EP0756707A1 - Highly selective chemical sensor - Google Patents
Highly selective chemical sensorInfo
- Publication number
- EP0756707A1 EP0756707A1 EP96904164A EP96904164A EP0756707A1 EP 0756707 A1 EP0756707 A1 EP 0756707A1 EP 96904164 A EP96904164 A EP 96904164A EP 96904164 A EP96904164 A EP 96904164A EP 0756707 A1 EP0756707 A1 EP 0756707A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- zone
- chemical sensor
- resin
- sensor according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000126 substance Substances 0.000 title claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 67
- 239000011347 resin Substances 0.000 claims description 31
- 229920005989 resin Polymers 0.000 claims description 31
- 239000000758 substrate Substances 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 239000000178 monomer Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000010408 film Substances 0.000 claims description 7
- 238000000206 photolithography Methods 0.000 claims description 7
- 230000008030 elimination Effects 0.000 claims description 6
- 238000003379 elimination reaction Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- 125000000962 organic group Chemical group 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 5
- 238000006116 polymerization reaction Methods 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 4
- 235000019687 Lamb Nutrition 0.000 claims description 3
- 239000011243 crosslinked material Substances 0.000 claims description 3
- 230000001939 inductive effect Effects 0.000 claims description 3
- 230000003993 interaction Effects 0.000 claims description 3
- 230000001737 promoting effect Effects 0.000 claims description 3
- 229920000620 organic polymer Polymers 0.000 claims description 2
- 150000004756 silanes Chemical class 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 229920006037 cross link polymer Polymers 0.000 claims 3
- 150000001875 compounds Chemical class 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000012491 analyte Substances 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- -1 antibodies) Proteins 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000013626 chemical specie Substances 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000027455 binding Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 239000003505 polymerization initiator Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MXWJVTOOROXGIU-UHFFFAOYSA-N atrazine Chemical compound CCNC1=NC(Cl)=NC(NC(C)C)=N1 MXWJVTOOROXGIU-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- VPTUFPHJVHQINC-UHFFFAOYSA-N (1,1,3-triethoxy-3-silylpropyl) 2-methylprop-2-enoate Chemical compound C(C(=C)C)(=O)OC(CC(OCC)[SiH3])(OCC)OCC VPTUFPHJVHQINC-UHFFFAOYSA-N 0.000 description 1
- OZFFTAOELZJRNZ-UHFFFAOYSA-N (1,1,3-trimethoxy-3-silylpropyl) 2-methylprop-2-enoate Chemical compound C(C(=C)C)(=O)OC(CC(OC)[SiH3])(OC)OC OZFFTAOELZJRNZ-UHFFFAOYSA-N 0.000 description 1
- QWMJEUJXWVZSAG-UHFFFAOYSA-N (4-ethenylphenyl)boronic acid Chemical compound OB(O)C1=CC=C(C=C)C=C1 QWMJEUJXWVZSAG-UHFFFAOYSA-N 0.000 description 1
- WEERVPDNCOGWJF-UHFFFAOYSA-N 1,4-bis(ethenyl)benzene Chemical compound C=CC1=CC=C(C=C)C=C1 WEERVPDNCOGWJF-UHFFFAOYSA-N 0.000 description 1
- ULGGZAVAARQJCS-UHFFFAOYSA-N 11-sulfanylundecan-1-ol Chemical compound OCCCCCCCCCCCS ULGGZAVAARQJCS-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical class C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- PVLBXNICXUCXTA-UHFFFAOYSA-N [2-hydroxy-3-(3-triethoxysilylpropylamino)propyl] prop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCNCC(O)COC(=O)C=C PVLBXNICXUCXTA-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- PVEOYINWKBTPIZ-UHFFFAOYSA-N but-3-enoic acid Chemical compound OC(=O)CC=C PVEOYINWKBTPIZ-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 239000002739 cryptand Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- BOXSCYUXSBYGRD-UHFFFAOYSA-N cyclopenta-1,3-diene;iron(3+) Chemical class [Fe+3].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 BOXSCYUXSBYGRD-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- FOXDJGXCTBMEKO-UHFFFAOYSA-N octane;prop-2-enoic acid Chemical compound OC(=O)C=C.CCCCCCCC FOXDJGXCTBMEKO-UHFFFAOYSA-N 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 150000002976 peresters Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/022—Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/025—Change of phase or condition
- G01N2291/0256—Adsorption, desorption, surface mass change, e.g. on biosensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0423—Surface waves, e.g. Rayleigh waves, Love waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0426—Bulk waves, e.g. quartz crystal microbalance, torsional waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0427—Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever
Definitions
- the field of the invention is that of chemical sensors and more precisely that of highly selective chemical sensors, capable of providing information on the presence of a particular chemical species (also called an analyte) in a given medium.
- a particular chemical species also called an analyte
- a chemical sensor consists of a sensitive layer, capable of fixing the analyte in a more or less reversible and selective way and of a transducer whose role is to convert the variation of a physico-chemical parameter during fixing the analyte into a generally electrical signal.
- the sensitivity of the sensor is defined by the lower detection limit, i.e. the minimum quantity or concentration of analyte inducing an identifiable signal in relation to noise.
- the selectivity of the sensor corresponds to its ability to discriminate the analyte compared to other chemical species which may be present in the medium.
- a very selective sensor is thus characterized by the fact that at identical concentrations, the signal induced by the presence of the analyte is much more intense than the signal induced by any other chemical species.
- One of the main difficulties encountered in this field is to produce sensors which are both sensitive and highly selective.
- Such chemical sensors can be applied in particular to the qualitative and quantitative detection of pollutants, toxic agents, or even to process control in the chemical or pharmaceutical industry, to biological diagnosis ...
- the invention proposes to use recently appeared materials called “molecular fingerprints” having a selective “memory” of the molecules which have been used, to build the architecture with very specific sites.
- materials obtained according to the following principle:
- a crosslinked macroporous material is obtained having cavities whose steric and functional configuration is perfectly suited for the subsequent binding of new G molecules identical or very similar to the G ′ entities, with an affinity and a selectivity. close to those offered by biological systems.
- the invention relates to a chemical sensor using such materials and detection by acoustic waves, the propagation of which can be affected in a medium or on the surface of a medium when the latter changes, and more particularly in the present case.
- a selective chemical sensor of entity G comprising an acoustic wave transducer and a sensitive layer, characterized in that the sensitive layer consists of a crosslinked, macroporous material, having cavities whose configuration steric and functional is specifically adapted to the capture of G entity, within the cavities.
- the macroporous crosslinked material is a highly crosslinked organic polymer, obtained by polymerization of a composition comprising one or more crosslinkable monomers, in the presence of entities G or G '(close to G), of molecular and / or ionic type , or a combination of molecules and / or ions of given stoichiometry.
- the transducer of the chemical sensor according to the invention can advantageously be a volume wave transducer, comprising a piezoelectric material inserted between two electrodes, at least one of the electrodes being covered with the sensitive layer.
- the transducer of the chemical sensor according to the invention can also advantageously be a surface wave transducer:
- the transducer can comprise a piezoelectric material on which are deposited two series of interdigitated electrodes, separated by a surface (S), the sensitive layer being deposited at the level of the surface (S).
- S surface
- said surface can be previously covered with a layer C2 making it possible to create specific links at the sensitive layer / support layer interface.
- the subject of the invention is also a method for producing a combination of chemical sensors characterized in that it comprises, on the surface of a substrate (S) allowing the propagation of acoustic waves:
- each zone (Zl, Z2) of inductor and / or acoustic wave receiver means comprises the following steps: a) production on a substrate (S) allowing the propagation of acoustic waves of an alternation of a first resin layer (RI) for photolithography, a metal layer (Ml) and a second resin layer (R2) for photolithography; b) elimination of the second resin layer in a first zone (Zl); c) etching of the metal layer in the first zone (Zl); d) attacking the first layer of resin in the first zone (Zl) and optionally the remainder of the second layer of resin; e) exposing the substrate in the first zone during the attack on the first layer of resin; f) production on the substrate in the first zone of a first element (I) of molecularly imprinted material; g) production of a third resin layer (R3); h) elimination of the third resin layer (R3)
- the second element (II) can advantageously be made of a material with a composition identical to that of the first element (I), but it is polymerized and crosslinked in the absence of template molecule.
- FIG. 1 illustrates an example of a sensor according to the invention, using a volume wave transducer
- FIG. 2a illustrates an example of a sensor according to the invention using a surface wave transducer, Rayleigh wave type
- FIG. 3 illustrates another example of a sensor according to the invention using a surface wave transducer, type Lamb waves;
- FIG. 4a illustrates an example of a sensor according to the invention using a surface wave transducer, Love wave type
- FIG. 5 illustrates an example of a sensor according to the invention in which acoustic waves of the Love wave type are obtained thanks to the presence of a network structure;
- Figure 5a shows schematically the network rm and the series of electrodes SEj and SE 2 ;
- Figure 5b shows schematically a section of this sensor;
- FIG. 7 illustrates an example of an embodiment for obtaining the association described in Figure 6.
- the chemical sensor according to the invention results from the association of a sensitive layer of molecularly imprinted materials and a acoustic wave transducer. These materials have the advantage of having very good mechanical, thermal and chemical stability and a particularly simple and inexpensive implementation compared to the materials used in bio-sensors. Thus they can be used over a wide temperature range and have the great advantage of being able to be used both in the aqueous, organic phase or even in ambient air.
- the association of a molecularly imprinted material and an acoustic transducer makes it possible to develop a particularly sensitive sensor insofar as a variation in mass (capture or not of molecules) necessarily induces a variation in the level of wave propagation.
- acoustic while certain physical properties may not be modified (electrochemical properties, polarization of light, etc.).
- the acoustic wave devices are generally robust, sensitive, inexpensive.
- the chemical sensor comprises a volume wave transducer, made of a piezoelectric material, it may be a quartz plate, or any other piezoelectric material, provided with two electrodes , as shown in Figure 1.
- the molecularly imprinted material is placed on one or even both of the electrodes.
- the device thus developed constitutes a resonator whose frequency can be measured.
- the absorption or adsorption of the molecules that one seeks to selectively detect, within the host material results in an increase in mass ⁇ m and leads to a variation in resonant frequency of the resonator thus formed.
- This frequency variation is given as a first approximation by the following Sauerbrey equation:
- ⁇ F -2F 2 ⁇ m / p q v q A with F frequency of the resonator (Hz) pq density of the piezoelectric material Vq speed of propagation of the acoustic waves (m / s)
- the chemical sensor comprises a surface wave transducer made of a piezoelectric material, on which are deposited two series of interdigitated electrodes SEj and SE2, between which is deposited the layer of material sensitive to molecular fingerprints.
- the assembly constitutes a delay line, the acoustic waves emitted by the first series of electrodes SEj propagate up to the second series of electrodes SE2 with a certain delay, resulting in a phase variation.
- an oscillating circuit is produced having a characteristic resonance frequency f j .
- the analysis of the frequency variation makes it possible to follow the capture of molecules, by the sensitive layer. Indeed, this capture results in a variation of mass which generates a modification of the propagation of the surface acoustic waves.
- the Rayleigh waves, propagating on the surface of a piezoelectric medium are damped in liquid media.
