EP0740253B1 - Communications interface using a software simulation of a UART - Google Patents
Communications interface using a software simulation of a UART Download PDFInfo
- Publication number
- EP0740253B1 EP0740253B1 EP96106300A EP96106300A EP0740253B1 EP 0740253 B1 EP0740253 B1 EP 0740253B1 EP 96106300 A EP96106300 A EP 96106300A EP 96106300 A EP96106300 A EP 96106300A EP 0740253 B1 EP0740253 B1 EP 0740253B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- local bus
- uart
- register
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/10—Program control for peripheral devices
- G06F13/105—Program control for peripheral devices where the programme performs an input/output emulation function
Definitions
- This invention relates to a computer system including a device having a non-standard I/O interface coupled to a local bus and a software emulation of a universal asynchronous receiver transmitter (UART), and further relates to processes and circuit for avoiding conflicts when assigning a COM port to a non-standard device.
- UART universal asynchronous receiver transmitter
- a typical personal computer has one or more a local buses such as ISA, VESA, and/or PCI buses for connection of user-selected devices.
- the PC communicates with the devices using device addresses typically indicated by the settings of jumper wires or toggle switches on the device. Problems can arise because there is no guaranty that a set of devices, made by different manufacturers, can operate together without address conflicts. Even if a set of devices can operated together, connection of the devices to a local bus may require that the user identify address conflicts and change address settings to avoid the conflicts. This can make adding devices to a PC difficult.
- Common devices connected to an ISA bus include serial input/output (I/O) devices such as a printer, a modem, or a mouse.
- I/O serial input/output
- Some operating environments such as Microsoft WINDOWSTM running in conjunction with MS-DOS operating system provide for standardized connections to serial devices coupled to the ISA bus.
- WINDOWSTM and MS-DOS support four communication or COM ports, each having a predefined base device address. This allows resolution of device address conflicts if each serial device on coupled to the ISA bus has settings for at least four different base device addresses.
- Each COM port is for connection to a serial device which contains a communication interface known as a Universal Asynchronous Receiver/Transceiver (UART).
- UART Universal Asynchronous Receiver/Transceiver
- Fig. 1 illustrates conventional communications between a serial device 110 and an application 140 via an operating environment 130 and a communications driver 120.
- Operating environment 130 provides a library of subroutines which application 140 calls to communicate with serial device 110.
- the subroutines call communications driver 120 which writes and reads data and control information to and from a UART 105.
- the standardized communication interface illustrated in Fig. 1 reduces the complexity of application 140 because application 140 is not required to implement a variety of communication protocols. Accordingly, most application's are written for the standard interface. However, a standard hardware UART may be unsuitable or too expensive for some devices. Accordingly, techniques are needed which provide non-standard devices with the benefits of a standard UART interface.
- a software emulation of a UART allows a device with a non-standard I/O interface to communicate with an application through an operating environment which contains procedures for accessing standard UART interfaces.
- the software UART allows a non-standard device to take advantage of protocols which avoid device address conflicts among COM ports. Further, differences between the non-standard device and a standard UART device are transparent to the applications running under the operating environment.
- a computer system includes a non-standard device and a COM driver for the non-standard device.
- the non-standard device connects to an I/O slot corresponding to a first COM port but has a register set which differs from the standard register set for a UART.
- the COM driver contains: a UART emulation which in response a procedure requesting access to a register of a UART at the first COM port, instead accesses storage locations in main memory of the computer system; and an I/O handler which transfers values between the storage locations in main memory and the register set of the device.
- the system includes a standard device having a UART coupled to an I/O slot corresponding to a second COM port, and the COM driver contains routines for accessing the standard device.
- An embodiment of this invention illustrated in Fig. 2 allows an application 140 running in an operating environment 130 to communicate with a serial device 110 having a hardware UART 105 and/or a serial device 210 having non-standard input/output (I/O) interface 205.
- a COM driver 220 contains conventional software subroutines for communications with hardware UART 105 and a software UART 222 for serial device 210.
- Software UART 222 allows operating environment 130 and application 140 to transparently communicate with non-standard serial device 210 as if serial device 210 contained a hardware UART.
- operating environment 130 includes microsoft WINDOWSTM which supports four COM ports for communications with up to four serial devices connected to an ISA bus 115.
- a standard COM port occupies a slot of eight addresses on ISA bus 115.
- the eight addresses correspond to registers of a standard UART, which function as shown in Table 1.
- the divisor latch indicated in Table 1 is enabled by setting a bit DLAB in the line control register.
- Serial device 210 logically occupies a COM port but does not have a hardware UART which physically occupies an I/O address slot on ISA bus 115. Accordingly, the I/O slot for the COM port used by serial device 210 is available for non-standard interface 205.
- Non-standard I/O 205 occupies up to eight addresses on ISA bus 115 but need not comply with the standard functions given in Table 1. An example non-standard interface is disclosed below.
- Application 140 can be any sort of software.
- a typical application 140 is a communication program that transmits and receives data through a modem.
- application 140 calls a routine in operating environment 130.
- the routine calls COM driver 220, and COM driver 220 accesses devices 110 and/or 210 via ISA bus 115.
- COM driver 220 is software containing a standard COM driver for UART 105 and a software UART 222 and an I/O handler 224 for communications with non-standard I/O device 210.
- a computer running application 140 executes software of COM driver 220 when operating environment 130 calls COM driver 120 and during interrupts.
- Software UART 222 contains a set of virtual registers which are memory locations in the computer running COM driver 220 and which correspond to the registers of a standard UART.
- the virtual registers are updated using information from serial device 210 and operating environment 130.
- I/O handler 224 accesses serial device 210 (hardware) which is referred to as the ASIC.
