radiator and other heat exchangers (e.g. vehicle heating, oil cooler and auxiliary cooler) is conditional. Furthermore, the construction is relatively complex Arrangement of the coolant and ventilation lines often one Consequence of the demands on the cooling circuit with regard to cooling individual components and requirements with regard to ventilation the cooling circuit, especially during vehicle operation, with important secondary aspects such as filling and emptying the cooling circuit with coolant is taken into account and must be satisfactorily achievable.
- the invention has for its object a generic Form coolant management in such a way that with consistently good Coolant management properties with regard to cooling, Venting, filling and draining a significant reduction the construction effort and the most compact possible Cooling system is accessible.
- An advantage of the arrangement according to the invention is that by venting the cooling water in the engine block via the flow line of the vehicle heating in the expansion tank or in the water tank of the coolant cooler no separate Breather line required for continuous engine ventilation is. By eliminating the separate ventilation line is a reduction in construction costs and a more compact design reached for the cooling water circuit.
- the embodiment according to the invention according to claim 2 serves the spatial arrangement of the individual components of the coolant circuit also the compact design of the coolant guide, because bypassing the expansion tank with the flow line, of the water tank or the cooling system becomes.
- a particularly compact embodiment of the invention results according to Claim 7, since the expansion tank with the water tank the coolant cooler is integrated and a direct flow connection from the expansion tank to the upper water tank when installed is available.
- the integration of the expansion tank with the coolant cooler for example, via a Plug connection, so that the expansion tank, on the upper Overlying water box, into an integrated unit with the Coolant cooler is connected.
- the coolant cooler is vented according to claim 8 via a nozzle-shaped junction in the bottom of the expansion tank, those in fluid communication with the upper water tank stands.
- An advantage of the embodiment according to the invention according to claim 9 is that the return line from the vehicle heater simple way in the expansion tank or in the area of upper water box is feasible, making an easy connection possible with the cooling water pipe leading to the engine block is.
- the return line of the vehicle heater connectable to the cooling water pipe leading to the water pump, causing a harmful flow of cooling water from the Avoided return of the vehicle heating to the coolant cooler becomes.
- FIG. 1 and 2 show a basic illustration of an inventive Coolant flow in a cooling circuit of a liquid-cooled Internal combustion engine with an engine block 1, one Fan wheel la and a coolant cooler arranged in front of it 2.
- This includes an upper geodetically in the installed position Water box 3 and a lower deflection box 4, the water box 3 fluidly connected to a surge tank 5 is.
- the flow direction of the coolant through the connection lines between engine block 1, coolant cooler 2 and expansion tank 5 and vehicle heating 6 is for filling and Heating operation indicated by arrows.
- the exchange of coolant between the engine block 1 and the remaining cooling circuit takes place via a coolant regulator 27, the thermostats for motor temperature control, which are known in principle includes.
- the thermostats for motor temperature control which are known in principle includes.
- the following always from the entry or exit of cooling water in or spoken from the engine block and the coolant regulator 27 is not always mentioned.
- the coolant cooler 2 has one in the water tank 3 arranged inlet side 9 and an outlet side 10 for the coolant (Cooling water).
- the inlet side 9 is with a line 9a with an outlet 11 of the coolant regulator 27 for from Engine heated coolant and the outlet side 10 with a line 12 with an inlet nozzle 13 arranged in the cooling circuit
- Coolant pump 14 connected by the coolant cooler 2 cooled coolant in the cooling channels of the engine block 1 promotes.
- the flow line 7 of the vehicle heater 6 is through the expansion tank 5 performed and is with a further outlet nozzle of the coolant regulator 27 connected.
- a valve 16 in the flow line 7 arranged that with a controller, not shown, for regulation a cabin interior temperature is connected.
- the coolant cooler 2 and the engine block 1 have one below coolant ventilation described in more detail.
- the engine block 1 is vented both during filling as well as in continuous operation of the cooling circuit via an in of the flow line 7 arranged vent 15 (see 3 and 4), which opens into the expansion tank 5.
- the mouth of the vent opening 15 can also be in the Upper water box 3 of the coolant tank 2 may be arranged.
- Vent the engine block 1 can instead of those described above simple ventilation opening 15 also a ventilation device, such as one shown in FIG. 5 and radial breather described in more detail below (Ventilation cyclone).
- a ventilation device such as one shown in FIG. 5 and radial breather described in more detail below (Ventilation cyclone).
- the with the inlet connector 13 of the water pump 14 and the outlet side 10 of the coolant cooler 2 forms connected line 12 at the same time a fill line 23 for the cooling water. So is the fill line 23 into the connecting line 12 between the radiator outlet and functionally integrated engine inlet.
- the fill line 23 in the connecting line 12 from the engine block 1 to Coolant cooler 2 integrated which means the separate filling line between coolant tank 5 and suction side of the water pump 14 without replacement.
- the upper water tank 3 of the coolant cooler 2 is through a partition T in running approximately along a cooler width B two chambers 17, 18 divided (see Fig. 3 and 4), the inlet side 9 in one chamber 17 and the outlet side 10 in the other chamber 18 opens.
- the partition T and the location of the Inlet and outlet side 9, 10 and through the lower deflection box 4 the coolant cooler 2 flows through in a U-shaped manner this is indicated by the solid arrows in Fig. 3.
- the two chambers 17, 18 are through a vent opening 19 (see FIGS. 3 and 4), for example a defined annular gap, connected to ensure the radiator ventilation to a geodetic level compensation of the coolant in the chambers 17.18 and, if necessary, a targeted, speed-dependent Short circuit flow from chamber 17 to chamber 18 To represent (pressure drop reduction).
- a vent opening 19 for example a defined annular gap
- a drain screw 26 is arranged on the lower deflection box 4, for the combined draining of coolant from the coolant cooler as well as draining coolant from the engine can be used.
- An engine drain line 28 that from the cooling water inlet into the engine (or housing of a coolant regulator 27) leads to said drain plug 26 is indicated by dashed lines.
- the return line 8 of the vehicle heater 6 is in the expansion tank 5 led. To a harmful flow of cooling water from the vehicle heating return to the coolant cooler 2 to avoid, is in the expansion tank 5 Return pipe of the return line 8 in the nozzle of the Water pump leading line 12, whereby the of the Vehicle heating 6 returning cooling water directly to that of the Water pump 14 flowing, cooled coolant stream added becomes.
- FIGS. 3 and 4 show a schematic diagram of the coolant cooler 2 with upper water box 3 and deflection box 4 together with the water tank 3 integrated expansion tank 5. Same Components from FIGS. 1 and 2 have the same reference numerals designated.
- the coolant cooler 2 is known in principle from a plurality of pipes 29 standing vertically in the installed position, the upper water tank 3 with the lower deflection box 4 connect in terms of flow. To enlarge the cooling surface cooling fins 30 are arranged between the tubes, wherein in Fig. 3 only some of the tubes 29 drawn together with cooling fins 30 are.
- the expansion tank 5 includes in addition to those described above Components a float 31 and guide 32, the Float with a signal device, not shown Display of the coolant level (coolant quantity) is connected.