- the sensor is extracted, rinsed with a small amount of pure solvent in order to eliminate the molecules adsorbed in a non-specific manner; - the sensor is dried under a jet of inert gas;
- the chemical sensor according to the invention can advantageously comprise a transducer with surface waves such as Lamb waves generated by the presence of a small thickness of piezoelectric material.
- the sensitive layer can be deposited on the surface of the thin film of piezoelectric material on the electrode series side or on the side opposite the electrode series. This last variant has the advantage of making it possible to encapsulate the entire device so that only the molecularly imprinted material is in contact with the medium to be analyzed.
- the metal electrodes, the piezoelectric material and possibly the associated electronics are protected against chemical attacks which could occur in contact with this medium.
- FIG. 3 illustrates an example of a device obtained by anisotropic etching on the rear face of a silicon substrate on which a silicon nitride etching stop layer and a layer of zinc oxide piezoelectric material have previously been deposited or aluminum nitride, separated by an aluminum film.
- the thickness of the membrane thus produced is of the order of 3 ⁇ m.
- the chemical sensor comprises a transducer of acoustic waves of the Love wave type surface, propagating within an intermediate material (layer Cl) situated between the piezoelectric material and the sensitive layer (C) , an intermediate material in which the propagation speed of the acoustic waves is lower than that of the acoustic waves in the piezoelectric material.
- This intermediate material can typically be silica, gold, aluminum (Stevenson, AC; Gizeli, F; Goddard, NJ and Lowe CR, Sens. Actuators B., 13-14 (1993), 636- 637) ( Figure 4a and Figure 4b).
- the intermediate layer can be replaced by a metallic network structure used to confine the acoustic wave to the surface of the piezoelectric material.
- a metallic network structure used to confine the acoustic wave to the surface of the piezoelectric material.
- a metallic network structure used to confine the acoustic wave to the surface of the piezoelectric material.
- a very thin layer of silica can be deposited on the piezoelectric material on which the two series of interdigitated electrodes (SE], SE2) have been previously produced as well as the network structure (rm).
- This silica layer can be obtained by spraying or by chemical vapor deposition assisted by plasma, it has the function of promoting the adhesion of the sensitive layer.
- transducers coated with various molecularly imprinted materials may be advantageous to combine several transducers coated with various molecularly imprinted materials in order to constitute a system suitable for the detection and quantification of a plurality of different analytes.
- the molecularly imprinted materials are preferably used in the form of films.
- These films can advantageously be produced by in-situ polymerization, from a liquid mixture comprising the molecule serving as a template (G), one (or more) functional monomer (s) polymerizable (s) or polycondensable (s) ) (M), one (or more) crosslinking agent (s) (R), one (or more) polymerization initiator (A), these various components being optionally dispersed in a solvent.
- Said mixture can then be deposited by centrifugation or by any other means suitable for obtaining, after evaporation of the solvent if necessary, a uniform deposit of the reagents.
- the polymerization can be carried out thermally, or better still, photochemically. This last This approach offers the advantage of being faster, and of being able to be carried out at moderate temperatures, which limits the risks of degradation of the template molecule.
- the molecule (G) serving as a template can typically be an ion, an organic molecule of biological or synthetic origin, a polypeptide, a polynucleotide, a polysaccharide, or any other chemical species which it may be advantageous to detect selectively. .
- the functional monomers (M) are preferably molecules comprising at least one fragment capable of entering into a polymerization or polycondensation reaction, and at least one fragment capable of establishing a hydrogen bond, an ionic bond, a coordination bond. , a reversible covalent bond, or any other type of reversible bond and of sufficient energy, with the template molecule.
- Acrylic acid methacrylic acid, itaconic acid, 2-acrylamido-2-methyl-propanesulfonic-1 acid, N-vinyl pyrrolidone, 2-hydroxyethyl or 2-hydroxypropyl acrylate , aza-1 hydroxymethyl-5-dioxabicyclo-3,7 (3.3.0) octane acrylate, vinyl pyridines, vinylacetic acid, 4-vinylphenyl boronic acid, are examples of such functional monomers.
- the crosslinking agents (R) are preferably molecules having at least two polymerizable or polycondensable groups, compatible with the functional monomers.
- Ethylene glycol diacrylate or dimethacrylate, butane diacrylate 1,4 diol, bis- (N, N-acrylamido) -1,2 ethane, 1,4-divinyl benzene, triacrylate or trimethylopropane trimethacrylate (2-ethyl-2-hydroxymethyl-1,3-propanediol), pentaerythritol triacrylate, are examples of crosslinking agents given without limitation.
- the polymerization initiator is a chemical species capable of forming one or more active secondary species, either thermally or under the influence of radiation. Such initiators are well known to those skilled in the art. As examples, we can mention:
- - radical polymerization initiators such as azo-bis nitriles, substituted acetophenones, benzoins, benzoyl oximes, phosphine oxides, peresters;
- the surface of the transducer can advantageously be functionalized before deposition, the aim of this operation being to allow, or to favor the establishment of covalent bonds between the atoms of the surface of the coating transducer and molecules.
- the surface to be functionalized consists of silica, silicon nitride or oxynitride, lithium niobate, aluminum oxide, titanium, zirconium, silanes of general formula RnSiXfa.- where X is a group hydrolysable (typically an alkoxy, acyloxy, amino group or a chlorine atom) and R a non-hydrolyzable organic group having a function capable of reacting with the monomers M, can be used as coupling agents.
- X is a group hydrolysable (typically an alkoxy, acyloxy, amino group or a chlorine atom) and R a non-hydrolyzable organic group having a function capable of reacting with the monomers M
- N- (3-acryloxy-2-hydroxy-propyl) 3-amino propyltriethoxysilane, 3-methacryloxy, trimethoxypropyl silane or 3-methacryloxy-triethoxypropyl silane can be employed.
- a gold surface can be functionalized using coupling agents of the RSH or RS-SR 'type where R and R' are non-hydrolysable organic groups, having if necessary a function capable of reacting with the monomers M.
- the disulfide of 2-methacryloyloxy ethyl and methyl is an example of an agent of RS-SR 'type having an organic group which cannot be hydrolyzed and which can be polymerized in the presence of monomers M of acrylic type.
- Hydroxy-11 undecanethiol is an example of an RSH type agent where R is an organic group which cannot be hydrolyzed and which cannot be polymerized; this agent is known to promote the adhesion of acrylic polymers on a gold surface (Konstadinidis, K.; Evans, JF; Tirrell, M. and Nuzzo, R., Polym. Prepr. 31 (2), 525-6 (1990)).
- Example 1 A volume acoustic wave transducer is produced from a cylindrical AT quartz crystal 16 mm in diameter. A gold electrode 9 mm in diameter, is deposited by spraying on each of the bases of the cylinder, so as to produce a resonator oscillating at 6 MHz. The whole is immersed for 24 h in an ImM solution of 2-methacryloyloxyethyl and methyl disulfide (prepared according to the method described by Ederlen et al. (Ederlen, C.; Hussling, L.; Naumann, R.; Ringsdorf, H.; Wolf, H.; Ynag, J.
- a glass slide previously coated with a silicone-based formulation (of the Petrard-TM Giasselad ⁇ M 6C type) is deposited on the drop so as to form a homogeneous film.
- the device is placed in a ventilated oven at 45 ° C for 15 h.
- the glass slide is then removed and the device is washed several times, alternately with a 20% solution of acetic acid in methanol, finally with pure methanol, and finally dried under a stream of argon.
- the resonator is inserted into the feedback loop of a variable gain amplifier. The gain value required to maintain the oscillation and the resonant frequency are measured simultaneously.
- the assembly constitutes a sensor adapted to the detection of atrazine, a herbicide commonly used.
- a transducer consists of two Love wave delay lines, obtained by depositing metal electrodes in interdigitated combs (evaporated aluminum, thickness 2500 A, 50 fingers per electrode, opening 80 ⁇ , center to center distance 125 ⁇ ) on a ST quartz substrate, followed by the deposition of a layer of silica Si ⁇ 2 by PECVD.
- the orientation of the substrate is chosen so that the desired mode propagates in the YZ plane, with a polarization parallel to the X axis.
- the thickness of the silica layer is 1.48 ⁇ m.
- the wavelength ⁇ is 32 ⁇ m.
- Each delay line is inserted into the feedback loop of a variable gain amplifier, fitted with an automatic gain control device by reference to an external reference, the surface of one of these lines is made hydrophilic, then treated with methacryloxypropyl trimethoxysilane in the presence of triethylamine, so as to graft methacrylic groups on the surface.
- the rest of the transducer is protected by a masking resin, of the type commonly used in photolithography, during this operation and the following ones, in order to delimit the area to be treated.
- a drop of a solution of composition identical to that of the previous example is deposited on the functionalized zone.
- a glass slide previously coated with a silicone-based formulation (of the Petrach ⁇ M Glasselad ⁇ M gç; ⁇ type) is deposited as before on the drop so as to form a homogeneous film.
- the rest of the treatment is carried out as in The previous example Production is completed by removing the resin used to protect the areas which must remain bare, according to the usual method of dissolution in hot acetone.
- a device as shown in FIG. 6 can be produced using the succession of steps described in FIG. 7.
- the substrate comprises two delay lines, which are coated with different materials C and C, one of which at the less is a molecularly imprinted material.
- Each delay line is associated with interdigitated electrodes, SE1-SE2 for the delay line comprising the material C and SE ⁇ '- SE ⁇ for the delay line comprising the material C.
- a method of making this device can be next :
- the two lines are initially covered with two layers of positive resin RI, R2 for photolithography (Shipley Microposit ⁇ M type), separated by a layer Ml of 1000 ⁇ of aluminum deposited by evaporation.
- the aluminum is exposed and etched above the first delay line (steps a) to c)).
- a second phase of photolithography through the mask thus formed makes it possible to expose the substrate at the level of the first delay line (steps d and e).
- a layer of material I material with molecular imprints, dark screen in the figure
- This layer is etched by reactive ion etching (Reactive Ion Etching - RIE), up to the level of aluminum (step g)).
- a new layer of resin R3 is deposited (step h)), and the whole process is reproduced (steps i) to o)), in order to deposit the material II (clear frame in the figure).
- the latter can be a material with a composition identical to material I, but crosslinked in the absence of a template molecule, and therefore having no specific binding sites. It may also be another material with molecular fingerprints. Steps i) to o) can be repeated as many times as necessary to make a multi-sensor device.
- the manufacture is completed by eliminating the residual resin layer according to the usual method (dissolution in hot acetone). The aluminum film is also removed during this operation.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
CAPTEUR CHIMIQUE HAUTEMENT SELECTIF HIGHLY SELECTIVE CHEMICAL SENSOR
Le domaine de l'invention est celui des capteurs chimiques et plus précisément celui des capteurs chimiques hautement sélectifs, capables de renseigner sur la présence d'une espèce chimique particulière (encore appelée analyte) dans un milieu donné.The field of the invention is that of chemical sensors and more precisely that of highly selective chemical sensors, capable of providing information on the presence of a particular chemical species (also called an analyte) in a given medium.
