EP0738235A1 - PROCESS FOR THE PRODUCTION OF MIXTURES OF HYDROGEN / CARBON MONOXIDE OR HYDROGEN FROM METHANE - Google Patents
PROCESS FOR THE PRODUCTION OF MIXTURES OF HYDROGEN / CARBON MONOXIDE OR HYDROGEN FROM METHANEInfo
- Publication number
- EP0738235A1 EP0738235A1 EP94917197A EP94917197A EP0738235A1 EP 0738235 A1 EP0738235 A1 EP 0738235A1 EP 94917197 A EP94917197 A EP 94917197A EP 94917197 A EP94917197 A EP 94917197A EP 0738235 A1 EP0738235 A1 EP 0738235A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- oxygen
- catalyst
- nickel
- process according
- methane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/382—Multi-step processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/31—Density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/392—Metal surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/40—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
- B01J2235/30—Scanning electron microscopy; Transmission electron microscopy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1064—Platinum group metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1076—Copper or zinc-based catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1082—Composition of support materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/142—At least two reforming, decomposition or partial oxidation steps in series
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/80—Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
- C01B2203/82—Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- mixtures of hydrogen and carbon monoxide are produced by reacting methane with steam, the so-called methane-steam reform process. If only hydrogen is desired, the carbon monoxide is allowed to react with steam to form carbon dioxide and hydrogen. The carbon dioxide formed is removed by dissolving under pressure in aqueous solutions or regenerable solid sorbents.
- reaction heat generated in the combustion reaction is transferred to the reaction mixture.
- the reaction mixture is passed through tubes of a high-grade alloy in which a suitable catalyst has been provided. The tubes are exposed to the radiation of the burners.
- the required reaction heat has to be supplied to the reaction mixture at a high temperature, for instance 850°C (allothermic process) .
- the required heat is generated outside the reaction mixture through combustion of, for instance, methane.
- a reactor wall with a sufficiently high thermal conductivity has to be employed.
- costly (nickel-containing) alloys have to be used for the reactor wall.
- the reaction heat generated in the combustion reaction is transferred to the reaction mixture .
- the reaction mixture is passed through tubes of a high-grade alloy in which a suitable catalyst has been provided. The tubes are exposed to the radiation of the burners .
- a nickel catalyst is used for the methane-steam reforming process.
- the nickel is provided on a thermostable support, such as ⁇ - aluminum oxide or magnesium aluminate (spinel) .
- a thermostable support such as ⁇ - aluminum oxide or magnesium aluminate (spinel) .
- spinel magnesium aluminate
- the object of the invention is to provide an oxidation process wherein the reaction heat is generated internally in the reaction mixture without giving rise to the danger of the formation of explosive mixtures and without soot formation, and wherein the thermal energy required to enable the endothermic reaction of the hydrocarbon with steam to proceed can be generated internally in the reaction mixture through an exothermic catalytic oxidation of a part of the hydrocarbon supplied to the process.
- the inlet temperature and the oxygen/methane ratio are adjusted such that the temperature at the outlet of the reform catalyst takes a specified desired value. Because according to the invention a catalyst is used which enables a rapid adjustment of the equilibrium, the temperature in the outlet of the reactor determines the gas composition.
- the size of the nickel particles is determined by means of hydrogen chemisorption, for instance as described in ..., where The presence of a comparatively small number of relatively large nickel particles can present considerable problems on account of the rapid growth of the carbon filaments. Therefore the nickel catalyst which is used in accordance with the invention comprises at most 10% of nickel particles greater than 10 nm. Preferably, the number of particles greater than the specified limits is less than 5%, more particularly less than 2%. To obtain a sufficiently high activity, the reduced catalyst must contain at least 10, preferably at least 20 and more particularly more than 30 wt.% of metallic nickel.
- the catalyst which is used in accordance with the invention must be resistant, at the high temperatures employed, to steam, also of high pressure, for instance 20 bar. In practice this means that the catalyst must be thermostable, which means that at a temperature of ...°C... does not occur. Only at low steam pressures (for instance a partial pressure of 0.5 bar) can silicon dioxide then be used as support. In the presence of steam, aluminum oxide is more stable. In accordance with the invention, preferably a lanthanum oxide-stabilized aluminum oxide is used as support . Such a support is described, for instance, in European patent application No. 327,177. After stabilization at 800°C, this support has a surface of approximately 100 m 2 /g. Of course, it is also possible to use as support the ⁇ -aluminum oxide or spinel conventionally used for methane/steam reforming.
