EP0743669B1 - Ion source - Google Patents
Ion source Download PDFInfo
- Publication number
- EP0743669B1 EP0743669B1 EP96107544A EP96107544A EP0743669B1 EP 0743669 B1 EP0743669 B1 EP 0743669B1 EP 96107544 A EP96107544 A EP 96107544A EP 96107544 A EP96107544 A EP 96107544A EP 0743669 B1 EP0743669 B1 EP 0743669B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- housing
- anode
- ion
- gas
- ion source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
- H01J27/08—Ion sources; Ion guns using arc discharge
- H01J27/14—Other arc discharge ion sources using an applied magnetic field
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/06—Sources
- H01J2237/08—Ion sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/30—Electron or ion beam tubes for processing objects
- H01J2237/31—Processing objects on a macro-scale
- H01J2237/3142—Ion plating
Definitions
- the invention relates to an ion source, in particular for Generation of ion beams for ion-assisted deposition of layers in a vacuum, e.g. B. for production of optical layers with high usage properties, like multiple interference layers.
- the deposited layers point in the Usually a porous, rod-shaped structure that is water vapor absorbed from the atmosphere, causing undesirable Phenomena such as a shift in the transmission band of layers for optical filters or a change the spectral curves of the layers over the course of the Time, the so-called aging of the layers.
- ion-supported layer deposition different types of ion sources, e.g. Penning sources, Sources with acceleration grids and with and without Additional magnetic field on the front side
- US 48 62 032 describes an ion source for generation of a low-energy ion beam in the forehead magnetic field.
- the ion source has a inside a housing Coil, a cylindrical anode, a cathode and a Device for introducing and distributing the working gas for ion formation.
- the pole ends of the magnet system are on the two axial sides of the Housing, wherein a magnetic field is generated by the Anode is directed to the cathode.
- the anode has a central conical bore, the larger diameter is in the direction of the substrates.
- the diameter of the ion beam exit opening in Housing which is directed towards the substrates larger than the large diameter of the conical bore in the anode. This can result in undesirably atomized material the anode from the ion beam to the optical one Layer are transported on the substrates.
- the anode is not cooled. That can already happen with low supplied power and also without continuous operation, to dangerous overheating of the construction elements of the ion source. As a result, it comes to increased gas release, which worsens the working vacuum and the characteristic values of the optical layers are negative influenced.
- the gas distributor is inside the housing of the ion source in the form of a plate with a series of holes executed and is located between the solenoid and the anode. The gas is close through an opening in the housing initiated the solenoid.
- Part of the gas passes through holes in the gas distributor and into the conical bore through an annular gap the anode on the small diameter side. Since the magnetic field is strongest here, high plasma densities achieved and it can by dusting effects to undesirably severe erosion of the gas distributor and the anode come.
- the other part of the gas flows between the inner walls the source and special rings between which the anode is attached through the housing. This bypasses this gas the zone of gas ionization, resulting in an ineffective Utilization of the working gas in the plasma generation and in Bottom line for increasing the working pressure in the vacuum chamber leads.
- the burning voltage of the gas discharge is set.
- the cathode is on the other side of the discharge zone and is designed as an open tungsten filament that itself within the zone of the spread of the ion beam located.
- the cathode is generated by thermal electron emission the electrons for gas ionization and at the same time for the neutralization of the ion beam.
- the tungsten filament is a source of tungsten atoms by thermal evaporation and also by atomization in the Ion beam of the ion source since the tungsten filament immediately in the zone of the ion beam with high density located.
- This mechanism makes the cathode one additional source of contamination in the ion-supported deposited layers, especially at optical layers. Furthermore, the lifespan of the The cathode is shortened and the operating parameters have to be changed frequently be adjusted so that the emissivity is maintained remains.
- the sources shown for contamination at the ion-supported layer deposition according to the state of the Technology are simple, even simple optical, Coatings mostly uncritical.
- high-quality layer deposits especially with multiple layers with 15 up to 30 and more ⁇ / 4 layers and coating times of over two hours will result in such contamination to faulty layers.
- the invention has for its object an ion source to create that in industrial vacuum systems for manufacturing ion-supported deposited layers with high Purity, especially of optical layers, e.g. B. Multiple interference layers can be used.
- the Dusting of material from the ion source should be reduced in this way be that the incorporation of appropriate atoms in the Layers is largely avoided.
- the secluded Layers are said to have a nearly pore-free and dense structure exhibit and stable against atmospheric influences be.
- the required substrate temperatures are said to be low and the stability of technological Ion source parameters must be high.
- the ion source according to the invention then has a housing on what is essentially an enclosed space encloses, in which a magnet system is integrated, a Anode and a gas guide for a working gas available.
- the ion current leaves the ion source in a jet out of the coaxial ion beam exit opening in Direction of the substrates.
- the gas guide device with a gas inlet and a panel system an intensive ionization of the gas flow effect on the anode.