De façon générale, un capteur chimique est constitué d'une couche sensible, capable de fixer l'analyte de façon plus ou moins réversible et sélective et d'un transducteur dont le rôle est de convertir la variation d'un paramètre physico- chimique lors de la fixation de l'analyte en un signal généralement électrique. La sensibilité du capteur est définie par la limite inférieure de détection, c'est-à-dire la quantité ou la concentration minimale d'analyte induisant un signal identifiable par rapport au bruit. La sélectivité du capteur correspond à son aptitude à discriminer l'analyte par rapport aux autres espèces chimiques pouvant être présentes dans le milieu. Un capteur très sélectif est ainsi caractérisé par le fait qu'à concentrations identiques, le signal induit par la présence de l'analyte est beaucoup plus intense que le signal induit par tout autre espèce chimique. L'une des principales difficultés rencontrées dans ce domaine est de réaliser des capteurs qui soient à la fois sensibles et hautement sélectifs. De tels capteurs chimiques peuvent être appliqués notamment à la détection qualitative et quantitative de polluants, d'agents toxiques, ou bien encore au contrôle de procédé dans l'industrie chimique ou pharmaceutique, au diagnostic biologique ...In general, a chemical sensor consists of a sensitive layer, capable of fixing the analyte in a more or less reversible and selective way and of a transducer whose role is to convert the variation of a physico-chemical parameter during fixing the analyte into a generally electrical signal. The sensitivity of the sensor is defined by the lower detection limit, i.e. the minimum quantity or concentration of analyte inducing an identifiable signal in relation to noise. The selectivity of the sensor corresponds to its ability to discriminate the analyte compared to other chemical species which may be present in the medium. A very selective sensor is thus characterized by the fact that at identical concentrations, the signal induced by the presence of the analyte is much more intense than the signal induced by any other chemical species. One of the main difficulties encountered in this field is to produce sensors which are both sensitive and highly selective. Such chemical sensors can be applied in particular to the qualitative and quantitative detection of pollutants, toxic agents, or even to process control in the chemical or pharmaceutical industry, to biological diagnosis ...
Actuellement, il existe des capteurs chimiques extrêmement sélectifs grâce à une couche sensible contenant des molécules d'origine biologique telles que des protéines (enzymes, anticorps), des acides nucléiques (ADN ou ARN), voire des micro-organismes entiers. Le principal inconvénient de tels capteurs réside dans leur ragilité excessive qui limite sérieusement les conditions de fonctionnement et de conservation de ces capteurs et qui réduit fortement leur durée de vie. Par ailleurs les coûts de développement et de production de tels capteurs restent en général très élevés.Currently, there are extremely selective chemical sensors thanks to a sensitive layer containing molecules of biological origin such as proteins (enzymes, antibodies), nucleic acids (DNA or RNA), even whole micro-organisms. The main drawback of such sensors lies in their excessive ragility which seriously limits the operating and storage conditions of these sensors and which greatly reduces their lifespan. In addition, the development and production costs of such sensors generally remain very high.
Parallèlement aux molécules biologiques, il existe également des molécules organiques synthétiques moins fragiles pouvant être utilisées dans la couche sensible. Il peut s'agir notamment, d'éthers-couronnes, de cryptands, de carcérands, de sphérands, de poly-cyclophanes ou bien encore de cyclodextrines. La structure tridimensionnelle de ces molécules présente en général une cavité. La taille et la distribution de densité électronique de cette cavité sont telles qu'une espèce chimique particulière qui y est incluse peut se trouver stabilisée par rapport au milieu extérieur. La synthèse de ces molécules "hôtes" est toutefois particulièrement complexe, et d'un rendement très faible. Par ailleurs, il n'est pas toujours possible de construire une cavité adaptée à la reconnaissance de l'analyte recherché. Enfin, ces molécules ne sont pas utilisables directement, mais doivent être soit attachées chimiquement à la surface du transducteur, soit incorporées dans une matrice polymère perméable à l'analyte. Ceci implique le plus souvent un aménagement fonctionnel supplémentaire, donc de nouvelles étapes de synthèse.In addition to biological molecules, there are also less fragile synthetic organic molecules that can be used in the sensitive layer. These may especially be crown ethers, cryptands, carcerands, spherands, polycyclophanes or even cyclodextrins. The three-dimensional structure of these molecules generally presents a cavity. The size and electron density distribution of this cavity is such that a chemical species peculiar to it can be stabilized in relation to the external environment. The synthesis of these "host" molecules is however particularly complex, and of a very low yield. Furthermore, it is not always possible to construct a cavity suitable for recognizing the analyte sought. Finally, these molecules cannot be used directly, but must either be chemically attached to the surface of the transducer, or incorporated into a polymer matrix permeable to the analyte. This usually involves additional functional development, therefore new synthesis steps.
Dans ce contexte, l'invention propose d'utiliser des matériaux apparus récemment dits "à empreintes moléculaires" ayant une "mémoire" sélective des molécules qui ont été utilisées, pour en construire l'architecture avec des sites très spécifiques. Il s'agit de matériaux obtenus selon le principe suivant :In this context, the invention proposes to use recently appeared materials called "molecular fingerprints" having a selective "memory" of the molecules which have been used, to build the architecture with very specific sites. These are materials obtained according to the following principle:
- dans un premier temps l'incubation d'entités G' moléculaires ou ioniques servant de gabarit en présence de monomères polymérisables et d'agents réticulants est effectuée pour aboutir au développement d'interactions complémentaires ;- Firstly, the incubation of molecular or ionic G 'entities serving as a template in the presence of polymerizable monomers and crosslinking agents is carried out in order to lead to the development of complementary interactions;
- dans un second temps on polymérise autour du complexe monomères- gabarit le mélange précédent ;- Secondly, the previous mixture is polymerized around the monomer-template complex;
- enfin on procède à l'extraction des entités G'.- finally we proceed to the extraction of entities G '.
A l'issue de cette dernière étape, on obtient un matériau macroporeux réticulé présentant des cavités dont la configuration stérique et fonctionnelle est parfaitement adaptée pour la liaison ultérieure de nouvelles molécules G identiques ou très similaires aux entités G', avec une affinité et une sélectivité proches de celles offertes par les systèmes biologiques.At the end of this last step, a crosslinked macroporous material is obtained having cavities whose steric and functional configuration is perfectly suited for the subsequent binding of new G molecules identical or very similar to the G ′ entities, with an affinity and a selectivity. close to those offered by biological systems.
Plus précisément, l'invention porte sur un capteur chimique utilisant de tels matériaux et une détection par ondes acoustiques dont la propagation peut être affectée dans un milieu ou à la surface d'un milieu lorsque ce dernier change, et plus particulièrement dans le cas présent, lorsque le matériau dit "à empreintes moléculaires" a piégé des molécules de type G. L'invention a ainsi pour objet un capteur chimique sélectif d'entité G, comprenant un transducteur à ondes acoustiques et une couche sensible, caractérisé en ce que la couche sensible est constituée d'un matériau réticulé, macroporeux, présentant des cavités dont la configuration stérique et fonctionnelle est spécifiquement adaptée à la capture d'entité G, au sein des cavités.More specifically, the invention relates to a chemical sensor using such materials and detection by acoustic waves, the propagation of which can be affected in a medium or on the surface of a medium when the latter changes, and more particularly in the present case. , when the so-called "molecular fingerprint" material has trapped type G molecules. The subject of the invention is therefore a selective chemical sensor of entity G, comprising an acoustic wave transducer and a sensitive layer, characterized in that the sensitive layer consists of a crosslinked, macroporous material, having cavities whose configuration steric and functional is specifically adapted to the capture of G entity, within the cavities.
De préférence, le matériau réticulé macroporeux est un polymère organique hautement réticulé, obtenu par polymérisation d'une composition comprenant un ou plusieurs monomères réticulables, en présence d'entités G ou G' (voisines de G), de type moléculaires et/ou ioniques, ou une association de molécules et/ou d'ions de stoechiométrie donnée.Preferably, the macroporous crosslinked material is a highly crosslinked organic polymer, obtained by polymerization of a composition comprising one or more crosslinkable monomers, in the presence of entities G or G '(close to G), of molecular and / or ionic type , or a combination of molecules and / or ions of given stoichiometry.
Le transducteur du capteur chimique selon l'invention peut avantageusement être un transducteur à ondes de volume, comprenant un matériau piézoélectrique inséré entre deux électrodes, au moins une des électrodes étant recouverte de la couche sensible. Le transducteur du capteur chimique selon l'invention peut également avantageusement être un transducteur à ondes de surface :The transducer of the chemical sensor according to the invention can advantageously be a volume wave transducer, comprising a piezoelectric material inserted between two electrodes, at least one of the electrodes being covered with the sensitive layer. The transducer of the chemical sensor according to the invention can also advantageously be a surface wave transducer:
Dans ce cas le transducteur peut comprendre un matériau piézoélectrique sur lequel sont déposées deux séries d'électrodes interdigitées, séparées par une surface (S), la couche sensible étant déposée au niveau de la surface (S). Pour favoriser l'adhérence de la couche sensible sur la surface du matériau piézoélectrique ou sur la surface d'une électrode (dans le cas de transducteur à ondes de volume), ladite surface peut être préalablement recouverte d'une couche C2 permettant de créer des liaisons spécifiques à l'interface couche sensible/couche support. L'invention a aussi pour objet un procédé de réalisation, d'une association de capteurs chimiques caractérisé en ce qu'il comporte, à la surface d'un substrat (S) permettant la propagation d'ondes acoustiques :In this case the transducer can comprise a piezoelectric material on which are deposited two series of interdigitated electrodes, separated by a surface (S), the sensitive layer being deposited at the level of the surface (S). To promote the adhesion of the sensitive layer to the surface of the piezoelectric material or to the surface of an electrode (in the case of a volume wave transducer), said surface can be previously covered with a layer C2 making it possible to create specific links at the sensitive layer / support layer interface. The subject of the invention is also a method for producing a combination of chemical sensors characterized in that it comprises, on the surface of a substrate (S) allowing the propagation of acoustic waves:
- la réalisation, à travers un premier masque laissant libre une première zone (Zl) du substrat, d'un premier élément de matériau (I) à empreintes moléculaires ;- The production, through a first mask leaving free a first area (Zl) of the substrate, of a first element of material (I) with molecular imprints;
- la réalisation, à travers un deuxième masque laissant libre la deuxième zone (Z2) du substrat, d'un deuxième élément de matériau (II) réticulé en l'absence de molécule gabarit ;- the production, through a second mask leaving the second zone (Z2) of the substrate free, of a second element of material (II) crosslinked in the absence of template molecule;
- la réalisation de part et d'autre de chaque zone (Zl, Z2) de moyens inducteurs et/ou récepteurs d'onde acoustique. Dans une variante de procédé selon l'invention, ce dernier comporte les étapes suivantes : a) réalisation sur un substrat (S) permettant la propagation d'ondes acoustiques d'une alternance d'une première couche de résine (RI) pour photolithographie, d'une couche métallique (Ml) et d'une deuxième couche de résine (R2) pour photolithographie ; b) élimination de la deuxième couche de résine dans une première zone (Zl) ; c) gravure de la couche métallique dans la première zone (Zl) ; d) attaque de la première couche de résine dans la première zone (Zl) et éventuellement du reste de la deuxième couche de résine ; e) mise à nu du substrat dans la première zone lors de l'attaque de la première couche de résine ; f) réalisation sur le substrat dans la première zone d'un premier élément (I) en matériau à empreintes moléculaires ; g) réalisation d'une troisième couche de résine (R3) ; h) élimination de la troisième couche de résine (R3) dans une deuxième zone (Z2) ; i) gravure de la couche métallique dans la deuxième zone (Z2) ; j) attaque de la première couche de résine dans la deuxième zone et éventuellement du reste de la troisième couche de résine ; k) mise à nu du substrat dans la deuxième zone lors de l'attaque de la première couche de résine ; l) réalisation sur le substrat dans la deuxième zone d'un deuxième élément (II) de matériau réticulé en l'absence de molécule gabarit ; m) élimination de la couche métallique (Ml) et de la première couche de résine (RI).- The realization on each side of each zone (Zl, Z2) of inductor and / or acoustic wave receiver means. In a variant of the method according to the invention, the latter comprises the following steps: a) production on a substrate (S) allowing the propagation of acoustic waves of an alternation of a first resin layer (RI) for photolithography, a metal layer (Ml) and a second resin layer (R2) for photolithography; b) elimination of the second resin layer in a first zone (Zl); c) etching of the metal layer in the first zone (Zl); d) attacking the first layer of resin in the first zone (Zl) and optionally the remainder of the second layer of resin; e) exposing the substrate in the first zone during the attack on the first layer of resin; f) production on the substrate in the first zone of a first element (I) of molecularly imprinted material; g) production of a third resin layer (R3); h) elimination of the third resin layer (R3) in a second zone (Z2); i) etching of the metal layer in the second zone (Z2); j) attacking the first layer of resin in the second zone and optionally the remainder of the third layer of resin; k) exposing the substrate in the second zone during the attack on the first layer of resin; l) production on the substrate in the second zone of a second element (II) of crosslinked material in the absence of template molecule; m) elimination of the metallic layer (Ml) and of the first resin layer (RI).