- COM driver 220 determines which of the four COM ports are allocated to standard UART devices, determines if a non-standard device is present, and then allocates an unassigned COM port and I/O slot to device 210.
- Serial device 210 is initially locked during start-up. When locked, serial device 210 receives a data signal DATA and address signal ADDR from ISA bus 115, but does not responds to any address.
- COM driver 220 unlocks device 210 by transmitting address signal ADDR and data signal DATA with values equal to predefined pattern recognized by device 210. When unlocked, the base device address of device 210 depends on information that COM driver 220 provides while unlocking device 210. Device 210 replies to the address set by COM driver 220 to indicate that device 210 is present.
- Fig. 3A shows a block diagram of an unlocking circuit 300 which unlocks a device coupled to a local bus of a computer.
- unlocking circuit 300 is described herein in the context of a serial device coupled to an ISA bus, unlocking circuit 300 is more generally applicable to any device coupled to a local bus such as a VLB or PCI bus.
- Unlocking circuit 300 contains a base address decoder 330 and a pattern generator 310. While the device is locked, base address decoder 330 asserts a signal SEL to pattern generator 310. Pattern generator 310 generates a signal PAT that represents a byte which is from a predefined sequence and corresponds to the value of signal SEL. Signal SEL starts in an initial state, such as indicating a count value of zero or a maximum count. Each time the local bus carries an address signal ADDR having a recognized value, base address decoder 330 compares data signal DATA from the local bus to signal PAT and if signals PAT and DATA are equal, changes signal SEL so that signal SEL advances toward a final state. Otherwise, signal SEL is reset to indicate to the initial state. Advancing signal SEL can for example increment a count value from an initial state (minimum value) toward a final state (maximum value) or decrement the count from an initial state (maximum value) to a final state (minimum value).
- base address decoder 330 When signal SEL reaches the final state, base address decoder 330 receives and stores a base address for the device and then asserts a signal PCSYNC to indicate the device is unlocked.
- the COM driver transmit the base address to the device in a number of ways. For example, the address signal used during transmission of the pattern or a following data signal can indicate the base address.
- Fig. 3B shows a block diagram of an embodiment of base address decoder 330.
- Base address decoder 330 contains AND gates 331, 332, and 333 which are coupled address lines of ISA bus 115.
- AND gate 333 asserts a signal ADX when signal IOWCN indicates the computer is writing data and address signal ADDR[11:0] has the form 001x 111x 1111 binary where x indicates that bits ADDR4 and ADDR8 are "don't care" bits, i.e. can have either value 0 or 1.
- the COM driver selects values for bits ADDR8 and ADDR4 so that signal ADDR[11:0] does not correspond to any other device coupled to the ISA bus.
- a signal AEN indicates when a DMA controller in the computer places an address on ISA bus 115.
- unlocking circuit 300 does not respond to the DMA controller, and signal ADX is only asserted if signal AEN indicates address signal ADDR [11:0] is not from the DMA controller.
- AND gate 333 deasserts signal ADX when at the end of a write cycle and causes register 339 to latch a byte from signal DATA[7:0] on ISA bus 115.
- a comparator 340 compares the latched byte to signal PAT[7:0] and asserts a signal EQUAL if the latched byte equals the byte indicated by signal PAT[7:0].
- Signal EQUAL determines what occurs the next time signal ADX is asserted.
- Signal EQUAL acts as a clock enable signal for a counter 335 and a flip-flop 345 and acts as an input signal for flip-flop 341.
- counter 335 increments count signal SEL[2:0]
- flip-flop 341 asserts a signal MATCH
- flip-flop 345 sets signal PCSYNC to the value of bit SEL2 of signal SEL[2:0].
- signal EQUAL deasserted when AND gate 333 asserts signal ADX flip-flop 341 deasserts signal MATCH which resets counter 335 to an initial state with count value zero.
- counter 335 is reset to zero each time a data byte from ISA bus 115 is not equal to the data byte from the predefined pattern. Additionally, a signal RESET from ISA bus 115 can reset counter 335.
- Count signal SEL[2:0] increments if signal EQUAL is asserted when COM driver 220 generates on ISA bus 115 an address of the form 001x 111x 1111 and a data byte equal to signal PAT[7:0]. Incrementing signal SEL[2:0] causes pattern generator 310 to set signal PAT[7:0] to indicate the next byte in the predefined pattern.
- Fig. 3C is a block diagram of an embodiment of pattern generator 310.
- Pattern generator 310 contains multiplexers 311 to 318 which have select terminals coupled to receive signal SEL[2:0]. Input terminals of multiplexers 311 to 314 are coupled to voltage VCC or ground.
- Signal SEL0 selects one of the two values for a signal AOUT[7:0] from multiplexers 311 and 312 and one of two values for a signal BOUT[7:0] from multiplexers 313 and 314.
- Multiplexers 315 and 316 select an output signal DOUT[7:0] which is equal to either signal AOUT[7:0] or BOUT[7:0] depending on select signal SEL1.
- Pattern generator 310 generates a five byte string, the ASCII code for "PCtel", which indicates the manufacturer of the device.
- pattern generator 310 can be implemented using a memory such as a read-only memory where signal SEL[2:0] is an address signal or implemented using combinatorial logic where signal SEL[2:0] is an input signal.
- Each value in the pattern can be longer or shorter than a byte and can be a constant value independent of signal SEL.
- the predetermined pattern can be longer or shorter that to five values. Increasing the length of the pattern reduces the chance of a device being unintentionally unlocked.
- bit SEL2 of signal SEL[2:0] is set when a fifth byte is sent.