- the ion source is characterized u. a. characterized in that the Anode has an inner diameter that is larger than that Is the diameter of the ion beam exit opening. Thereby becomes the direct route of dusted material particles from the anode to the substrates is essentially interrupted and such particles cannot be in the actual Work area of the ion beam reach the substrate. From The arrangement of the cathode is also of particular importance, which is mounted outside of the ion beam's propagation zone and is shielded from all sides, except the side facing the ion exit from the ion source is.
- the ion source with an additional Magnetic field source to be equipped which is outside the housing of the anode coaxial to the main magnetic field source the direction of the fields match.
- the invention is based on two exemplary embodiments are explained in more detail.
- FIG. 1 shows schematically in Figure 1 an ion source according to an embodiment I according to an embodiment in a side section.
- FIG. 2 shows a top view of FIG. 1.
- FIG. 3 shows as embodiment II a variant of the embodiment of the ion source according to embodiment I with an additional magnetic coil.
- the ion source shown in FIGS. 1 and 2 has in a housing 1, an anode 2, a magnet coil 3 and between both a panel system consisting of a panel 4 and an aperture ring 5, on.
- the one from the Anode 2 outgoing ion beam leaves the ion source via the ion beam exit opening 6.
- the anode 2 is made of an annularly bent thin-walled Pipe made of stainless steel.
- the inside diameter the anode 2 is larger than the diameter of the Ion beam exit opening 6.
- the tube of the annular Anode 2 is flowed through by cooling water during operation, whereby very effectively dissipates the heat from the anode 2 can be. Overheating due to the discharge processes are avoided. The performance of the ion source can thus be significantly increased.
- the special design of the anode 2 and the aperture system leads to a decrease in plasma density the aperture plate 4.
- the atomization of the metallic Aperture plate 4, as the main source of contaminants ion-supported deposited layers at the state of Technology, is avoided or significantly reduced.
- the geometric arrangement and Formation of anode 2, with its location outside the zone with strong magnetic field, and reducing the surface, which is directed towards the discharge area only slightly Measures an erosion through the discharge processes, Des Another is the direct impact of atomized material particles the anode 2 on the substrates and thus the Contamination of the layers supported by ions through the ion beam exit opening acting as a diaphragm 6 disabled.
- the working gas is introduced into the ion source via a gas inlet 7 at the bottom 8 of the housing in the area the magnetic coil 3. Due to the large volume of the housing space with the magnet coil 3, the gas flow is calmed and the flowing gas cools the solenoid at the same time 3rd
- the supply of the working gas into the discharge space with the anode 2 is uniform over the entire circumference of the annular gap between the aperture plate 4 and the aperture ring 5.
- the aperture system causes a more even Stream of the working gas concentrated in the interior between the anode 2 and the ion beam exit opening 6, the discharge area of the ion source, is directed.
- the aperture ring 5 is essentially gas-tight attached to the inner wall of the housing 1.
- the aperture plate 4 is such a distance from insulators Aperture ring 5 supports that the working gas the aperture system without vortex formation in the discharge area of the ion source reached.
- the design of the anode 2 affects the Uniformity of the working gas flow is not.
- the aperture ring 5 is outside the area of the Magnetic field, and there is no gas discharge between this and the anode 2.
- the magnet coil 3 is centered on the bottom 8 of the housing 1 arranged and the housing 1 acts as part of the Magnet system, the bottom 8 is a first pole 9 and the housing cover 10 with the ion beam exit opening 6 is the second pole 11.
- the cathode 12, a tungsten coil, is in the exemplary embodiment on the housing cover 10 and outside of the housing 1 of the ion source.
- the cathode 12 is in parallel position to the housing cover 10 outside of optical line between the anode 2 and the ion beam exit opening 6 arranged and with a screen 13 so covered that only the ion beam facing side is open.
- the cathode 12 is thus outside the zone of the Propagation of the ion beams and is therefore not direct Subject to erosion by impinging ions. On in this way the service life of the cathode 12 becomes essential extended.
- the screen 13 via the cathode 12 prevents this Escape of tungsten atoms from the cathode 12 and the subsequent contamination of the deposited layers with these.
- the arrangement of the cathode 12, the presence of the screen 13 and the position to the anode 2 ensures the maintenance stable thermal electron emission and the formation of a plasma discharge between the cathode 12 and the anode 2, as a result of which under the effect of Magnetic field, in particular at the second pole 11 at the ion beam exit opening 6, an ion beam towards the Substrates is generated.
- the working pressure in the vacuum system can during of the ion-assisted coating process in the required Dimensions are kept low.
- FIG. 3 A variant is shown in FIG. 3 as exemplary embodiment II the ion source according to embodiment I (same position numbers) shown with a second Magnetic coil 15 outside the housing 1 of the ion source coaxial to the magnetic coil 3 and axially in the area of the anode 2 is arranged.