- the catalyst which is preferably used according to the invention can be readily prepared through deposition-precipitation on a support material suspended in a nickel solution.
- the nickel is preferably applied through impregnation of nickel citrate or nickel-EDTA.
- the composition of the resultant gas mixture can be adjusteu by controlling the temperature of the gas mixture after passing through the catalytic reactor in which the reaction between the hydrocarbon and steam proceeds.
- a low temperature particularly carbon dioxide and hydrogen are produced, and more carbon monoxide is formed according as the temperature is higher.
- substantially carbon dioxide and hydrogen are formed, whilst above a temperature of 700°C, especially carbon monoxide and hydrogen are formed. In the range of 500 to 700°C, mixtures of the three components are formed.
- reaction temperature and therefore the composition of the resultant gas mixture can be controlled by adjusting the temperature of the gas mixture after the oxidation. In accordance with the invention, this is effected by adjusting the fraction of the hydrocarbon which is oxidized.
- the catalytic oxidation can be carried out by adding (pure) oxygen to the reaction mixture and passing this over a suitable oxidation catalyst.
- the oxidation can be carried out over nickel oxide, preferably provided on a suitable support. Since the reaction between the hydrocarbon and steam and/or carbon dioxide also proceeds over a nickel catalyst, a single catalyst bed will suffice in this case. The part of the catalyst bed where the oxygen-containing reaction mixture enters is then converted to nickel oxide through the reaction with oxygen.
- the oxidation reaction is carried out over a separate catalyst optimized for the oxidation reaction.
- the oxidation reaction is preferably carried out in a separate reactor.
- Oxidation catalysts which are known according to the state of the art are copper oxide or manganese oxide on a thermostable support. However, a large number of other suitable oxidation catalysts are known in the art, such as for instance precious metal catalysts.
- the entire gas flow, methane, oxygen and steam and/or carbon dioxide can be passed through the oxidation reactor, but it is also possible to pass just methane and oxygen through the oxidation reactor and later, before the gas flow is passed into the second reactor, to add steam and/or carbon dioxide and/or methane.
- the temperature can then be increased to a sufficiently high level to convert all oxygen.
- the intermediate addition of carbon dioxide and/or methane is attractive.
- the temperature of the gas mixture after the oxidation can be adjusted to a sufficiently high level by controlling the ratio between oxygen and methane.
- the formation of a product gas in the second reactor substantially consisting of carbon dioxide and hydrogen can be produced by adding methane and/or carbon dioxide to the gas mixture resulting from the catalytic oxidation reactor.
- oxygen incorporated by the oxidation catalyst is used for carrying out the oxidation reaction that provides the necessary reaction heat. In that case no pure oxygen needs to be used. However, this does require periodic switching from air to methane and steam and intermediate flushing to prevent the formation of explosive gas mixtures.
- a single catalyst bed which contains a nickel catalyst, the amount of air which is supplied to the catalyst will have to be controlled. If a separate oxidation reactor is used, the air is passed exclusively through this reactor. It has been found that at a sufficiently high temperature, reduction of the metal oxide by the methane occurs readily.
- the reaction heat required for the methane-steam reform process is supplied through the oxidation of the metal formed upon reduction and by the reduction reaction itself. According to the state of the art, the thermally stable oxidation catalysts required for this are known.
- the sensible heat which is present in the product gas is used for heating up a feed gas flow.
- This may for instance be the gas flow to be supplied to the oxidation reactor or the gas flow that may go to the reform reactor separately, bypassing the oxidation reactor.
- a catalyst which upon reduction contains 25 wt . % nickel on silicon dioxide was prepared by suspending 20 g silicon dioxide (Aerosil 380 Degussa B.R.D.) in 2 liters of demineralized water present in a precipitation vessel provided with a stirrer and baffle plates. Using diluted nitric acid, the pH of the suspension was adjusted to a value of . At room temperature, with careful stirring, 33.0 g nickel nitrate and 19 , urea were added to the suspension.
- the temperature of the suspension was raised, with intensive stirring, from room temperature to 90°C.
- the pH of the suspension was recorded as a function of the time. After a period of about 16 hours the pH of the suspension had achieved a value of about 7 and all of the nickel had precipitated.