Le deuxième élément (II) peut avantageusement être en matériau de composition identique à celle du premier élément (I), mais il est polymérisé et réticulé en l'absence de molécule gabarit.The second element (II) can advantageously be made of a material with a composition identical to that of the first element (I), but it is polymerized and crosslinked in the absence of template molecule.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre, donnée à titre non limitatif, et grâce aux figures annexées parmi lesquelles :The invention will be better understood and other advantages will appear on reading the description which follows, given without limitation, and thanks to the appended figures among which:
- la figure 1 illustre un exemple de capteur selon l'invention, utilisant un transducteur à ondes de volume ; - la figure 2a illustre un exemple de capteur selon l'invention utilisant un transducteur à ondes de surface, type onde de Rayleigh ;- Figure 1 illustrates an example of a sensor according to the invention, using a volume wave transducer; - Figure 2a illustrates an example of a sensor according to the invention using a surface wave transducer, Rayleigh wave type;
- la figure 2b illustre la propagation des ondes de Rayleigh ;- Figure 2b illustrates the propagation of Rayleigh waves;
- la figure 3 illustre un autre exemple de capteur selon l'invention utilisant un transducteur à ondes de surface, type ondes de Lamb ;- Figure 3 illustrates another example of a sensor according to the invention using a surface wave transducer, type Lamb waves;
- la figure 4a illustre un exemple de capteur selon l'invention utilisant un transducteur à ondes de surface, type ondes de Love ;- Figure 4a illustrates an example of a sensor according to the invention using a surface wave transducer, Love wave type;
- la figure 4b illustre la propagation des ondes de Love dans la couche intermédiaire ; - la figure 5 illustre un exemple de capteur selon l'invention dans lequel des ondes acoustiques de type ondes de Love sont obtenues grâce à la présence d'une structure réseau ;- Figure 4b illustrates the propagation of Love waves in the intermediate layer; FIG. 5 illustrates an example of a sensor according to the invention in which acoustic waves of the Love wave type are obtained thanks to the presence of a network structure;
* la figure 5a schématise le réseau rm et les séries d'électrodes SEj et SE2 ; * la figure 5b schématise une coupe de ce capteur ;* Figure 5a shows schematically the network rm and the series of electrodes SEj and SE 2 ; * Figure 5b shows schematically a section of this sensor;
- la figure 6 schématise l'association de deux transducteurs identiques dont un seulement peut piéger des entités G ;- Figure 6 shows schematically the association of two identical transducers of which only one can trap entities G;
- la figure 7 illustre un exemple de procédé de réalisation permettant l'obtention de l'association décrite en figure 6. Le capteur chimique selon l'invention résulte de l'association d'une couche sensible de matériaux à empreintes moléculaires et d'un transducteur à ondes acoustiques. Ces matériaux ont l'avantage de présenter une très bonne stabilité mécanique, thermique et chimique et une mise en oeuvre particulièrement simple et peu coûteuse par rapport aux matériaux utilisés dans les bio capteurs. Ainsi ils peuvent être utilisés sur une grande plage de température et ont le grand intérêt de pouvoir être utilisés aussi bien en phase aqueuse, organique ou bien encore à l'air ambiant.- Figure 7 illustrates an example of an embodiment for obtaining the association described in Figure 6. The chemical sensor according to the invention results from the association of a sensitive layer of molecularly imprinted materials and a acoustic wave transducer. These materials have the advantage of having very good mechanical, thermal and chemical stability and a particularly simple and inexpensive implementation compared to the materials used in bio-sensors. Thus they can be used over a wide temperature range and have the great advantage of being able to be used both in the aqueous, organic phase or even in ambient air.
L'association d'un matériau à empreintes moléculaires et d'un transducteur acoustique permet d'élaborer un capteur particulièrement sensible dans la mesure où une variation de masse (capture ou non des molécules) induit nécessairement une variation au niveau de la propagation des ondes acoustiques, alors que certaines propriétés physiques pourraient ne pas être modifiées (propriétés électrochimiques, polarisation de la lumière, etc.). Par ailleurs, les dispositifs à ondes acoustiques sont généralement robustes, sensibles, peu coûteux. Dans une première variante de l'invention, le capteur chimique comprend un transducteur à ondes de volume, constitué d'un matériau piézoélectrique, il peut s'agir d'une plaquette de quartz, ou de tout autre matériau piézoélectrique, muni de deux électrodes, comme l'illustre la figure 1. Le matériau à empreintes moléculaires est disposé sur l'une des électrodes, ou même sur les deux. Le dispositif ainsi élaboré constitue un résonateur dont la fréquence peut être mesurée. L'absorption ou l'adsorption des molécules que l'on cherche à détecter sélectivement, au sein du matériau hôte se traduit par une augmentation de masse Δm et conduit à une variation de fréquence de résonance du résonateur ainsi constitué. Cette variation de fréquence est donnée en première approximation par l'équation de Sauerbrey suivante :The association of a molecularly imprinted material and an acoustic transducer makes it possible to develop a particularly sensitive sensor insofar as a variation in mass (capture or not of molecules) necessarily induces a variation in the level of wave propagation. acoustic, while certain physical properties may not be modified (electrochemical properties, polarization of light, etc.). Furthermore, the acoustic wave devices are generally robust, sensitive, inexpensive. In a first variant of the invention, the chemical sensor comprises a volume wave transducer, made of a piezoelectric material, it may be a quartz plate, or any other piezoelectric material, provided with two electrodes , as shown in Figure 1. The molecularly imprinted material is placed on one or even both of the electrodes. The device thus developed constitutes a resonator whose frequency can be measured. The absorption or adsorption of the molecules that one seeks to selectively detect, within the host material results in an increase in mass Δm and leads to a variation in resonant frequency of the resonator thus formed. This frequency variation is given as a first approximation by the following Sauerbrey equation:
ΔF = -2F2 Δm/pqvq A avec F fréquence du résonateur (Hz) pq densité du matériau piézoélectrique Vq vitesse de propagation des ondes acoustiques (m/s)ΔF = -2F 2 Δm / p q v q A with F frequency of the resonator (Hz) pq density of the piezoelectric material Vq speed of propagation of the acoustic waves (m / s)
A aire de la surface sensible (m2)Area of sensitive surface (m 2 )
Dans une seconde variante de l'invention, le capteur chimique comprend un transducteur à ondes de surface constitué d'un matériau piézoélectrique, sur lequel sont déposées deux séries d'électrodes interdigitées SEj et SE2, entre lesquelles est déposée la couche de matériau sensible à empreintes moléculaires.In a second variant of the invention, the chemical sensor comprises a surface wave transducer made of a piezoelectric material, on which are deposited two series of interdigitated electrodes SEj and SE2, between which is deposited the layer of material sensitive to molecular fingerprints.
L'ensemble constitue une ligne à retard, les ondes acoustiques émises par la première série d'électrodes SEj se propagent jusqu'à la seconde série d'électrodes SE2 avec un certain retard, se traduisant par une variation de phase. En recombinant le signal de sortie et le signal d'entrée, le signal de sortie étant amplifié et mis en phase avec le signal d'entrée, on réalise un circuit oscillant ayant une fréquence de résonance caractéristique fj . Lorsque les conditions de propagation des ondes acoustiques de surface sont modifiées entre les deux séries d'électrodes, la variation de phase induite n'est plus la même, et le circuit oscillant ne résonne plus à la même fréquence fj, mais résonne alors à la fréquence f \ .The assembly constitutes a delay line, the acoustic waves emitted by the first series of electrodes SEj propagate up to the second series of electrodes SE2 with a certain delay, resulting in a phase variation. By recombining the output signal and the input signal, the output signal being amplified and put in phase with the input signal, an oscillating circuit is produced having a characteristic resonance frequency f j . When the conditions of propagation of the surface acoustic waves are modified between the two series of electrodes, the induced phase variation is no longer the same, and the oscillating circuit no longer resonates at the same frequency fj, but then resonates at the frequency f \.
Dans le capteur selon l'invention, l'analyse de la variation de fréquence permet de suivre la capture de molécules, par la couche sensible. En effet, cette capture se traduit par une variation de masse qui génère une modification de la propagation des ondes acoustiques de surface. Notons que les ondes de Rayleigh, se propageant à la surface d'un milieu piézoélectrique sont amorties dans les milieux liquides. Aussi lorsqu'un capteur chimique à ondes de surface de type ondes de Rayleigh est utilisé en solution, il est souhaitable de procéder en plusieurs temps : - dans un premier temps, on détermine la fréquence de résonance de l'oscillateur à sec ;In the sensor according to the invention, the analysis of the frequency variation makes it possible to follow the capture of molecules, by the sensitive layer. Indeed, this capture results in a variation of mass which generates a modification of the propagation of the surface acoustic waves. Note that the Rayleigh waves, propagating on the surface of a piezoelectric medium are damped in liquid media. Also when a Rayleigh wave type surface wave chemical sensor is used in solution, it is desirable to proceed in several stages: - firstly, the resonant frequency of the dry oscillator is determined;
• puis on met le capteur en équilibre avec la solution à analyser ;• then the sensor is brought into equilibrium with the solution to be analyzed;
- on extrait le capteur, on le rince avec une petite quantité de solvant pur afin d'éliminer les molécules adsorbées de façon non spécifique ; - on sèche le capteur sous un jet de gaz inerte ;- the sensor is extracted, rinsed with a small amount of pure solvent in order to eliminate the molecules adsorbed in a non-specific manner; - the sensor is dried under a jet of inert gas;
- on mesure la variation de fréquence résultant.- the resulting frequency variation is measured.