- the magnetic coil 15 in particular reinforces the magnetic field in the upper region of the discharge zone and enables the additional ionization of the working gas.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Electron Sources, Ion Sources (AREA)
Description
Die Erfindung betrifft eine Ionenquelle, insbesondere zur Erzeugung von Ionenstrahlen für die ionengestützte Abscheidung von Schichten im Vakuum, z. B. zur Herstellung von optischen Schichten mit hohen Gebrauchseigenschaften, wie Mehrfach-Interferenzschichten.The invention relates to an ion source, in particular for Generation of ion beams for ion-assisted deposition of layers in a vacuum, e.g. B. for production of optical layers with high usage properties, like multiple interference layers.
Zur Herstellung von optischen Schichten mittels Schichtabscheidung im Vakuum sind nach dem Stand der Technik im wesentlichen die Verfahren ohne Ionenunterstützung und die Verfahren mit Ionenunterstützung bekannt. Bei bekannten Beschichtungstechnologien zur Herstellung optischer Schichten ohne Ionenunterstützung ist eine Erwärmung der Substrate bis auf Temperaturen von ca. 300°C notwendig. Derartige Temperaturen sind erforderlich, damit die optischen Schichten ausreichende mechanische Eigenschaften, wie z. B. Härte, Abriebfestigkeit usw. sowie die notwendigen Brechzahlen aufweisen. Der technologische Prozeß ist bei derartigen Verfahren wegen der erforderlichen Erwärmung der Substrate vor dem Beschichtungsprozeß und zur Abkühlung der Substrate nach der Beschichtung relativ zeitaufwendig. Die abgeschiedenen Schichten weisen in der Regel eine poröse, stabförmige Struktur auf, die Wasserdampf aus der Atmosphäre absorbiert, was zu unerwünschten Erscheinungen, wie eine Verschiebung des Transmissionsbandes von Schichten für optische Filter oder eine Veränderung der Spektralkurven der Schichten im Laufe der Zeit, der sogenannten Alterung der Schichten, führt.For the production of optical layers by means of layer deposition according to the state of the art in essential the processes without ion support and the Methods with ion support known. At acquaintances Coating technologies for the production of optical Layers without ion support are heating the Substrates up to temperatures of approx. 300 ° C necessary. Such temperatures are required for the optical Layers have sufficient mechanical properties, such as B. hardness, abrasion resistance, etc. and the necessary Have refractive indices. The technological process is in such procedures because of the required heating of the substrates before the coating process and for cooling of the substrates after coating relatively time consuming. The deposited layers point in the Usually a porous, rod-shaped structure that is water vapor absorbed from the atmosphere, causing undesirable Phenomena such as a shift in the transmission band of layers for optical filters or a change the spectral curves of the layers over the course of the Time, the so-called aging of the layers.
Bei Verfahren zur Abscheidung optischer Schichten mit Ionenunterstützung werden die angeführten Mängel weitgehend vermieden. Optische Schichten, die unter Ioneneinfluß abgeschieden werden, weisen Brechzahlen auf, die nahe den von Kompaktmaterial liegen. Die Schichten sind nahezu porenfrei und dicht in der Struktur. Den atmosphärischen Einwirkungen gegenüber sind die Schichten weitgehend stabil. Von besonderer Bedeutung ist es, daß ionengestützte Abscheidungsverfahren keine gesonderte Erwärmung der Substrate erforderlich machen, was die Produktivität von entsprechenden Beschichtungsausrüstungen wesentlich erhöht.In processes for the deposition of optical layers with The above-mentioned deficiencies are largely supported by ions avoided. Optical layers under the influence of ions are separated, have refractive indices that are close to the of compact material. The layers are almost non-porous and dense in structure. The atmospheric The layers are largely stable against exposure. It is of particular importance that ion-assisted deposition processes no separate heating of the substrates require what the productivity of corresponding coating equipment increased significantly.
Die Verfahren zur ionengestützten Schichtabscheidung nutzen verschiedene Typen von Ionenquellen, z.B. Penningquellen, Quellen mit Beschleunigungsgittern sowie ohne und mit Zusatzmagnetfeld an der Stirnseite u.a.Use the methods for ion-supported layer deposition different types of ion sources, e.g. Penning sources, Sources with acceleration grids and with and without Additional magnetic field on the front side
Die US 48 62 032 beschreibt eine Ionenquelle zur Erzeugung eines niederenergetischen Ionenstrahles im Stirnmagnetfeld. Die Ionenquelle weist innerhalb eines Gehäuses eine Spule, eine zylindrische Anode, eine Kathode sowie eine Vorrichtung zur Einleitung und Verteilung des Arbeitsgases für die Ionenausbildung auf. Die Polenden des Magnetsystemes befinden sich auf den beiden axialen Seiten des Gehäuses, wobei ein Magnetfeld erzeugt wird, das von der Anode zur Kathode gerichtet ist.US 48 62 032 describes an ion source for generation of a low-energy ion beam in the forehead magnetic field. The ion source has a inside a housing Coil, a cylindrical anode, a cathode and a Device for introducing and distributing the working gas for ion formation. The pole ends of the magnet system are on the two axial sides of the Housing, wherein a magnetic field is generated by the Anode is directed to the cathode.