- the loaded support was filtered off and thoroughly washed with water. The loaded support was subsequently dried at 25°C for 40 hrs, whereafter the catalyst was calcined in the air at 450°C for 3 h. The catalyst was finally reduced in a flow of hydrogen or hydrogen-containing nitrogen at 500°C for 3 h.
- the average size of the nickel particles was determined from the hydrogen chemisorption. This was 7.1 nm. With transmission electron microscopy, nickel particles of these sizes were observed. Nickle particles greater than 9 nm were not observed.
- the amount of solution injected into the flask corresponded exactly with the pore volume of the aluminum oxide tablets . After this so-called incipient wetness impregnation, the loaded aluminum oxide tablets were removed from the flask and dried at room temperature for 40 h.
- the impregnated tablets were again introduced into the two-neck flask and evacuated in the manner described hereinabove. Then a second incipient wetness impregnation with a solution of 33.7 g nickel nitrate and 18.2 g magnesium nitrate in 50 ml demineralized water was carried out at room temperature.- The thus impregnated tablets were dried in the air at room temperature for 40 h. The loaded support was subsequently calcined in the air at a temperature of 450°C.
- the support loaded and thermally pretreated in the above manner was reduced in a flow of 10 volume parts of hydrogen in argon at 500°C for 6 h. Then the magnitude of the hydrogen chemisorption at room temperature was determined. It was calculated from this that the average size of the nickel particles was approximately 6.5 nm. In the transmission electron microscope nickel particles of these dimensions were observed and no particles greater than about 8 nm.
- Example 1
- a gas mixture consisting of hydrogen and carbon dioxide was prepared in the following way: 0.30 g of a sieve fraction from 150 to 425 urn of the nickel on silicon dioxide catalyst was introduced into a quartz reactor of a diameter of 6 mm. The catalyst was reduced in a hydrogen flow at 500°C for 3 h. 1 g copper oxide provided on lanthanum oxide-stabilized aluminum oxide was introduced into a separate reactor which was connected in series with the reactor in which the nickel catalyst was present. The reactor with the copper oxide on aluminum oxide catalyst was maintained at a fixed temperature of 550°C. A gas flow containing 2 volume parts of methane and 1 volume part of oxygen in argon was first passed through the copper oxide catalyst and then through the nickel catalyst. The product was analyzed with a mass spectrometer (Balzers Lichtenstein)..
- the temperature of the reactor filled with the nickel on silicon dioxide catalyst was raised to 450°C, whilst the temperature of the reactor filled with copper oxide was maintained at 550°C. In this way a gas containing substantially exclusively carbon dioxide and hydrogen was obtained.
- Example 2 To prepare a gas mixture consisting of carbon monoxide and hydrogen, 0.30 g of a sieve fraction of 150 to 425 ⁇ m of the nickel on silicon dioxide catalyst was introduced into a quartz reactor. The catalyst was reduced in a gas flow consisting of 10 volume parts of hydrogen in argon at 500°C for 3 h. The temperature of the reactor was then raised to 700°C. Then a gas mixture consisting of 2 volume parts of methane and 1 volume part of oxygen in argon was passed through the bed of the reduced nickel catalyst. The gas flowing from the reactor contained hydrogen and carbon monoxide in a ratio of approximately 1.8.
- Example 3 0.30 g of the nickel on silicon dioxide catalyst with a sieve fraction of 150 to 425 ⁇ m was introduced into a quartz reactor. After reduction of the catalyst in a hydrogen/argon flow at 500°C, the temperature of the reactor was increased to 700°C. Then a second reactor was filled with a catalyst in which copper oxide had been provided on lanthanum oxide- stabilized aluminum oxide. This reactor was connected upstream of the reactor with the nickel catalyst. The reactor with the copper oxide catalyst was maintained at a temperature of 550°C. A gas mixture consisting of methane and oxygen in argon in a volume ratio of 2/1/97 was first passed through the reactor with the copper oxide catalyst and then through the reactor with the nickel catalyst. The gas flow flowing from the latter reactor contained hydrogen and carbon monoxide in a ratio of approximately 1.8.