- AND gate 333 asserting signal ADX causes flip-flops 337 and 338 to latch and store bits ADDR8 and ADDR4 of address signal ADDR[11:0] and causes flip-flop 345 to assert signal PCSYNC.
- Signal PCSYNC indicates that the device is unlocked and has a base address of the form 001a 111b 1000, where signals PCA8 and PCA4 from flip-flops 337 and 338 indicate the values of bits a and b. Values of bits a and b have four possible combinations which allows COM driver 220 to select a combination that provides a base address that differs from the base addresses of the three other COM ports.
- Signals PCA4 and PCA8 are latched when an address signal ADDR[11:0] is asserted for a byte following the predefined pattern.
- the byte following the predefined pattern does not match signal PAT[7:0] from pattern generator 310. Accordingly, counter 335 is reset to the initial state, and bit SEL2 is cleared.
- Signals PCA8 and PCA4 do not change unless the predefined pattern is retransmitted. Unintentional transmission of the predefined pattern is unlikely during normal operation of the computer system, but if desired, COM driver 220 monitor the pattern being transmitted and prevent repetition of the predefined pattern, for example by writing a no-op value to device 210.
- a signal ADBASE indicates whether address signal ADDR[11:0] corresponds to the device.
- An AND gate 332 asserts a signal ADB if address signal ADDR[11:0] has the form 001x 111x 1xxx when signal AEN indicates the address signal ADDR[11:0] is not from the DMA controller.
- a comparator 344 asserts signal ADBASE only if signal ADB is asserted, signal PCSYNC is asserted, and bits ADDR8 and ADDR4 of address signal ADDR[11:0] equal signals PCA8 and PCA4.
- Conventional address decoding circuits decode bits ADDR2, ADDR1, and ADDR0 to determine which register in the device is being accessed via ISA bus 115.
- the additional decoding circuits and the register set of the device can be implemented as required for the function of the device.
- the standard UART interface need not be followed. This allows an I/O interface to be optimized and implemented for the particular function of the device.
- Fig. 2 shows an embodiment where serial device 210 contains an analog-to-digital converter (ADC) 206 and a digital-to-analog converter (DAC) 207 which are connected to PSTN phonelines 208 for implementation of a software modem.
- ADC analog-to-digital converter
- DAC digital-to-analog converter
- software UART 222 and I/O handler 224 are part of a software modem 223.
- a register set in non-standard I/O interface 205 is described in Table 2. In the register set of Table 2, the data registers are for 16-bit data words sent to DAC 207 or received from ADC 206 by the host computer.
- Input/output port register are for modem functions such as ring detection and control of an on-off hook relay (to connect or disconnect device 208 to an active phone line) which are implemented by hardware in serial device 210.
- the control/status register are general purpose control and status bit for serial device 210.
- ADC 206 receives an analog communications signal from phonelines 208 and converts the analog communications signal into a series of sampled digital values.
- Software modem 223 receives the sampled digital values and based on the waveform represented by the sampled values and on the modem protocol employed determines data received.
- Software modem 223 also generates a series of digital values which are sent to DAC 207 and transmitted as an analog signal on phonelines 208.
- the transmitted analog signal provides a carrier signal and data values formatted according to standard modem protocols such as ITU V.32bis, V.32, V.22bis, V.23, V.22, V.21, V.17, V.29, and V.27ter standards.
- Device 210 generates periodic interrupts during which software modem 223 reads a set of sampled digital values from ADC 206 and writes a set of digital values which represent the transmitted analog signal.
- COM driver 220 sets the interrupt number (or IRQ) used by device 210 to a user selected one of eight values.
- Application 140 communicates with software modem 223 in the same manner as with a conventional hardware modem.
- Application 140 sends and receives data and control values via operating environment 130.
- the data and control values are formatted for a standard UART device so that whether software modem 223 is a standard modem containing a hardware UART or a software modem is completely transparent to application 140 and operating environment 130.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Transfer Systems (AREA)
- Multi Processors (AREA)
- Bus Control (AREA)
- Debugging And Monitoring (AREA)
Description
- This invention relates to a computer system including a device having a non-standard I/O interface coupled to a local bus and a software emulation of a universal asynchronous receiver transmitter (UART), and further relates to processes and circuit for avoiding conflicts when assigning a COM port to a non-standard device.
- A typical personal computer (PC) has one or more a local buses such as ISA, VESA, and/or PCI buses for connection of user-selected devices. The PC communicates with the devices using device addresses typically indicated by the settings of jumper wires or toggle switches on the device. Problems can arise because there is no guaranty that a set of devices, made by different manufacturers, can operate together without address conflicts. Even if a set of devices can operated together, connection of the devices to a local bus may require that the user identify address conflicts and change address settings to avoid the conflicts. This can make adding devices to a PC difficult.
- Common devices connected to an ISA bus include serial input/output (I/O) devices such as a printer, a modem, or a mouse. Some operating environments such as Microsoft WINDOWS™ running in conjunction with MS-DOS operating system provide for standardized connections to serial devices coupled to the ISA bus. In particular, WINDOWS™ and MS-DOS support four communication or COM ports, each having a predefined base device address. This allows resolution of device address conflicts if each serial device on coupled to the ISA bus has settings for at least four different base device addresses. Each COM port is for connection to a serial device which contains a communication interface known as a Universal Asynchronous Receiver/Transceiver (UART). The UART is well known in the art and described, for example, in the 1994 "Telecommunication Data Book" from National Semiconductor Corporation.