- the expansion tank 5 includes a filler neck 24 and a nozzle 33 for a single or multi-stage pressure relief valve 25 (see Fig. 1) and openings 34 and 35 for the Implementation of the flow line 7 and an opening 36 for the Return line 8 of the vehicle heating system 6.
- the expansion tank 5 is over with the upper water tank 3 of the coolant cooler 2 integrated a spray connection. A possible education this connection is shown in Fig. 5.
- the cooling circuit is filled via the filling opening 24 of the expansion tank 5.
- the coolant fill quantity is limited and in the expansion tank 5 for continuous operation of the Cooling circuit necessary compensation air volume ensured (Coolant was K).
- the coolant is not from the expansion tank 5 Connection channel shown in the chamber 18 of the water tank 3 directed and filled the coolant cooler 2 U-shaped (dashed arrows) up to the nozzle level on the inlet side 9 and the outlet side 10. Then the cooling channels of the Engine blocks 1 by overflowing at the two nozzles on the inlet side 9 and the outlet side 10 via the lines 9a and 12 (see Fig. 1 and 2) filled.
- the connecting channel between Cooling water cooler 2 and expansion tank 5 is a plug-in or hose connection is formed and can at the same time partially can be used to attach the expansion tank.
- the venting of the coolant flow into the expansion tank 5 takes place with simultaneous entrainment of gas inclusions one vertically arranged and matched to the ventilation quantity Channel 21 in the bottom 22 of the expansion tank 5, wherein the channel 21 is fluidly connected to the water tank 3 is.
- the coolant cooler 2 is vented by a nozzle-shaped one Junction 20 together with channel 21 in the bottom 22 of the expansion tank 5.
- the channel 21 is with the upper water tank 3 in flow connection.
- the nozzle-shaped Mouth 20 vertically in addition to the installation direction arranged channel 21 is on the venting amount of the coolant cooler 2 matched. Furthermore, the venting of the Coolant cooler 2 and the cooling channels of the engine block 1 at the Filling and also in continuous operation via the in the partition T arranged vent hole 19 as well as via the vent opening 15 in the supply line 7.
- the heating return via the return line 8 takes place according to the invention via the expansion tank 5, the return line 8 directly into the nozzle 10 leading to the water pump 14 Line 12 and 23 is introduced. To be as low as possible To achieve energy loss in the coolant return flow, the heating return line 8 is as direct as possible and with little Flow deflections in the nozzle 10 out (see Fig. 2nd and 4).
- FIG. 5 shows, as already mentioned above, an embodiment of a Expansion tank 5 'with integrated venting device, which is designed as a radial breather (ventilation cyclone).
- the Breather device is particularly suitable for permanent engine ventilation.
- Components that have already been described in FIGS. 1 to 4 and are only modified constructively, are apostrophized Reference numerals denote such as the inlet side 9 'and the openings 34' and 35 'for the passage of the flow line 7 '.
- the expansion tank 5 ' consists of an upper part 5a and a lower part 5b, both of which are sealingly connected to one another are.
- the cooling circuit is ready for operation the cooling water level in the upper part 5a of the expansion tank 5 'approximately at the level indicated in FIG. 5.
- the Expansion tank 5 ' is with the upper water tank 3 of the Coolant cooler 2 (see Fig. 1) via an injection molding Connection 43 integrated.
- the radial breather is arranged in the expansion tank 5 ' and comprises a two-part cylindrical housing with a lower housing part 38 and an upper housing part 37.
- the lower Housing part 38 is injection molded in the lower part 5b of the expansion tank 5 'molded and the upper housing part 37 is plugged onto the lower housing part 38 in a sealing manner.
- the upper housing part 37 comprises a two-part housing upward closing cylinder ceiling 41, in which there is approximately there is an opening 42 in the center which connects between the interior of the housing and the interior of the expansion tank 5 'produces.
- the lower housing part 38 comprises an in approximately tangential mouth 39 and one geodetically below this arranged, approximately diametrically opposite tangential Mouth 40 of the flow line 7 '.
- the housing can thus as Part of the flow line 7 'can be seen.
- the coolant KS flows through the flow line 7 ', similar to Flow line 7 according to FIG. 1, from the engine 1 in the direction of the vehicle heating 6, the flow direction of the coolant KS with Arrows is indicated.
- the ventilation of the coolant flow KS through the radial breather works like this.
- the coolant KS flows over the Mouth 39 tangentially into the cylindrical housing and, roughly diametrically opposite and geodetically below the confluence 39, through the tangential mouth 40 from the cylindrical Housing. Due to the tangential inflow and outflow and by the cylindrical contour of the housing (at least between the mouth 39 and the mouth 40) receives the coolant flow KS a swirl so that when flowing through the radial breather the coolant flows through the centrifugal force in the direction Housing shell is pressed. This will make the light gas components (Gas bubbles 44) displaced into the center of the housing and subsequently enter through vent 42 the cylinder ceiling 41.
- the area of the housing between the tangential input and Outflow opening 39, 40 is approximately cylindrical, so that reliably develop the swirl described above in the flow can.
- the flow line for Vehicle heating passed through the expansion tank, it can but also run through the upper water tank.
- the return line 8 also be guided in the upper water tank 3 and similarly the line 12 from the water box 3 to the engine block 1 to lead.
- the chambers 17 and 18 of the upper water box 3 by a pressure dynamic connection element to create a defined flow short circuit connected, said connecting element when changing Pressure potential in the chambers 17, 18 changes its degree of opening in such a way that with a large pressure difference the degree of opening is greater than with a small pressure difference.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
Description
Die Erfindung bezieht sich auf eine Kühlmittelführung in einem
Kühlkreislauf einer flüssigkeitsgekühlten Brennkraftmaschine gemäß
dem Oberbegriff des Patentanspruchs 1.The invention relates to a coolant guide in one
Cooling circuit of a liquid-cooled internal combustion engine according to
the preamble of
Aus der DE 34 33 370 C2 ist bereits eine Kühlmittelführung der gattungsgemäßen Art bekannt. In einem Kühlkreislauf einer flüssigkeitsgekühlten Brennkraftmaschine ist ein Kühlmittelkühler mit einem geodätisch unten angeordneten Wasserkasten nebst Einlaßseite und Auslaßseite für das Kühlmittel angeordnet. Oberhalb des Kühlmittelkühlers befindet sich ein strömungsmäßig mit diesem verbundener Ausgleichsbehälter. Die Einlaßseite des Kühlmittelkühlers ist mit einem Austrittsstutzen für vom Motor erwärmtes Kühlmittel und die Auslaßseite mit einer Kühlmittelpumpe verbunden. Desweiteren ist im Kühlkreislauf eine Fahrzeugheizung mit einer Vorlaufleitung und einer Rücklaufleitung angeordnet, wobei die Vorlaufleitung von durch den Motor erwärmtem Kühlmittel gespeist wird.From DE 34 33 370 C2 is already a coolant guide generic type known. In a cooling circuit of a liquid-cooled Internal combustion engine is a coolant cooler with a geodetically arranged water box and inlet side and arranged outlet side for the coolant. Above the coolant cooler is in flow with it connected expansion tank. The inlet side of the coolant cooler is with an outlet connection for heated by the engine Coolant and the outlet side with a coolant pump connected. There is also a vehicle heater in the cooling circuit arranged with a flow line and a return line, the supply line of coolant heated by the engine is fed.
