EP0758277B1 - Method and device for heating a metal melt - Google Patents
Method and device for heating a metal melt Download PDFInfo
- Publication number
- EP0758277B1 EP0758277B1 EP95914277A EP95914277A EP0758277B1 EP 0758277 B1 EP0758277 B1 EP 0758277B1 EP 95914277 A EP95914277 A EP 95914277A EP 95914277 A EP95914277 A EP 95914277A EP 0758277 B1 EP0758277 B1 EP 0758277B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- melt
- thermal energy
- mould
- casting
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
Definitions
- the invention relates to a method for heating one over Immersion poured into a mold of a continuous caster metallic melt, especially one with a mold powder covered molten steel and a device for carrying out the Procedure.
- JP-A-61-144 249 is the distance of frozen, on the mold wall caking slag e.g. by means of a Laser beam known.
- the casting powder on the melt influences the Heat flow of the heat dissipated via the mold.
- the differences in Heat flow due to the influence of the casting aids are in the Casting area is largest and decreases towards the mold exit. From this it can be concluded that the strand shell thickness by the Pouring aids essentially only in the area of the pouring level being affected.
- the type and behavior of the mold powder influence the dissipated heat of the mold. It has been shown that from the Liquid steel contributes to the heat dissipated in the mold easily melting mold powder is larger than one melting. An even higher increase in the heat dissipated was found when using beet oil as permanent mold lubrication will.
- Inadequate heat dissipation is one of the causes of breakthroughs in Continuous casting.
- the breakthrough is regularly weakened Strand shell in the mold ahead, so there is a crack in the Strand shell or the slag has the heat dissipation through the Strand shell prevented. Cracks develop in the strand shell for example by hanging up during or after the mold overflows or if there is a bridge between the immersion nozzle and the strand shell.
- the invention has therefore set itself the goal of a method and a to create appropriate device with which a uniform Heat dissipation via the mold and constant frictional forces between Strand shell and mold are guaranteed.
- the invention achieves this aim by the characteristic features of process claim 1 and device claim 4.
- the thermal energy is proposed in the surface to introduce the melting point in a punctiform manner and thereby Heat energy point on the surface on a predeterminable line to lead.
- a laser beam is used, in which the energy a bundled light beam is used for heating.
- a Laster beam differs from ordinary light by high Monochrome, coherence, parallelism and energy density.
- the point energy introduced is not only in the amount of their thermal energy, but also in their temporal use predeterminable.
- punctiform is not here to understand mathematically, the thermal energy point has the use usual finite expansion of lasers. So it is suggested that Thermal energy point in the areas between the immersion nozzle and the to move the corresponding long side of the mold edge. Free The starting point, the end point as well as the paths and the can be selected Speeds between these endpoints.
- the devices for generating the laser beam can be placed in a safe place Arrange outside the mold and immersion nozzle, the laser beam via a mirror to the desired area on the surface of the Melt is feasible.
- FIG 1a is a section and in Figure 1b) a plan view of the continuous casting device 10 is shown.
- the melt S on which the casting powder G floats.
- the immersion spout 12 is immersed in the melt S.
- a laser energy source 21 is located outside the continuous casting device 10 arranged, of which a laser beam 27 via a laser optics movable central mirror 22 or a movable outside mirror 23 the surface of the molten bath S is guided.
- the laser energy source 21 can be at any point outside the Arrange continuous caster, the laser beam over fixed mirrors 24 is conductive.
- the mirrors 22 and 23 are pivotable about an axis 26.
- the axis 26 is connected to a control unit 32 which is connected to a Calculator 31 is connected.
- This computing element 31 is there measurement technology with a temperature sensor 33 and control technology with the laser energy source 21 connected.
- Figure 2a shows the position of the energy point depending on the Time.
- the position L is in the area between the mold 11 and the immersion spout 12 are shown.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Laser Beam Processing (AREA)
- Furnace Details (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Coating With Molten Metal (AREA)
- Tunnel Furnaces (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Erwärmen einer über einen Tauchausguß in eine Kokille einer Stranggießanlage eingeführten metallischen Schmelze, insbesondere einer mit einem Gießpulver abgedeckten Stahlschmelze und eine Einrichtung zur Durchführung des Verfahrens.The invention relates to a method for heating one over Immersion poured into a mold of a continuous caster metallic melt, especially one with a mold powder covered molten steel and a device for carrying out the Procedure.