Die Anode besitzt eine zentrische konische Bohrung, deren größerer Durchmesser sich in Richtung der Substrate befindet. Der Durchmesser der Ionenstrahl-Austrittsöffnung im Gehäuse, die zu den Substraten hin gerichtet ist, ist größer als der große Durchmesser der konischen Bohrung in der Anode. Dadurch kann unerwünscht zerstäubtes Material der Anode vom Ionenstrahl ungehindert zur optischen Schicht auf den Substraten befördert werden.The anode has a central conical bore, the larger diameter is in the direction of the substrates. The diameter of the ion beam exit opening in Housing, which is directed towards the substrates larger than the large diameter of the conical bore in the anode. This can result in undesirably atomized material the anode from the ion beam to the optical one Layer are transported on the substrates.
Die Anode wird nicht gekühlt. Das kann, bereits bei niedrigen zugeführten Leistungen und auch ohne Dauerbetrieb, zu gefährlichen Überhitzungen der Konstruktionselemente der Ionenquelle führen. In der Folge kommt es zur erhöhten Gasfreisetzung, was das Arbeitsvakuum verschlechtert und die Kennwerte der optischen Schichten negativ beeinflußt. The anode is not cooled. That can already happen with low supplied power and also without continuous operation, to dangerous overheating of the construction elements of the ion source. As a result, it comes to increased gas release, which worsens the working vacuum and the characteristic values of the optical layers are negative influenced.
Der Gasverteiler ist innerhalb des Gehäuses der Ionenquelle in Form einer Platte mit einer Reihe von Bohrungen ausgeführt und befindet sich zwischen der Magnetspule und der Anode. Das Gas wird durch eine Öffnung im Gehäuse nahe der Magnetspule eingeleitet.The gas distributor is inside the housing of the ion source in the form of a plate with a series of holes executed and is located between the solenoid and the anode. The gas is close through an opening in the housing initiated the solenoid.
Ein Teil des Gases tritt durch Bohrungen des Gasverteilers und über einen ringförmigen Spalt in die konische Bohrung der Anode auf der Seite mit dem kleinen Durchmesser ein. Da das Magnetfeld hier am stärksten ist, werden hohe Plasmadichten erreicht, und es kann durch Abstäubungseffekte zu einer unerwünscht starken Erosion des Gasverteilers und der Anode kommen.Part of the gas passes through holes in the gas distributor and into the conical bore through an annular gap the anode on the small diameter side. Since the magnetic field is strongest here, high plasma densities achieved and it can by dusting effects to undesirably severe erosion of the gas distributor and the anode come.
Der andere Teil des Gases strömt zwischen den Innenwänden der Quelle und speziellen Ringen, zwischen denen die Anode befestigt ist, durch das Gehäuse. Dabei umgeht dieses Gas die Zone der Gasionisation, was zu einer uneffektiven Ausnutzung des Arbeitsgases bei der Plasmaerzeugung und im Endeffekt zur Erhöhung des Arbeitsdruckes in der Vakuumkammer führt. Durch die Regelung des Spaltes zwischen den Ringen und der Innenwand des Gehäuses der Ionenquelle wird die Brennspannung der Gasentladung eingestellt.The other part of the gas flows between the inner walls the source and special rings between which the anode is attached through the housing. This bypasses this gas the zone of gas ionization, resulting in an ineffective Utilization of the working gas in the plasma generation and in Bottom line for increasing the working pressure in the vacuum chamber leads. By regulating the gap between the Rings and the inner wall of the housing of the ion source the burning voltage of the gas discharge is set.
Die Kathode befindet sich auf der anderen Seite der Entladungszone und ist als offene Wolframwendel ausgeführt, die sich innerhalb der Zone der Ausbreitung des Ionenstrahles befindet. Die Kathode erzeugt durch thermische Elektronenemission die Elektronen für die Gasionisation und gleichzeitig für die Neutralisation des Ionenstrahls.The cathode is on the other side of the discharge zone and is designed as an open tungsten filament that itself within the zone of the spread of the ion beam located. The cathode is generated by thermal electron emission the electrons for gas ionization and at the same time for the neutralization of the ion beam.
Dabei ist die Wolframwendel eine Quelle für Wolframatome durch thermische Verdampfung und auch durch Zerstäubung im Ionenstrahl der Ionenquelle, da sich die Wolframwendel unmittelbar in der Zone des Ionenstrahls mit hoher Dichte befindet. Durch diesen Mechanismus ist die Kathode eine zusätzliche Quelle für Verunreinigungen in den ionengestützt abgeschiedenen Schichten, insbesondere bei optischen Schichten. Des weiteren wird die Lebensdauer der Kathode verkürzt und die Betriebsparameter müssen häufig nachgeregelt werden, damit die Emissionssfähigkeit erhalten bleibt.The tungsten filament is a source of tungsten atoms by thermal evaporation and also by atomization in the Ion beam of the ion source since the tungsten filament immediately in the zone of the ion beam with high density located. This mechanism makes the cathode one additional source of contamination in the ion-supported deposited layers, especially at optical layers. Furthermore, the lifespan of the The cathode is shortened and the operating parameters have to be changed frequently be adjusted so that the emissivity is maintained remains.