- Fig. 1 illustrates conventional communications between a
serial device 110 and anapplication 140 via anoperating environment 130 and acommunications driver 120.Operating environment 130 provides a library of subroutines whichapplication 140 calls to communicate withserial device 110. The subroutines callcommunications driver 120 which writes and reads data and control information to and from aUART 105. The standardized communication interface illustrated in Fig. 1 reduces the complexity ofapplication 140 becauseapplication 140 is not required to implement a variety of communication protocols. Accordingly, most application's are written for the standard interface. However, a standard hardware UART may be unsuitable or too expensive for some devices. Accordingly, techniques are needed which provide non-standard devices with the benefits of a standard UART interface. - In accordance with the invention, a software emulation of a UART (universal asynchronous receiver transmitter) allows a device with a non-standard I/O interface to communicate with an application through an operating environment which contains procedures for accessing standard UART interfaces. The software UART allows a non-standard device to take advantage of protocols which avoid device address conflicts among COM ports. Further, differences between the non-standard device and a standard UART device are transparent to the applications running under the operating environment.
- In one embodiment of the invention, a computer system includes a non-standard device and a COM driver for the non-standard device. The non-standard device connects to an I/O slot corresponding to a first COM port but has a register set which differs from the standard register set for a UART. The COM driver contains: a UART emulation which in response a procedure requesting access to a register of a UART at the first COM port, instead accesses storage locations in main memory of the computer system; and an I/O handler which transfers values between the storage locations in main memory and the register set of the device. Optionally, the system includes a standard device having a UART coupled to an I/O slot corresponding to a second COM port, and the COM driver contains routines for accessing the standard device.
-
- Fig. 1 shows a block diagram of a prior art interface between an application and a UART device.
- Fig. 2 shows a block diagram of an interface in accordance with an embodiment of the invention.
- Fig. 3A is a block diagram of a circuit which unlocks a device and sets the base device address of the device.
- Fig. 3B is a block diagram of an embodiment of a base address decoder usable in the circuit of Fig. 3A.
- Fig. 3C is a block diagram of an embodiment of a pattern generator usable in the circuit of Fig. 3A.
-
- Use of the same reference symbols in different figures indicates similar or identical items.
- An embodiment of this invention illustrated in Fig. 2 allows an
application 140 running in anoperating environment 130 to communicate with aserial device 110 having ahardware UART 105 and/or aserial device 210 having non-standard input/output (I/O)interface 205. ACOM driver 220 contains conventional software subroutines for communications with hardware UART 105 and a software UART 222 forserial device 210. Software UART 222 allowsoperating environment 130 andapplication 140 to transparently communicate with non-standardserial device 210 as ifserial device 210 contained a hardware UART. - In one embodiment of the
invention operating environment 130 includes microsoft WINDOWS™ which supports four COM ports for communications with up to four serial devices connected to anISA bus 115. A standard COM port occupies a slot of eight addresses on ISAbus 115. The eight addresses correspond to registers of a standard UART, which function as shown in Table 1. The divisor latch indicated in Table 1 is enabled by setting a bit DLAB in the line control register. -
Serial device 210 logically occupies a COM port but does not have a hardware UART which physically occupies an I/O address slot onISA bus 115. Accordingly, the I/O slot for the COM port used byserial device 210 is available fornon-standard interface 205. Non-standard I/O 205 occupies up to eight addresses onISA bus 115 but need not comply with the standard functions given in Table 1. An example non-standard interface is disclosed below. -
Application 140 can be any sort of software. Atypical application 140 is a communication program that transmits and receives data through a modem. To access a device connected toISA bus 115,application 140 calls a routine inoperating environment 130. The routine callsCOM driver 220, andCOM driver 220accesses devices 110 and/or 210 via ISAbus 115.COM driver 220 is software containing a standard COM driver for UART 105 and a software UART 222 and an I/O handler 224 for communications with non-standard I/O device 210. Acomputer running application 140 executes software ofCOM driver 220 whenoperating environment 130 callsCOM driver 120 and during interrupts. - Software UART 222 contains a set of virtual registers which are memory locations in the computer running
COM driver 220 and which correspond to the registers of a standard UART. The virtual registers are updated using information fromserial device 210 andoperating environment 130. I/O handler 224 accesses serial device 210 (hardware) which is referred to as the ASIC. - During initialization of COM ports,
COM driver 220 determines which of the four COM ports are allocated to standard UART devices, determines if a non-standard device is present, and then allocates an unassigned COM port and I/O slot todevice 210.Serial device 210 is initially locked during start-up. When locked,serial device 210 receives a data signal DATA and address signal ADDR fromISA bus 115, but does not responds to any address.COM driver 220 unlocksdevice 210 by transmitting address signal ADDR and data signal DATA with values equal to predefined pattern recognized bydevice 210. When unlocked, the base device address ofdevice 210 depends on information thatCOM driver 220 provides while unlockingdevice 210.Device 210 replies to the address set byCOM driver 220 to indicate thatdevice 210 is present. - Fig. 3A shows a block diagram of an unlocking
circuit 300 which unlocks a device coupled to a local bus of a computer. Although, unlockingcircuit 300 is described herein in the context of a serial device coupled to an ISA bus, unlockingcircuit 300 is more generally applicable to any device coupled to a local bus such as a VLB or PCI bus. - Unlocking