- Example 4 0.30 g of the nickel on silicon dioxide catalyst with a sieve fraction of 150 to 425 ⁇ m was introduced into a quartz reactor. After reduction of the catalyst in a hydrogen/argon flow at 500°C,
- Example 5 1 g of the nickel on silicon dioxide catalyst with a sieve fraction of 150 to 425 microns was reduced in a mixture of 10 volume parts of hydrogen in argon. After reduction of the catalyst at 480°C in hydrogen for 5 h, the specific nickel surface was determined by means of hydrogen chemisorption (0.28 ml hydrogen per square meter of nickel) . On the basis of this measurement, an average particle size of 4.6 nm was calculated. The temperature of the catalyst bed was adjusted to 550°C. While the temperature of the bed was maintained at 550°C, a gas mixture consisting of 2 volume parts of methane and 1 volume part of oxygen in argon was passed through the catalyst bed for 1 week. Then the catalyst was examined in the transmission electron microscope. It was found that no filamentary carbon had grown from the nickel particles.
- a silica-supported nickel catalyst was prepared in accordance with the method conventionally used in the literature to prepare supported nickel catalysts, viz. by means of impregnation.
- 25 g nickel nitrate (Merck) was dissolved in 102 ml demineralized water.
- 15 g silica (Aerosil 200, DEGUSSA) was introduced into a beaker and then the aqueous solution of nickel nitrate was added to the silica.
- the specific nickel surface of the catalyst was determined at room temperature by means of hydrogen chemisorption (0.28 ml hydrogen per square meter of nickel) . On the basis of this, an average nickel particle size of 26.2 nm was found. About 50 mg of the catalyst was transferred to a thermogravimetric balance. The sample was heated up to 480°C in a flow of nitrogen.
- the catalyst was reduced at the same temperature in a gas flow of hydrogen for 3 h. Then the catalyst was exposed at 450°C to a gas mixture consisting of 2 volume parts of methane and 1 volume part of oxygen in argon which had previously been passed over 1 gram of an alumina-supported copper oxide catalyst at a temperature of 550°C.
- the mass of the sample was monitored as a function of the time. After a period of about 70 min. in which the mass did not change, the mass suddenly increased markedly. After 15 h the measurement was stopped and the catalyst was examined by means of the Transmission Electron Microscope. The density of filamentary carbon was found to be high.
- silica (Aerosil 200, DEGUSSA) was suspended in 350 ml demineralized water.
- the pH of the suspension was adjusted to 9 by adding an aqueous solution of ammonia. After about 20 min. 23 ml of an aqueous solution of 4.41 weight percent of tetrammine-palladium(II)nitrate (Johnson Matthey) was added to this suspension with stirring. Then the volume of the suspension was supplemented to a volume of 800 ml using demineralized water. After stirring for 17 h, the suspension was filtered off. The residue was washed twice with 100 ml demineralized water. The solid substance was dried under a gas flow of nitrogen at room temperature for 4 days .
- the sample was finally transferred to a quartz microflowTM reactor. Over the dried solid substance thus obtained, a helium flow was passed at room temperature for 30 min. Then the sample was heated up to 400°C at a rate of 10°C in a mixture of 10 volume percent of hydrogen in helium. After 3 h at 400°C, the sample was cooled in helium to room temperature. Using a Transmission Electron Microscope (TEM) , it was established that the silicaTM-supported palladium catalyst prepared in this way contains palladium particles of a size of approximately 20 nm. About 50 mg of this catalyst was heated up to 150°C in a thermogravimetric balance in a flow of nitrogen. At this temperature the sample was reduced in a flow of hydrogen for 30 min.