Die dargestellten Quellen für Verunreinigungen bei der ionengestützten Schichtabscheidung nach dem Stand der Technik sind bei einfachen, auch einfachen optischen, Beschichtungen meist unkritisch. Bei hochwertigen Schichtabscheidungen, insbesondere bei Mehrfach-Schichten mit 15 bis 30 und mehr λ/4-Schichten sowie Beschichtungszeiten von über zwei Stunden, führen derartige Verunreinigungen zu fehlerhaften Schichten. Z. B. wächst der Absorbtionskoeffizient für optische Schichten im UV Bereich in Folge der Verunreinigungen der Schichten durch Metallatome von Bauelementen der Ionenquelle stark an.The sources shown for contamination at the ion-supported layer deposition according to the state of the Technology are simple, even simple optical, Coatings mostly uncritical. With high-quality layer deposits, especially with multiple layers with 15 up to 30 and more λ / 4 layers and coating times of over two hours will result in such contamination to faulty layers. For example, the absorption coefficient increases for optical layers in the UV range in succession the contamination of the layers by metal atoms of Components of the ion source strongly.
Der Erfindung liegt die Aufgabe zugrunde, eine Ionenquelle zu schaffen, die in industriellen Vakuumanlagen zur Herstellung ionengestützt abgeschiedener Schichten mit hoher Reinheit, insbesondere von optischen Schichten, z. B. Mehrfach-Interferenzschichten, eingesetzt werden kann. Die Abstäubung von Material der Ionenquelle soll derart vermindert werden, daß der Einbau entsprechender Atome in die Schichten weitgehend vermieden wird. Die abgeschiedenen Schichten sollen eine nahezu porenfreie und dichte Struktur aufweisen und stabil gegenüber atmosphärischen Einwirkungen sein. Die erforderlichen Substrattemperaturen sollen niedrig und die Stabilität der technologischen Parameter der Ionenquelle hoch sein.The invention has for its object an ion source to create that in industrial vacuum systems for manufacturing ion-supported deposited layers with high Purity, especially of optical layers, e.g. B. Multiple interference layers can be used. The Dusting of material from the ion source should be reduced in this way be that the incorporation of appropriate atoms in the Layers is largely avoided. The secluded Layers are said to have a nearly pore-free and dense structure exhibit and stable against atmospheric influences be. The required substrate temperatures are said to be low and the stability of technological Ion source parameters must be high.
Die Erfindung löst die Aufgabe durch die Merkmale des Anspruchs
1. Eine Weiterbildung der Erfindung ist im Unteranspruch
gekennzeichnet. The invention solves the problem by the features of the
Die erfindungsgemäße Ionenquelle weist danach ein Gehäuse auf, welches einen im wesentlichen abgeschlossenen Raum umschließt, in dem ein Magnetsystem integriert ist, eine Anode und eine Gasleiteinrichtung für ein Arbeitsgas vorhanden. Der Ionenstrom verläßt die Ionenquelle strahlförmig aus der koaxialen Ionenstrahl-Austrittsöffnung in Richtung der Substrate.The ion source according to the invention then has a housing on what is essentially an enclosed space encloses, in which a magnet system is integrated, a Anode and a gas guide for a working gas available. The ion current leaves the ion source in a jet out of the coaxial ion beam exit opening in Direction of the substrates.
Von besonderer Bedeutung ist die Ausbildung der Anode und deren geometrische Anordnung zur Ionenstrahl-Austrittsöffnung und zur außerhalb des Gehäuses angeordneten Kathode.The formation of the anode and their geometric arrangement to the ion beam exit opening and to the cathode arranged outside the housing.
Diese spezifische Lösung unterbindet weitgehend die Verunreinigung der ionengestützt abgeschiedenen Schichten mit unerwünscht zerstäubten Materialteilchen der Ionenquelle. Die Gasleiteinrichtung mit einem Gaseinlaß und einem Blendensystem soll eine intensive Ionisierung des Gas-stromes an der Anode bewirken.This specific solution largely prevents contamination of the ion-supported deposited layers undesirable atomized material particles of the ion source. The gas guide device with a gas inlet and a panel system an intensive ionization of the gas flow effect on the anode.