Aus " Patent Abstracts of Japan " 1986 (M 536) JP-A-61-144 249 ist die Entfernung von erstarrter, an der Kokillenwand anbackender Schlacke z.B. mittels eines Laserstrahles bekannt. From "Patent Abstracts of Japan" 1986 (M 536) JP-A-61-144 249 is the distance of frozen, on the mold wall caking slag e.g. by means of a Laser beam known.
Beim Stranggießen von Stahl treten Adhäsionskräfte zwischen Strang und Kokille auf, die zu hohen Zugspannungen in der Strangschale und dadurch zu Rissen in der Strangoberfläche oder sogar zum Abreißen des Stranges führen können. Beim Stranggießen von Staht wird daher für eine Oszillationsbewegung zwischen der Kokille und dem Strang gesorgt. Dies wird beim Vertikalstranggießen regelmäßig durch eine sinusformige Auf- und Abbewegung der Kokille erzeugt.Diese Kokillenbewegung verhindert ein Kleben der neugebildeten Strangschale an der Kokillenwand. Zwischen der Kokille und der Strangschale treten in Abhängigkeit der Oszillations- und Gießgeschwindigkeit Reibungskräfte auf. Diese Reibungskräfte sind darüber hinaus noch abhängig von der Kokillenbreite, Kokillenlänge, Kokillenkonizität und auch von der Schmierung. Dabei hat sich gezeigt, daß unabhängig von der Kokillengröße ein Hubtischsystem bei einer bestimmten mittleren Gießgeschwindigkeit niedrigere Reibungskräfte verursacht als bei hoher oder niedriger Gießgeschwindigkeit. Daraus läßt sich ableiten, daß der Kokillenhub und die Strangschmierung auf die Gießbedingungen optimal einzustellen sind.When casting steel continuously, adhesive forces occur between the strand and Mold on, the excessive tensile stresses in the strand shell and thereby to cracks in the strand surface or even to tear off the strand being able to lead. When casting steel is therefore for one Oscillation movement between the mold and the strand worried. This is used in vertical continuous casting by a sinusoidal opening and closing Movement of the mold is generated, this prevents mold movement sticking the newly formed strand shell to the mold wall. Depending between the mold and the strand shell occur Oscillation and casting speed friction forces. This Frictional forces are also dependent on the Mold width, mold length, mold conicity and also of the Lubrication. It has been shown that regardless of the Mold size a lift table system at a certain medium Casting speed causes lower friction forces than high ones or low casting speed. From this it can be deduced that the Mold stroke and strand lubrication to the casting conditions optimal are to be set.
Das auf der Schmelze sich befindende Gießpulver nimmt Einfluß auf den Wärmestrom der über die Kokille abgeführten Wärme. Die Unterschiede im Wärmestrom durch den Einfluß der Gießhilfsmittel sind im Gießspiegelbereich am größten und nehmen zum Kokillenaustritt hin ab. Hieraus kann geschlossen werden, daß die Strangschalendicke durch das Gießhilfsmittel im wesentlichen nur im Bereich des Gießspiegels beeinflußt wird.The casting powder on the melt influences the Heat flow of the heat dissipated via the mold. The differences in Heat flow due to the influence of the casting aids are in the Casting area is largest and decreases towards the mold exit. From this it can be concluded that the strand shell thickness by the Pouring aids essentially only in the area of the pouring level being affected.
Es hat sich gezeigt, daß mit der Gießgeschwindigkeit die Wärmestromdichte in einer Kokille ansteigt.Die angeführte Wärme ist im Gießspiegel am höchsten. Hier steht nämlich der flüssige Stahl in engem Kontakt mit der Kokillenwand und weist die höchste Temperatur auf. Unter dem großen Wärmeentzug kühlt sich die Strangschale ab, sie schrumpft dabei und hebt sich von der Kokillenwand ab.It has been shown that with the casting speed The heat flow density in a mold increases Casting level highest. This is because the molten steel is tight here Contact with the mold wall and has the highest temperature. The strand shell cools down under the great heat extraction, she shrinks and stands out from the mold wall.