circuit 300 contains abase address decoder 330 and apattern generator 310. While the device is locked,base address decoder 330 asserts a signal SEL topattern generator 310.Pattern generator 310 generates a signal PAT that represents a byte which is from a predefined sequence and corresponds to the value of signal SEL. Signal SEL starts in an initial state, such as indicating a count value of zero or a maximum count. Each time the local bus carries an address signal ADDR having a recognized value,base address decoder 330 compares data signal DATA from the local bus to signal PAT and if signals PAT and DATA are equal, changes signal SEL so that signal SEL advances toward a final state. Otherwise, signal SEL is reset to indicate to the initial state. Advancing signal SEL can for example increment a count value from an initial state (minimum value) toward a final state (maximum value) or decrement the count from an initial state (maximum value) to a final state (minimum value). - When signal SEL reaches the final state,
base address decoder 330 receives and stores a base address for the device and then asserts a signal PCSYNC to indicate the device is unlocked. The COM driver transmit the base address to the device in a number of ways. For example, the address signal used during transmission of the pattern or a following data signal can indicate the base address. - Fig. 3B shows a block diagram of an embodiment of
base address decoder 330.Base address decoder 330 contains ANDgates ISA bus 115. ANDgate 333 asserts a signal ADX when signal IOWCN indicates the computer is writing data and address signal ADDR[11:0] has the form 001x 111x 1111 binary where x indicates that bits ADDR4 and ADDR8 are "don't care" bits, i.e. can have eithervalue ISA bus 115. In the embodiment shown, unlockingcircuit 300 does not respond to the DMA controller, and signal ADX is only asserted if signal AEN indicates address signal ADDR [11:0] is not from the DMA controller. - AND
gate 333 deasserts signal ADX when at the end of a write cycle and causes register 339 to latch a byte from signal DATA[7:0] onISA bus 115. Acomparator 340 compares the latched byte to signal PAT[7:0] and asserts a signal EQUAL if the latched byte equals the byte indicated by signal PAT[7:0]. Signal EQUAL determines what occurs the next time signal ADX is asserted. Signal EQUAL acts as a clock enable signal for acounter 335 and a flip-flop 345 and acts as an input signal for flip-flop 341. With signal EQUAL asserted when ANDgate 333 asserts signal ADX, counter 335 increments count signal SEL[2:0], flip-flop 341 asserts a signal MATCH, and flip-flop 345 sets signal PCSYNC to the value of bit SEL2 of signal SEL[2:0]. With signal EQUAL deasserted when ANDgate 333 asserts signal ADX, flip-flop 341 deasserts signal MATCH which resets counter 335 to an initial state with count value zero. Thus,counter 335 is reset to zero each time a data byte fromISA bus 115 is not equal to the data byte from the predefined pattern. Additionally, a signal RESET fromISA bus 115 can resetcounter 335. - Count signal SEL[2:0] increments if signal EQUAL is asserted when
COM driver 220 generates onISA bus 115 an address of the form 001x 111x 1111 and a data byte equal to signal PAT[7:0]. Incrementing signal SEL[2:0] causespattern generator 310 to set signal PAT[7:0] to indicate the next byte in the predefined pattern. - Fig. 3C is a block diagram of an embodiment of
pattern generator 310.Pattern generator 310 containsmultiplexers 311 to 318 which have select terminals coupled to receive signal SEL[2:0]. Input terminals ofmultiplexers 311 to 314 are coupled to voltage VCC or ground. Signal SEL0 selects one of the two values for a signal AOUT[7:0] frommultiplexers multiplexers Multiplexers Multiplexers Pattern generator 310 generates a five byte string, the ASCII code for "PCtel", which indicates the manufacturer of the device. - Many alternative patterns and pattern generators may be used in place of the embodiment shown in Fig. 3C. For example,
pattern generator 310 can be implemented using a memory such as a read-only memory where signal SEL[2:0] is an address signal or implemented using combinatorial logic where signal SEL[2:0] is an input signal. Each value in the pattern can be longer or shorter than a byte and can be a constant value independent of signal SEL. Further, the predetermined pattern can be longer or shorter that to five values. Increasing the length of the pattern reduces the chance of a device being unintentionally unlocked. - If
COM driver 220 sends a sequence of five data bytes matching the predefined pattern, counter 335 increments to final state and bit SEL2 of signal SEL[2:0] is set when a fifth byte is sent. With bit SEL2 set, ANDgate 333 asserting signal ADX causes flip-flops flop 345 to assert signal PCSYNC. Signal PCSYNC indicates that the device is unlocked and has a base address of the form 001a 111b 1000, where signals PCA8 and PCA4 from flip-flops COM driver 220 to select a combination that provides a base address that differs from the base addresses of the three other COM ports. - Signals PCA4 and PCA8 are latched when an address signal ADDR[11:0] is asserted for a byte following the predefined pattern. The byte following the predefined pattern does not match signal PAT[7:0] from
pattern generator 310. Accordingly,counter 335 is reset to the initial state, and bit SEL2 is cleared. Signals PCA8 and PCA4 do not change unless the predefined pattern is retransmitted. Unintentional transmission of the predefined pattern is unlikely during normal operation of the computer system, but if desired,COM driver 220 monitor the pattern being transmitted and prevent repetition of the predefined pattern, for example by writing a no-op value todevice 210. - Once the device is unlocked, a signal ADBASE indicates whether address signal ADDR[11:0] corresponds to the device. An AND
gate 332 asserts a signal ADB if address signal ADDR[11:0] has the form 001x 111x 1xxx when signal AEN indicates the address signal ADDR[11:0] is not from the DMA controller. Acomparator 344 asserts signal ADBASE only if signal ADB is asserted, signal PCSYNC is asserted, and bits ADDR8 and ADDR4 of address signal ADDR[11:0] equal signals PCA8 and PCA4. Conventional address decoding circuits (not shown) decode bits ADDR2, ADDR1, and ADDR0 to determine which register in the device is being accessed viaISA bus 115. - The additional decoding circuits and the register set of the device can be implemented as required for the function of the device. The standard UART interface need not be followed. This allows an I/O interface to be optimized and implemented for the particular function of the device.