Zum allgemeinen technischen Hintergrund wird noch auf die Druckschriften
DE 41 31 357 C1, DE 41 01 708 A1 und DE 28 27 022 A1
verwiesen.The general technical background is still on the
Ein Nachteil von Kühlmittelführungen der gattungsgemäßen Art liegt in ihrem verhältnismäßig hohen Bauaufwand, der durch die große Anzahl von verschiedenen Kühlflüssigkeits- und Entlüftungsleitungen zwischen Motor, Kühler und weiteren Wärmetauschern (beispielsweise Fahrzeugheizung, Ölkühler und Zusatzkühler) bedingt ist. Desweiteren ist die relativ bauaufwendige Anordnung der Kühlflüssigkeits- und Entlüftungsleitungen oft eine Folge der Ansprüche an den Kühlkreislauf bezüglich der Kühlung einzelner Komponenten und Forderungen hinsichtlich der Entlüftung des Kühlkreislaufes, besonders während des Fahrzeugbetriebes, wobei gleichzeitig wichtige Nebenaspekte wie Befüllung und Entleerung des Kühlkreislaufes mit Kühlmittel berücksichtigt werden und zufriedenstellend erfüllbar sein müssen.A disadvantage of coolant guides of the generic type lies in their relatively high construction costs caused by the large number of different coolant and ventilation lines between engine, radiator and other heat exchangers (e.g. vehicle heating, oil cooler and auxiliary cooler) is conditional. Furthermore, the construction is relatively complex Arrangement of the coolant and ventilation lines often one Consequence of the demands on the cooling circuit with regard to cooling individual components and requirements with regard to ventilation the cooling circuit, especially during vehicle operation, with important secondary aspects such as filling and emptying the cooling circuit with coolant is taken into account and must be satisfactorily achievable.
Der Erfindung liegt die Aufgabe zugrunde, eine gattungsgemäße Kühlmittel führung derart auszubilden, daß bei gleichbleibend guten Eigenschaften der Kühlmittel führung hinsichtlich Kühlung, Entlüftung, Befüllung und Entleerung eine wesentliche Verringerung des Bauaufwandes und eine möglichst kompakte Bauweise des Kühlsystems erreichbar ist.The invention has for its object a generic Form coolant management in such a way that with consistently good Coolant management properties with regard to cooling, Venting, filling and draining a significant reduction the construction effort and the most compact possible Cooling system is accessible.
Die Aufgabe wird erfindungsgemäß durch die im Kennzeichen des
patentanspruches 1 gegebenen Merkmale gelöst. Die Merkmale der
Unteransprüche geben vorteilhafte Aus- und Weiterbildungen der
Erfindung an.The object is achieved by the in the characteristic of
Ein Vorteil der erfindungsgemäßen Anordnung liegt darin, daß durch die Entlüftung des im Motorblock befindlichen Kühlwassers über die Vorlaufleitung der Fahrzeugheizung in den Ausgleichsbehälter bzw. in den Wasserkasten des Kühlmittelkühlers keine separate Entlüftungsleitung für die Motordauerentlüftung erforderlich ist. Durch den Wegfall der separaten Entlüftungsleitung wird eine Verringerung des Bauaufwandes und eine kompaktere Bauweise für den Kühlwasserkreislauf erreicht.An advantage of the arrangement according to the invention is that by venting the cooling water in the engine block via the flow line of the vehicle heating in the expansion tank or in the water tank of the coolant cooler no separate Breather line required for continuous engine ventilation is. By eliminating the separate ventilation line is a reduction in construction costs and a more compact design reached for the cooling water circuit.
Die erfindungsgemäße Ausgestaltung nach Anspruch 2 dient aufgrund
der räumlichen Anordnung der einzelnen Bauteile des Kühlmittelkreislaufs
ebenfalls der kompakten Bauausführung der Kühlmittelführung,
da mit der Vorlaufleitung eine Umgehung des Ausgleichsbehälters,
des Wasserkastens bzw. der Kühlanlage eingespart
wird. The embodiment according to the invention according to
Durch die erfindungsgemäße Kühlmittel führung nach Anspruch 4 wird eine U-förmige Durchströmung des Kühlmittelkühlers erreicht, da sowohl die Einlaßseite als auch die Auslaßseite des Kühlmittelkühlers in dessen geodätisch oberen Bereich liegen. Dies bringt bauliche Vorteile, da die Rücklaufleitungen zwischen Fahrzeugheizung, Kühlmittelkühler und Motor kürzer sind als bei über den geodätisch tief liegenden Wasserkasten geführten Rücklaufleitungen.By the coolant management according to claim 4 a U-shaped flow through the coolant cooler is achieved, since both the inlet side and the outlet side of the Coolant cooler are in the geodetically upper area. This brings structural advantages, since the return lines between Vehicle heating, coolant cooler and engine are shorter than at return pipes routed via the geodesically deep water tank.
Eine besonders kompakte Ausführung der Erfindung ergibt sich gemäß
Anspruch 7, da der Ausgleichsbehälter mit dem Wasserkasten
des Kühlmittelkühlers integriert ist und eine direkte Strömungsverbindung
vom Ausgleichsbehälter zum in Einbaulage oberen Wasserkasten
vorhanden ist. Die Integrierung des Ausgleichsbehälters
mit dem Kühlmittelkühler erfolgt beispielsweise über eine
Steckverbindung, sodaß der Ausgleichsbehälter, auf dem oberem
Wasserkasten aufliegend, zu einer integrierten Einheit mit dem
Kühlmittelkühler verbunden ist.A particularly compact embodiment of the invention results according to
Die Entlüftung des Kühlmittelkühlers erfolgt gemäß Anspruch 8 über eine düsenförmige Einmündung im Boden des Ausgleichsbehälters, die mit dem oberen Wasserkasten in Strömungsverbindung steht.The coolant cooler is vented according to claim 8 via a nozzle-shaped junction in the bottom of the expansion tank, those in fluid communication with the upper water tank stands.
Ein Vorteil der erfindungsgemäßen Ausgestaltung nach Anspruch 9
liegt darin, daß die Rücklaufleitung von der Fahrzeugheizung auf
einfache Weise in den Ausgleichsbehälter bzw. in den Bereich des
oberen Wasserkastens führbar ist, wodurch eine einfache Verbindung
mit der zum Motorblock führenden Kühlwasserleitung möglich
ist. So ist beispielsweise die Rücklaufleitung der Fahrzeugheizung
mit der zur Wasserpumpe führenden Kühlwasserleitung verbindbar,
wodurch eine schädliche Strömung von Kühlwasser aus dem
Rücklauf der Fahrzeugheizung in den Kühlmittelkühler vermieden
wird.An advantage of the embodiment according to the invention according to
Durch die erfindungsgemäße Ausgestaltung nach Anspruch 10 wird durch die gleichzeitige Nutzung der Leitung vom Kühler zum Motorblock als Auffülleitung bei der Befüllung des Kühlmittelkreislaufs eine gemäß dem Stand der Technik übliche separate Befülleitung, die zur Saugseite der Wasserpumpe bzw. zum Motorblock führt, eingespart.The inventive configuration according to claim 10 through the simultaneous use of the line from the radiator to the engine block as a filling line when filling the coolant circuit a separate filling line customary in the prior art, to the suction side of the water pump or to the engine block leads, saved.
