[go: up one dir, main page]

EP0758684B1 - Nickel-based superalloys with good stability at high temperatures - Google Patents

Nickel-based superalloys with good stability at high temperatures Download PDF

Info

Publication number
EP0758684B1
EP0758684B1 EP96401740A EP96401740A EP0758684B1 EP 0758684 B1 EP0758684 B1 EP 0758684B1 EP 96401740 A EP96401740 A EP 96401740A EP 96401740 A EP96401740 A EP 96401740A EP 0758684 B1 EP0758684 B1 EP 0758684B1
Authority
EP
European Patent Office
Prior art keywords
gamma
nickel
alloy
prime
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96401740A
Other languages
German (de)
French (fr)
Other versions
EP0758684A1 (en
Inventor
Catherine Duquenne
Michèle Soucail
Jean Charles Henri Lautridou
André Walder
Michel Marty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA, SNECMA SAS filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0758684A1 publication Critical patent/EP0758684A1/en
Application granted granted Critical
Publication of EP0758684B1 publication Critical patent/EP0758684B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Definitions

  • Creep results with 0.2% elongation are shown in Figure 2 where curves 1 and 2 are the envelopes of points obtained at temperatures between 650 ° C and 750 ° C by reporting the stress values in MPa by relation to the LARSON-MILLER coefficient m where T represents the temperature in Kelvin, t time in hours for an alloy A aged at 700 ° C for 2000 hours and curves 3 and 4 are the envelopes of the points obtained on the alloy A in the non state aged. These results show that the creep time for reaching 0.2% plastic elongation is then up to 10 times lower than for non-aged material. It is therefore clear that for applications such as discs turbojet engines, operating at high temperatures (> 700 ° C) for several tens of thousands of hours it is essential to use stable superalloys throughout intended area of application.
  • the domain corresponding to the values of the criterion Md understood between 0.900 and 0.915 is schematically located between two lines in the diagram in Figure 3 and the alloys of the invention lies in this area, including terminals.
  • Table III summarizes the results obtained during smooth creep tests at 750 ° C under a load of 600MPa.
  • Table IV summarizes the results obtained during the crack propagation tests in air in fatigue creep at 750 ° C carried out after pre-cracking at 650 ° C at a frequency of 20Hz, the propagation cycle being as follows: rise under load 10s - holding time of 300s at maximum load discharges in 10s under a charge ratio of 0.05, with different values of initial Delta K, expressing the initial variation of the stress intensity factor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

La présente invention a pour objet des compositions de superalliages base nickel élaborés par Métallurgie des Poudres (MdP) pour disques de turboréacteurs pouvant fonctionner dans un domaine de température allant jusqu'à 750°C sous un chargement mécanique sévère et pour des durées de vie de plusieurs dizaines de milliers d'heures.The present invention relates to compositions of nickel-based superalloys produced by Powder Metallurgy (MdP) for turbojet engine discs that can operate in a temperature range up to 750 ° C under load severe mechanics and for lifetimes of several tens thousands of hours.

Ces pièces nécessitent l'emploi de matériaux homogènes de densité modérée qui doivent satisfaire un certain nombre de critères concernant des propriétés mécaniques telles que : traction, fluage, fatigue oligocyclique et résistance à la propagation des fissures jusqu'à 750°C.These parts require the use of homogeneous materials of moderate density which must satisfy a certain number of criteria concerning mechanical properties such as: tensile, creep, oligocyclic fatigue and resistance to propagation of cracks up to 750 ° C.

Les superalliages élaborés par MdP peuvent répondre à des applications hautes températures mais peuvent ne pas présenter une stabilité structurale suffisante pour une utilisation prolongée. En cours d'utilisation et pour des températures supérieures à 650°C, des phases fragilisantes dites phases TCP (Topologically Close-Packed), précipitent et détériorent les propriétés mécaniques de l'alliage. Par exemple sur la figure 1, le diagramme T.T.T. (Temps-Température-Transformation) d'un superalliage A à base nickel conforme à EP-A-0237.378 montre que pour le domaine de température compris entre 600 et 850°C, les phases fragilisantes apparaissent dans la zone 1 d'autant plus tôt que la température d'utilisation du matériau est élevée. La zone 2 délimite les conditions d'apparition de précipités de carbures intergranulaires influant également sur l'instabilité de l'alliage. Des résultats de fluage avec allongement de 0,2 % sont représentés sur la figure 2 où les courbes 1 et 2 sont les enveloppes des points obtenus à des températures comprises entre 650°C et 750°C en reportant les valeurs de contrainte en MPa par rapport au coefficient m de LARSON-MILLER où T représente la température en Kelvin, t le temps en heure pour un alliage A vieilli à 700°C pendant 2000 heures et les courbes 3 et 4 sont les enveloppes des points obtenus sur l'alliage A à l'état non vieilli. Ces résultats montrent que le temps de fluage pour atteindre 0,2 % d'allongement plastique est alors jusqu'à 10 fois plus faible que pour le matériau non vieilli. Il est donc clair que pour des applications telles que des disques de turboréacteurs, fonctionnant à des températures élevées (>700°C) pendant plusieurs dizaines de milliers d'heures, il est indispensable d'utiliser des superalliages stables dans tout le domaine d'application visé.The superalloys developed by MdP can respond to high temperature applications but may not have sufficient structural stability for use prolonged. In use and for temperatures higher than 650 ° C, weakening phases called TCP phases (Topologically Close-Packed), precipitate and deteriorate mechanical properties of the alloy. For example in Figure 1, the T.T.T. (Time-Temperature-Transformation) of a nickel-based superalloy A in accordance with EP-A-0237.378 shows that for the temperature range between 600 and 850 ° C, the weakening phases appear in zone 1 all the more as soon as the temperature of use of the material is high. The zone 2 delimits the conditions for the appearance of precipitates of intergranular carbides also influencing instability of the alloy. Creep results with 0.2% elongation are shown in Figure 2 where curves 1 and 2 are the envelopes of points obtained at temperatures between 650 ° C and 750 ° C by reporting the stress values in MPa by relation to the LARSON-MILLER coefficient m where T represents the temperature in Kelvin, t time in hours for an alloy A aged at 700 ° C for 2000 hours and curves 3 and 4 are the envelopes of the points obtained on the alloy A in the non state aged. These results show that the creep time for reaching 0.2% plastic elongation is then up to 10 times lower than for non-aged material. It is therefore clear that for applications such as discs turbojet engines, operating at high temperatures (> 700 ° C) for several tens of thousands of hours it is essential to use stable superalloys throughout intended area of application.