Art und Verhalten des Gießpulvers nehmen dabei Einfluß auf die abgeführte Wärme der Kokille. Dabei hat sich gezeigt, daß aus dem Flüssigstahl die abgeführte Wärme in der Kokille bei leichtschmelzendem Gießpulver größer ist als bei einem schwerschmelzenden. Ein noch höherer Anstieg der abgeführten Wärme konnte bei Verwendung von Rüböl als Kokillenschmierung festgestellt werden.The type and behavior of the mold powder influence the dissipated heat of the mold. It has been shown that from the Liquid steel contributes to the heat dissipated in the mold easily melting mold powder is larger than one melting. An even higher increase in the heat dissipated was found when using beet oil as permanent mold lubrication will.
Ungenügende Wärmeabfuhr ist eins der Ursachen für Durchbrüche beim Stranggießen. Beim Durchbruch geht regelmäßig eine Schwächung der Strangschale in der Kokille voraus, es entsteht also ein Riß in der Strangschale oder die Schlacke hat die Wärmeabfuhr durch die Strangschale unterbunden. Risse in der Strangschale entstehen beispielsweise durch Aufhängen bei oder nach dem überlaufen der Kokille oder bei Brückenbildung zwischen Tauchausguß und Strangschale.Inadequate heat dissipation is one of the causes of breakthroughs in Continuous casting. The breakthrough is regularly weakened Strand shell in the mold ahead, so there is a crack in the Strand shell or the slag has the heat dissipation through the Strand shell prevented. Cracks develop in the strand shell for example by hanging up during or after the mold overflows or if there is a bridge between the immersion nozzle and the strand shell.
Die Erfindung hat sich daher das Ziel gesetzt, ein Verfahren und eine entsprechende Vorrichtung zu schaffen, mit der eine gleichmäßige Wärmeabfuhr über die Kokille und konstante Reibungskräfte zwischen Strangschale und Kokille gewährleistet werden.The invention has therefore set itself the goal of a method and a to create appropriate device with which a uniform Heat dissipation via the mold and constant frictional forces between Strand shell and mold are guaranteed.
Die Erfindung erreicht dieses Ziel durch die kennzeichnenden Merkmale des Verfahrensanspruchs 1 und des Vorrichtungsanspruchs 4.The invention achieves this aim by the characteristic features of process claim 1 and device claim 4.
Erfindungsgemäß wird vorgeschlagen, die Wärmeenergie in die Oberfläche des Schmelzbades punktförmig einzubringen und dabei den Wärmeenergiepunkt an der Oberfläche auf einer vorgebbaren Linie zu führen. Eingesetzt wird hierzu ein Laserstrahl, bei dem die Energie eines gebündelten Lichtstrahls zum Erwärmen eingesetzt wird. Ein Lasterstrahl unterscheidet sich vom gewöhnlichen Licht durch hohe Monochromie, Kohärenz, Parallelität und Energiedichte.According to the invention, the thermal energy is proposed in the surface to introduce the melting point in a punctiform manner and thereby Heat energy point on the surface on a predeterminable line to lead. For this purpose, a laser beam is used, in which the energy a bundled light beam is used for heating. A Laster beam differs from ordinary light by high Monochrome, coherence, parallelism and energy density.
Durch den Einsatz eines Laserstrahls ist es möglich, Werkstoffe, einschließlich Metallen, in eng begrenzten Bereichen zu erwärmen bzw. aufzuschmelzen. Die von der Justierung, dem Durchmesser, der Leistungsstabilität, der Fokussierung und ähnlichen abhängige Strahlqualität beeinflußt den konkreten Arbeitsgrößenwert. Durch Variiern der genannten Werte läßt sich die Intensität einstellen. Durch die außerhalb der Stranggießkokille anordnenbare Laserenergiequelle läßt sich unmittelbar Einfluß nehmen auf den kritischen Bereich beim Stranggießen von Stahlwerkstoffen, nämlich der Bereich des Gießspiegels.By using a laser beam, it is possible to including metals, to be heated in narrowly restricted areas or to melt. The adjustment, the diameter, the Performance stability, focus and similar dependent Beam quality influences the concrete work size value. By The intensity can be adjusted by varying the values mentioned. Due to the arrangement outside the continuous casting mold Laser energy source can be directly influenced on the critical area in the continuous casting of steel materials, namely the Area of the casting mirror.