Le capteur chimique selon l'invention peut avantageusement comprendre un transducteur à ondes de surface type ondes de Lamb générées par la présence d'une faible épaisseur de matériau piézoélectrique. La couche sensible peut être déposée à la surface du film mince de matériau piézoélectrique côté séries d'électrodes ou bien côté opposé à la série d'électrodes. Cette dernière variante présente l'avantage de permettre d'encapsuler l'ensemble du dispositif de façon que seul le matériau à empreintes moléculaires soit en contact avec le milieu à analyser. Ainsi les électrodes métalliques, le matériau piézoélectrique et éventuellement l'électronique associée sont protégées contre des agressions chimiques qui pourraient se produire au contact de ce milieu.The chemical sensor according to the invention can advantageously comprise a transducer with surface waves such as Lamb waves generated by the presence of a small thickness of piezoelectric material. The sensitive layer can be deposited on the surface of the thin film of piezoelectric material on the electrode series side or on the side opposite the electrode series. This last variant has the advantage of making it possible to encapsulate the entire device so that only the molecularly imprinted material is in contact with the medium to be analyzed. Thus the metal electrodes, the piezoelectric material and possibly the associated electronics are protected against chemical attacks which could occur in contact with this medium.
La figure 3 illustre un exemple de dispositif obtenu par gravure anisotrope en face arrière d'un substrat de silicium sur lequel on a préalablement déposé une couche d'arrêt d'attaque de nitrure de silicium et une couche de matériau piézoélectrique d'oxyde de zinc ou de nitrure d'aluminium, séparées par un film d'aluminium. L'épaisseur de la membrane ainsi réalisée est de l'ordre de 3 μm.FIG. 3 illustrates an example of a device obtained by anisotropic etching on the rear face of a silicon substrate on which a silicon nitride etching stop layer and a layer of zinc oxide piezoelectric material have previously been deposited or aluminum nitride, separated by an aluminum film. The thickness of the membrane thus produced is of the order of 3 μm.
Selon une autre variante de l'invention, le capteur chimique comprend un transducteur à ondes acoustiques de surface type ondes de Love, se propageant au sein d'un matériau intermédiaire (couche Cl) situé entre le matériau piézoélectrique et la couche sensible (C), matériau intermédiaire dans lequel la vitesse de propagation des ondes acoustiques est inférieure à celle des ondes acoustiques dans le matériau piézoélectrique. Ce matériau intermédiaire peut typiquement être de la silice, de l'or, de l'aluminium (Stevenson, A.C. ; Gizeli, F ; Goddard, N.J. and Lowe C.R., Sens. Actuators B., 13-14 (1993), 636-637) (figure 4a et figure 4b). La couche intermédiaire peut être remplacée par une structure réseau métallique utilisée pour confiner l'onde acoustique à la surface du matériau piézoélectrique. Un tel dispositif est représenté schématiquement sur les figures 5 a et 5b. Dans ce cas, une très fine couche de silice peut être déposée sur le matériau piézoélectrique sur lequel ont été préalablement réalisées les deux séries d'électrodes interdigitées (SE], SE2) ainsi que la structure réseau (rm). Cette couche de silice peut être obtenue par pulvérisation ou par dépôt chimique en phase vapeur assisté par plasma, elle a pour fonction de favoriser l'adhérence de la couche sensible.According to another variant of the invention, the chemical sensor comprises a transducer of acoustic waves of the Love wave type surface, propagating within an intermediate material (layer Cl) situated between the piezoelectric material and the sensitive layer (C) , an intermediate material in which the propagation speed of the acoustic waves is lower than that of the acoustic waves in the piezoelectric material. This intermediate material can typically be silica, gold, aluminum (Stevenson, AC; Gizeli, F; Goddard, NJ and Lowe CR, Sens. Actuators B., 13-14 (1993), 636- 637) (Figure 4a and Figure 4b). The intermediate layer can be replaced by a metallic network structure used to confine the acoustic wave to the surface of the piezoelectric material. Such a device is shown schematically in Figures 5 a and 5b. In this case, a very thin layer of silica can be deposited on the piezoelectric material on which the two series of interdigitated electrodes (SE], SE2) have been previously produced as well as the network structure (rm). This silica layer can be obtained by spraying or by chemical vapor deposition assisted by plasma, it has the function of promoting the adhesion of the sensitive layer.
Afin de s'affranchir d'effets parasites, liés par exemple à des fluctuations de température, il est généralement avantageux d'associer deux dispositifs de transduction identiques dont l'un seulement est revêtu d'une couche sensible, et d'effectuer une mesure différentielle. Dans le cas présent, un avantage supplémentaire peut être obtenu, selon la figure 6, en effectuant une mesure différentielle sur deux transducteurs identiques, excepté que l'un est revêtu d'un matériau à empreinte moléculaire (matériau I), et que l'autre est revêtu d'un matériau de composition identique, polymérisé et réticulé en l'absence de molécule gabarit (matériau II). En effet, un matériau à empreintes moléculaires peut présenter, outre les sites de fixation spécifiquement adaptés à l'analyte à détecter, des sites non spécifiques susceptibles de fixer d'autres molécules. En revanche, le matériau II ne présente que des sites non spécifiques. On peut donc ainsi soustraire la perturbation qui pourrait être due à des molécules autres que l'analyte, se fixant sur la couche sensible par des interactions non spécifiques.In order to avoid parasitic effects, linked for example to temperature fluctuations, it is generally advantageous to associate two identical transduction devices, only one of which is coated with a sensitive layer, and to carry out a measurement. differential. In the present case, an additional advantage can be obtained, according to FIG. 6, by carrying out a differential measurement on two identical transducers, except that one is coated with a material with molecular imprint (material I), and that the the other is coated with a material of identical composition, polymerized and crosslinked in the absence of a template molecule (material II). In fact, a molecularly imprinted material can present, in addition to the binding sites specifically adapted to the analyte to be detected, non-specific sites capable of binding other molecules. On the other hand, the material II only presents non-specific sites. We can therefore subtract the disturbance that could be due to molecules other than the analyte, which bind to the sensitive layer through non-specific interactions.
Enfin, on peut avoir avantage à associer plusieurs transducteurs revêtus de divers matériaux à empreintes moléculaires afin de constituer un système adapté à la détection et à la quantification d'une pluralité d'analytes différents.Finally, it may be advantageous to combine several transducers coated with various molecularly imprinted materials in order to constitute a system suitable for the detection and quantification of a plurality of different analytes.
De façon générale, les matériaux à empreintes moléculaires sont de préférence mis en oeuvre sous la forme de films. Ces films peuvent avantageusement être réalisés par polymérisation in-situ, à partir d'un mélange liquide comprenant la molécule servant de gabarit (G), un (ou plusieurs) monomère(s) fonctionnel(s) polymérisable(s) ou polycondensable(s) (M), un (ou plusieurs) agent(s) de réticulation (R), un (ou plusieurs) amorceur(s) de polymérisation (A), ces divers composants étant éventuellement dispersés dans un solvant. Ledit mélange peut alors être déposé par centrifugation ou par tout autre moyen propre à obtenir, après évaporation du solvant le cas échéant, un dépôt uniforme des réactifs. La polymérisation peut être effectuée par voie thermique, ou mieux encore, par voie photochimique. Cette dernière approche offre l'avantage d'être plus rapide, et de pouvoir être conduite à des températures modérées, ce qui limite les risques de dégradation de la molécule gabarit.In general, the molecularly imprinted materials are preferably used in the form of films. These films can advantageously be produced by in-situ polymerization, from a liquid mixture comprising the molecule serving as a template (G), one (or more) functional monomer (s) polymerizable (s) or polycondensable (s) ) (M), one (or more) crosslinking agent (s) (R), one (or more) polymerization initiator (A), these various components being optionally dispersed in a solvent. Said mixture can then be deposited by centrifugation or by any other means suitable for obtaining, after evaporation of the solvent if necessary, a uniform deposit of the reagents. The polymerization can be carried out thermally, or better still, photochemically. This last This approach offers the advantage of being faster, and of being able to be carried out at moderate temperatures, which limits the risks of degradation of the template molecule.
La molécule (G) servant de gabarit peut typiquement être un ion, une molécule organique d'origine biologique ou synthétique, un polypeptide, un polynucléotide, un polysaccharide, ou toute autre espèce chimique que l'on peut avoir intérêt à détecter de façon sélective.The molecule (G) serving as a template can typically be an ion, an organic molecule of biological or synthetic origin, a polypeptide, a polynucleotide, a polysaccharide, or any other chemical species which it may be advantageous to detect selectively. .
Les monomères fonctionnels (M) sont de préférence des molécules comportant au moins un fragment susceptible d'entrer dans une réaction de polymérisation ou de polycondensation, et au moins un fragment susceptible d'établir une liaison hydrogène, une liaison ionique, une liaison de coordination, une liaison covalente réversible, ou tout autre type de liaison réversible et d'énergie suffisante, avec la molécule gabarit. L'acide acrylique, l'acide méthacrylique, l'acide itaconique, l'acide acrylamido-2 méthyl-2 propanesulfonique-l, la N-vinyl pyrrolidone, l'acrylate d'hydroxy-2 éthyle ou d'hydroxy-2 propyle, l'acrylate d'aza-1 hydroxyméthyl-5 dioxabicyclo-3,7 (3.3.0) octane, les vinyl pyridines, l'acide vinylacétique, l'acide vinyl- 4 phényl boronique, sont des exemples de tels monomères fonctionnels.The functional monomers (M) are preferably molecules comprising at least one fragment capable of entering into a polymerization or polycondensation reaction, and at least one fragment capable of establishing a hydrogen bond, an ionic bond, a coordination bond. , a reversible covalent bond, or any other type of reversible bond and of sufficient energy, with the template molecule. Acrylic acid, methacrylic acid, itaconic acid, 2-acrylamido-2-methyl-propanesulfonic-1 acid, N-vinyl pyrrolidone, 2-hydroxyethyl or 2-hydroxypropyl acrylate , aza-1 hydroxymethyl-5-dioxabicyclo-3,7 (3.3.0) octane acrylate, vinyl pyridines, vinylacetic acid, 4-vinylphenyl boronic acid, are examples of such functional monomers.