Les superalliages base nickel présentent généralement une structure composée de deux phases :

  • une phase austénitique gamma à composition à base de Ni, enrichie en Co et durcie principalement par des éléments en solution solide tels que Mo, Cr, W ;
  • une phase intermétallique gamma-prime dispersée, durcissante, de type Ni3Al dans laquelle principalement Co et Cr peuvent se substituer à Ni alors que Ti et Nb se substituent préférentiellement à Al.
Nickel-based superalloys generally have a structure composed of two phases:
  • an austenitic gamma phase with a composition based on Ni, enriched in Co and hardened mainly by elements in solid solution such as Mo, Cr, W;
  • a dispersed, hardening gamma-prime intermetallic phase, of the Ni 3 Al type in which mainly Co and Cr can replace Ni while Ti and Nb preferentially replace Al.

Le niveau de caractéristiques mécaniques et de stabilité requis peut être obtenu en intervenant sur les modes de durcissement des deux phases ce qui conduit à spécifier les teneurs de chacun des éléments.The level of mechanical characteristics and stability required can be obtained by intervening on the hardening modes of the two phases which leads to specifying the contents of each elements.

Pour améliorer la stabilité des superalliages ou pour les rendre thermodynamiquement plus stables, il faut agir sur la composition chimique de la phase gamma.
Un superalliage à base de nickel présentant de bonnes propriétés mécaniques à chaud de tenue en traction, en fluage et en résistance à la fissuration dans de bonnes conditions de stabilité microstructurale et répondant aux conditions énoncées ci-dessus présente une composition chimique en pourcentages pondéraux qui appartient au domaine suivant :
Co 14,5 à 15,5 ; Cr 12 à 15 ; Mo 2 à 4,5 ; W 0 à 4,5 ;
Al 2,5 à 4 ; Ti 4 à 6 ;
Hf inférieur ou égal à 0,5 ; C 100 à 300ppm ; B 100 à 500ppm; Zr 200 à 700 ppm et Ni complément à 100 ; de plus,
la somme des concentrations atomiques en éléments gamma-prime-gènes (Al + Ti + Hf) dans l'alliage est comprise entre 11,5 et 14,5 %, bornes comprises, correspondant à une fraction volumique de phase gamma-prime estimée à une valeur comprise entre 40 et 58 %, la somme des concentrations atomiques en éléments gamma-gènes (Mo + W + Cr) dans l'alliage est comprise entre 14,5 et 19 %, bornes comprises, et une valeur calculée du critère de stabilité est située entre 0,900 et 0,915, bornes comprises, de manière à assurer une excellente stabilité microstructurale dans un domaine de température allant jusqu'à 800°C.
To improve the stability of superalloys or to make them thermodynamically more stable, it is necessary to act on the chemical composition of the gamma phase.
A nickel-based superalloy exhibiting good mechanical properties under hot conditions of tensile strength, creep and resistance to cracking under good microstructural stability conditions and meeting the conditions set out above has a chemical composition in weight percent which belongs to the following area:
Co 14.5 to 15.5; Cr 12 to 15; Mo 2 to 4.5; W 0 to 4.5;
Al 2.5-4; Ti 4 to 6;
Hf less than or equal to 0.5; C 100 to 300 ppm; B 100 to 500 ppm; Zr 200 to 700 ppm and Ni complement to 100; Moreover,
the sum of the atomic concentrations of gamma-prime-gene elements (Al + Ti + Hf) in the alloy is between 11.5 and 14.5%, limits included, corresponding to a volume fraction of gamma-prime phase estimated at a value between 40 and 58%, the sum of the atomic concentrations of gamma-gene elements (Mo + W + Cr) in the alloy is between 14.5 and 19%, limits included, and a calculated value of the criterion of stability is between 0.900 and 0.915, limits included, so as to ensure excellent microstructural stability in a temperature range up to 800 ° C.

L'invention sera mieux comprise et les avantages précisés à l'aide de la description qui va suivre de la justification des principaux choix de composition et des exemples de réalisation, en référence aux figures annexées sur lesquelles :

  • la figure 1 représente le diagramme T.T.T. (Temps-Température-Transformation) d'un superalliage A connu et a été précédemment décrite ;
  • la figure 2 précédemment décrite représente un diagramme des résultats de résistance au fluage à 0,2 % d'allongement de l'alliage A connu antérieur pour un état standard et pour un état standard plus vieilli ;
  • la figure 3 représente un diagramme de positionnement des compositions atomiques des alliages de l'invention par rapport à celles d'alliages connus antérieurs ;
  • la figure 4 montre une microphotographie de la microstructure de l'alliage antérieur A connu, à l'état traité standard ;
  • la figure 5 montre une microphotographie de l'alliage A pour un état traité plus vieilli à 750°C pendant 500 heures ;
  • les figures 6 et 7 montrent des microphotographies analogues à celles des figures 4 et 5 représentant les microstructures d'un alliage conforme à l'invention, respectivement à l'état traité et à l'état traité plus vieilli.
The invention will be better understood and the advantages specified with the aid of the description which follows of the justification of the main choices of composition and of the examples of embodiment, with reference to the appended figures in which:
  • FIG. 1 represents the TTT (Time-Temperature-Transformation) diagram of a known superalloy A and has been previously described;
  • FIG. 2, previously described, represents a diagram of the creep resistance results at 0.2% elongation of the alloy A known before for a standard state and for a more aged standard state;
  • FIG. 3 represents a diagram of positioning of the atomic compositions of the alloys of the invention with respect to those of prior known alloys;
  • FIG. 4 shows a microphotograph of the microstructure of the known anterior alloy A, in the standard processed state;
  • Figure 5 shows a photomicrograph of alloy A for a more aged treated state at 750 ° C for 500 hours;
  • Figures 6 and 7 show microphotographs similar to those of Figures 4 and 5 showing the microstructures of an alloy according to the invention, respectively in the treated state and the treated state more aged.