Die punktförmig eingebrachte Wärmeenergie wird erfindungsgemäß nicht nur in der Höhe ihrer Wärmeenergie, sondern auch in ihrem zeitlichen Einsatz vorgebbar eingestellt. Der Begriff punktförmig ist hier nicht mathematisch zu verstehen, der Wärmeenergiepunkt hat die beim Einsatz von Lasern übliche endliche Ausdehnung. So wird vorgeschlagen, den Wärmeenergiepunkt in den Bereichen zwischen dem Tauchausguß und der korrespondierenden Längsseite des Kokillenrandes zu bewegen. Frei wählbar sind dabei der Startpunkt, der Endpunkt sowie die Wege und die Geschwindigkeiten zwischen diesen Endpunkten.According to the invention, the point energy introduced is not only in the amount of their thermal energy, but also in their temporal use predeterminable. The term punctiform is not here to understand mathematically, the thermal energy point has the use usual finite expansion of lasers. So it is suggested that Thermal energy point in the areas between the immersion nozzle and the to move the corresponding long side of the mold edge. Free The starting point, the end point as well as the paths and the can be selected Speeds between these endpoints.
Die Geräte zur Erzeugung des Laserstrahls lassen sich an sicherer Stelle außerhalb von Kokille und Tauchausguß anordnen, wobei der Laserstrahl über einen Spiegel auf den gewünschten Bereich an der Oberfläche der Schmelze führbar ist.The devices for generating the laser beam can be placed in a safe place Arrange outside the mold and immersion nozzle, the laser beam via a mirror to the desired area on the surface of the Melt is feasible.
Ein Beispiel der Erfindung ist in der beigefügten Zeichnung dargelegt.
Dabei zeigen die
In der Figur 1a) ist ein Schnitt und in Figur 1b)
eine Draufsicht der Stranggießeinrichtung 10 dargestellt. In der Kokille
11 befindet sich die Schmelze S, auf der das Gießpulver G aufschwimmt.
In die Schmelze S taucht der Tauchausguß 12 ein.In Figure 1a) is a section and in Figure 1b)
a plan view of the continuous casting device 10 is shown. In the
Außerhalb der Stranggießeinrichtung 10 ist eine Laserenergiequelle 21
angeordnet, von der über eine Laseroptik 27 ein Laserstrahl über einen
beweglichen Zentralspiegel 22 bzw. einen beweglichen Außenspiegel 23 auf
die Oberfläche des Schmelzbades S geführt wird.Die Laserenergiequelle 21
laßt sich dabei an einem beliebigen Punkt außerhalb der
Stranggießeinrichtung anordnen, wobei der Laserstrahl über feste Spiegel
24 leitbar ist.A
Die Spiegel 22 bzw.23 sind um eine Achse 26 schwenkbar. Die Achse 26
ist dabei an eine Steuereinheit 32 angeschlossen, die mit einem
Rechenglied 31 in Verbindung steht. Dieses Rechenglied 31 ist dabei
meßtechnisch mit einem Temperaturfühler 33 und steuerungstechnisch mit
der Laserenergiequelle 21 verbunden. The
In der Figur 1b) ist auf der rechten Seite dargestellt, daß
über eine Laserenergiequelle 21 durch den Einsatz von zwei festen
Spiegeln 24, von denen in Laserstahlrichtung vordere wegschwenkbar
ausgestaltet sein kann, die Schmelzenoberfläche zu beiden Seiten des
Tauchausgusses 12 bestreichbar ist.In the figure 1b) is shown on the right side that
via a
Die Figur 2a) zeigt die Lage des Energiepunktes in Abhängigkeit von der
Zeit. In der linken oberen Seite ist die Lage L in den Bereich zwischen
der Kokille 11 und dem Tauchausguß 12 dargestellt.Figure 2a) shows the position of the energy point depending on the
Time. In the upper left side, the position L is in the area between
the
Im Diagramm 2b) wird der Wärmeenergiepunkt auf einer Seite des Schmelzbades zwischen Kokille und Tauchausguß gleichmäßig hin- und hergeführt.In diagram 2b) the thermal energy point on one side of the Melting bath between mold and immersion spout evenly back and forth brought forth.
Im Diagramm 2c) werden zwei Wärmeenergiepunkte jeweils von der Mitte der Badoberfläche mit langsamer Geschwindigkeit nach außen geführt und dann ruckartig wieder zum Mittelpunkt zurückgenommen zu werden, um wieder erneut mit verminderter Geschwindigkeit nach außen geführt zu werden.In diagram 2c) two thermal energy points are shown by the Guide the middle of the bath surface outwards at slow speed and then jerked back to the center to again led outwards at a reduced speed will.