Les agents de réticulation (R) sont de préférence des molécules présentant au moins deux groupements polymérisables ou polycondensables, compatibles avec les monomères fonctionnels. Le diacrylate ou le diméthacrylate d'éthylèneglycol, le diacrylate de butane- 1,4 diol, le bis-(N,N-acrylamido)-l,2 éthane, le divinyl-1,4 benzène, le triacrylate ou le triméthacrylate de triméthylopropane (éthyl-2 hydroxyméthyl-2 propane- 1,3 diol), le triacrylate de pentaérythritol, sont des exemples d'agents réticulants donnés de façon non limitative. L'amorceur de polymérisation est une espèce chimique susceptible de former une ou plusieurs espèces secondaires actives, soit thermiquement, soit sous l'influence d'un rayonnement. De tels amorceurs sont bien connus de l'homme de l'art. A titre d'exemples, on peut mentionner :The crosslinking agents (R) are preferably molecules having at least two polymerizable or polycondensable groups, compatible with the functional monomers. Ethylene glycol diacrylate or dimethacrylate, butane diacrylate 1,4 diol, bis- (N, N-acrylamido) -1,2 ethane, 1,4-divinyl benzene, triacrylate or trimethylopropane trimethacrylate (2-ethyl-2-hydroxymethyl-1,3-propanediol), pentaerythritol triacrylate, are examples of crosslinking agents given without limitation. The polymerization initiator is a chemical species capable of forming one or more active secondary species, either thermally or under the influence of radiation. Such initiators are well known to those skilled in the art. As examples, we can mention:
- des amorceurs de polymérisation radicalaire tels que les azo-bis nitriles, les acétophénones substituées, les benzoïnes, les benzoyle oximes, les phosphines- oxydes, les peresters ;- radical polymerization initiators such as azo-bis nitriles, substituted acetophenones, benzoins, benzoyl oximes, phosphine oxides, peresters;
- des amorceurs de polymérisation cationique tels que les sels d'aryldiazonium ou les sels d'onium, les dérivés du thiapyrilium, les sels de ferrocenium. Afin d'améliorer l'adhérence du matériau à empreinte moléculaire, la surface du transducteur peut avantageusement être fonctionnalisée préalablement au dépôt, le but de cette opération étant de permettre, ou de favoriser l'établissement de liaisons covalentes entre les atomes de la surface du transducteur et les molécules du revêtement. Lorsque la surface à fonctionnaliser est constituée de silice, de nitrure ou d'oxynitrure de silicium, de niobate de lithium, d'oxyde d'aluminium, de titane, de zirconium, des silanes de formule générale RnSiXfa.- où X est un groupement hydrolysable (typiquement un groupement alkoxy, acyloxy, aminé ou un atome de chlore) et R un groupement organique non hydrolysable présentant une fonction susceptible de réagir avec les monomères M, peuvent être utilisés comme agents de couplage. A titre d'exemple, si le polymère à déposer est à base de monomères acryliques, le N-(acryloxy-3 hydroxy-2 propyl) amino-3 propyltriethoxysilane, le méthacryloxy-3, triméthoxypropyl silane ou le méthacryloxy-3 triéthoxypropyl silane peuvent être employés. Une surface d'or peut être fonctionnalisée en utilisant des agents de couplage de type RSH ou RS-SR' où R et R' sont des groupements organiques non hydrolysables, présentant si nécessaire une fonction susceptible de réagir avec les monomères M. Le disulfure de méthacryloyloxy-2 éthyle et de méthyle est un exemple d'agent de type RS-SR' présentant un groupement organique non hydrolysable et polymérisable en présence de monomères M de type acrylique. L'hydroxy-11 undécanethiol est un exemple d'agent de type RSH où R est un groupement organique non hydrolisable et non polymérisable ; cet agent est connu pour favoriser l'adhésion de polymères acryliques sur une surface d'or (Konstadinidis, K. ; Evans, J.F. ; Tirrell, M. and Nuzzo, R., Polym. Prepr. 31 (2), 525-6 (1990)). Exemple 1 Un transducteur à ondes acoustiques de volume est réalisé à partir d'un cristal de quartz AT cylindrique de 16 mm de diamètre. Une électrode d'or de 9 mm de diamètre, est déposée par pulvérisation sur chacune des bases du cylindre, de façon à réaliser un résonateur oscillant à 6 MHz. L'ensemble est immergé pendant 24 h dans une solution à ImM de disulfure de méthacryloyloxy-2 éthyle et de méthyle (préparé selon la méthode décrite par Ederlen et al. (Ederlen, C. ; Hâussling, L. ; Naumann, R. ; Ringsdorf, H. ; Wolf, H. ; Ynag, J. Lang uir (1994)), 10, 1246-1250) dans le chloroforme, puis rincé au chloroforme et séché. Une goutte d'une solution comprenant typiquement 5 mmol d'atrazine, 10 mmol de méthacrylate de N, N- diméthylaminoéthyle, 10 mmol d'acide méthacrylique, 60 mmol de diméthacrylate d'éthylèneglycol, et 140 mg de 2,2' -azobis (2,4-diméthylvaléronitrile) dans 15 ml de chloroforme distillé, désaéré et réfrigéré à 4°C, est déposée sur la surface fonctionnalisée de l'une des électrodes. Une lame de verre préalablement enduite d'une formulation à base de silicone (de type Petrard-TM Giasselad^M 6C), est déposée sur la goutte de façon à former un film homogène. Le dispositif est placé dans une étυve ventilée à 45°C pendant 15 h. La lame de verre est alors ôtée et le dispositif est lavé à plusieurs reprises, alternativement avec une solution d'acide acétique à 20 % dans le méthanol, enfin avec du méthanol pur, et finalement séché sous un flux d'argon. Le résonateur est inséré dans la boucle de rétroaction d'un amplificateur à gain variable. La valeur du gain nécessaire pour maintenir l'oscillation et la fréquence de résonance sont mesurées simultanément. L'ensemble constitue un capteur adapté à la détection de l'atrazine, un herbicide couramment utilisé. Exemple 2- cationic polymerization initiators such as aryl diazonium salts or onium salts, thiapyrilium derivatives, ferrocenium salts. In order to improve the adhesion of the molecularly imprinted material, the surface of the transducer can advantageously be functionalized before deposition, the aim of this operation being to allow, or to favor the establishment of covalent bonds between the atoms of the surface of the coating transducer and molecules. When the surface to be functionalized consists of silica, silicon nitride or oxynitride, lithium niobate, aluminum oxide, titanium, zirconium, silanes of general formula RnSiXfa.- where X is a group hydrolysable (typically an alkoxy, acyloxy, amino group or a chlorine atom) and R a non-hydrolyzable organic group having a function capable of reacting with the monomers M, can be used as coupling agents. For example, if the polymer to be deposited is based on acrylic monomers, N- (3-acryloxy-2-hydroxy-propyl) 3-amino propyltriethoxysilane, 3-methacryloxy, trimethoxypropyl silane or 3-methacryloxy-triethoxypropyl silane can be employed. A gold surface can be functionalized using coupling agents of the RSH or RS-SR 'type where R and R' are non-hydrolysable organic groups, having if necessary a function capable of reacting with the monomers M. The disulfide of 2-methacryloyloxy ethyl and methyl is an example of an agent of RS-SR 'type having an organic group which cannot be hydrolyzed and which can be polymerized in the presence of monomers M of acrylic type. Hydroxy-11 undecanethiol is an example of an RSH type agent where R is an organic group which cannot be hydrolyzed and which cannot be polymerized; this agent is known to promote the adhesion of acrylic polymers on a gold surface (Konstadinidis, K.; Evans, JF; Tirrell, M. and Nuzzo, R., Polym. Prepr. 31 (2), 525-6 (1990)). Example 1 A volume acoustic wave transducer is produced from a cylindrical AT quartz crystal 16 mm in diameter. A gold electrode 9 mm in diameter, is deposited by spraying on each of the bases of the cylinder, so as to produce a resonator oscillating at 6 MHz. The whole is immersed for 24 h in an ImM solution of 2-methacryloyloxyethyl and methyl disulfide (prepared according to the method described by Ederlen et al. (Ederlen, C.; Hussling, L.; Naumann, R.; Ringsdorf, H.; Wolf, H.; Ynag, J. Lang uir (1994)), 10, 1246-1250) in chloroform, then rinsed with chloroform and dried. One drop of a solution typically comprising 5 mmol of atrazine, 10 mmol of N, N-dimethylaminoethyl methacrylate, 10 mmol of methacrylic acid, 60 mmol of ethylene glycol dimethacrylate, and 140 mg of 2,2 '-azobis (2,4-dimethylvaleronitrile) in 15 ml of distilled chloroform, deaerated and refrigerated at 4 ° C, is deposited on the functionalized surface of one of the electrodes. A glass slide previously coated with a silicone-based formulation (of the Petrard-TM Giasselad ^ M 6C type) is deposited on the drop so as to form a homogeneous film. The device is placed in a ventilated oven at 45 ° C for 15 h. The glass slide is then removed and the device is washed several times, alternately with a 20% solution of acetic acid in methanol, finally with pure methanol, and finally dried under a stream of argon. The resonator is inserted into the feedback loop of a variable gain amplifier. The gain value required to maintain the oscillation and the resonant frequency are measured simultaneously. The assembly constitutes a sensor adapted to the detection of atrazine, a herbicide commonly used. Example 2