Die Ionenquelle zeichnet sich u. a. dadurch aus, daß die Anode einen Innendurchmesser aufweist, der größer als der Durchmesser der Ionenstrahl-Austrittsöffnung ist. Dadurch wird der direkte Weg von abgestäubten Materialteilchen von der Anode zu den Substraten im wesentlichen unterbrochen und derartige Teilchen können nicht in den eigentlichen Arbeitsbereich des Ionenstrahls am Substrat gelangen. Von besonderer Bedeutung ist auch die Anordnung der Kathode, die außerhalb der Ausbreitungszone des Ionenstrahles montiert und von allen Seiten abgeschirmt ist, ausgenommen der Seite, die dem Ionenaustritt aus der Ionenquelle zugewandt ist.The ion source is characterized u. a. characterized in that the Anode has an inner diameter that is larger than that Is the diameter of the ion beam exit opening. Thereby becomes the direct route of dusted material particles from the anode to the substrates is essentially interrupted and such particles cannot be in the actual Work area of the ion beam reach the substrate. From The arrangement of the cathode is also of particular importance, which is mounted outside of the ion beam's propagation zone and is shielded from all sides, except the side facing the ion exit from the ion source is.
Nach Anspruch 2 kann die Ionenquelle mit einer zusätzlichen
Magnetfeldqelle ausgerüstet sein, die sich außerhalb
des Gehäuses der Anode koaxial zur Hauptmagnetfeldquelle
befindet, wobei die Richtung der Felder übereinstimmen. According to
Die Erfindung soll nachstehend an zwei Ausführungsbeispielen näher erläutert werden.The invention is based on two exemplary embodiments are explained in more detail.
Die Zeichnung zeigt in Figur 1 schematisch eine erfindungsgemäße
Ionenquelle nach einem Ausführungsbeispiel I
in einem Seitenschnitt.
Figur 2 zeigt eine Draufsicht von Figur 1.
Figur 3 zeigt als Ausführungsbeispiel II eine Variante der
Ausführung der Ionenquelle nach Ausführungsbeispiel I mit
einer zusätzlichen Magnetspule.The drawing shows schematically in Figure 1 an ion source according to an embodiment I according to an embodiment in a side section.
FIG. 2 shows a top view of FIG. 1.
FIG. 3 shows as embodiment II a variant of the embodiment of the ion source according to embodiment I with an additional magnetic coil.
Die in Figur 1 und 2 dargestellt Ionenquelle weist in
einem Gehäuse 1 eine Anode 2, eine Magnetspule 3 und zwischen
beiden ein Blendensystem, bestehend aus einer Blendenplatte
4 und einem Blendenring 5, auf. Der von der
Anode 2 ausgehende Ionenstrahl verläßt die Ionenquelle
über die Ionenstrahl-Austrittsöffnung 6.The ion source shown in FIGS. 1 and 2 has in
a
Die Anode 2 ist aus einem ringförmig gebogenen dünnwandigen
Rohr aus rostfreiem Stahl hergestellt. Der Innendurchmesser
der Anode 2 ist größer als der Durchmesser der
Ionenstrahl-Austrittsöffnung 6. Das Rohr der ringförmigen
Anode 2 wird im Betrieb von Kühlwasser durchflossen, wodurch
sehr effektiv die Wärme von der Anode 2 abgeführt
werden kann. Überhitzungen aufgrund der Entladungsprozesse
werden vermieden. Die Leistung der Ionenquelle kann somit
wesentlich erhöht werden.The
Die spezielle Ausbildung der Anode 2 und des Blendensystems
führt zu einer Verringerung der Plasmadichte über
der Blendenplatte 4. Die Zerstäubung der metallischen
Blendenplatte 4, als Hauptquelle von Verunreinigungen der
ionengestützt abgeschiedenen Schichten beim Stand der
Technik, wird dadurch vermieden oder wesentlich gesenkt.
In ähnlicher Weise bewirkt die geometrische Anordnung und
Ausbildung der Anode 2, mit ihrer Lage außerhalb der Zone
mit starkem Magnetfeld, und die Verringerung der Oberfläche,
die zum Entladungsgebiet gerichtet ist, nur im geringen
Maße eine Erosion durch die Entladungsprozesse, Des
weiteren wird das direkte Auftreffen von zerstäubten Materialteilchen
der Anode 2 auf die Substrate und damit die
Verunreinigung der ionengestützt abgeschiedenen Schichten
durch die als Blende wirkende Ionenstrahl-Austrittsöffnung
6 behindert.The special design of the
Die Einleitung des Arbeitsgases in die Ionenquelle erfolgt
über einen Gaseinlaß 7 am Boden 8 des Gehäuses im Bereich
der Magnetspule 3. Durch das große Volumen des Gehäuseraumes
mit der Magnetspule 3 wird die Gasströmung beruhigt
und das strömende Gas kühlt gleichzeitig die Magnetspule
3.The working gas is introduced into the ion source
via a gas inlet 7 at the bottom 8 of the housing in the area
the
Die Zuführung des Arbeitsgases in den Entladungsraum mit
der Anode 2 erfolgt gleichmäßig über den gesamten Umfang
des Ringspaltes zwischen der Blendenplatte 4 und dem Blendenring
5. Das Blendensystem bewirkt, daß ein gleichmäßiger
Strom des Arbeitsgases konzentriert in den Innenbereich
zwischen der Anode 2 und der Ionenstrahl-Austrittsöffnung
6, dem Entladungsgebiet der Ionenquelle,
geleitet wird. Der Blendenring 5 ist im wesentlichen gasdicht
an der Innenwand des Gehäuses 1 befestigt. Die Blendenplatte
4 ist über Isolatoren derart auf Abstand zum