Im Diagramm 2d) wird ein Wärmepunkt jeweils von der Mitte gestartet und nach außen geführt, dann ruckartig zur Mitte zurückgeführt um zur anderen Seite mit langsamer Geschwindigkeit nach außen geführt zu werden um dann wieder zur Mitte zurückzuspringen, um zur anderen Seite mit langsamer Geschwindigkeit die Wärme in die Oberfläche des Schmelzbades einzubringen.In diagram 2d) a heat point is started from the center and led outwards, then jerked back to the middle to the other side to be led out at slow speed and then jump back to the middle to go to the other side slow speed the heat into the surface of the weld pool bring in.
Claims (7)
- A method for heating a metal melt introduced via an immersion nozzle into a mould of a continuous-casting installation, in particular a steel melt covered with a casting powder, characterised in that the thermal energy is introduced into the surface of the molten bath in points, and that the thermal energy point on the surface of the molten bath is guided on a predeterminable line.
- A method according to claim 1, characterised in that at least one thermal energy point in each case is moved in the regions between the immersion nozzle and the corresponding long side of the mould edge.
- A method according to Claim 2, characterised in that the thermal energy point, following the natural flow of the liquid melt, beginning in the centre of the melt surface in the immersion nozzle and mould shadow region, is guided into the free region of the melt surface.
- An apparatus for heating a metal melt introduced via an immersion nozzle into a mould of a continuous-casting installation, in particular a steel melt covered with a casting powder, for performing the method according to Claim 1, characterised in that a laser energy source (21) and a laser optical system (27) are arranged outside the mould (11) and that a movable mirror (22, 23) is provided by means of which the thermal energy can be introduced in locally predeterminable manner into the surface of the melt (5).
- An apparatus according to Claim 4, characterised in that the mirror (22, 23) is suspended on a rotatable spindle (26) which can be driven by means of a control unit (32).
- An apparatus according to Claim 5, characterised in that the control unit (32) is coupled to a calculating element (31) and pivots the mirror (22, 23) according to a repeatable, predeterminable program.
- An apparatus according to Claim 6, characterised in that the calculating element (31) is connected to measuring elements (33), in particular temperature sensors, which, forming an automatic control circuit with the control unit (32), guide the laser beam.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4415212A DE4415212C1 (en) | 1994-04-26 | 1994-04-26 | Method and device for heating a metallic melt |
DE4415212 | 1994-04-26 | ||
PCT/DE1995/000427 WO1995029022A1 (en) | 1994-04-26 | 1995-03-30 | Method and device for heating a metal melt |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0758277A1 EP0758277A1 (en) | 1997-02-19 |
EP0758277B1 true EP0758277B1 (en) | 1998-03-18 |
Family
ID=6516920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95914277A Expired - Lifetime EP0758277B1 (en) | 1994-04-26 | 1995-03-30 | Method and device for heating a metal melt |
Country Status (12)
Country | Link |
---|---|
US (1) | US5791399A (en) |
EP (1) | EP0758277B1 (en) |
JP (1) | JPH09512213A (en) |
CN (1) | CN1146170A (en) |
AT (1) | ATE164101T1 (en) |
AU (1) | AU681022B2 (en) |
BR (1) | BR9507531A (en) |
CA (1) | CA2188938A1 (en) |
DE (1) | DE4415212C1 (en) |
RU (1) | RU2120836C1 (en) |
WO (1) | WO1995029022A1 (en) |
ZA (1) | ZA953359B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2626406A1 (en) * | 2012-02-13 | 2013-08-14 | Prosimet S.p.A. | Lubricating composition for continuous casting processes |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5131941A (en) * | 1959-04-08 | 1992-07-21 | Lemelson Jerome H | Reaction apparatus and method |
JPS61144249A (en) * | 1984-12-18 | 1986-07-01 | Kawasaki Steel Corp | Continuous casting method |
US4750947A (en) * | 1985-02-01 | 1988-06-14 | Nippon Steel Corporation | Method for surface-alloying metal with a high-density energy beam and an alloy metal |
EP0235340B1 (en) * | 1986-03-07 | 1989-10-11 | Nippon Steel Corporation | An anode system for plasma heating usable in a tundish |
WO1989007499A1 (en) * | 1988-02-09 | 1989-08-24 | The Broken Hill Proprietary Company Limited | Superheating and microalloying of molten metal by contact with a plasma arc |
US5314003A (en) * | 1991-12-24 | 1994-05-24 | Microelectronics And Computer Technology Corporation | Three-dimensional metal fabrication using a laser |
-
1994
- 1994-04-26 DE DE4415212A patent/DE4415212C1/en not_active Expired - Fee Related