Un transducteur est constitué de deux lignes à retard à ondes de Love, obtenues par dépôt d'électrodes métalliques en peignes interdigités (aluminium évaporé, épaisseur 2500 A, 50 doigts par électrode, ouverture 80 λ, distance centre à centre 125 λ) sur un substrat en quartz ST, suivi du dépôt d'une couche de silice Siθ2 par PECVD. L'orientation du substrat est choisie de telle sorte que le mode recherché se propage dans le plan YZ, avec une polarisation parallèle à l'axe X. L'épaisseur de la couche de silice est de 1,48 μm. La longueur d'onde λ est de 32 μm. Chaque ligne à retard est insérée dans la boucle de rétroaction d'un amplificateur à gain variable, muni d'un dispositif de contrôle automatique du gain par référence à une référence externe, la surface de l'une de ces lignes est rendue hydrophile, puis traitée par le méthacryloxypropyl trimethoxysilane en présence de triéthylamine, de façon à greffer des groupements méthacryliques en surface. Le reste du transducteur est protégé par une résine de masquage, du type couramment employé en photolithographie, pendant cette opération et les suivantes, afin de délimiter la zone à traiter. Une goutte d'une solution de composition identique à celle de l'exemple précédent est déposée sur la zone fonctionnalisée. Une lamelle de verre préalablement enduite d'une formulation à base de silicone (de type Petrach^M Glasselad^M gç;^ est déposée comme précédemment sur la goutte de façon à former un film homogène. La suite du traitement s'effectue comme dans l'exemple précédent. La fabrication est achevée en éliminant la résine ayant servi à protéger les zones devant rester nues, selon la méthode usuelle de dissolution dans l'acétone à chaud. Exemple 3A transducer consists of two Love wave delay lines, obtained by depositing metal electrodes in interdigitated combs (evaporated aluminum, thickness 2500 A, 50 fingers per electrode, opening 80 λ, center to center distance 125 λ) on a ST quartz substrate, followed by the deposition of a layer of silica Siθ2 by PECVD. The orientation of the substrate is chosen so that the desired mode propagates in the YZ plane, with a polarization parallel to the X axis. The thickness of the silica layer is 1.48 μm. The wavelength λ is 32 μm. Each delay line is inserted into the feedback loop of a variable gain amplifier, fitted with an automatic gain control device by reference to an external reference, the surface of one of these lines is made hydrophilic, then treated with methacryloxypropyl trimethoxysilane in the presence of triethylamine, so as to graft methacrylic groups on the surface. The rest of the transducer is protected by a masking resin, of the type commonly used in photolithography, during this operation and the following ones, in order to delimit the area to be treated. A drop of a solution of composition identical to that of the previous example is deposited on the functionalized zone. A glass slide previously coated with a silicone-based formulation (of the Petrach ^ M Glasselad ^ M gç; ^ type) is deposited as before on the drop so as to form a homogeneous film. The rest of the treatment is carried out as in The previous example Production is completed by removing the resin used to protect the areas which must remain bare, according to the usual method of dissolution in hot acetone. Example 3
Un dispositif tel que représenté sur la figure 6 peut être réalisé à l'aide de la succession d'étapes décrite sur la figure 7. Le substrat comporte deux lignes à retard, qui sont revêtues de matériaux différents C et C dont l'un au moins est un matériau à empreintes moléculaires. A chaque ligne à retard sont associées des électrodes interdigitées, SE1-SE2 pour la ligne à retard comportant le matériau C et SE^'-SE^ pour la ligne à retard comportant le matériau C. Un procédé de réalisation de ce dispositif peut être le suivant :A device as shown in FIG. 6 can be produced using the succession of steps described in FIG. 7. The substrate comprises two delay lines, which are coated with different materials C and C, one of which at the less is a molecularly imprinted material. Each delay line is associated with interdigitated electrodes, SE1-SE2 for the delay line comprising the material C and SE ^ '- SE ^ for the delay line comprising the material C. A method of making this device can be next :
Les deux lignes sont initialement recouvertes de deux couches de résine positive RI, R2 pour la photolithographie (type Shipley Microposit^M), séparées par une couche Ml de 1000 À d'aluminium déposé par évaporation. L'aluminium est mis à nu et gravé au-dessus de la première ligne à retard (étapes a) à c)). Une seconde phase de photolithographie à travers le masque ainsi formé permet de mettre à nu le substrat au niveau de la première ligne à retard (étapes d et e). Une couche de matériau I (matériau à empreintes moléculaires, trame sombre sur la figure) est réalisée comme dans l'exemple précédent (étape f)). Cette couche est décapée par gravure ionique réactive (Reactive Ion Etching - RIE), jusqu'au niveau de .'aluminium (étape g)). Une nouvelle couche de résine R3 est déposée (étape h)), et l'ensemble du processus est reproduit (étapes i) à o)), afin de réaliser le dépôt du matériau II (trame claire sur la figure). Ce dernier peut être un matériau de composition identique au matériau I, mais réticulé en l'absence de molécule gabarit, et ne présentant donc pas de sites de fixation spécifiques. Il peut également s'agir d'un autre matériau à empreintes moléculaires. Les étapes i) à o) peuvent être reproduites autant de fois que nécessaire pour réaliser un dispositif multi-capteurs. La fabrication est achevée en éliminant la couche de résine résiduelle selon la méthode usuelle (dissolution dans l'acétone à chaud). Le film d'aluminium est également éliminé au cours de cette opération. The two lines are initially covered with two layers of positive resin RI, R2 for photolithography (Shipley Microposit ^ M type), separated by a layer Ml of 1000 Å of aluminum deposited by evaporation. The aluminum is exposed and etched above the first delay line (steps a) to c)). A second phase of photolithography through the mask thus formed makes it possible to expose the substrate at the level of the first delay line (steps d and e). A layer of material I (material with molecular imprints, dark screen in the figure) is produced as in the previous example (step f)). This layer is etched by reactive ion etching (Reactive Ion Etching - RIE), up to the level of aluminum (step g)). A new layer of resin R3 is deposited (step h)), and the whole process is reproduced (steps i) to o)), in order to deposit the material II (clear frame in the figure). The latter can be a material with a composition identical to material I, but crosslinked in the absence of a template molecule, and therefore having no specific binding sites. It may also be another material with molecular fingerprints. Steps i) to o) can be repeated as many times as necessary to make a multi-sensor device. The manufacture is completed by eliminating the residual resin layer according to the usual method (dissolution in hot acetone). The aluminum film is also removed during this operation.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9501971A FR2730810B1 (en) | 1995-02-21 | 1995-02-21 | HIGHLY SELECTIVE CHEMICAL SENSOR |
FR9501971 | 1995-02-21 | ||
PCT/FR1996/000267 WO1996026435A1 (en) | 1995-02-21 | 1996-02-20 | Highly selective chemical sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0756707A1 true EP0756707A1 (en) | 1997-02-05 |
Family
ID=9476345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96904164A Withdrawn EP0756707A1 (en) | 1995-02-21 | 1996-02-20 | Highly selective chemical sensor |
Country Status (5)
Country | Link |
---|---|
US (1) | US5910286A (en) |
EP (1) | EP0756707A1 (en) |
JP (1) | JPH09512345A (en) |
FR (1) | FR2730810B1 (en) |
WO (1) | WO1996026435A1 (en) |
Families Citing this family (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5852229A (en) * | 1996-05-29 | 1998-12-22 | Kimberly-Clark Worldwide, Inc. | Piezoelectric resonator chemical sensing device |
US6020047A (en) * | 1996-09-04 | 2000-02-01 | Kimberly-Clark Worldwide, Inc. | Polymer films having a printed self-assembling monolayer |
DE19644572B4 (en) * | 1996-10-26 | 2004-09-16 | Volkswagen Ag | Oil quality sensor |
US6180288B1 (en) * | 1997-03-21 | 2001-01-30 | Kimberly-Clark Worldwide, Inc. | Gel sensors and method of use thereof |
US6123819A (en) | 1997-11-12 | 2000-09-26 | Protiveris, Inc. | Nanoelectrode arrays |
US6060256A (en) * | 1997-12-16 | 2000-05-09 | Kimberly-Clark Worldwide, Inc. | Optical diffraction biosensor |
GB9726888D0 (en) * | 1997-12-20 | 1998-02-18 | Eev Ltd | Detection |
EP0982588A1 (en) * | 1998-08-25 | 2000-03-01 | Siemens Building Technologies AG | Fire detector with sensor for smoke detection and method for manufacturing a sensor with molecular imprint for smoke detection |
DE19850802A1 (en) * | 1998-11-04 | 2000-05-11 | Bosch Gmbh Robert | Sensor arrangement for the determination of physical properties of liquids |
US6221579B1 (en) * | 1998-12-11 | 2001-04-24 | Kimberly-Clark Worldwide, Inc. | Patterned binding of functionalized microspheres for optical diffraction-based biosensors |
US6579673B2 (en) | 1998-12-17 | 2003-06-17 | Kimberly-Clark Worldwide, Inc. | Patterned deposition of antibody binding protein for optical diffraction-based biosensors |
DE19901815A1 (en) * | 1999-01-19 | 2000-07-20 | Volkswagen Ag | Engine oil quality determination by differential quartz crystal oscillation measurement as indicator of deposited carboxylic acid weight using longer-chain chemical model incorporated in ceramic temperature-resistant gel-sol coating |
US6432362B1 (en) * | 1999-10-06 | 2002-08-13 | Iowa State University Research Foundation, Inc. | Chemical sensor and coating for same |
DE19961857A1 (en) * | 1999-12-22 | 2001-06-28 | Endress Hauser Gmbh Co | Method for exciting Lamb waves in a plate, in particular in a container wall, and device for carrying out the method and for receiving the excited Lamb waves |
US6777244B2 (en) | 2000-12-06 | 2004-08-17 | Hrl Laboratories, Llc | Compact sensor using microcavity structures |
US20020086430A1 (en) * | 2000-12-28 | 2002-07-04 | Hopmeier Michael J. | Detection technology in agriculture operations |
US7077982B2 (en) | 2001-03-23 | 2006-07-18 | Fuji Photo Film Co., Ltd. | Molecular electric wire, molecular electric wire circuit using the same and process for producing the molecular electric wire circuit |
US20020168756A1 (en) | 2001-03-23 | 2002-11-14 | Fuji Photo Film Co., Ltd. | Particle size variable reactor |
DE10117772C2 (en) * | 2001-04-09 | 2003-04-03 | Advalytix Ag | Mixing device and mixing method for mixing small amounts of liquid |
JP3476445B2 (en) * | 2001-06-29 | 2003-12-10 | 富士通株式会社 | Surface acoustic wave device |
US7102752B2 (en) | 2001-12-11 | 2006-09-05 | Kimberly-Clark Worldwide, Inc. | Systems to view and analyze the results from diffraction-based diagnostics |
US7098041B2 (en) | 2001-12-11 | 2006-08-29 | Kimberly-Clark Worldwide, Inc. | Methods to view and analyze the results from diffraction-based diagnostics |
US20030203504A1 (en) * | 2002-04-26 | 2003-10-30 | John Hefti | Diffusion-based system and method for detecting and monitoring activity of biologic and chemical species |
US7118855B2 (en) | 2002-05-03 | 2006-10-10 | Kimberly-Clark Worldwide, Inc. | Diffraction-based diagnostic devices |
US7214530B2 (en) | 2002-05-03 | 2007-05-08 | Kimberly-Clark Worldwide, Inc. | Biomolecule diagnostic devices and method for producing biomolecule diagnostic devices |
US7223368B2 (en) | 2002-05-03 | 2007-05-29 | Kimberly-Clark Worldwide, Inc. | Diffraction-based diagnostic devices |
US7223534B2 (en) | 2002-05-03 | 2007-05-29 | Kimberly-Clark Worldwide, Inc. | Diffraction-based diagnostic devices |
US7485453B2 (en) | 2002-05-03 | 2009-02-03 | Kimberly-Clark Worldwide, Inc. | Diffraction-based diagnostic devices |
US7091049B2 (en) | 2002-06-26 | 2006-08-15 | Kimberly-Clark Worldwide, Inc. | Enhanced diffraction-based biosensor devices |
US7432105B2 (en) | 2002-08-27 | 2008-10-07 | Kimberly-Clark Worldwide, Inc. | Self-calibration system for a magnetic binding assay |
US7285424B2 (en) | 2002-08-27 | 2007-10-23 | Kimberly-Clark Worldwide, Inc. | Membrane-based assay devices |
US7314763B2 (en) | 2002-08-27 | 2008-01-01 | Kimberly-Clark Worldwide, Inc. | Fluidics-based assay devices |