Blendenring 5 gehaltert, daß das Arbeitsgas das Blendensystem
ohne Wirbelbildung in das Entladungsgebiet der Ionenquelle
gelangt. Die Gestaltung der Anode 2 beeinflußt die
Gleichmäßigkeit des Arbeitsgasstromes nicht.The supply of the working gas into the discharge space with
the
Der Blendenring 5 befindet sich außerhalb des Gebietes des
Magnetfeldes, und es entsteht keine Gasentladung zwischen
diesem und der Anode 2.The
Die Magnetspule 3 ist zentrisch am Boden 8 des Gehäuses 1
angeordnet und das Gehäuse 1 wirkt als Teil des
Magnetsystems, wobei der Boden 8 ein erster Pol 9 ist und
die Gehäuseabdeckung 10 mit der Ionenstrahl-Austrittsöffnung
6 ist der zweite Pol 11.The
Die Kathode 12, ein Wolframwendel, befindet sich im Ausführungsbeispiel
auf der Gehäuseabdeckung 10 und außerhalb
des Gehäuses 1 der Ionenquelle. Die Kathode 12 ist dabei in
paralleler Lage zur Gehäuseabdeckung 10 außerhalb der
optischen Linie zwischen der Anode 2 und der Ionenstrahl-Austrittsöffnung
6 angeordnet und mit einem Schirm 13
derart abgedeckt, daß lediglich die dem Ionenstrahl
zugewandte Seite offen ist. Seitlich am Gehäuse 1 befindet
sich noch eine Abdeckung 14, die die nicht näher dargestellte
Kühlwasserzuführung und die Stromzuführung zur
Anode 2 abdeckt.The
Die Kathode 12 befindet sich damit außerhalb der Zone der
Ausbreitung der Ionenstrahlen und wird somit keiner direkten
Erosion durch auftreffende Ionen unterworfen. Auf
diese Weise wird die Standzeit der Kathode 12 wesentlich
verlängert.The
Der Schirm 13 über Kathode 12 verhindert vor allem das
Entweichen von Wolframatomen aus der Kathode 12 und die
nachfolgende Verunreinigung der abgeschiedenen Schichten
mit diesen.Above all, the
Die Anordnung der Kathode 12, das Vorhandensein des Schirmes
13 und die Lage zur Anode 2 sichert die Aufrechterhaltung
einer stabilen thermischer Elektronenemission und
die Ausbildung einer Plasmaentladung zwischen der Kathode
12 und der Anode 2, in deren Folge unter der Wirkung des
Magnetfeldes, insbesondere am zweiten Pol 11 an der Ionenstrahl-Austrittsöffnung
6, ein Ionenstrahl in Richtung der
Substrate erzeugt wird.The arrangement of the
Der Arbeitsdruck in der Vakuumanlage kann während des ionengestützten Beschichtungsprozesses im erforderlichen Maße niedrig gehalten werden.The working pressure in the vacuum system can during of the ion-assisted coating process in the required Dimensions are kept low.
Zwischen dem Schirm 13 und der Wasserzuführung sowie der
Zuführung des positiven Anodenpotentials wird ein dunkler
Kathodenraum erzeugt, der vor dem Enstehen einer unerwünschten
Gasentladung zwischen den Zuführungen und dem
Gehäuse der Vakuumkammer (negatives Potential) schützt.Between the
In Figur 3 ist als Ausführungsbeispiel II eine Variante
der Ionenquelle nach Ausführungsbeispiel I (gleiche Positionsnummern)
dargestellt, bei der eine zweite
Magnetspule 15 außerhalb des Gehäuses 1 der Ionenquelle
koaxial zur Magnetspule 3 und axial im Bereich der Anode 2
angeordnet ist. Mit dieser Lösung wird das Magnetfeld
weiter verstärkt und es ist möglich den technologischen
Prozeß der ionengestützten Abscheidung von optischen Mehrfachschichten
bei niedrigeren Drücken (bis zweifach)
durchzuführen. Die Magnetspule 15 verstärkt insbesondere
das Magnetfeld im oberen Bereich der Entladungszone und
ermöglicht die zusätzliche Ionisierung des Arbeitsgases.A variant is shown in FIG. 3 as exemplary embodiment II
the ion source according to embodiment I (same position numbers)
shown with a second
Claims (2)
- Ion source, having a preferably cylindrical housing (1) in which an anode (2), an axial magnetic field source, in particular a magnetizing coil (3), and, between the two, a diaphragm system of a gas feed system are arranged such that the magnetizing coil (3) is arranged centrally at the bottom (8) of one of the axial ends of the housing (1) in such a way that the magnetic field diverges in the direction of the anode (2) and the anode (2) lies outside the strong magnetic field zone, the other axial end of the housing (1) consisting of a housing cover (10) which is in the form of a disc and has a central ion-beam outlet opening (6), the anode (2) having the form of an annular water-cooled tube anode whose internal diameter is greater than the diameter of the ion-beam outlet opening (6) which therefore acts as a diaphragm, and the gas feed system having, in the bottom (8) or in the side of the housing and close to the magnetising coil (3), a gas inlet (7) for a working gas, and the gas diaphragm system consisting of a circular diaphragm ring (5) which is directed at the anode (2) and is fastened essentially gas-tight to the inner wall of the housing (1) and of a central diaphragm plate (4) directed at the magnetizing coil, and of a cathode (12) which lies outside the housing (1) and off the optical line between the anode (2) and the ion-beam outlet opening (6), preferably on the housing cover (10).