- TEM Transmission Electron Microscope
- the sample thus reduced was heated up to 525°C in a flow of nitrogen. Then a gas mixture consisting of 2 volume parts of methane, 1 volume percent of oxygen in argon was passed over a supported copper oxide catalyst at 600°C and subsequently passed to the palladium catalyst. The mass of the catalyst was monitored as a function of the time. After a period of about 80 min. in which the mass did not change or hardly changed, the mass of the sample suddenly increased markedly. After 15 h the measurement was stopped and the sample was examined by means of the transmission electron microscope. It was found that much filamentary carbon had grown from the palladium particles.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL9300833A NL9300833A (en) | 1993-05-13 | 1993-05-13 | Process for the production of hydrogen / carbon monoxide mixtures or hydrogen from methane. |
NL9300833 | 1993-05-13 | ||
PCT/NL1994/000115 WO1994026656A1 (en) | 1993-05-13 | 1994-05-16 | Process for the production of hydrogen/carbon monoxide mixtures or hydrogen from methane |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0738235A1 true EP0738235A1 (en) | 1996-10-23 |
EP0738235B1 EP0738235B1 (en) | 1997-10-15 |
Family
ID=19862400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94917197A Expired - Lifetime EP0738235B1 (en) | 1993-05-13 | 1994-05-16 | Process for the production of hydrogen/carbon monoxide mixtures or hydrogen from methane |
Country Status (12)
Country | Link |
---|---|
US (1) | US5714092A (en) |
EP (1) | EP0738235B1 (en) |
JP (1) | JPH09502414A (en) |
AT (1) | ATE159231T1 (en) |
AU (1) | AU6858694A (en) |
DE (1) | DE69406311T2 (en) |
DK (1) | DK0738235T3 (en) |
ES (1) | ES2110757T3 (en) |
GR (1) | GR3025614T3 (en) |
NL (1) | NL9300833A (en) |
NO (1) | NO954543L (en) |
WO (1) | WO1994026656A1 (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5905180A (en) | 1996-01-22 | 1999-05-18 | Regents Of The University Of Minnesota | Catalytic oxidative dehydrogenation process and catalyst |
JPH09315801A (en) * | 1996-03-26 | 1997-12-09 | Toyota Motor Corp | Fuel reforming method, fuel reformer and fuel-cell system provided with the reformer |
WO1999011572A1 (en) * | 1997-09-01 | 1999-03-11 | Laxarco Holding Limited | Electrically assisted partial oxidation of light hydrocarbons by oxygen |
FR2768424B1 (en) * | 1997-09-01 | 1999-10-29 | Albin Czernichowski | ELECTRIC ASSISTANCE FOR PARTIAL OXIDATION OF LIGHT OXYGEN HYDROCARBONS |
US6254807B1 (en) * | 1998-01-12 | 2001-07-03 | Regents Of The University Of Minnesota | Control of H2 and CO produced in partial oxidation process |
DE69943241D1 (en) * | 1998-07-08 | 2011-04-14 | Toyota Motor Co Ltd | DEVICE FOR REFORMING FUELS |
US6475960B1 (en) | 1998-09-04 | 2002-11-05 | Exxonmobil Research And Engineering Co. | Premium synthetic lubricants |
US6080301A (en) | 1998-09-04 | 2000-06-27 | Exxonmobil Research And Engineering Company | Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins |
NO317870B1 (en) * | 1998-09-16 | 2004-12-27 | Statoil Asa | Process for Producing a H <N> 2 </N> Rich Gas and a CO <N> 2 </N> Rich Gas at High Pressure |
CA2282948A1 (en) | 1998-09-16 | 2000-03-16 | University Technologies International, Inc. | Low temperature autothermal steam reformation of methane in a fluidized bed |
US6613708B1 (en) * | 1999-06-07 | 2003-09-02 | Exxonmobil Chemical Patents Inc. | Catalyst selectivation |
WO2001076735A1 (en) * | 2000-04-07 | 2001-10-18 | Phillips Petroleum Company | Process for preparing fischer-tropsch catalyst |
US6436363B1 (en) * | 2000-08-31 | 2002-08-20 | Engelhard Corporation | Process for generating hydrogen-rich gas |
FR2817444B1 (en) | 2000-11-27 | 2003-04-25 | Physiques Ecp Et Chimiques | GENERATORS AND ELECTRICAL CIRCUITS FOR SUPPLYING UNSTABLE HIGH VOLTAGE DISCHARGES |
JP4098508B2 (en) * | 2001-08-20 | 2008-06-11 | 財団法人 ひろしま産業振興機構 | Method for producing catalyst for reacting hydrocarbon and water vapor, and method for producing hydrogen from hydrocarbon using the catalyst |
US20030096880A1 (en) * | 2001-11-02 | 2003-05-22 | Conoco Inc. | Combustion deposited metal-metal oxide catalysts and process for producing synthesis gas |
CA2364212A1 (en) * | 2001-12-03 | 2003-06-03 | The University Of Western Ontario | Catalyst for hydrocarbon reforming reaction |
JP4102080B2 (en) * | 2002-02-13 | 2008-06-18 | フジセラテック株式会社 | Fuel reformer |
US20030162846A1 (en) | 2002-02-25 | 2003-08-28 | Wang Shoou-L | Process and apparatus for the production of synthesis gas |