- Fig. 2 shows an embodiment where
serial device 210 contains an analog-to-digital converter (ADC) 206 and a digital-to-analog converter (DAC) 207 which are connected toPSTN phonelines 208 for implementation of a software modem. In this embodiment,software UART 222 and I/O handler 224 are part of asoftware modem 223. A register set in non-standard I/O interface 205 is described in Table 2. In the register set of Table 2, the data registers are for 16-bit data words sent toDAC 207 or received fromADC 206 by the host computer. Input/output port register are for modem functions such as ring detection and control of an on-off hook relay (to connect ordisconnect device 208 to an active phone line) which are implemented by hardware inserial device 210. The control/status register are general purpose control and status bit forserial device 210. -
ADC 206 receives an analog communications signal fromphonelines 208 and converts the analog communications signal into a series of sampled digital values.Software modem 223 receives the sampled digital values and based on the waveform represented by the sampled values and on the modem protocol employed determines data received.Software modem 223 also generates a series of digital values which are sent toDAC 207 and transmitted as an analog signal onphonelines 208. The transmitted analog signal provides a carrier signal and data values formatted according to standard modem protocols such as ITU V.32bis, V.32, V.22bis, V.23, V.22, V.21, V.17, V.29, and V.27ter standards.Device 210 generates periodic interrupts during whichsoftware modem 223 reads a set of sampled digital values fromADC 206 and writes a set of digital values which represent the transmitted analog signal.COM driver 220 sets the interrupt number (or IRQ) used bydevice 210 to a user selected one of eight values. -
Application 140 communicates withsoftware modem 223 in the same manner as with a conventional hardware modem.Application 140 sends and receives data and control values via operatingenvironment 130. The data and control values are formatted for a standard UART device so that whethersoftware modem 223 is a standard modem containing a hardware UART or a software modem is completely transparent toapplication 140 andoperating environment 130. - Although the present invention has been described with reference to particular embodiments, the description is only an example of the invention's application and should not be taken as a limitation. Various adaptations and combinations of features of the embodiments disclosed will be apparent to those skilled in the art and are within the scope of the present invention as defined by the following claims.
Claims (10)
- A system comprising:a computer having a processing unit, a main memory, and a local bus;a device coupled to the local bus, wherein the device occupies an I/O slot which corresponds to a first communications port on the local bus, and the device has a register set which differs from a register set for a UART;an operating system (130) executed by the processing unit, wherein the operating system includes a procedure for accessing a register of a UART corresponding to the first communications port; characterised in that it further comprises:a communications driver (220) executed by the processing unit, comprising:a UART emulation (222) which in response to execution of the procedure for accessing a register of a UART, accesses storage locations in the main memory; andan I/O handler (224) which transfers values between the storage locations in the main memory and the register set of the device.
- The system of claim 1, wherein the local bus comprises an ISA bus.
- The system of claim 1, wherein the device coupled to the local bus, further comprises:a comparator adapted for receiving a data signal from the local bus;a pattern generator coupled to the comparator, wherein the pattern generator generates a signal for comparison with the data signal;a counter operably coupled to the comparator, wherein the counter resets to an initial state following the comparator indicating the data signal is not equal to the pattern signal and advances toward a final state following the comparator indicating the data signal equals the pattern signal; anda register coupled to the counter and adapted to receive a signal from the local bus, wherein in response to the counter reaching the final state, the register latches from the local bus a value which indicates the base address of the I/O slot occupied by the device.
- A method for communication between a computer and a device having an I/O interface (205) which differs from the I/O interface of a UART, comprising:coupling the I/O interface of the device to a local bus in the computer;allocating in a memory of the computer, storage locations which correspond to registers of a UART; andtransmitting values via the local bus between the I/O interface of the device and the storage locations in the memory of the computer.
- The method of claim 4, further comprising transmitting from an application to a communications driver a data packet which is formatted for a UART, wherein the communication driver updates a value in the storage locations according to a value in the data packet.
- The method of claim 5, wherein the communication driver performs the step of transmitting by:converting a value in the data packet to a converted value compatible with the I/O interface of the device; andwriting the converted value to a register in the device via the local bus.
- The method of claim 4, wherein transmitting further comprising:reading values from a register of the device via the local bus; andupdating the storage locations according to the value read.
- The method of claim 7, further comprising transmitting from a communications driver to an application a data packet containing a value from the storage locations.
- The method of claim 4, further comprising:executing on the computer an operating environment which allocates I/O slots on the local bus for UARTs; andsetting a base device address for the device to correspond to one of the I/O slots allocated by the operating environment for a UART.
- The method of claim 9, wherein setting the base device address comprises:sensing, by the device, of a data signal on the local bus;comparing by the data signal to a signal from a pattern generator in the device;advancing a state indicator toward a final state in response to the data signal being equal to the signal from the pattern generator;repeating the steps of sensing, comparing, and advancing until the state indicator reaches the final state; andsetting the base address of the device to a value indicated by a signal on the local bus in response to the state indicator reaching the final state.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/428,935 US5787305A (en) | 1995-04-25 | 1995-04-25 | Host signal processing modem using a software simulation of a UART |
US428935 | 1995-04-25 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0740253A2 EP0740253A2 (en) | 1996-10-30 |
EP0740253A3 EP0740253A3 (en) | 1997-02-12 |
EP0740253B1 true EP0740253B1 (en) | 2002-07-31 |
Family
ID=23701036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96106300A Expired - Lifetime EP0740253B1 (en) | 1995-04-25 | 1996-04-20 | Communications interface using a software simulation of a UART |
Country Status (4)
Country | Link |
---|---|
US (2) | US5787305A (en) |
EP (1) | EP0740253B1 (en) |
JP (2) | JP3759234B2 (en) |
DE (2) | DE740253T1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7533202B2 (en) | 2002-10-15 | 2009-05-12 | Socket Mobile, Inc. | Software compatible parallel interface with bidirectional handshaking for serial peripherals |
US8131316B2 (en) | 2003-10-09 | 2012-03-06 | Freescale Semiconductor, Inc. | Cellular modem processing |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5742845A (en) * | 1995-06-22 | 1998-04-21 | Datascape, Inc. | System for extending present open network communication protocols to communicate with non-standard I/O devices directly coupled to an open network |
US5864710A (en) * | 1996-07-23 | 1999-01-26 | Compaq Computer Corporation | Controllerless modem |
EP0788057B1 (en) * | 1996-01-31 | 2003-05-02 | Compaq Computer Corporation | Computer system with controllerless modem |
JP2001507835A (en) * | 1996-12-30 | 2001-06-12 | シーラス ロジック,インコーポレイテッド | Past compatible operating system real-time services |
US6353857B2 (en) * | 1997-03-31 | 2002-03-05 | Intel Corporation | Controllerless modem |
US6230118B1 (en) * | 1997-06-30 | 2001-05-08 | Cirrus Logic, Inc. | DOS based application supports for a controllerless modem |
US6128674A (en) * | 1997-08-08 | 2000-10-03 | International Business Machines Corporation | Method of minimizing host CPU utilization in driving an adapter by residing in system memory a command/status block a soft interrupt block and a status block queue |
US6134609A (en) * | 1998-03-31 | 2000-10-17 | Micron Electronics, Inc. | Method for using computer system memory as a modem data buffer by transferring modem I/O data directly to system controller and transferring corresponding system controller data directly to main memory |
US6272452B1 (en) * | 1998-04-02 | 2001-08-07 | Ati Technologies, Inc. | Universal asynchronous receiver transmitter (UART) emulation stage for modem communication |
US6711206B1 (en) | 1998-09-25 | 2004-03-23 | Intel Corporation | Modem using a digital signal processor and separate transmit and receive sequencers |
US6661848B1 (en) | 1998-09-25 | 2003-12-09 | Intel Corporation | Integrated audio and modem device |
US6625669B1 (en) * | 2000-02-17 | 2003-09-23 | Microsoft Corporation | Renaming of virtual communication port for IR devices |
US20030065830A1 (en) * | 2001-09-28 | 2003-04-03 | Chien-Cheng Tung | Parameters for an adaptive modem |
JP2003264602A (en) * | 2002-03-08 | 2003-09-19 | Fujitsu Ltd | Communication control device, communication control program, and communication control method |
DE20204651U1 (en) | 2002-03-18 | 2003-08-07 | Harder, Wulf, Åmål | Device for protection against unauthorized use of software |
US7003591B2 (en) * | 2003-08-20 | 2006-02-21 | Hewlett-Packard Development Company, L.P. | Configurable mapping of devices to bus functions |
US20060075149A1 (en) * | 2004-10-01 | 2006-04-06 | Via Telecom Co., Ltd. | Communications command control system with a software based at command receiver/transmitter |
US20070288937A1 (en) * | 2006-05-08 | 2007-12-13 | Microsoft Corporation | Virtual Device Driver |
US9842072B2 (en) | 2015-03-27 | 2017-12-12 | Toshiba Global Commerce Solutions Holdings Corporation | Systems and methods for implementing a user mode virtual serial communications port emulator |
EP4187395A1 (en) * | 2021-11-26 | 2023-05-31 | Göpel electronic GmbH | Method and device for emulating transmission protocols for controlling electronic components on a bus system |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2916139A1 (en) * | 1979-04-20 | 1980-10-30 | Bayer Ag | NEW POLYURETHANE UREA MATERIALS WITH AROMATIC UREA GROUPS CONTAINING SULFUR AND METHOD FOR THE PRODUCTION THEREOF |
US4373181A (en) * | 1980-07-30 | 1983-02-08 | Chisholm Douglas R | Dynamic device address assignment mechanism for a data processing system |
US4773005A (en) * | 1984-09-07 | 1988-09-20 | Tektronix, Inc. | Dynamic address assignment system |
EP0173905A2 (en) * | 1984-09-07 | 1986-03-12 | Tektronix, Inc. | Dynamic address assignment system |
US4730251A (en) * | 1985-10-28 | 1988-03-08 | International Business Machines Corporation | Automatic I/O address assignment |
US4817147A (en) | 1985-11-18 | 1989-03-28 | General Datacomm, Inc. | Intelligent synchronous modem and communication system incorporating the same |
US4875186A (en) * | 1986-02-28 | 1989-10-17 | Prime Computer, Inc. | Peripheral emulation apparatus |
US4949333A (en) | 1987-04-02 | 1990-08-14 | Advanced Micro Devices, Inc. | Enhanced universal asynchronous receiver-transmitter |
US5170470A (en) * | 1988-05-02 | 1992-12-08 | National Semiconductor Corp. | Integrated modem which employs a host processor as its controller |
EP0378037B1 (en) * | 1989-01-10 | 1993-08-04 | International Business Machines Corporation | Modem having a software-adapted modulation rate |
EP0464433A3 (en) * | 1990-06-29 | 1994-05-18 | Nat Semiconductor Corp | Microcontroller device having remotely programmable eprom & method of programming |
JP2547654B2 (en) * | 1990-06-29 | 1996-10-23 | 三洋電機株式会社 | Data processing device |
US5428748A (en) * | 1992-09-24 | 1995-06-27 | National Semiconductor Corporation | Method and apparatus for automatically configuring a computer peripheral |
US5450530A (en) * | 1993-11-03 | 1995-09-12 | Rockwell International Corporation | High speed receiver/transmitter interface |
EP0653704A1 (en) * | 1993-11-05 | 1995-05-17 | Advanced Micro Devices, Inc. | System and method for configuring expansion cards in a computer |
US5477415A (en) | 1993-11-12 | 1995-12-19 | Texas Instruments Incorporated | Automatic computer docking station having a motorized tray, cammed side connectors, motorized side connectors, and locking and unlocking guide pins |
US5408614A (en) * | 1993-12-17 | 1995-04-18 | Xircom, Inc. | Modem adapter for use with standard PC parallel port |
US5678059A (en) | 1994-02-18 | 1997-10-14 | Lucent Technologies Inc. | Technique for time-sharing a microprocessor between a computer and a modem |
US5654983A (en) | 1994-06-10 | 1997-08-05 | Hayes Microcomputer Products, Inc. | Method and apparatus of operating data communications equipment in command mode and autobauding |
US5604870A (en) * | 1994-08-01 | 1997-02-18 | Moss; Barry | UART emulator card |
US5644593A (en) | 1994-09-02 | 1997-07-01 | Microcom Systems, Inc. | High performance communications interface |
US5557634A (en) | 1994-10-14 | 1996-09-17 | International Business Machines Corporation | Multiprotocol directed infrared communication controller |
US5812820A (en) | 1995-09-29 | 1998-09-22 | Pacific Commware, Inc. | Virtual UART |
-
1995
- 1995-04-25 US US08/428,935 patent/US5787305A/en not_active Expired - Lifetime
-
1996
- 1996-04-20 EP EP96106300A patent/EP0740253B1/en not_active Expired - Lifetime
- 1996-04-20 DE DE0740253T patent/DE740253T1/en active Pending
- 1996-04-20 DE DE69622627T patent/DE69622627T2/en not_active Expired - Lifetime
- 1996-04-25 JP JP10499896A patent/JP3759234B2/en not_active Expired - Fee Related
-
1998
- 1998-02-25 US US09/030,710 patent/US20020087745A1/en not_active Abandoned
-
1999
- 1999-08-19 JP JP11233134A patent/JP2000112868A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7533202B2 (en) | 2002-10-15 | 2009-05-12 | Socket Mobile, Inc. | Software compatible parallel interface with bidirectional handshaking for serial peripherals |
US8131316B2 (en) | 2003-10-09 | 2012-03-06 | Freescale Semiconductor, Inc. | Cellular modem processing |
Also Published As
Publication number | Publication date |
---|---|
DE740253T1 (en) | 1997-11-20 |
DE69622627T2 (en) | 2003-03-06 |
US5787305A (en) | 1998-07-28 |
DE69622627D1 (en) | 2002-09-05 |
JPH0926944A (en) | 1997-01-28 |
US20020087745A1 (en) | 2002-07-04 |
JP2000112868A (en) | 2000-04-21 |
JP3759234B2 (en) | 2006-03-22 |
EP0740253A3 (en) | 1997-02-12 |
EP0740253A2 (en) | 1996-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0740253B1 (en) | Communications interface using a software simulation of a UART | |
US5649128A (en) | Multiple bus interface adapter for connection to a plurality of computer bus architectures | |
EP0588191B1 (en) | Exchanging data and clock lines on multiple format data buses | |
US6572384B1 (en) | Method and apparatus for interconnecting circuit cards | |
US5175536A (en) | Apparatus and method for adapting cards designed for a VME bus for use in a VXI bus system | |
US5953511A (en) | PCI bus to IEEE 1394 bus translator | |
KR100262677B1 (en) | ADD-IN Board With Enable/Disable Expansion ROM for PCI BUS Computer | |
US5619722A (en) | Addressable communication port expander | |
EP0780772A2 (en) | A computer system with multiple PC card controllers and a method of controlling I/O transfers in the system | |
US6618773B1 (en) | Receiving a particular identification file among an analog identification file and a digital identification file in response to a request to a dual-interface monitor | |
US5758099A (en) | Plug and play protocol for bus adapter card | |
WO1998048356A1 (en) | A single chip microcontroller having down-loadable memory organization supporting 'shadow' personality, optimized for bi-directional data transfers over a communication channel | |
CA2130977A1 (en) | Configuration and ram/rom control of pci extension card residing on mca adapter card | |
CN101989244A (en) | Signal conversion device and method as well as communication equipment | |
JPH02133852A (en) | information processing system | |
US5577201A (en) | Diagnostic protocol and display system | |
US5765021A (en) | Computer system having second program for transferring data between second port connected to a first port and the software portion of a modem | |
EP0393290B1 (en) | Memory and peripheral chip select apparatus | |
EP1552404B1 (en) | Deferred tuple space programming of expansion modules | |
US6470404B1 (en) | Asynchronous communication device | |
US5754769A (en) | Coupling between non-CTOS host and CTOS network | |
US6230216B1 (en) | Method for eliminating dual address cycles in a peripheral component interconnect environment | |
US20030005176A1 (en) | Accessing a translated resource descriptor of a hardware device | |
US6901466B2 (en) | Apparatus for extending the available number of configuration registers | |
US6301631B1 (en) | Memory mapping method for eliminating dual address cycles in a peripheral component interconnect environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE GB |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE GB |
|
17P | Request for examination filed |
Effective date: 19970812 |
|
DET | De: translation of patent claims | ||
17Q | First examination report despatched |
Effective date: 20000929 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
RTI1 | Title (correction) |
Free format text: COMMUNICATIONS INTERFACE USING A SOFTWARE SIMULATION OF A UART |
|
TPAD | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOS TIPA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
TPAD | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOS TIPA |
|
TPAD | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOS TIPA |
|
TPAD | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOS TIPA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69622627 Country of ref document: DE Date of ref document: 20020905 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030506 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140416 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140430 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69622627 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151103 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150420 |