-
1995
- 1995-03-30 AT AT95914277T patent/ATE164101T1/en not_active IP Right Cessation
- 1995-03-30 WO PCT/DE1995/000427 patent/WO1995029022A1/en active IP Right Grant
- 1995-03-30 AU AU21346/95A patent/AU681022B2/en not_active Ceased
- 1995-03-30 CN CN95192663A patent/CN1146170A/en active Pending
- 1995-03-30 JP JP7527265A patent/JPH09512213A/en active Pending
- 1995-03-30 US US08/727,536 patent/US5791399A/en not_active Expired - Fee Related
- 1995-03-30 CA CA002188938A patent/CA2188938A1/en not_active Abandoned
- 1995-03-30 BR BR9507531A patent/BR9507531A/en not_active IP Right Cessation
- 1995-03-30 EP EP95914277A patent/EP0758277B1/en not_active Expired - Lifetime
- 1995-03-30 RU RU96119974A patent/RU2120836C1/en active
- 1995-04-25 ZA ZA953359A patent/ZA953359B/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP0758277A1 (en) | 1997-02-19 |
AU2134695A (en) | 1995-11-16 |
RU2120836C1 (en) | 1998-10-27 |
BR9507531A (en) | 1997-09-02 |
US5791399A (en) | 1998-08-11 |
JPH09512213A (en) | 1997-12-09 |
AU681022B2 (en) | 1997-08-14 |
DE4415212C1 (en) | 1995-11-09 |
CA2188938A1 (en) | 1995-11-02 |
CN1146170A (en) | 1997-03-26 |
WO1995029022A1 (en) | 1995-11-02 |
ZA953359B (en) | 1996-04-12 |
ATE164101T1 (en) | 1998-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0675753B2 (en) | Method and apparatus for controlling a conducting liquid flow | |
DE3536879C2 (en) | ||
US3375862A (en) | Machine for the continuous pouring of steel | |
DE69530567T2 (en) | METHOD AND DEVICE FOR CONTINUOUSLY POURING METAL MELT | |
KR100752693B1 (en) | High speed continuous casting machine and its operation method | |
EP0758277B1 (en) | Method and device for heating a metal melt | |
EP0033308A1 (en) | Method of preventing the penetration of slags into a continuous casting mould during continuous casting, and device for carrying out the method | |
EP3993921B1 (en) | Melt supply for strip casting systems | |
DE3231316A1 (en) | METHOD AND DEVICE FOR CONTROLLING THE POURING OF A MEL FROM A MELT CONTAINER WITH A BOTTOM OPENING | |
EP0383413B1 (en) | Continuous-casting method | |
JP7226043B2 (en) | Continuous casting method | |
GB1559521A (en) | Continuous casting | |
GB1576304A (en) | Method of continuous casting | |
DE8233113U1 (en) | FLOAT FOR METAL MELTING | |
EP0234491A2 (en) | Method of terminating the casting operation in a steel strip casting plant | |
DE69303309T3 (en) | Continuous casting process | |
DE2935840A1 (en) | Pouring head for continuous casting molds | |
EP0276357B1 (en) | Process for producing metal ingots, especially from steel | |
DE3100137C2 (en) | Continuous casting mould for continuous casting of metal with a vibration device and method therefor | |
GB2029294A (en) | Method of changing the cross sectional format of a strand being continuously cast | |
US4115654A (en) | Introduction of starting molten flux from the top of a crucible | |
EP2480356A1 (en) | Method and device for casting metal melt in a continuous casting machine | |
DE1508991B2 (en) | Device for casting connecting webs between accumulator plates on pole connection lugs | |
JPH03118943A (en) | Mold and method for continuously casting low and medium carbon steel | |
KR200330997Y1 (en) | A device foe controlling the open size of outlet of submerged nozzle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960911 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH FR GB IT LI LU NL SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19970731 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 164101 Country of ref document: AT Date of ref document: 19980415 Kind code of ref document: T |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19980320 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19980514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980618 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990212 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990216 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19990225 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19990228 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19990301 Year of fee payment: 5 |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19990319 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19990331 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000330 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000330 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000331 |
|
BERE | Be: lapsed |
Owner name: MANNESMANN A.G. Effective date: 20000331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001001 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001130 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20001001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050330 |