Weitere Vorteile der Erfindung gehen aus den übrigen Unteransprüchen und der Beschreibung hervor.Further advantages of the invention emerge from the remaining subclaims and the description.
In den Zeichnungen ist die Erfindung anhand eines Ausführungsbeispiels näher erläutert. Es zeigen:
- Fig. 1
- eine Prinzipdarstellung einer erfindungsgemäßen Kühlmittelführung in einer Seitenansicht von Motor und Kühler,
- Fig. 2
- eine Draufsicht von Fig. 1,
- Fig. 3
- eine Prinzipdarstellung des Kühlmittelkühlers nebst aufgesetztem Ausgleichsbehälter,
- Fig. 4
- eine Draufsicht von Fig. 3 und
- Fig. 5
- eine Ausführung eines Ausgleichsbehälters mit integrierter Entlüftungsvorrichtung.
- Fig. 1
- 1 shows a schematic diagram of a coolant guide according to the invention in a side view of the engine and radiator,
- Fig. 2
- 2 shows a top view of FIG. 1,
- Fig. 3
- a schematic diagram of the coolant cooler along with the expansion tank,
- Fig. 4
- a plan view of Fig. 3 and
- Fig. 5
- a version of a surge tank with integrated venting device.
Die Fig. 1 und 2 zeigen in einer Prinzipdarstellung eine erfindungsgemäße
Kühlmittelführung in einem Kühlkreislauf einer flüssigkeitsgekühlten
Brennkraftmaschine mit einem Motorblock 1, einem
Lüfterrad la sowie einen vor diesem angeordneten Kühlmittelkühler
2. Dieser umfaßt einen in Einbaulage geodätisch oberen
Wasserkasten 3 und einem unteren Umlenkkasten 4, wobei der Wasserkasten
3 mit einem Ausgleichsbehälter 5 strömungsmäßig verbunden
ist. Im Kühlkreislauf befindet sich ferner eine Fahrzeugheizung
6 mit einer Vorlaufleitung 7 und einer Rücklaufleitung
8. 1 and 2 show a basic illustration of an inventive
Coolant flow in a cooling circuit of a liquid-cooled
Internal combustion engine with an
Die Strömungsrichtung des Kühlmittels durch die Verbindungsleitungen
zwischen Motorblock 1, Kühlmittelkühler 2 nebst Ausgleichsbehälter
5 und Fahrzeugheizung 6 ist für Befüllung und
Heizungsbetrieb mit Pfeilen angedeutet.The flow direction of the coolant through the connection lines
between
Der Austausch von Kühlmittel zwischen dem Motorblock 1 und dem
übrigen Kühlkreislauf erfolgt über einen Kühlmittelregler 27,
der in prinzipiell bekannter Weise Thermostate für die Motor-Temperaturregelung
umfaßt. Der Übersichtlichkeit halber wird im
folgenden immer vom Ein- bzw. Austritt von Kühlwasser in bzw.
aus dem Motorblock gesprochen und der Kühlmittelregler 27 nicht
immer miterwähnt.The exchange of coolant between the
Der Kühlmittelkühler 2 besitzt jeweils eine im Wasserkasten 3
angeordnete Einlaßseite 9 und eine Auslaßseite 10 für das Kühlmittel
(Kühlwasser). Die Einlaßseite 9 ist mit einer Leitung 9a
mit einem Austrittsstutzen 11 des Kühlmittelreglers 27 für vom
Motor erwärmtes Kühlmittel und die Auslaßseite 10 mit einer Leitung
12 mit einem Eintrittsstutzen 13 einer im Kühlkreislauf angeordneten
Kühlmittelpumpe 14 verbunden, die vom Kühlmittelkühler
2 gekühltes Kühlmittel in die Kühlkanäle des Motorblockes 1
fördert.The
Die Vorlaufleitung 7 der Fahrzeugheizung 6 ist durch den Ausgleichsbehälter
5 durchgeführt und ist mit einem weiteren Austrittsstutzen
des Kühlmittelreglers 27 verbunden. Zur Regelung
der Fahrzeugheizung 6 ist in der Vorlaufleitung 7 ein Ventil 16
angeordnet, das mit einem nicht dargestellten Regler zur Regelung
einer Fahrgastzellen-Innentemperatur verbunden ist.The
Der Kühlmittelkühler 2 und der Motorblock 1 besitzen eine unten
näher beschriebene Kühlmittel-Entlüftung.The
Die Entlüftung des Motorblocks 1 erfolgt sowohl bei der Befüllung
als auch im Dauerbetrieb des Kühlkreislaufes über eine in
der Vorlaufleitung 7 angeordnete Entlüftungsöffnung 15 (siehe
Fig. 3 und 4), die in den Ausgleichsbehälter 5 mündet. Alternativ
hierzu kann die Mündung der Entlüftungsöffnung 15 auch im
oberen Wasserkasten 3 des Kühlmittelbehälters 2 angeordnet sein.The
Zur Entlüftung des Motorblocks 1 kann anstelle der oben beschriebenen
einfachen Entlüftungsöffnung 15 auch eine Entlüftungsvorrichtung,
wie beispielsweise ein in Fig. 5 dargestellter
und unten näher beschriebener Radialentlüfter
(Entlüftungszyklon), eingesetzt werden.To vent the
Die mit dem Einlaßstutzen 13 der Wasserpumpe 14 und der Auslaßseite
10 des Kühlmittelkühlers 2 verbundene Leitung 12 bildet
gleichzeitig eine Auffülleitung 23 für das Kühlwasser. Somit ist
die Auffülleitung 23 in die Verbindungsleitung 12 zwischen Kühleraustritt
und Motoreintritt funktionell integriert.The with the
Durch die erfindungsgemäße Leitungskonfiguration wird die Auffülleitung
23 in die Verbindungsleitung 12 vom Motorblock 1 zum
Kühlmittelkühler 2 integriert, wodurch die separate Auffülleitung
zwischen Kühlmittelbehälter 5 und Saugseite der Wasserpumpe
14 ersatzlos entfällt.Due to the line configuration according to the invention, the fill line
23 in the connecting line 12 from the
Der obere Wasserkasten 3 des Kühlmittelkühlers 2 ist durch eine
in etwa längs einer Kühlerbreite B verlaufende Trennwand T in
zwei Kammern 17, 18 geteilt (siehe Fig. 3 und 4), wobei die Einlaßseite
9 in der einen Kammer 17 und die Auslaßseite 10 in der
anderen Kammer 18 mündet. Durch die Trennwand T und die Lage der
Einlaß- und Auslaßseite 9, 10 sowie durch den unteren Umlenkkasten
4 wird der Kühlmittelkühler 2 U-förmig durchströmt, wie
dies durch die durchgezogenen Pfeile in Fig. 3 angedeutet ist.The
Die beiden Kammern 17, 18 sind durch eine Entlüftungsöffnung 19
(siehe Fig. 3 und 4), beispielsweise einen definierten Ringspalt,
verbunden, um die Kühlerentlüftung zu gewährleisten, um
einen geodätischen Niveauausgleich des Kühlmittels in den Kammern
17,18 zu ermöglichen und ggf. eine gezielte, drehzahlabhängige
Kurzschlußströmung von der Kammer 17 zur Kammer 18
(Druckabfallreduzierung) darstellen zu können. The two
An dem unteren Umlenkkasten 4 ist eine Ablaßschraube 26 angeordnet,
die zum kombinierten Ablassen von Kühlmittel aus dem Kühlmittelkühler
wie auch dem Ablassen von Kühlmittel aus dem Motor
herangezogen werden kann. Eine Motorentleerungsleitung 28, die
vom Kühlwassereintritt in den Motor (bzw. Gehäuse eines Kühlmittel-Reglers
27) zu besagter Ablaßschraube 26 führt, ist
strichliert angedeutet.A