US7169550B2 (en) | 2002-09-26 | 2007-01-30 | Kimberly-Clark Worldwide, Inc. | Diffraction-based diagnostic devices |
JP4188058B2 (en) * | 2002-11-05 | 2008-11-26 | ダイセル化学工業株式会社 | Polymer compound for photoresist and resin composition for photoresist |
US7781172B2 (en) | 2003-11-21 | 2010-08-24 | Kimberly-Clark Worldwide, Inc. | Method for extending the dynamic detection range of assay devices |
JP4294946B2 (en) | 2002-12-13 | 2009-07-15 | 富士フイルム株式会社 | Target detection apparatus, target detection method, and target detection substrate |
US7247500B2 (en) | 2002-12-19 | 2007-07-24 | Kimberly-Clark Worldwide, Inc. | Reduction of the hook effect in membrane-based assay devices |
US7076127B2 (en) | 2003-01-14 | 2006-07-11 | Fuji Photo Film Co., Ltd. | Optical switch and safety apparatus using the same |
US7851209B2 (en) | 2003-04-03 | 2010-12-14 | Kimberly-Clark Worldwide, Inc. | Reduction of the hook effect in assay devices |
US20040197819A1 (en) | 2003-04-03 | 2004-10-07 | Kimberly-Clark Worldwide, Inc. | Assay devices that utilize hollow particles |
WO2004097370A2 (en) * | 2003-04-25 | 2004-11-11 | Prometheus Biosciences, Inc. | Systems and methods for monitoring chemical and biolgical activities using differential measurements |
US7474772B2 (en) | 2003-06-25 | 2009-01-06 | Atrua Technologies, Inc. | System and method for a miniature user input device |
JPWO2005003752A1 (en) * | 2003-07-04 | 2006-08-17 | 株式会社村田製作所 | Surface acoustic wave sensor |
DE10337692B3 (en) * | 2003-08-12 | 2005-03-24 | Siemens Ag | Gas analysis sensor and method for its production |
US7587072B2 (en) | 2003-08-22 | 2009-09-08 | Authentec, Inc. | System for and method of generating rotational inputs |
US7304732B1 (en) | 2003-11-19 | 2007-12-04 | United States Of America As Represented By The Secretary Of The Army | Microelectromechanical resonant photoacoustic cell |
US7943395B2 (en) | 2003-11-21 | 2011-05-17 | Kimberly-Clark Worldwide, Inc. | Extension of the dynamic detection range of assay devices |
US20050112703A1 (en) | 2003-11-21 | 2005-05-26 | Kimberly-Clark Worldwide, Inc. | Membrane-based lateral flow assay devices that utilize phosphorescent detection |
US7713748B2 (en) | 2003-11-21 | 2010-05-11 | Kimberly-Clark Worldwide, Inc. | Method of reducing the sensitivity of assay devices |
US7943089B2 (en) | 2003-12-19 | 2011-05-17 | Kimberly-Clark Worldwide, Inc. | Laminated assay devices |
US20050148065A1 (en) | 2003-12-30 | 2005-07-07 | Intel Corporation | Biosensor utilizing a resonator having a functionalized surface |
US7697729B2 (en) | 2004-01-29 | 2010-04-13 | Authentec, Inc. | System for and method of finger initiated actions |
WO2005075995A1 (en) | 2004-02-03 | 2005-08-18 | Sphere Medical Ltd | Sensor |
JP2005351799A (en) * | 2004-06-11 | 2005-12-22 | Ulvac Japan Ltd | Surface elastic wave element, biosensor device, and measuring method by surface elastic wave element |
US7521226B2 (en) | 2004-06-30 | 2009-04-21 | Kimberly-Clark Worldwide, Inc. | One-step enzymatic and amine detection technique |
WO2007011404A2 (en) * | 2004-10-27 | 2007-01-25 | Eltron Research, Inc | Infrared sensors |
US20060188399A1 (en) * | 2005-02-04 | 2006-08-24 | Jadi, Inc. | Analytical sensor system for field use |
US7831070B1 (en) | 2005-02-18 | 2010-11-09 | Authentec, Inc. | Dynamic finger detection mechanism for a fingerprint sensor |
US7695681B2 (en) * | 2005-03-31 | 2010-04-13 | Intel Corporation | Miniature chemical analysis system |
CN101133321B (en) * | 2005-04-06 | 2011-04-13 | 株式会社村田制作所 | Surface wave sensor device |
CA2606439C (en) * | 2005-04-29 | 2016-08-23 | The Board Of Trustees Of The Leland Stanford Junior University | High-sensitivity fiber-compatible optical acoustic sensor |
GB0509275D0 (en) * | 2005-05-06 | 2005-06-15 | Univ Cranfield | Synthetic receptor |
DE102005032684A1 (en) * | 2005-07-06 | 2007-01-11 | Siemens Ag | Detector for the detection of particles in a gaseous atmosphere and method for its design |
DE102005047902A1 (en) * | 2005-09-30 | 2007-04-19 | Siemens Ag | Method for detecting particles with a sensor surface and sensor arrangement for carrying out this method |
GB0524580D0 (en) * | 2005-12-01 | 2006-01-11 | Sphere Medical Ltd | Sensor |
US7881565B2 (en) * | 2006-05-04 | 2011-02-01 | The Board Of Trustees Of The Leland Stanford Junior University | Device and method using asymmetric optical resonances |
US7630589B2 (en) | 2007-01-09 | 2009-12-08 | The Board Of Trustees Of The Leland Stanford Junior University | Photonic crystal structure sensor |
FR2911087B1 (en) * | 2007-01-10 | 2011-07-22 | Eastman Kodak Co | INK QUALITY CONTROL METHOD AND DEVICE |
CN101419186B (en) * | 2008-08-01 | 2011-12-14 | 南方医科大学 | Self-assembling electrode with resveratrol molecular imprinting and method for making same |
US8791792B2 (en) | 2010-01-15 | 2014-07-29 | Idex Asa | Electronic imager using an impedance sensor grid array mounted on or about a switch and method of making |
US8866347B2 (en) | 2010-01-15 | 2014-10-21 | Idex Asa | Biometric image sensing |
US8421890B2 (en) | 2010-01-15 | 2013-04-16 | Picofield Technologies, Inc. | Electronic imager using an impedance sensor grid array and method of making |
CN103154682B (en) | 2010-03-15 | 2015-01-07 | 里兰斯坦福初级大学理事会 | Optical-fiber-compatible acoustic sensor |
CN101846653B (en) * | 2010-04-30 | 2011-09-14 | 湖北大学 | Piezoelectric film bulk acoustic wave sensor with polygonal electrodes |
JP5683199B2 (en) * | 2010-10-12 | 2015-03-11 | 日本無線株式会社 | Surface acoustic wave device |
JP6154570B2 (en) * | 2011-11-01 | 2017-06-28 | 日本無線株式会社 | Surface acoustic wave sensor |
SG11201401968YA (en) | 2011-11-01 | 2014-09-26 | Japan Radio Co Ltd | Surface acoustic wave sensor |
JP6154569B2 (en) * | 2011-11-01 | 2017-06-28 | 日本無線株式会社 | Surface acoustic wave sensor |
KR102245293B1 (en) | 2012-04-10 | 2021-04-28 | 이덱스 바이오메트릭스 아사 | Biometric Sensing |
CN103698242B (en) * | 2013-12-21 | 2016-09-28 | 中国科学院苏州生物医学工程技术研究所 | A kind of quick-check sensor of Microcystin |
WO2018031055A1 (en) | 2016-08-11 | 2018-02-15 | Qorvo Us, Inc. | Acoustic resonator device with controlled placement of functionalization material |
FR3055901A1 (en) * | 2016-09-13 | 2018-03-16 | Senseor | H2S-SENSITIVE POLYMER FILM COMPRISING CARBOXYLATE FUNCTIONS AND LEAD OR ZINC CATIONS AND ELASTIC WAVE PASSIVE SENSOR COMPRISING THE FILM, REMOTELY INTERROGABLE |
JP7187134B2 (en) * | 2017-03-17 | 2022-12-12 | Tdk株式会社 | Acoustic wave sensor |
JP6322875B2 (en) * | 2017-04-14 | 2018-05-16 | 日本無線株式会社 | Surface acoustic wave sensor |
WO2019183137A1 (en) | 2018-03-23 | 2019-09-26 | Digonnet Michel J F | Diaphragm-based fiber acoustic sensor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5283037A (en) * | 1988-09-29 | 1994-02-01 | Hewlett-Packard Company | Chemical sensor utilizing a surface transverse wave device |
US5151110A (en) * | 1990-09-11 | 1992-09-29 | University Of New Mexico | Molecular sieve sensors for selective detection at the nanogram level |
GB2265982A (en) * | 1992-04-03 | 1993-10-13 | Marconi Gec Ltd | Apparatus for monitoring a fluid medium |
US5325704A (en) * | 1993-11-22 | 1994-07-05 | The United States Of America As Represented By The Secretary Of The Army | Surface acoustic wave (SAW) chemical multi-sensor array |
-
1995
- 1995-02-21 FR FR9501971A patent/FR2730810B1/en not_active Expired - Fee Related
-
1996
- 1996-02-20 WO PCT/FR1996/000267 patent/WO1996026435A1/en not_active Application Discontinuation
- 1996-02-20 US US08/722,147 patent/US5910286A/en not_active Expired - Fee Related
- 1996-02-20 EP EP96904164A patent/EP0756707A1/en not_active Withdrawn
- 1996-02-20 JP JP8525449A patent/JPH09512345A/en not_active Ceased
Non-Patent Citations (1)
Title |
---|
See references of WO9626435A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1996026435A1 (en) | 1996-08-29 |
JPH09512345A (en) | 1997-12-09 |
FR2730810A1 (en) | 1996-08-23 |
FR2730810B1 (en) | 1997-03-14 |
US5910286A (en) | 1999-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1996026435A1 (en) | Highly selective chemical sensor | |
US5880552A (en) | Diamond or diamond like carbon coated chemical sensors and a method of making same | |
US6332363B1 (en) | Biosensor, method of forming and use | |
Uludağ et al. | Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes | |
Harsányi | Polymer films in sensor applications: a review of present uses and future possibilities | |
Branch et al. | Low-level detection of a Bacillus anthracis simulant using Love-wave biosensors on 36 YX LiTaO3 | |
US20020113521A1 (en) | Method for producing surface acoustic wave sensors and such a surface acoustic wave sensor | |
CA2257344A1 (en) | Improved piezoelectric resonator chemical sensing device | |
JP2007538236A5 (en) | ||
JP2003512622A (en) | Mass sensitive sensor | |
CN1659416A (en) | Optical olfactory sensor with holographic readout | |
Sappati et al. | Printed acoustic sensor for low concentration volatile organic compound monitoring | |
FR2784114A1 (en) | Polysiloxanes with side chains containing alpha, alpha-bis trifluoromethyl alcohol groups, useful for detecting organophosphorous compounds | |
US20090111713A1 (en) | Method for biomolecule immobilization | |
EP4168791B1 (en) | Immersed environmental sensor comprising antifouling means | |
Dickert et al. | Imprinted polymers in chemical recognition for mass-sensitive devices | |
Dąbrowski et al. | Macroporous Polymer Cantilever Resonators for Chemical Sensing Applications | |
EP4060329B1 (en) | Optomechanical sensor for concentration of species in a liquid medium | |
FR2738831A1 (en) | METHOD FOR MANUFACTURING POLYMER MATERIAL FILM | |
Frank et al. | A PMMA coated PMN–PT single crystal resonator for sensing chemical agents | |
EP3293518B1 (en) | Elastic wave h2s sensor including a polymer film comprising carboxylate groups and lead or zinc cations, and manufacturing method | |
KR20160009374A (en) | Using lithium niobate surface acoustic wave biosensor | |
FR2797879A1 (en) | Polysiloxane polymers with side chains in which the terminal group is derived from an aromatic group substituted with hydroxy-hexafluoro-isopropyl groups, used in chemical sensors for organophosphorus compounds | |
EP2361378B1 (en) | Gravimetric sensor having a sensitive layer containing a diamond nanopowder | |
FR2815351A1 (en) | Production of polysiloxane type polymers with crosslinked lateral chains, for use in detection of gaseous molecules, by reacting respective siloxane copolymer with crosslinking agent in presence of platinum catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960802 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE GB LI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THALES |
|
17Q | First examination report despatched |
Effective date: 20050303 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20050714 |