SPECIFICATIONS EN Al, Ti, Nb, Hf : ELEMENTS GAMMA-PRIME-GENESSPECIFICATIONS IN Al, Ti, Nb, Hf: ELEMENTS GAMMA-PRIME-GENES

La phase gamma-prime, dans laquelle se concentrent les éléments gamma-prime-gènes, exerce un rôle prépondérant sur la tenue mécanique des superalliages tant au niveau du durcissement, du fait de l'interaction entre les phases gamma et gamma-prime, de l'homogénéité de la déformation que de celui de l'interaction avec l'environnement puisque cette phase constitue une source privilégiée d'aluminium. La fraction volumique de phase gamma-prime dans un superalliage est donc un paramètre important qu'il est facile de faire varier en jouant sur la teneur en éléments gamma-prime-gènes : Al, Ti, Nb, Hf.The gamma-prime phase, in which the elements are concentrated gamma-prime-genes, exerts a preponderant role on the behavior mechanics of superalloys in terms of hardening, made of the interaction between the gamma and gamma-prime phases, the homogeneity of the deformation than that of the interaction with the environment since this phase constitutes a source privileged aluminum. The gamma-prime phase volume fraction in a superalloy is therefore an important parameter that it is easy to vary by varying the content of elements gamma-prime-genes: Al, Ti, Nb, Hf.

Pour les alliages de l'invention, la fraction volumique de phase gamma-prime a été fixée à une valeur comprise entre 0,40 et 0,58, ceci est obtenu en prenant une somme des concentrations pondérales dans l'alliage en éléments gamma-prime-gènes (Al + Ti + Nb + Hf) comprise entre 8 et 10%, correspondant à une somme des concentrations atomiques dans l'alliage comprise entre 11,5 et 14,5%.For the alloys of the invention, the volume fraction of phase gamma-prime was set at a value between 0.40 and 0.58, this is obtained by taking a sum of the concentrations weight in the alloy of gamma-prime-gene elements (Al + Ti + Nb + Hf) between 8 and 10%, corresponding to a sum atomic concentrations in the alloy between 11.5 and 14.5%.

L'invention prévoit également des teneurs en Al et Ti telles que leur rapport Ti/Al soit compris entre 1,3 et 2,4 (calculé en % pondéral). En effet la substitution du titane à l'aluminium est connue pour favoriser le durcissement de la phase gamma-prime au-delà de 650°C, mais elle doit être limitée car au-delà d'une certaine fraction de titane dans la phase gamma-prime, celle-ci se transforme d'une phase de type Ni3Al en une phase de type Ni3Ti non renforçante.The invention also provides for Al and Ti contents such that their Ti / Al ratio is between 1.3 and 2.4 (calculated in% by weight). Indeed, the substitution of titanium for aluminum is known to favor the hardening of the gamma-prime phase beyond 650 ° C., but it must be limited because beyond a certain fraction of titanium in the gamma phase -prime, this is transformed from a Ni 3 Al type phase into a non-reinforcing Ni 3 Ti type phase.

L'introduction de Nb dans les alliages de l'invention n'a pas été retenue, malgré l'effet favorable de cet élément sur la limite d'élasticité, car il possède par ailleurs un effet défavorable sur la résistance à la fissuration en fatigue-fluage à partir de 650°C, comme le montrent les résultats détaillés plus loin.The introduction of Nb into the alloys of the invention did not was retained, despite the favorable effect of this element on the elastic limit, because it also has an effect unfavorable on the resistance to cracking in fatigue-creep from 650 ° C, as shown by the detailed results further.

SPECIFICATIONS EN CoSPECIFICATIONS IN Co

Le cobalt est un élément qui se partage assez équitablement entre les phases gamma et gamma-prime et avec toutefois un avantage en faveur de la phase gamma-prime, sa concentration pondérale pour tous les alliages de l'invention a été fixée à environ 15 %. Cette teneur est un bon compromis permettant de bénéficier des avantages apportés par la présence de cobalt dans les superalliages, en particulier son influence favorable pour la résistance en fluage, tout en limitant son influence défavorable par rapport à celle du nickel sur la stabilité microstructurale de l'alliage. Par exemple l'alliage Nimonic 80A (Ni-19,5Cr - 1,4Al-2,4Ti) qui ne contient pas de cobalt atteint en fluage-rupture à 760°C, une durée de vie de 1000 heures sous une contrainte de 160 MPa, alors que pour le Nimonic 90 (Ni-19,5Cr - 16,5Co-1,5Al-2,5Ti) contenant 16,5 % de cobalt, la contrainte nécessaire pour obtenir à la même température, la même durée de vie, est égale à 205 MPa (réf. C. T. SIMS, Norman S. Stoloff, W.C Hagel, Superalloys II, édité par John Wiley & Sons, New York, 1987,p. 594 et 596).Cobalt is an element that is shared fairly fairly between the gamma and gamma-prime phases and with however a advantage in favor of the gamma-prime phase, its concentration weight for all the alloys of the invention was fixed at about 15%. This content is a good compromise allowing to benefit from the advantages brought by the presence of cobalt in superalloys, in particular its favorable influence for creep resistance, while limiting its influence unfavorable compared to that of nickel on stability microstructural of the alloy. For example, the Nimonic 80A alloy (Ni-19.5Cr - 1.4Al-2.4Ti) which does not contain affected cobalt creep-rupture at 760 ° C, a lifetime of 1000 hours under a constraint of 160 MPa, while for the Nimonic 90 (Ni-19,5Cr - 16.5Co-1.5Al-2.5Ti) containing 16.5% cobalt, the constraint necessary to obtain at the same temperature, the same lifetime, is equal to 205 MPa (ref. C. T. SIMS, Norman S. Stoloff, W.C Hagel, Superalloys II, edited by John Wiley & Sounds, New York, 1987, p. 594 and 596).