Die Rücklaufleitung 8 der Fahrzeugheizung 6 ist in den Ausgleichsbehälter
5 geführt. Um eine schädliche Strömung von Kühlwasser
aus dem Fahrzeugheizungsrücklauf in den Kühlmittelkühler
2 zu vermeiden, ist der im Ausgleichsbehälter 5 befindliche
Rücklaufstutzen der Rücklaufleitung 8 in den Stutzen der zur
Wasserpumpe führenden Leitung 12 geführt, wodurch das von der
Fahrzeugheizung 6 rücklaufende Kühlwasser direkt dem der zur
Wasserpumpe 14 strömenden, abgekühlten Kühlmittelstrom zugegeben
wird.The
Die Fig. 3 und 4 zeigen eine Prinzipdarstellung des Kühlmittelkühlers
2 mit oberem Wasserkasten 3 und Umlenkkasten 4 nebst mit
dem Wasserkasten 3 integriertem Ausgleichsbehälter 5. Gleiche
Bauteile aus den Fig. 1 und 2 sind mit gleichen Bezugszeichen
bezeichnet.3 and 4 show a schematic diagram of the
Der Kühlmittelkühler 2 besteht in prinzipiell bekannter Weise
aus einer Vielzahl in Einbaulage senkrecht stehender Rohre 29,
die den oberen Wasserkasten 3 mit dem unteren Umlenkkasten 4
strömungsmäßig verbinden. Zur Vergrößerung der Kühloberfläche
sind zwischen den Rohren Kühllamellen 30 angeordnet, wobei in
Fig. 3 lediglich einige der Rohre 29 nebst Kühllamellen 30 gezeichnet
sind.The
Der Ausgleichsbehälter 5 umfaßt neben den oben beschriebenen
Komponenten einen Schwimmer 31 nebst Führung 32, wobei der
Schwimmer mit einer nicht dargestellten Signaleinrichtung zur
Anzeige des Kühlmittelstandes (Kühlmittelmenge) verbunden ist. The
Desweiteren umfaßt der Ausgleichsbehälter 5 einen Einfüllstutzen
24 sowie einen Stutzen 33 für ein ein- oder mehrstufiges Überdruckventil
25 (siehe Fig. 1) sowie Öffnungen 34 und 35 für die
Durchführung der Vorlaufleitung 7 und eine Öffnung 36 für die
Rücklaufleitung 8 der Fahrzeugheizung 6. Der Ausgleichsbehälter
5 ist mit dem oberen Wasserkasten 3 des Kühlmittelkühlers 2 über
eine spritztechnische Verbindung integriert. Eine mögliche Ausbildung
dieser Verbindung ist in Fig. 5 gezeigt.Furthermore, the
Zum näheren Verständnis der Erfindung wird die Funktionsweise des Kühlmittelführung anhand von unterschiedlichen Betriebsphasen des Kühlmittelkreislaufs beschrieben.For a better understanding of the invention, the mode of operation of coolant management based on different operating phases of the coolant circuit.
Die Befüllung des Kühlkreislaufs erfolgt über die Einfüllöffnung
24 des Ausgleichsbehälter 5. Durch eine nicht dargestellte mechanische
Einfüllbegrenzung wird die Kühlmittelbefüllmenge begrenzt
und im Ausgleichsbehälter 5 ein für den Dauerbetrieb des
Kühlkreislaufs notwendiges Ausgleichs-Luftvolumen sichergestellt
(Kühlmittel stand K).The cooling circuit is filled via the filling
Das Kühlmittel wird vom Ausgleichsbehälter 5 über einen nicht
dargestellten Verbindungskanal in die Kammer 18 des Wasserkastens
3 geleitet und befüllt den Kühlmittelkühler 2 U-förmig
(strichlierte Pfeile) bis zum Stutzenniveau der Einlaßseite 9
und der Auslaßseite 10. Anschließend werden die Kühlkanäle des
Motorblocks 1 durch Überströmen an den beiden Stutzen der Einlaßseite
9 und der Auslaßseite 10 über die Leitungen 9a und 12
(siehe Fig. 1 und 2) befüllt. Der Verbindungskanal zwischen
Kühlwasserkühler 2 und Ausgleichsbehälter 5 ist als eine Steck-
oder Schlauchverbindung ausgebildet und kann gleichzeitig teilweise
zur Befestigung des Ausgleichsbehälters herangezogen werden.The coolant is not from the
Die Entlüftung des Kühlmittelstroms in den Ausgleichsbehälter 5
erfolgt unter gleichzeitiger Mitnahme von Gaseinschlüssen über
einen vertikal angeordneten und auf die Entlüftungsmenge abgestimmten
Kanal 21 im Boden 22 des Ausgleichsbehälters 5, wobei
der Kanal 21 mit dem Wasserkasten 3 strömungsmäßig verbunden
ist.The venting of the coolant flow into the
Die Entlüftung des Kühlmittelkühlers 2 erfolgt durch eine düsenförmige
Einmündung 20 nebst Kanal 21 im Boden 22 des Ausgleichsbehälters
5. Wie oben bereits erwähnt, steht der Kanal 21 mit
dem oberen Wasserkasten 3 in Strömungsverbindung. Die düsenförmige
Einmündung 20 nebst in Einbaurichtung nach oben vertikal
angeordnetem Kanal 21 ist auf die Entlüftungsmenge des Kühlmittelkühlers
2 abgestimmt. Desweiteren erfolgt die Entlüftung des
Kühlmittelkühlers 2 und der Kühlkanäle des Motorblocks 1 bei der
Befüllung und auch im Dauerbetrieb über die in der Trennwand T
angeordnete Entlüftungsbohrung 19 wie auch über die Entlüftungsöffnung
15 in der Vorlaufleitung 7.The
Bei eingeschalteter Fahrzeugheizung 6 (Ventil 16 geöffnet)
strömt die Kühlmittelmenge der in die Motordauerentlüftung integrierten
Heizungsvorlaufleitung 7 zum Heizkörper 6, wobei
gleichzeitig die o.g. Funktionen (Kühlerentlüftung und Gasabscheidung)
übernommen werden.With
Der Heizungsrücklauf über die Rücklaufleitung 8 erfolgt erfindungsgemäß
über den Ausgleichsbehälter 5, wobei die Rücklaufleitung
8 direkt in den Stutzen 10 der zur Wasserpumpe 14 führenden
Leitung 12 bzw. 23 eingeführt ist. Um einen möglichst geringen
Energieverlust bei der Kühlmittel-Rücklaufströmung zu erzielen,
wird die Heizungsrücklaufleitung 8 möglichst direkt und mit wenig
Strömungsumlenkungen in den Stutzen 10 geführt (siehe Fig. 2
und 4).The heating return via the
Fig. 5 zeigt, wie oben bereits erwähnt, eine Ausführung eines Ausgleichsbehälters 5' mit integrierter Entlüftungsvorrichtung, die als Radialentlüfter (Entlüftungszyklon) ausgeführt ist. Die Entlüftungsvorrichtung eignet sich besonders zur Motordauerentlüftung. Bauteile, die bereits in Fig. 1 bis 4 beschrieben wurden und lediglich konstruktiv abgewandelt sind, werden mit apostrophierten Bezugsziffern bezeichnet, wie etwa die Einlaßseite 9' und die Öffnungen 34' und 35' für die Durchführung der Vorlaufleitung 7'.5 shows, as already mentioned above, an embodiment of a Expansion tank 5 'with integrated venting device, which is designed as a radial breather (ventilation cyclone). The Breather device is particularly suitable for permanent engine ventilation. Components that have already been described in FIGS. 1 to 4 and are only modified constructively, are apostrophized Reference numerals denote such as the inlet side 9 'and the openings 34' and 35 'for the passage of the flow line 7 '.