- Ion source according to Claim 1, characterized in that there is an additional magnetizing coil (15) outside the housing (1) in the axial region of the anode (2) and coaxially with the magnetizing coil (3) inside the housing (1), the magnetic fields being in the same direction and interacting via the housing (1).
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BY950242 | 1995-05-16 | ||
BY95024295 | 1995-05-16 | ||
DE19531141 | 1995-08-24 | ||
DE19531141A DE19531141C2 (en) | 1995-05-16 | 1995-08-24 | Ion source |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0743669A1 EP0743669A1 (en) | 1996-11-20 |
EP0743669B1 true EP0743669B1 (en) | 1999-08-18 |
Family
ID=25665740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96107544A Expired - Lifetime EP0743669B1 (en) | 1995-05-16 | 1996-05-11 | Ion source |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0743669B1 (en) |
DE (1) | DE59602769D1 (en) |
EA (1) | EA000064B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109216151B (en) * | 2018-08-16 | 2024-07-09 | 兰州大学 | Built-in antenna type high-frequency ion source device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4862032A (en) * | 1986-10-20 | 1989-08-29 | Kaufman Harold R | End-Hall ion source |
EP0541309B1 (en) * | 1991-11-04 | 1996-01-17 | Fakel Enterprise | Plasma accelerator with closed electron drift |
-
1996
- 1996-05-11 EP EP96107544A patent/EP0743669B1/en not_active Expired - Lifetime
- 1996-05-11 DE DE59602769T patent/DE59602769D1/en not_active Expired - Fee Related
- 1996-07-19 EA EA199600050A patent/EA000064B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EA199600050A1 (en) | 1997-03-31 |
EA000064B1 (en) | 1998-04-30 |
DE59602769D1 (en) | 1999-09-23 |
EP0743669A1 (en) | 1996-11-20 |
EA199600050A3 (en) | 1996-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3177309T2 (en) | Improved atomization source by magnetic means. | |
DE3206882A1 (en) | METHOD AND DEVICE FOR EVAPORATING MATERIAL UNDER VACUUM | |
DE10336422A1 (en) | Device for sputtering | |
EP1186681B1 (en) | Vacuum treatment apparatus having dockable substrate holder | |
DE1515295B1 (en) | Device for applying thin layers of the material of a sputtering cathode to a support arranged perpendicular to an anode | |
DE112015006730T5 (en) | Ion beam device and cleaning method for a gas field ion source | |
DE19546827C2 (en) | Device for generating dense plasmas in vacuum processes | |
EP1576641B1 (en) | Vacuum arc source comprising a device for generating a magnetic field | |
EP0743669B1 (en) | Ion source | |
DE102019133526B4 (en) | COOLING PLATE FOR ICP-MS | |
DE1953659A1 (en) | Ion source for atomization with slow ions | |
DE19924094A1 (en) | Vacuum arc evaporator, for coating substrates with electrical, electronic or optical metal or metal compound layers, has an insulated anode surrounded on all sides by evaporated cathode material | |
DE19531141C2 (en) | Ion source | |
EP0603464A1 (en) | Process for coating substrates | |
DE3303677C2 (en) | Plasma cannon | |
DE3426145A1 (en) | Method for controlling the plasma parameters in vacuum-coating devices having arc discharges | |
DE102018115404A1 (en) | Method and device for coating a component by means of physical vapor deposition | |
DE69624896T2 (en) | Seal and chamber with a seal | |
EP0267481B1 (en) | Ion source for an apparatus for processing solid-state samples by means of ion beams | |
CH695807A5 (en) | Source of vacuum treatment process. | |
DE102015104433B3 (en) | A method of operating a cold cathode electron beam source | |
EP2746424B1 (en) | Evaporation source | |
DE10129507A1 (en) | Device for the plasma-activated vapor deposition of large areas | |
DE2655942C2 (en) | ||
DE4225352C1 (en) | Installation and method for reactive deposition of metal cpd. coatings - with cathode heated to temp. of plasma ignition, allowing high-strength corrosion- resistant coatings to be produced |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB LI |
|
17P | Request for examination filed |
Effective date: 19970515 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19980717 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59602769 Country of ref document: DE Date of ref document: 19990923 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19991021 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010423 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010518 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20010523 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020531 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020511 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070719 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081202 |