SPECIFICATIONS EN Cr, Mo, W : ELEMENTS GAMMA GENESSPECIFICATIONS IN Cr, Mo, W: ELEMENTS GAMMA GENES

Le chrome en se concentrant préférentiellement dans la phase gammajoue un rôle essentiel pour la résistance de l'alliage aux effets de l'environnement à haute température.Chromium, concentrating preferentially in the phase gamma plays an essential role for the resistance of the alloy to environmental effects at high temperature.

La teneur en chrome des alliages de l'invention a été déterminée de manière à introduire une concentration de 25% atomique de Cr dans la phase gamma,la concentration atomique en chrome Ccr dans l'alliage étant définie par rapport à la fraction atomique de phase gamma par la relation : Ccr= 25 x (1 - 0,867 F) The chromium content of the alloys of the invention was determined so as to introduce a concentration of 25 atomic% of Cr in the gamma phase, the atomic concentration of chromium C cr in the alloy being defined relative to the atomic fraction of gamma phase by the relation: VS cr = 25 x (1 - 0.867 F)

Les concentrations dans l'alliage en Mo ou en (Mo + W) ont été ajustées afin que la composition de la matrice ne puisse provoquer la formation de phase fragilisante TCP de type a. La méthode de calcul New-Phacomp basée sur le calcul des structures électroniques et proposée par Morinaga & all, (ref M. Morinaga, N. Yukawa H. Adachi, H. Ezaki, TMS-AIME, Warrendale, PA, 1984,p.525) a été utilisée à cette fin. Elle est caractérisée par l'utilisation d'un critère de stabilité désigné sous le terme de Md et dont le calcul est explicité au paragraphe suivant. Pour les alliages de l'invention la valeur calculée du critère de stabilité Md est toujours comprise entre 0,900 et 0,915 ou égale à l'une de ces deux valeurs. Les concentrations en Mo ou en (Mo + W) ont donc été ajustées de manière à ce que la valeur du Md n'excède pas les valeurs de la fourchette fixée.The concentrations in the alloy in Mo or in (Mo + W) were adjusted so that the composition of the matrix cannot cause the formation of a type TCP weakening phase. The New-Phacomp calculation method based on the calculation of structures electronic and offered by Morinaga & all, (ref M. Morinaga, N. Yukawa H. Adachi, H. Ezaki, TMS-AIME, Warrendale, PA, 1984, p.525) was used for this purpose. She is characterized by the use of a stability criterion designated under term of Md and whose calculation is explained in the paragraph following. For the alloys of the invention the calculated value of stability criterion Md is always between 0.900 and 0.915 or equal to one of these two values. The concentrations in MB or (MB + W) have therefore been adjusted so that the value of Md does not exceed the values of the fixed range.

Le tableau I et Ibis ci-après donnent les compositions respectivement en pourcentages pondéraux et en pourcentages atomiques des alliages connus antérieurs A, B, C, D, E,F, G et des alliages conformes à l'invention NR3, NR4 et NR6, le complément à 100 étant Ni :

Figure 00060001
Figure 00070001
Table I and Ibis below give the compositions respectively in percentages by weight and in atomic percentages of the prior known alloys A, B, C, D, E, F, G and of the alloys in accordance with the invention NR3, NR4 and NR6, the complement to 100 being Ni:
Figure 00060001
Figure 00070001

L'alliage A précédemment cité est conforme à EP-A-0 237 378.The alloy A previously cited conforms to EP-A-0 237 378.

L'alliage B est connu sous la désignation commerciale RENE 95Alloy B is known by the trade designation RENE 95

L'alliage C est connu sous la désignation commerciale ASTROLOYAlloy C is known by the trade designation ASTROLOY

L'alliage D est connu sous la désignation commerciale U720Alloy D is known by the trade designation U720

L'alliage E est connu sous la désignation commerciale RENE 88Alloy E is known by the trade designation RENE 88

L'alliage F est connu sous la désignation commerciale MERL 76Alloy F is known by the commercial designation MERL 76

L'alliage G est connu sous la désignation commerciale IN 100Alloy G is known by the trade designation IN 100

Les alliages H, I, et J sont conformes à US-A- 3.147.155Alloys H, I, and J conform to US-A- 3,147,155

L'alliage K est conforme à WO-A-94.13849 Alloy K conforms to WO-A-94.13849

CRITERE DE STABILITESTABILITY CRITERIA

Afin de comparer entre eux différents superalliages, il est possible de les afficher dans un diagramme simplifié reporté sur la figure 3 qui représente en ordonnée la somme des concentrations atomiques en éléments gamma-prime-gènes (% atomique Al + Ti + Nb + Hf) et en abscisse la somme des concentrations atomiques en éléments gamma-gènes (% atomique Cr + Mo + W). De plus à partir:

  • des valeurs des coefficients de partage Hi, récapitulées dans le tableau ci-après et utilisées pour les calculs des compositions Ci gamma et Ci gamma-prime, respectivement concentrations atomiques de l'élément i dans la phase gamma et dans la phase gamma-prime, Hi = Ci gamma-prime /Ci gamma
  • de la relation qui lie la concentration atomique Ci de l'élément i dans l'alliage aux concentrations de cet élément i dans la phase gamma, Ci gamma et dans la phase gamma-prime, Ci gamma-prime, Ci =(1-F) x Ci gamma + F x Ci gamma-prime où F est la fraction atomique de phase gamma-prime dans l'alliage,
    on calcule le critère de stabilité Md défini comme suit :
    Figure 00080001
    Ni Co Cr Mo W Al Ti Hf Nb Mi 58,7 58,9 52 95,9 183,9 27 47,9 178,5 92,9 Mdi 0,717 0,777 1,142 1,150 1,655 1,900 2,271 3,02 2,117 Hi 1,28 0,345 0,133 0,314 0,833 4,06 10,31 20 20 avec
  • Mi masse atomique de l'élement i,
  • Mdi valeur des Md élémentaires affectées à chacun des éléments majeurs entrant dans la composition des superalliages,
  • Mdi valeur des Md élémentaires affectées à chacun des éléments majeurs entrant dans la composition des superalliages,
  • Hi valeurs des coefficients de partage utilisées pour les calculs des compositions des phases gamma et gamma-prime (Hi>1 pour éléments gamma-prime-gènes et Hi<1 pour éléments gamma-gènes).
In order to compare different superalloys with each other, it is possible to display them in a simplified diagram shown in FIG. 3 which represents on the ordinate the sum of the atomic concentrations of gamma-prime-gene elements (atomic% Al + Ti + Nb + Hf) and on the abscissa the sum of the atomic concentrations of gamma-gene elements (atomic% Cr + Mo + W). Also from:
  • values of the partition coefficients Hi, summarized in the table below and used for the calculations of the compositions C i gamma and C i gamma-prime, respectively atomic concentrations of the element i in the gamma phase and in the gamma phase premium, Hi = Ci gamma-prime / Ci gamma
  • of the relation which links the atomic concentration Ci of element i in the alloy to the concentrations of this element i in the gamma phase, Ci gamma and in the gamma-prime phase, Ci gamma-prime, VS i = (1-F) x C i gamma + F x C i gamma-prime where F is the atomic fraction of gamma-prime phase in the alloy,
    the stability criterion Md defined as follows is calculated:
    Figure 00080001
    Or Co Cr Mo W Al Ti Hf Nb M i 58.7 58.9 52 95.9 183.9 27 47.9 178.5 92.9 Md i 0.717 0.777 1,142 1.150 1.655 1,900 2,271 3.02 2,117 H i 1.28 0.345 0.133 0.314 0.833 4.06 10.31 20 20 with
  • M i atomic mass of the element i,
  • Md i value of elementary Md assigned to each of the major elements used in the composition of superalloys,
  • Md i value of elementary Md assigned to each of the major elements used in the composition of superalloys,
  • H i values of the partition coefficients used for the calculations of the compositions of the gamma and gamma-prime phases (H i > 1 for gamma-prime-genes elements and H i <1 for gamma-genes elements).

Il est donc possible d'attribuer une valeur du critère de stabilité Md, à chacun des alliages du diagramme de la figure 3, comme indiqué ci-après : Alliage A B C D E F G Md 0,935 0,914 0,926 0,921 0,928 0,947 0,935 NR3 NR4 NR6 H I J K 0,909 0,915 0,906 0,9327 0,09265 0,9538 0,8969 It is therefore possible to assign a value of the stability criterion Md, to each of the alloys in the diagram of FIG. 3, as indicated below: Alloy AT B VS D E F G Md 0.935 0.914 0.926 0.921 0.928 0.947 0.935 NR3 NR4 NR6 H I J K 0.909 0.915 0.906 0.9327 0.09265 0.9538 0.8969

Pour une valeur de teneur pondérale de Co fixée à 15%, le domaine correspondant aux valeurs du critère Md comprises entre 0,900 et 0,915 est schématiquement situé entre deux droites dans le diagramme de la figure 3 et les alliages de l'invention se situent dans ce domaine, bornes comprises.For a Co content by weight value set at 15%, the domain corresponding to the values of the criterion Md understood between 0.900 and 0.915 is schematically located between two lines in the diagram in Figure 3 and the alloys of the invention lies in this area, including terminals.

Ainsi les alliages de l'invention se distinguent des autres alliages non seulement par leur composition chimique dans le rapport des éléments entre eux mais aussi selon les valeurs du critère de stabilité Md, chaque point du diagramme correspondant à une nuance unique. Une sélection de certains alliages de l'invention appartenant au domaine de composition chimique précédemment défini peut être établie par les trois conditions complémentaires ci-dessous : 11,5 < Σ gamma-prime-gènes (% atomique (Al+Ti+Nb+Hf)) ≤ 14,5 14 ≤ Σ gamma-gènes (% atomique (Mo+W+Cr)) ≤ 19 0,900 ≤ Md ≤ 0,915 Thus the alloys of the invention are distinguished from other alloys not only by their chemical composition in the ratio of the elements to each other but also according to the values of the stability criterion Md, each point of the diagram corresponding to a unique shade. A selection of certain alloys of the invention belonging to the field of chemical composition previously defined can be established by the three additional conditions below: 11.5 <Σ gamma-prime-genes (atomic% (Al + Ti + Nb + Hf)) ≤ 14.5 14 ≤ Σ gamma-genes (atomic% (Mo + W + Cr)) ≤ 19 0.900 ≤ Md ≤ 0.915

MISE EN OEUVRE DES MATERIAUX - EXEMPLES - RESULTATS D'ESSAISIMPLEMENTATION OF MATERIALS - EXAMPLES - TEST RESULTS

Les alliages de l'invention ont été élaborés par Métallurgie des poudres. La mise en oeuvre de ce type d'alliages s'est déroulée en plusieurs étapes, de la façon suivante :