JP4316323B2 (en) * | 2002-10-04 | 2009-08-19 | 独立行政法人石油天然ガス・金属鉱物資源機構 | Hydrocarbon reforming catalyst and method for producing the same |
JP4870900B2 (en) * | 2003-02-24 | 2012-02-08 | 戸田工業株式会社 | Hydrocarbon cracking catalyst and production method thereof, and hydrogen production method using the hydrocarbon cracking catalyst |
US7125913B2 (en) * | 2003-03-14 | 2006-10-24 | Conocophillips Company | Partial oxidation reactors and syngas coolers using nickel-containing components |
JP4332724B2 (en) * | 2004-02-13 | 2009-09-16 | 戸田工業株式会社 | Autothermal reforming catalyst and method for producing the same, and method for producing hydrogen using the autothermal reforming catalyst |
WO2005097319A1 (en) * | 2004-04-08 | 2005-10-20 | Sulzer Metco (Canada) Inc. | Supported catalyst for steam methane reforming and autothermal reforming reactions |
JP4340892B2 (en) * | 2004-08-24 | 2009-10-07 | 戸田工業株式会社 | Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst |
JP4332733B2 (en) * | 2004-08-24 | 2009-09-16 | 戸田工業株式会社 | Hydrocarbon cracking catalyst and method for producing hydrogen using the hydrocarbon cracking catalyst |
WO2008008524A2 (en) | 2006-07-14 | 2008-01-17 | Ceramatec, Inc. | Apparatus and method of electric arc incineration |
US8618436B2 (en) | 2006-07-14 | 2013-12-31 | Ceramatec, Inc. | Apparatus and method of oxidation utilizing a gliding electric arc |
JP5180236B2 (en) | 2007-02-23 | 2013-04-10 | セラマテック・インク | Ceramic electrode for sliding electric arc |
DE102007038760B3 (en) * | 2007-08-16 | 2009-01-02 | Dge Dr.-Ing. Günther Engineering Gmbh | Process and plant for the production of synthesis gas from biogas |
JP6802353B2 (en) * | 2017-03-01 | 2020-12-16 | Toyo Tire株式会社 | A catalyst for reforming carbon dioxide of methane, a method for producing the same, and a method for producing synthetic gas. |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB224765A (en) * | 1924-01-23 | 1924-11-20 | Louis Steinberger | Improvements in or relating to hairpins |
JPS55139837A (en) * | 1979-04-18 | 1980-11-01 | Fujimi Kenmazai Kogyo Kk | Catalyst for steam modification of hydrocarbon |
DE3382193D1 (en) * | 1982-09-30 | 1991-04-11 | Engelhard Corp | METHOD FOR PRODUCING HYDROGEN-rich GAS FROM HYDROCARBONS. |
GB2139644B (en) * | 1983-04-06 | 1987-06-24 | Ici Plc | Synthesis gas |
NL8800252A (en) * | 1988-02-02 | 1989-09-01 | Veg Gasinstituut Nv | Carrier catalyst for non-selective oxidation of organic compounds, process for non-selective oxidation of, in particular, organic compounds. |
IT1242994B (en) * | 1990-08-29 | 1994-05-23 | Snam Progetti | CATALYTIC PROCESS FOR THE PRODUCTION OF SYNTHESIS GAS BY COMBUSTION AND REFORMING REACTION OF HYDROCARBONS |
US5206202A (en) * | 1991-07-25 | 1993-04-27 | Corning Incorporated | Catalyst device fabricated in situ and method of fabricating the device |
-
1993
- 1993-05-13 NL NL9300833A patent/NL9300833A/en not_active Application Discontinuation
-
1994
- 1994-05-16 AT AT94917197T patent/ATE159231T1/en not_active IP Right Cessation
- 1994-05-16 AU AU68586/94A patent/AU6858694A/en not_active Abandoned
- 1994-05-16 ES ES94917197T patent/ES2110757T3/en not_active Expired - Lifetime
- 1994-05-16 US US08/545,804 patent/US5714092A/en not_active Expired - Fee Related
- 1994-05-16 JP JP6525276A patent/JPH09502414A/en active Pending
- 1994-05-16 WO PCT/NL1994/000115 patent/WO1994026656A1/en active IP Right Grant
- 1994-05-16 DK DK94917197.9T patent/DK0738235T3/en active
- 1994-05-16 EP EP94917197A patent/EP0738235B1/en not_active Expired - Lifetime
- 1994-05-16 DE DE69406311T patent/DE69406311T2/en not_active Expired - Fee Related
-
1995
- 1995-11-10 NO NO954543A patent/NO954543L/en not_active Application Discontinuation
-
1997
- 1997-12-05 GR GR970403263T patent/GR3025614T3/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO9426656A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE69406311T2 (en) | 1998-04-23 |
JPH09502414A (en) | 1997-03-11 |
DK0738235T3 (en) | 1998-05-18 |
NL9300833A (en) | 1994-12-01 |
AU6858694A (en) | 1994-12-12 |
US5714092A (en) | 1998-02-03 |
DE69406311D1 (en) | 1997-11-20 |
NO954543D0 (en) | 1995-11-10 |
GR3025614T3 (en) | 1998-03-31 |
WO1994026656A1 (en) | 1994-11-24 |
NO954543L (en) | 1995-11-10 |
ES2110757T3 (en) | 1998-02-16 |
ATE159231T1 (en) | 1997-11-15 |
EP0738235B1 (en) | 1997-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5714092A (en) | Process for the production of hydrogen/carbon monoxide mixtures or hydrogen from methane | |
York et al. | Brief overview of the partial oxidation of methane to synthesis gas | |
Amin et al. | Review of methane catalytic cracking for hydrogen production | |