Der Ausgleichsbehälter 5' besteht aus einem oberen Teil 5a und
einem unteren Teil 5b, die beide abdichtend miteinander verbunden
sind. Im betriebsfertigen Zustand des Kühlkreislaufes befindet
sich der Kühlwasserpegel im oberen Teil 5a des Ausgleichsbehälters
5' in etwa auf dem in Fig. 5 angedeuteten Niveau. Der
Ausgleichsbehälter 5' ist mit dem oberen Wasserkasten 3 des
Kühlmittelkühlers 2 (siehe Fig. 1) über eine spritztechnische
Verbindung 43 integriert.The expansion tank 5 'consists of an
Der Radialentlüfter ist in dem Ausgleichsbehälter 5' angeordnet
und umfaßt ein zweiteiliges zylinderförmiges Gehäuse mit einem
unteren Gehäuseteil 38 und einem oberen Gehäuseteil 37. Das untere
Gehäuseteil 38 ist spritztechnisch in dem unteren Teil 5b
des Ausgleichsbehälters 5' eingeformt und das obere Gehäuseteil
37 ist auf dem unteren Gehäuseteil 38 abdichtend aufgesteckt.The radial breather is arranged in the expansion tank 5 '
and comprises a two-part cylindrical housing with a
lower housing part 38 and an
Das obere Gehäuseteil 37 umfaßt eine das zweiteilige Gehäuse
nach oben abschließende Zylinderdecke 41, in der sich in etwa
mittig eine Öffnung 42 befindet, die eine Verbindung zwischen
dem Innenraum des Gehäuses und dem Innenraum des Ausgleichsbehälters
5' herstellt. Das untere Gehäuseteil 38 umfaßt eine in
etwa tangentiale Einmündung 39 und eine geodätisch unterhalb
dieser angeordnete, etwa diametral gegenüberliegende tangentiale
Ausmündung 40 der Vorlaufleitung 7'. Das Gehäuse kann somit als
Teil der Vorlaufleitung 7' gesehen werden.The
Im unteren Teil 5b des Ausgleichsbehälters 5' sind Abschnitte
der Vorlaufleitung 7' spritztechnisch eingeformt. Somit bildet
das untere Teil 5b des Ausgleichsbehälters 5' ein integriertes
spritztechnisches Bauteil, in das besagte Abschnitte der
Vorlaufleitung 7', das untere Gehäuseteil 38 sowie die Verbindung
43 zwischen Wasserkasten 3 des Kühlmittelkühlers 2
spritztechnisch eingeformt sind. In the
Das Kühlmittel KS strömt durch die Vorlaufleitung 7', analog zur
Vorlaufleitung 7 gemäß Fig. 1, vom Motor 1 in Richtung Fahrzeugheizung
6, wobei die Strömungsrichtung des Kühlmittels KS mit
Pfeilen angedeutet ist.The coolant KS flows through the flow line 7 ', similar to
Die Entlüftung des Kühlmittelstromes KS durch den Radialentlüfter
funktioniert wie folgt. Das Kühlmittel KS strömt über die
Einmündung 39 tangential in das zylinderförmige Gehäuse ein und,
in etwa diametral gegenüber und geodätisch unterhalb der Einmündung
39, durch die tangentiale Ausmündung 40 aus dem zylinderförmigen
Gehäuse aus. Durch die tangentiale Ein-und Ausströmung
und durch die zylinderförmige Kontur des Gehäuses (zumindest
zwischen Einmündung 39 und Ausmündung 40) erhält der Kühlmittelstrom
KS einen Drall, sodaß beim Durchströmen des Radialentlüfters
der Kühlmittel strom durch die Zentrifugalkraft in Richtung
Gehäusemantel gedrückt wird. Dadurch werden die leichten Gasbestandteile
(Gasbläschen 44) in die Mitte des Gehäuses verdrängt
und treten in weiterer Folge durch die Entlüftungsöffnung 42 in
der Zylinderdecke 41 aus. Um eine gute Funktion des Radialentlüfters
sicher zu gewährleisten, ist zu beachten, daß insbesondere
der Bereich des Gehäuses zwischen der tangentialen Ein-und
Ausströmöffnung 39, 40 in etwa zylinderförmig ist, damit sich
der oben beschriebene Drall in der Strömung zuverlässig ausbilden
kann.The ventilation of the coolant flow KS through the radial breather
works like this. The coolant KS flows over the
Im gezeigten Ausführungsbeispiel ist die Vorlaufleitung für die Fahrzeugheizung durch den Ausgleichsbehälter geführt, sie kann jedoch auch durch den oberen Wasserkasten verlaufen.In the embodiment shown, the flow line for Vehicle heating passed through the expansion tank, it can but also run through the upper water tank.
In einer weiteren Ausgestaltung der Erfindung kann die Rücklaufleitung
8 auch in den oberen Wasserkasten 3 geführt sein und
analog die Leitung 12 vom Wasserkasten 3 aus zum Motorblock 1
führen.In a further embodiment of the invention, the
In einer weiteren Ausgestaltung der Erfindung, die in den Zeichnungen
nicht dargestellt ist, sind die Kammern 17 und 18 des
oberen Wasserkastens 3 durch ein druckdynamisches Verbindungselement
zur Herstellung eines definierten Strömungskurzschlusses
verbunden, wobei besagtes Verbindungselement bei wechselndem
Druckpotential in den Kammern 17, 18 seinen Öffnungsgrad ändert
und zwar derart, daß bei großer Druckdifferenz der Öffnungsgrad
größer als bei kleiner Druckdifferenz ist.In a further embodiment of the invention, which is shown in the drawings
is not shown, the
Claims (10)
- Coolant circulation system in a cooling circuit of a fluid-cooled combustion engine, in which a radiator (2) with at least one header tank (3) and an inlet side (9) for coolant heated by the engine and an outlet side (10) for cooled coolant, an expansion tank (5, 5') with flow connection to the radiator, and a vehicle heater (6) with an inflow line (7, 7') and a return line (8) are arranged, such that the radiator and the engine block have means for venting the coolant,
characterised in that
the venting of the cooling water present in the engine block (1) takes place via the inflow line (7, 7') to the vehicle heater (6), for which purpose a venting aperture (15, 42) in the inflow line (7, 7') opens into the expansion tank (5) or the header tank (3) of the radiator (2). - Coolant circulation system according to Claim 1,
characterised in that
the inflow line (7,7') to the vehicle heater (6) passes through the expansion tank (5, 5') and/or the header tank (3). - Coolant circulation system according to Claim 1,
characterised in that
the inlet side (9) and outlet side (10) of the radiator (2) are arranged in the area of the header tank (3) structurally at the top of the radiator. - Coolant circulation system according to Claims 1 or 3,
characterised in thatthe header tank (3) at the top of the radiator (2) is divided into two chambers (17, 18) by a partition wall T extending along a width (B) of the radiator, such that the inlet side (9) opens into one chamber (17) and the outlet side (120) into the other chamber (18),a lower tank (4) of the radiator serves as a return tank for the coolant,so that the coolant flows through the radiator essentially in a U shape. - Coolant circulation system according to Claim 4,
characterised in that
the chambers (17, 18) of the header tank (3) at the top are connected by a pressure-sensitive connection element to produce a defined flow short-circuit, such that the said connection element varies the amount by which it is open as the pressure potential in the chambers (17, 18) changes, and for the filling process, has a defined gap for venting purposes. - Coolant circulation system according to Claim 1,
characterised in that
the venting of the inflow line (7, 7') takes place via a venting device integrated with the expansion tank (5, 5') and the inflow line (7, 7'), in particular by means of a radial vent. - Coolant circulation system according to Claim 1,
characterised in that
the expansion tank (5) is integrated with the header tank (3) of the radiator (2) and the venting of the tank (3) takes place via the expansion tank (5). - Coolant circulation system according to Claim 7,
characterised in that
the venting system for the radiator (2) comprises a nozzle-shaped aperture (20) in the bottom (22) of the expansion tank (5), which is in flow communication with the upper header tank (3), and the nozzle-shaped aperture (20) ends in a vertical channel (21) directed upwards and sized to allow a sufficient venting effect. - Coolant circulation system according to Claim 1,
characterised in that
the return line (8) from the vehicle heater (6) leads to the area of the header tank (3) geodetically at the top or into the expansion tank (5), and the returning coolant is fed into a cooled coolant stream flowing towards a water pump (14). - Coolant circulation system according to any of Claims 1 to 9,
characterised in that
the pipe (12) between the outlet side (19) of the radiator (2) and the coolant entry-point to the engine (inlet connection 13) also forms a filling pipe (23) for the coolant.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19538239A DE19538239C1 (en) | 1995-10-13 | 1995-10-13 | Coolant flow in a cooling circuit of a liquid-cooled internal combustion engine |
DE19538239 | 1995-10-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0768452A1 EP0768452A1 (en) | 1997-04-16 |
EP0768452B1 true EP0768452B1 (en) | 1999-03-03 |
Family
ID=7774828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96114806A Expired - Lifetime EP0768452B1 (en) | 1995-10-13 | 1996-09-16 | Coolant guiding in a cooling circuit of a liquid cooled internal combustion engine |
Country Status (3)
Country | Link |
---|---|
US (1) | US5666911A (en) |
EP (1) | EP0768452B1 (en) |
DE (2) | DE19538239C1 (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19754797A1 (en) * | 1997-12-10 | 1999-06-17 | Behr Gmbh & Co | Gas vent for coolant circuit of internal combustion engine |
US5970928A (en) * | 1998-10-28 | 1999-10-26 | Navistar International Transportation Corp | Self restricting engine cooling system deaeration line |
DE19953511A1 (en) * | 1999-11-06 | 2001-05-23 | Bosch Gmbh Robert | Process for controlling / regulating heat flows in the motor vehicle |
DE19953786B4 (en) * | 1999-11-09 | 2009-12-17 | Behr Gmbh & Co. Kg | Coolant cooler with a surge tank |
FR2816359B1 (en) * | 2000-11-08 | 2005-09-02 | Valeo Thermique Moteur Sa | COOLING FLUID AND HEATING CIRCUIT FOR MOTOR VEHICLE |
US7152555B2 (en) | 2001-02-20 | 2006-12-26 | Volvo Trucks North America, Inc. | Engine cooling system |
US6532910B2 (en) | 2001-02-20 | 2003-03-18 | Volvo Trucks North America, Inc. | Engine cooling system |
DE10207766A1 (en) * | 2002-02-23 | 2003-09-04 | Man Nutzfahrzeuge Ag | Cooling system of a motor vehicle |
JP3701927B2 (en) * | 2002-06-18 | 2005-10-05 | 株式会社ケーヒン | Air conditioner for vehicles |
JP4286197B2 (en) * | 2004-08-31 | 2009-06-24 | 愛知機械工業株式会社 | Cooling device and internal combustion engine provided with the same |
JP4381260B2 (en) * | 2004-08-31 | 2009-12-09 | 愛知機械工業株式会社 | Car |
DE102005004518A1 (en) * | 2005-01-31 | 2006-10-12 | Behr Gmbh & Co. Kg | Expansion tank for a coolant for a cooling circuit, in particular for a low temperature circuit for indirect charge air cooling for an internal combustion engine, cooling circuit, in particular low temperature circuit for indirect charge air cooling for an internal combustion engine, method for cooling a hot component, in particular an internal combustion engine |
SE529541C2 (en) * | 2005-12-05 | 2007-09-11 | Volvo Lastvagnar Ab | Cooling |
DE102006014400B4 (en) * | 2006-02-02 | 2012-01-26 | Audi Ag | Expansion tank for a cooling system and cooling arrangement |
GB2458264A (en) | 2008-03-10 | 2009-09-16 | Ford Global Tech Llc | Flow restrictor for use in the cooling system of an i.c. engine |
GB2458263A (en) * | 2008-03-10 | 2009-09-16 | Ford Global Tech Llc | Cooling system expansion tank |
DE102008026200B4 (en) * | 2008-05-30 | 2012-02-16 | Hydac Ag | Fluid Cooler |
DE102008033024B4 (en) * | 2008-07-14 | 2010-06-10 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Method for venting a coolant circuit of an internal combustion engine and coolant circuit for an internal combustion engine |
WO2010111064A2 (en) * | 2009-03-27 | 2010-09-30 | Caterpillar Inc. | Air venting arrangement |
US20130019819A1 (en) * | 2011-07-18 | 2013-01-24 | Caterpillar Inc. | Coolant circuit for engine with bypass line |
US20160059672A1 (en) * | 2014-08-26 | 2016-03-03 | CNH Industrial America, LLC | Cooling system for a work vehicle |
JP6226481B2 (en) | 2015-09-08 | 2017-11-08 | 日本サーモスタット株式会社 | Cooling water passage device in an internal combustion engine |
CN106368795A (en) * | 2016-11-30 | 2017-02-01 | 江苏鑫通汽车部件有限公司 | Cavity ventilation type automobile radiator |
CN109184893B (en) * | 2018-11-22 | 2021-02-09 | 卡特彼勒S.A.R.L公司 | Engine cooling system, case used therein and working machine |
US20210197642A1 (en) * | 2019-12-30 | 2021-07-01 | Lyft, Inc. | Systems and methods for enhanced de-gas system in a vehicle |
CN112096503B (en) * | 2020-09-21 | 2021-06-25 | 安徽金力泵业科技有限公司 | Novel engine cooling water pump |
CN112282917A (en) * | 2020-09-25 | 2021-01-29 | 潍柴动力股份有限公司 | Engine thermal management system and vehicle |
KR20230159616A (en) | 2021-04-27 | 2023-11-21 | 쩌지앙 길리 홀딩 그룹 씨오., 엘티디. | Expansion tanks used in vehicle cooling systems and vehicle cooling systems |
CN114837797B (en) * | 2022-06-08 | 2023-06-13 | 四川芯智热控技术有限公司 | Exhaust device suitable for new energy automobile thermal management system |
WO2024003592A1 (en) * | 2022-06-27 | 2024-01-04 | Volvo Truck Corporation | Degassing system for vehicle cooling system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1125233B (en) * | 1956-04-04 | 1962-03-08 | Wilhelm Elze | Cooling device for internal combustion engines, in particular vehicle engines |
FR2395397A1 (en) * | 1977-06-22 | 1979-01-19 | Chausson Usines Sa | WATER BOX FOR PRESSURIZING NOURISHES |
US4520767A (en) * | 1983-09-16 | 1985-06-04 | Cummins Engine Company | Low flow cooling system and apparatus |
DE4101708C2 (en) * | 1991-01-22 | 1994-12-08 | Man Nutzfahrzeuge Ag | Internal combustion engine with two-stage charge air cooling |
FR2681420B1 (en) * | 1991-09-12 | 1999-03-05 | Valeo Thermique Moteur Sa | WATER BOX AND EXPANSION VESSEL DEVICE FOR HEAT EXCHANGER WITH VERTICAL TUBE BEAM, AND HEAT EXCHANGER COMPRISING SUCH A DEVICE. |
DE4131357C1 (en) * | 1991-09-20 | 1992-07-09 | Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De | IC engine cooling installation with engine-driven pump - has electrically driven second pump with external line contg. two thermostatic valves |
FR2688449B1 (en) * | 1992-03-16 | 1994-06-17 | Peugeot | LIQUID CIRCUIT FOR A HEAT EXCHANGER ASSOCIATED WITH A MOTOR VEHICLE ENGINE. |
DE4308002C1 (en) * | 1993-03-13 | 1994-08-25 | Iav Gmbh | Distributor device for the cooling and/or heating system of vehicles with internal combustion engines |
FR2722834B1 (en) * | 1994-07-21 | 1996-09-06 | Valeo Thermique Moteur Sa | DEGASSING AND FLUID CIRCULATION MODULE FOR ENGINE COOLING CIRCUIT |
-
1995
- 1995-10-13 DE DE19538239A patent/DE19538239C1/en not_active Expired - Lifetime
-
1996
- 1996-09-16 DE DE59601374T patent/DE59601374D1/en not_active Expired - Fee Related
- 1996-09-16 EP EP96114806A patent/EP0768452B1/en not_active Expired - Lifetime
- 1996-10-09 US US08/728,341 patent/US5666911A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US5666911A (en) | 1997-09-16 |
DE19538239C1 (en) | 1997-04-24 |
DE59601374D1 (en) | 1999-04-08 |
EP0768452A1 (en) | 1997-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0768452B1 (en) | Coolant guiding in a cooling circuit of a liquid cooled internal combustion engine | |
EP0215369B1 (en) | Compensation container for a liquid coolant | |
DE3533095A1 (en) | COOLANT COMPENSATOR, ESPECIALLY FOR MOTOR VEHICLE COMBUSTION ENGINES | |
DE2821994A1 (en) | REFRIGERATION UNIT | |
DE102007054855A1 (en) | Equalizing reservoir for heat transmission medium circuit of internal combustion engine driven passenger car, has partition wall placed below reservoir cover and ending above maximum liquid level line | |
EP0250734A2 (en) | Cooling-system in a liquid cooled vehicle-combustion engine | |
EP1878891B1 (en) | Vertically divided expansion tank for cooling fluid | |
DE2953216A1 (en) | Fresh water cooling system for compressed charged i.c.engines | |
DE102006014400A1 (en) | Compensating vessel for a motor vehicle's engine cooling circuit has feed and drain pipes for a coolant and a ventilation hole in the casing | |
EP0693617B1 (en) | Cross-flow radiator with de-aeration | |
DE2545458A1 (en) | IC engine cross flow radiator tank - contains integral lower compensation chamber and filling socket | |
DE2741353A1 (en) | water tank for transverse flow vehicle radiator - has compensation chamber ensuring air outlet before water | |
DE2647970A1 (en) | GAS-LIQUID SEPARATION DEVICE | |
DE3437780C1 (en) | Heat exchanger | |
DE4328448C2 (en) | Heat exchanger | |
DE3229009A1 (en) | DEVICE WITH WATER CASE AND EXPANSION TANK, EXAMPLE FORMED FROM A PIECE, IN PARTICULAR FOR A COOLER OF AN INTERNAL COMBUSTION ENGINE | |
DE10041121B4 (en) | Heat exchanger with several heat transfer circuits | |
DE2628331A1 (en) | Water header box of motor vehicle radiator - has compensation chamber and connection nozzle for connecting to different radiators | |
DE2840813C2 (en) | Cooler with vertical cooling tubes and a ventilation device | |
DE2615728B2 (en) | Coolant circuit of an internal combustion engine | |
DE3702272A1 (en) | Trunk piston for internal combustion engines with a hollow space through which cooling oil flows | |
DE4106297A1 (en) | Cross flow cooling device for IC engine - has second connection tube between radiator tank and expansion tank | |
DE4320343C2 (en) | Heat exchangers, in particular cross-flow coolers for internal combustion engines | |
EP0001742B1 (en) | Receptacle for balancing the cooling water of a combustion engine | |
DE3912734A1 (en) | COOLING SYSTEM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970212 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DAIMLER-BENZ AKTIENGESELLSCHAFT |
|
17Q | First examination report despatched |
Effective date: 19980116 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: DAIMLERCHRYSLER AG |
|
REF | Corresponds to: |
Ref document number: 59601374 Country of ref document: DE Date of ref document: 19990408 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990319 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990927 Year of fee payment: 4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000916 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010531 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050916 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080919 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100401 |