  • pulvérisation par électrode tournante
  • filage
  • traitement thermique de mise en solution qui se compose d'une première étape à une température supérieure au solvus gamma-prime (solvus gamma-prime + 5 à 10°C), suivie d'une deuxième étape à une température de 20 à 25°C inférieure à la précédente,
  • traitement de vieillissement : 700°C - 24 Heures + 800°C, 4 heures.
Tous les essais mécaniques réalisés dans le cadre de l'invention l'ont été sur des éprouvettes refroidies à la vitesse de 100°C/mn après la mise en solution. Cette vitesse correspond à une vitesse de refroidissement moyenne de pièces susceptibles d'être réalisées en un alliage conforme à celui de l'invention.
Pour chaque nuance, des essais mécaniques sur éprouvettes ont été menés à 750°C.
Le tableau II ci-après récapitule les résultats obtenus lors des essais de traction à 750°C avec R, résistance maximale en traction, R 0,2 % limite élastique conventionnelle pour un allongement de 0,2 % et A allongement à la rupture. Alliage Traitement thermique Traction à 750°C R (MPa) R 0,2% (MPa) A (%) A 1005 19,7 A 1200°C/1h + 700°C/24h + 800°C/4h 1178 1001 11,5 E 1075 840-3s 1170 980moy B 1100 830-3s 1180 1000moy 3% C 900 750-3s 3% 1020 850moy 8% NR3 1210°C/16h+1190°C/1h+700°C/24h + 800°C/4h 1097 969 21 NR4 1185°C/1h+1160°C/1h+700°C/24h + 800°C/4h 1109 961 12,2 NR6 1185°C C/1h+1160°C/1h+700°C/24h + 800°C/4h 1111 960 16,1 The alloys of the invention were developed by Powder Metallurgy. The implementation of this type of alloy took place in several stages, as follows:
  • spraying by rotating electrode
  • spinning
  • solution heat treatment which consists of a first step at a temperature higher than the gamma-prime solvus (gamma-prime solvus + 5 to 10 ° C), followed by a second step at a temperature of 20 to 25 ° C lower than the previous one,
  • aging treatment: 700 ° C - 24 Hours + 800 ° C, 4 hours.
All the mechanical tests carried out in the context of the invention were carried out on test pieces cooled at the speed of 100 ° C./min after dissolving. This speed corresponds to an average cooling speed of parts capable of being made of an alloy in accordance with that of the invention.
For each grade, mechanical tests on test pieces were carried out at 750 ° C.
Table II below summarizes the results obtained during the tensile tests at 750 ° C. with R, maximum tensile strength, R 0.2% conventional elastic limit for an elongation of 0.2% and A elongation at break. Alloy Heat treatment Traction at 750 ° C R (MPa) R 0.2% (MPa) AT (%) AT 1005 19.7 AT 1200 ° C / 1h + 700 ° C / 24h + 800 ° C / 4h 1178 1001 11.5 E 1075 840-3s 1170 980moy B 1100 830-3s 1180 1000moy 3% VS 900 750-3s 3% 1020 850moy 8% NR3 1210 ° C / 16h + 1190 ° C / 1h + 700 ° C / 24h + 800 ° C / 4h 1097 969 21 NR4 1185 ° C / 1h + 1160 ° C / 1h + 700 ° C / 24h + 800 ° C / 4h 1109 961 12.2 NR6 1185 ° CC / 1h + 1160 ° C / 1h + 700 ° C / 24h + 800 ° C / 4h 1111 960 16.1

Le tableau III ci-après récapitule les résultats obtenus lors des essais de fluage lisse à 750°C sous une charge de 600MPa.Table III below summarizes the results obtained during smooth creep tests at 750 ° C under a load of 600MPa.

Avec t 0,2 % temps de maintien en heures, pour atteindre une déformation plastique de 0,2% ; tr temps de maintien en heures pour atteindre la rupture et A % allongement à la rupture FLUAGE LISSE A 750°C SOUS 600 MPa t 0,2% tr A % A 9 109 6,8 A 25 59 1 C 2 34 (15) (100) B 1/2 5 (5) (20) E 3 50 (30) (70) NR3 38 180 3,9 NR6 20 149 10,9 With t 0.2% holding time in hours, to reach a plastic deformation of 0.2%; t r holding time in hours to reach break and A% elongation at break SMOOTH FLUAGE AT 750 ° C AT 600 MPa t 0.2% tr AT % AT 9 109 6.8 AT 25 59 1 VS 2 34 (15) (100) B 1/2 5 (5) (20) E 3 50 (30) (70) NR3 38 180 3.9 NR6 20 149 10.9

Le tableau IV ci-après récapitule les résultats obtenus lors des essais de propagation de fissures à l'air en fatigue fluage à 750°C réalisés après préfissuration à 650°C sous une fréquence de 20Hz, le cycle de propagation étant le suivant : montée en charge 10s - temps de maintien de 300s à charge maximale décharge en 10s sous un rapport des charges de 0,05, avec différentes valeurs de Delta K initial, exprimant la variation initiale du facteur d'intensité de contrainte. ALLIAGE CONTRAINTE INITIALE (MPa) LONGUEUR DE FISSURE INITIALE (mm) FATIGUE-FLUAGE A 750°C NOMBRE DE CYCLES AVANT RUPTURE C 142 5 27 A 166 5 34 NR3 172 5,22 150 NR4 179 5,54 530 NR6 168 5 510 Les résultats montrent que les superalliages de l'invention permettent de parvenir à un ensemble optimal de propriétés mécaniques à chaud conciliant de bons résultats en résistance à la propagation de fissure et en traction et en fluage par rapport aux alliages connus antérieurs.
L'état microstructural de l'alliage A et des alliages de l'invention a été caractérisé à l'état traité standard et à l'état traité-vieilli (état traité standard + traitement thermique de vieillissement à 750°C pendant 500 heures), par des observations en microscopie électronique à balayage sur des échantillons non attaqués et examinés à l'aide du contraste en électrons rétro-diffusés. La figure 4 est représentative de la microstructure de l'alliage A, à l'état traité standard et la figure 5 de la microstructure observée à l'état traité vieilli. Le vieillissement provoque sur cet alliage, une précipitation principalement intergranulaire, jugée responsable de l'évolution défavorable de certaines propriétés mécaniques comme la résistance au fluage. Au contraire pour les alliages de l'invention, la microstructure n'évolue sensiblement pas au cours du traitement de vieillissement, comme en témoignent les figures 6 et 7 relatives respectivement à l'état traité standard et à l'état traité-vieilli de l'alliage NR3.
La mise en oeuvre sur pièces peut comporter après l'opération de filage une opération de forgeage isotherme, et en variante, le traitement thermique peut comporter une étape de mise en solution à une température inférieure de 5 à 50°C au solvus gamma-prime de l'alliage.
Table IV below summarizes the results obtained during the crack propagation tests in air in fatigue creep at 750 ° C carried out after pre-cracking at 650 ° C at a frequency of 20Hz, the propagation cycle being as follows: rise under load 10s - holding time of 300s at maximum load discharges in 10s under a charge ratio of 0.05, with different values of initial Delta K, expressing the initial variation of the stress intensity factor. ALLOY INITIAL CONSTRAINT (MPa) INITIAL CRACK LENGTH (mm) FATIGUE-FLUAGE AT 750 ° C NUMBER OF CYCLES BEFORE BREAKING VS 142 5 27 AT 166 5 34 NR3 172 5.22 150 NR4 179 5.54 530 NR6 168 5 510 The results show that the superalloys of the invention make it possible to achieve an optimal set of mechanical properties when hot, reconciling good results in resistance to crack propagation and in tension and creep compared to the prior known alloys.
The microstructural state of alloy A and of the alloys of the invention was characterized in the standard treated state and in the treated-aged state (standard treated state + thermal aging treatment at 750 ° C. for 500 hours) , by observations in scanning electron microscopy on samples not attacked and examined using the contrast in backscattered electrons. FIG. 4 is representative of the microstructure of the alloy A, in the standard treated state and FIG. 5 of the microstructure observed in the aged treated state. Aging causes mainly intergranular precipitation on this alloy, considered to be responsible for the unfavorable development of certain mechanical properties such as creep resistance. On the contrary for the alloys of the invention, the microstructure does not change appreciably during the aging treatment, as shown by FIGS. 6 and 7 relating respectively to the standard treated state and to the treated-aged state of l 'alloy NR3.
The implementation on parts may include after the spinning operation an isothermal forging operation, and as a variant, the heat treatment may include a step of dissolving at a temperature below 5 to 50 ° C with gamma-prime solvus of the alloy.

Claims (9)

  1. Nickel-based matrix superalloy exhibiting good high-temperature mechanical properties of tensile strength, creep and cracking resistance, for which the chemical composition in percentage by weight lies within the following range: Co 14.5 to 15.5 Cr 12 to 15 Mo 2 to 4.5 W 0 to 4.5 Al 2.5 to 4 Ti 4 to 6 Hf less than or equal to 0.5 C 100 to 300 ppm B 100 to 500 ppm Zr 200 to 700 ppm Ni complement to 100,
    the sum of the atomic concentrations of gamma-prime-forming elements (Al + Ti + Hf) in the alloy lies between 11.5 and 14.5% inclusive, corresponding to a gamma-prime phase volume fraction estimated at a value lying between 40 and 58% and the sum of the atomic concentrations of gamma-forming elements (Mo + W + Cr) in the alloy lies between 14.5 and 19% inclusive, and a calculated value of the stability criterion Md, as defined in the description, lies between 0.900 and 0.915 inclusive, so as to ensure excellent microstructural stability in a temperature range going up to 800°C.
  2. Nickel-based matrix superalloy according to Claim 1, characterised by the special condition below, relating to the ratio between the concentration by weight of titanium and concentration by weight of aluminium in the alloys: 1.3 < Ti/Al < 2.4
  3. Nickel-based matrix superalloy according to Claim 2, characterised by the special condition below, in terms of percentage by weight,
    atomic concentration of Cr in the alloy determined in such a way as to obtain a concentration of chromium of 25% atomic in the gamma phase of the alloy.
  4. Nickel-based matrix superalloy according to Claim 3, characterised by the particular contents below, in percentages by weight: Co 14.9 Cr 12.5 Mo 3.55 Al 3.6 Ti 5.5 Hf 0.3 C 0.02 B 0.01 Zr 0.05
  5. Nickel-based matrix superalloy according to Claim 3, characterised by the particular contents below, in percentages by weight: Co 15.3 Cr 13.9 Mo 2.2 W 3.7 Al 2.9 Ti 4.6 Hf 0.3 C 0.02 B 0.01 Zr 0.06
  6. Nickel-based matrix superalloy according to Claim 3, characterised by the particular contents below, in percentages by weight: Co 14.8 Cr 14.4 Mo 4.6 Al 2.5 Ti 5.8 Hf 0.4 C 0.02 B 0.03 Zr 0.05
  7. Nickel-based superalloy according to any one of the preceding claims, characterised in that it is produced using implementation techniques based on powders.
  8. Nickel-based superalloy according to Claim 7, characterised in that it is shaped by extrusion, isothermal forging and heat treatment including a stage of entry into solution at a temperature 5 to 10°C above the gamma-prime solvus of the alloy.
  9. Nickel-based superalloy according to one of Claims 7 and 8 characterised in that it is shaped by extrusion, isothermal forging and heat treatment including a stage of entry into solution at a temperature 5 to 50°C below the gamma-prime solvus of the alloy.
EP96401740A 1995-08-09 1996-08-07 Nickel-based superalloys with good stability at high temperatures Expired - Lifetime EP0758684B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9509653 1995-08-09
FR9509653A FR2737733B1 (en) 1995-08-09 1995-08-09 HIGH TEMPERATURE STABLE NICKEL-BASED SUPERALLOYS

Publications (2)

Publication Number Publication Date
EP0758684A1 EP0758684A1 (en) 1997-02-19
EP0758684B1 true EP0758684B1 (en) 1999-11-24

Family

ID=9481819

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96401740A Expired - Lifetime EP0758684B1 (en) 1995-08-09 1996-08-07 Nickel-based superalloys with good stability at high temperatures

Country Status (4)

Country Link
US (1) US5815792A (en)
EP (1) EP0758684B1 (en)
DE (1) DE69605259T2 (en)
FR (1) FR2737733B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938863A (en) * 1996-12-17 1999-08-17 United Technologies Corporation Low cycle fatigue strength nickel base superalloys
US6231692B1 (en) * 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
US6974508B1 (en) 2002-10-29 2005-12-13 The United States Of America As Represented By The United States National Aeronautics And Space Administration Nickel base superalloy turbine disk
CN101158016B (en) * 2007-11-19 2010-06-02 北京矿冶研究总院 Nialwcr powder and preparation method thereof
FR3133623A1 (en) * 2022-03-17 2023-09-22 Safran Nickel-based superalloy
CN119487228A (en) * 2022-06-28 2025-02-18 冶联科技地产有限责任公司 Nickel-based alloys

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147155A (en) * 1961-08-02 1964-09-01 Int Nickel Co Hot-working process
FR2593830B1 (en) * 1986-02-06 1988-04-08 Snecma NICKEL-BASED MATRIX SUPERALLOY, ESPECIALLY DEVELOPED IN POWDER METALLURGY, AND TURBOMACHINE DISC CONSISTING OF THIS ALLOY
US4894089A (en) * 1987-10-02 1990-01-16 General Electric Company Nickel base superalloys
FR2628349A1 (en) * 1988-03-09 1989-09-15 Snecma Forging nickel-based superalloy contg. hard gamma prime phase - by deforming at below gamma prime solidus temp. and solidus temp. to control final grain size
US5129971A (en) * 1988-09-26 1992-07-14 General Electric Company Fatigue crack resistant waspoloy nickel base superalloys and product formed
US5080734A (en) * 1989-10-04 1992-01-14 General Electric Company High strength fatigue crack-resistant alloy article
US5143563A (en) * 1989-10-04 1992-09-01 General Electric Company Creep, stress rupture and hold-time fatigue crack resistant alloys
US5120373A (en) * 1991-04-15 1992-06-09 United Technologies Corporation Superalloy forging process
WO1994013849A1 (en) * 1992-12-14 1994-06-23 United Technologies Corporation Superalloy forging process and related composition
US5482789A (en) * 1994-01-03 1996-01-09 General Electric Company Nickel base superalloy and article

Also Published As

Publication number Publication date
EP0758684A1 (en) 1997-02-19
DE69605259D1 (en) 1999-12-30
FR2737733B1 (en) 1998-03-13
DE69605259T2 (en) 2000-07-13
FR2737733A1 (en) 1997-02-14
US5815792A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
JP2666911B2 (en) Nickel-base superalloy and its manufacturing method
EP0924308B1 (en) Titanium-based intermetallic alloys of the Ti2AlNb type with high yield strength and good creep resistance
FR2731714A1 (en) Nickel-base superalloy for single-crystal castings
CA2583140A1 (en) Nickel-based alloy
FR2780982A1 (en) MONOCRYSTALLINE SUPERALLIAGE BASED ON HIGH SOLVUS NICKEL
WO2010089516A2 (en) Method for producing a piece made from a superalloy based on nickel and corresponding piece
FR2557143A1 (en) ALLOYS SUITABLE FOR THE MANUFACTURE OF MONOCRYSTALLINE MOLDED PIECES AND MOLDED PIECES
FR2633942A1 (en) FATIGUE-RESISTANT NICKEL-BASED SUPERALLIATION AND METHOD OF MANUFACTURING THE SAME
FR2588573A1 (en) NICKEL ALUMINIURES AND NICKEL-IRON ALUMINIURES FOR USE IN OXIDIZING ENVIRONMENTS
FR2625752A1 (en) SUPERALLIAGE WITH LOW COEFFICIENT THERMAL EXPANSION
EP0237378A1 (en) Superalloy having a nickel base matrix, manufactured by powder-metallurgical processing, and gas turbine discs made from this alloy
FR2625753A1 (en) METHOD FOR THERMALLY TREATING NICKEL SUPERALLIAGE AND FATIGUE RESISTANT SUPERALLIATION ARTICLE
EP0758684B1 (en) Nickel-based superalloys with good stability at high temperatures
Cheng et al. Effect of stress on μ phase formation in single crystal superalloys
EP3117017A1 (en) Precipitation hardening nickel alloy, part made of said alloy, and manufacturing method thereof
WO2020188205A2 (en) Superalloy with optimized properties and a limited density
Murray et al. Low cycle fatigue of a single crystal CoNi-base superalloy
EP1211335B1 (en) Nickel based superalloy having a very high resistance to hot corrosion for single crystal turbine blades of industrial turbines
EP3710611B1 (en) Nickel-based superalloy, single-crystal blade and turbomachine
FR2555609A1 (en) SUPERALLIAGE BASED ON NICKEL
EP4073283A1 (en) Nickel-based superalloy
JP3926877B2 (en) Heat treatment method for nickel-base superalloy
EP0187573B1 (en) Nickel base alloy
US8083124B1 (en) Method for joining single crystal members and improved foil therefor
FR2458596A1 (en) FERROUS ALLOYS HAVING LONG ORDINATED STRUCTURE, MANUFACTURED ARTICLES THEREFROM AND METHOD OF MAKING THE SAME

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990422

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REF Corresponds to:

Ref document number: 69605259

Country of ref document: DE

Date of ref document: 19991230

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120517 AND 20120523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140722

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140724

Year of fee payment: 19

Ref country code: GB

Payment date: 20140725

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150814

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69605259

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150807