Hu et al. | An optimum NiO content in the CO 2 reforming of CH 4 with NiO/MgO solid solution catalysts | |
Slagtern et al. | Partial oxidation of methane to synthesis gas using La-MO catalysts | |
CA2729736C (en) | Process for operating hts reactor | |
Liu et al. | High performance stainless-steel supported Pd membranes with a finger-like and gap structure and its application in NH3 decomposition membrane reactor | |
Uchida et al. | Hydrogen energy engineering applications and products | |
CA2308285A1 (en) | Low hydrogen syngas using co2 and a nickel catalyst | |
JPH0229111B2 (en) | ||
US6897178B1 (en) | Carbide/nitride based fuel processing catalysts | |
JP2000143209A (en) | Conversion method and catalyst for carbon monoxide | |
WO2005030391A1 (en) | Catalyst and method for the generation of co-free hydrogen from methane | |
CN1320951C (en) | Process for producing synthesis gas by partial catalytic oxidation | |
WO2000056658A1 (en) | Method for selectively oxidizing hydrocarbons | |
JPH04331704A (en) | Method for producing synthesis gas containing carbon monoxide and hydrogen | |
Amin | Modelling and experimental study of methane catalytic cracking as a hydrogen production technology | |
NL1009510C2 (en) | Methane steam reforming. | |
JP3225078B2 (en) | Catalyst for syngas production | |
JP2023544675A (en) | Hydrogenation method | |
Roy | Fluidized bed steam methane reforming with high-flux membranes and oxygen input | |
De Los Ríos et al. | Synthesis, characterization and stability performance of CoWO4 as an oxygen carrier under redox cycles towards syngas production | |
CN115970746B (en) | Method for improving the activity of low-temperature methanation reaction by establishing a hydrophobic catalytic system | |
Khzouz et al. | Development and Testing of Ni-Cu Bimetallic Catalysts for Effective Syngas Production via Low-Temperature Methane Steam Reforming | |
JPH07309603A (en) | Method for producing hydrogen-containing gas for fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19951018 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19970128 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE |
|
REF | Corresponds to: |
Ref document number: 159231 Country of ref document: AT Date of ref document: 19971115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69406311 Country of ref document: DE Date of ref document: 19971120 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2110757 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19971223 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: BASF AKTIENGESELLSCHAFT Effective date: 19980715 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: BASF AKTIENGESELLSCHAFT |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBO | Opposition rejected |
Free format text: ORIGINAL CODE: EPIDOS REJO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
27O | Opposition rejected |
Effective date: 20011024 |
|
NLR2 | Nl: decision of opposition | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20020418 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20020507 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020510 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20020513 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20020516 Year of fee payment: 9 Ref country code: ES Payment date: 20020516 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020517 Year of fee payment: 9 Ref country code: AT Payment date: 20020517 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20020523 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020527 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020531 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20020627 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020711 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030516 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030516 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030517 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030531 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030531 |
|
BERE | Be: lapsed |
Owner name: *GASTEC N.V. Effective date: 20030531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031201 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031203 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030516 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040130 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20031201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20031130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050516 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |