EP0732762A1 - Planar filter - Google Patents
Planar filter Download PDFInfo
- Publication number
- EP0732762A1 EP0732762A1 EP95117629A EP95117629A EP0732762A1 EP 0732762 A1 EP0732762 A1 EP 0732762A1 EP 95117629 A EP95117629 A EP 95117629A EP 95117629 A EP95117629 A EP 95117629A EP 0732762 A1 EP0732762 A1 EP 0732762A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coupling
- strip conductor
- strip
- conductor
- planar filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/203—Strip line filters
- H01P1/20327—Electromagnetic interstage coupling
- H01P1/20354—Non-comb or non-interdigital filters
- H01P1/20363—Linear resonators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/203—Strip line filters
- H01P1/20327—Electromagnetic interstage coupling
- H01P1/20354—Non-comb or non-interdigital filters
- H01P1/20381—Special shape resonators
Definitions
- the invention is based on a planar filter according to the preamble of the main claim.
- a microstrip line filter is known in which several strip lines are arranged side by side. The striplines overlap over a portion of their length and are thus coupled to their respective neighbors.
- waveguide filters are also known in which pole points in the damping are generated by coupling modes between non-adjacent resonators by means of slit diaphragms.
- planar filter with the characterizing features of the main claim has the advantage that by Coupling of non-adjacent, ie adjacent, stripline zeros in the transfer function H (s) and thus pole points in the stop band of the filter can be generated. Due to these singularities in damping, these filters have a higher slope.
- the manufacturing outlay for the planar filter is reduced.
- the degree of coupling and thus the effectiveness of the coupling increases advantageously if the strip conductors are coupled to the coupling strip conductor on the side surfaces.
- the filter characteristic is improved, since undesirable coupling-overs are thereby reduced.
- the coupling strip conductor is as short as possible, it is only slightly lossy, which also increases the degree of coupling.
- Adjusting the characteristic impedance of the coupling strip conductor reduces undesired reflections during coupling and thereby in turn increases the coupling efficiency.
- a strip line 2 forms the input strip line and in turn a strip line 6 forms the output strip line.
- the left strip conductor 3, the middle strip conductor 4 and the right strip conductor 5 are arranged between the input strip conductor 2 and the output strip conductor 6.
- the strip conductors all have an elongated, almost rectangular shape and each overlap their length in one piece in their transverse projection. In the area of these overlaps, the strip lines 2, 3, 4, 5, 6 are separated from each other in pairs only by a small gap, which results in a coupling of the strip lines 2, 3, 4, 5, 6 which overlap in this area.
- a coupling strip conductor 7 is provided, which is coupled to the end face of the left strip conductor 3 and separated from it by a gap, and which connects this end face of the left strip conductor 3 with the end face of the right strip conductor 5 connects, a gap also being present between the coupling strip conductor 7 and the right strip conductor 5.
- This arrangement forms a planar filter for filtering high-frequency electromagnetic waves.
- the transmission and blocking characteristics of the planar filter are determined by the geometry of the planar filter and by the material properties of the strip conductors 2, 3, 4, 5, 6 and the substrate 1. This can be expressed by the transfer function H (s).
- the coupling strip conductor 7 couples strip conductors 3, 5 which are not adjacent to one another and which are coupled to one another only indirectly via the central strip conductor 4 without the coupling strip conductor 7. Due to the coupling of the left strip conductor 3 with the right strip conductor 5, there are zero points in the transfer function H (s), which appear as damping poles in the blocking region of the planar filter. This presence of singularities in the damping range means that this planar filter can produce a significantly higher slope than with known planar, side-coupled filters.
- the coupling strip conductor 7 has the same standardized width as the input strip conductor 2 and the output strip conductor 6. As a result, these three strip conductors 2, 6, 7 have a standardized characteristic impedance Z 0 , which is usually 50 ⁇ . In addition, it is advantageous to choose the length of the coupling stripline 7 as a whole multiple of half the wavelength ⁇ of the center frequency of the filter in order to effect an optimal coupling to the striplines 3, 5 to be coupled together.
- FIG. 2 shows a further exemplary embodiment of a planar filter, the numbering of the elements from FIG. 1 being adopted.
- the filter shown has an additional strip conductor 8, which is arranged with respect to the coupling order between the middle strip conductor 4 and the right strip conductor 5.
- a dimensioning rule for the planar band filter shown here is given as an example in this figure, which can also be used for other filters.
- All strip lines 2, 3, 4, 5, 6, 8 have an electrical length of ⁇ , where ⁇ is the wavelength at the center frequency of the bandpass filter.
- the strip lines 2, 3, 4, 5, 6, 8 each overlap over a length of ⁇ / 4.
- the coupling strip conductor 7 is arranged here for coupling the input strip conductor 2 to the right strip conductor 5.
- the coupling strip conductor 7 is not coupled to the end faces of the two strip conductors 2, 5, but rather also to their side surfaces.
- the length of the coupling zones is ⁇ / 4.
- planar filters shown in the two exemplary embodiments have coupling strip conductors 7 which, like the other strip conductors 2, 3, 4, 5, 6, 8, are arranged directly on the substrate 1.
- the coupling strip conductor 7 is arranged in a different plane than the strip conductors 2, 3, 4, 5, 6, 8. This is explained in more detail here with reference to FIG. 1.
- the coupling strip conductor 7 has a short length and also has a distance from the strip conductor 4 lying between the two strip conductors 3, 5 to be coupled to one another, which causes the least possible coupling with this strip conductor 4. The lower the level of this interfering coupling, the more lossless and exact the filter will work. Furthermore, the coupling strip conductor 7 should be adapted to the characteristic impedance Z 0 in order to avoid reflections. This adaptation is most likely to be achieved if the coupling strip conductor 7 has a constant width W (Z 0 ). In contrast, the strip conductors 3, 4, 5 do not necessarily have to have a uniform wave resistance and can therefore also vary in their width.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
Die Erfindung geht aus von einem planaren Filter nach dem Oberbegriff des Hauptanspruchs. Aus dem Artikel "Parallel-Coupled Transmission-Line-Resonator Filters" in den IRE Trans.on Microwave Theory and Techniques, 1958, S. 223ff., S.B. Cohn, ist ein Mikrostreifenleiterfilter bekannt, bei dem mehrere Streifenleiter nebeneinander angeordnet sind. Die Streifenleiter überschneiden sich dabei auf einem Anteil ihrer Länge und sind dadurch mit ihrem jeweiligen Nachbarn verkoppelt. Aus dem Aufsatz "Filters with Single Transmission Zeros at Real or Imaginary Frequencies" in IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-24, No. 4, April 1976, Seiten 172-181 sind außerdem Hohlleiterfilter bekannt, bei denen Polstellen in der Dämpfung durch Überkopplung von Moden zwischen nicht adjazenten Resonatoren mittels Schlitzblenden erzeugt werden.The invention is based on a planar filter according to the preamble of the main claim. From the article "Parallel-Coupled Transmission-Line-Resonator Filters" in the IRE Trans.on Microwave Theory and Techniques, 1958, pp. 223ff., S.B. Cohn, a microstrip line filter is known in which several strip lines are arranged side by side. The striplines overlap over a portion of their length and are thus coupled to their respective neighbors. From the article "Filters with Single Transmission Zeros at Real or Imaginary Frequencies" in IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-24, No. 4, April 1976, pages 172-181, waveguide filters are also known in which pole points in the damping are generated by coupling modes between non-adjacent resonators by means of slit diaphragms.
Das planare Filter mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß durch die Verkopplung nicht adjazenter, d.h. benachbarter, Streifenleiter Nullstellen in der Übertragungsfunktion H(s) und somit Polstellen im Sperrbereich des Filters erzeugt werden können. Durch diese Singularitäten in der Dämpfung weisen diese Filter eine höhere Flankensteilheit auf.The planar filter with the characterizing features of the main claim has the advantage that by Coupling of non-adjacent, ie adjacent, stripline zeros in the transfer function H (s) and thus pole points in the stop band of the filter can be generated. Due to these singularities in damping, these filters have a higher slope.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen planaren Filters möglich.The measures listed in the subclaims enable further developments and improvements to the planar filter specified in the main claim.
Wenn der Überkopplungsstreifenleiter gleichfalls auf dem Substrat angeordnet ist, so vermindert sich der Herstellungsaufwand für das planare Filter.If the coupling strip conductor is also arranged on the substrate, the manufacturing outlay for the planar filter is reduced.
Der Überkopplungsgrad und damit die Wirksamkeit der Überkopplung wächst vorteilhaft an, wenn die Streifenleiter an den Seitenflächen mit dem Überkopplungsstreifenleiter verkoppelt sind.The degree of coupling and thus the effectiveness of the coupling increases advantageously if the strip conductors are coupled to the coupling strip conductor on the side surfaces.
Wenn der Überkopplungsstreifenleiter so geführt ist, daß nur eine geringe Verkopplung zwischen dem Überkopplungsstreifenleiter und dem zwischen den beiden zu verkoppelnden Streifenleitern liegenden Streifenleiter resultiert, so verbessert sich die Filtercharakteristik, da dadurch unerwünschte Überkopplungen reduziert werden.If the coupling strip conductor is guided in such a way that there is only a slight coupling between the coupling strip conductor and the strip conductor lying between the two strip conductors to be coupled, the filter characteristic is improved, since undesirable coupling-overs are thereby reduced.
Weist der Überkopplungsstreifenleiter eine möglichst geringe Länge auf, so ist dieser auch nur gering verlustbehaftet, wodurch ebenfalls wieder der Überkopplungsgrad ansteigt.If the coupling strip conductor is as short as possible, it is only slightly lossy, which also increases the degree of coupling.
Eine Anpassung des Wellenwiderstands des Überkopplungsstreifenleiters verringert unerwünschte Reflektionen bei der Verkopplung und erhöht dadurch wiederum den Ankopplungswirkungsgrad.Adjusting the characteristic impedance of the coupling strip conductor reduces undesired reflections during coupling and thereby in turn increases the coupling efficiency.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert.Embodiments of the invention are shown in the drawing and explained in more detail in the following description.
- Figur 1 eine Draufsicht auf eine erste Ausführungsform eines planaren Filters,FIG. 1 shows a plan view of a first embodiment of a planar filter,
- Figur 2 eine Draufsicht auf eine zweite Ausführungsform eines planaren Filters.Figure 2 is a plan view of a second embodiment of a planar filter.
In Figur 1 ist ein Substrat 1 mit einer flachen Oberfläche abgebildet, auf dessen Oberseite mehrere Streifenleiter 2, 3, 4, 5, 6 angeordnet sind. Dabei bildet ein Streifenleiter 2 den Eingangsstreifenleiter und wiederum ein Streifenleiter 6 den Ausgangsstreifenleiter. Zwischen dem Eingangsstreifenleiter 2 und dem Ausgangsstreifenleiter 6 sind der linke Streifenleiter 3, der mittlere Streifenleiter 4 und der rechte Streifenleiter 5 angeordnet. Die Streifenleiter weisen alle eine längliche, annähernd rechteckige Form auf und überschneiden sich in ihrer Querprojektion jeweils auf einem Stück ihre Länge. Im Bereich dieser Überschneidungen sind die Streifenleiter 2, 3, 4, 5, 6 jeweils paarweise voneinander nur durch einen geringen Spalt getrennt, wodurch eine Verkopplung der sich in diesem Bereich überschneidenden Streifenleiter 2, 3, 4, 5, 6 resultiert. Außerdem ist ein Überkopplungsstreifenleiter 7 vorgesehen, der an der Stirnseite des linken Streifenleiters 3 angekoppelt und durch einen Spalt von diesem getrennt ist, und der diese Stirnseite des linken Streifenleiters 3 mit der Stirnseite des rechten Streifenleiters 5 verbindet, wobei ebenfalls zwischen dem Überkopplungsstreifenleiter 7 und dem rechten Streifenleiter 5 ein Spalt vorhanden ist.1 shows a substrate 1 with a flat surface, on the upper side of which a plurality of
Diese Anordnung bildet ein planares Filter zur Filterung von hochfrequenten elektromagnetischen Wellen. Durch die Geometrie des planaren Filters sowie durch die Materialeigenschaften der Streifenleiter 2, 3, 4, 5, 6 und des Substrats 1 wird die Durchlaß- und die Sperrcharakteristik des planaren Filters festgelegt. Diese ist durch die Übertragungsfunktion H(s) ausdrückbar. Durch den Überkopplungsstreifenleiter 7 erfolgt eine Verkopplung von einander nicht benachbart liegenden Streifenleitern 3, 5, die ohne den Überkopplungsstreifenleiter 7 miteinander nur indirekt über den mittleren Streifenleiter 4 verkoppelt sind. Aufgrund der Verkopplung des linken Streifenleiters 3 mit dem rechten Streifenleiter 5 entstehen Nullstellen in der Übertragungsfunktion H(s), die als Dämpfungspole im Sperrbereich des planaren Filters in Erscheinung treten. Durch diese Anwesenheit von Singularitäten im Dämpfungsbereich kann bei diesem planaren Filter eine wesentlich höhere Flankensteilheit erzeugt werden, als bei bekannten planaren, seitengekoppelten Filtern.This arrangement forms a planar filter for filtering high-frequency electromagnetic waves. The transmission and blocking characteristics of the planar filter are determined by the geometry of the planar filter and by the material properties of the
Es ist vorteilhaft, wenn der Überkopplungsstreifenleiter 7 die gleiche, normierte Breite aufweist, wie der Eingangsstreifenleiter 2 und der Ausgangsstreifenleiter 6. Dadurch weisen diese drei Streifenleiter 2, 6, 7 einen normierten Wellenwiderstand Z0 auf, der üblicherweise 50 Ω beträgt. Außerdem ist es vorteilhaft, die Länge des Überkopplungsstreifenleiters 7 als ein ganzes Vielfaches der halben Wellenlänge λ der Mittenfrequenz des Filters zu wählen, um eine optimale Ankopplung an die miteinander zu verkoppelnden Streifenleiter 3, 5 zu bewirken.It is advantageous if the
In Figur 2 ist ein weiteres Ausführungsbeispiel für ein planares Filter angegeben, wobei die Numerierung der Elemente aus der Figur 1 übernommen wurde. Das gezeigte Filter weist einen zusätzlichen Streifenleiter 8 auf, der bezüglich der Koppelreihenfolge zwischen dem mittleren Streifenleiter 4 und dem rechten Streifenleiter 5 angeordnet ist. Zusätzlich ist in dieser Figur eine Dimensionierungsregel für das hier dargestellte planare Bandfilter beispielhaft angegeben, die auch für andere Filter ihre Anwendung finden kann. Sämtliche Streifenleiter 2, 3, 4, 5, 6, 8 weisen dabei eine elektrische Länge von λ auf, wobei λ die Wellenlänge bei der Mittenfrequenz des Bandfilters ist. Die Streifenleiter 2, 3, 4, 5, 6, 8 überschneiden sich dabei jeweils auf einer Länge von λ/4. Der Überkopplungsstreifenleiter 7 ist hier zur Verkopplung des Eingangsstreifenleiters 2 mit dem rechten Streifenleiter 5 angeordnet. Der Überkopplungsstreifenleiter 7 ist in diesem Ausführungsbeispiel nicht über die Stirnflächen der beiden Streifenleiter 2, 5 sondern ebenfalls über deren Seitenflächen an diese angekoppelt. Auch hier beträgt die Länge der Überkopplungszonen jeweils λ/4. Der gesamte Überkopplungsstreifenleiter 7 weist eine Länge von allgemein
Die in den beiden Ausführungsbeispielen dargestellten planaren Filter weisen Überkopplungsstreifenleiter 7 auf, die ebenso wie die anderen Streifenleiter 2, 3, 4, 5, 6, 8 direkt auf dem Substrat 1 angeordnet sind. Es sind jedoch ebenfalls Ausführungsformen realisierbar, bei denen der Überkopplungsstreifenleiter 7 in einer anderen Ebene als die Streifenleiter 2, 3, 4, 5, 6, 8 angeordnet ist. Dies wird hier anhand der Figur 1 näher erläutert. So ist es bei dem dort dargestellten Beispiel ebenfalls möglich, den mittleren Streifenleiter 4 mit einer Isolierschicht zu überdecken und über diese Isolierschicht den Überkopplungsstreifenleiter 7 zu führen. Dadurch kann die Länge des Überkopplungsstreifenleiters 7 besonders kurz gehalten werden.The planar filters shown in the two exemplary embodiments have
Es sollte insbesondere darauf geachtet werden, daß der Überkopplungsstreifenleiter 7 eine geringe Länge aufweist und außerdem von dem zwischen den beiden miteinander zu verkoppelnden Streifenleitern 3, 5 liegenden Streifenleiter 4 einen Abstand aufweist, der eine möglichst geringe Verkopplung mit diesem Streifenleiter 4 bewirkt. Je niedriger diese störende Verkopplung in ihrem Grad ist, desto verlustfreier und exakter funktioniert das Filter. Des weiteren sollte der Überkopplungsstreifenleiter 7 an den Wellenwiderstand Z0 angepaßt sein, um Reflexionen zu vermeiden. Diese Anpassung wird am ehesten erreicht, wenn der Überkopplungsstreifenleiter 7 eine konstante Breite W(Z0) aufweist. Dagegen müssen die Streifenleiter 3, 4, 5 nicht unbedingt einen einheitlichen Wellenwiderstand besitzen und können daher auch in ihrer Breite variieren.In particular, care should be taken that the
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19509251A DE19509251A1 (en) | 1995-03-15 | 1995-03-15 | Planar filter |
DE19509251 | 1995-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0732762A1 true EP0732762A1 (en) | 1996-09-18 |
Family
ID=7756666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95117629A Withdrawn EP0732762A1 (en) | 1995-03-15 | 1995-11-09 | Planar filter |
Country Status (3)
Country | Link |
---|---|
US (1) | US5648747A (en) |
EP (1) | EP0732762A1 (en) |
DE (1) | DE19509251A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004023599A1 (en) * | 2002-09-03 | 2004-03-18 | Robert Bosch Gmbh | Pulsed radar sensor |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3379326B2 (en) * | 1996-02-20 | 2003-02-24 | 三菱電機株式会社 | High frequency filter |
CA2197253C (en) * | 1997-02-11 | 1998-11-17 | Com Dev Limited | Planar dual mode filters and a method of construction thereof |
US6124767A (en) * | 1998-05-21 | 2000-09-26 | Delphi Components, Inc. | RF/Microwave oscillator |
WO2000026985A1 (en) * | 1998-11-02 | 2000-05-11 | Jury Vyacheslavovich Kislyakov | Microwave filter |
DE10120507B4 (en) | 2000-04-27 | 2004-03-25 | Kyocera Corp. | Multi-element filter |
US7236068B2 (en) | 2002-01-17 | 2007-06-26 | Paratek Microwave, Inc. | Electronically tunable combine filter with asymmetric response |
JP3860559B2 (en) * | 2003-05-20 | 2006-12-20 | 株式会社東芝 | Band pass filter |
KR100577006B1 (en) * | 2003-12-24 | 2006-05-10 | 한국전자통신연구원 | Microstrip Crosslink Bandpass Filter with Asymmetric Frequency Characteristics |
US7355494B2 (en) * | 2004-09-03 | 2008-04-08 | Taiyo Yuden Co., Ltd. | Band-pass filter |
KR100605425B1 (en) * | 2004-10-18 | 2006-07-28 | 한국전자통신연구원 | Microstrip Bandpass Filters |
JP4171015B2 (en) * | 2005-09-29 | 2008-10-22 | 株式会社東芝 | Filter and wireless communication apparatus using the same |
RU2463690C2 (en) * | 2010-01-21 | 2012-10-10 | Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." | One-dimensional metamaterial-based double-frequency conductivity/resistance inverter having cut-off band between operating frequencies |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4418324A (en) * | 1981-12-31 | 1983-11-29 | Motorola, Inc. | Implementation of a tunable transmission zero on transmission line filters |
US4423396A (en) * | 1980-09-30 | 1983-12-27 | Matsushita Electric Industrial Company, Limited | Bandpass filter for UHF band |
EP0285503A1 (en) * | 1987-03-31 | 1988-10-05 | Thomson-Csf | Filter with distributed constant elements associating two kinds of coupling arrangements |
EP0506476A1 (en) * | 1991-03-29 | 1992-09-30 | Ngk Insulators, Ltd. | Dielectric filter having coupling electrodes for connecting resonator electrodes, and method of adjusting frequency characteristic of the filter |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2669476A1 (en) * | 1990-11-21 | 1992-05-22 | Valtronic France | PASSIVE BAND PASS FILTER. |
JP2863387B2 (en) * | 1992-09-30 | 1999-03-03 | 日本碍子株式会社 | Multilayer dielectric filter |
FR2706084A1 (en) * | 1993-06-04 | 1994-12-09 | Valtronic Ind Sa | Passive filter and method of manufacturing such a filter. |
-
1995
- 1995-03-15 DE DE19509251A patent/DE19509251A1/en not_active Ceased
- 1995-11-09 EP EP95117629A patent/EP0732762A1/en not_active Withdrawn
-
1996
- 1996-02-06 US US08/595,908 patent/US5648747A/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4423396A (en) * | 1980-09-30 | 1983-12-27 | Matsushita Electric Industrial Company, Limited | Bandpass filter for UHF band |
US4418324A (en) * | 1981-12-31 | 1983-11-29 | Motorola, Inc. | Implementation of a tunable transmission zero on transmission line filters |
EP0285503A1 (en) * | 1987-03-31 | 1988-10-05 | Thomson-Csf | Filter with distributed constant elements associating two kinds of coupling arrangements |
EP0506476A1 (en) * | 1991-03-29 | 1992-09-30 | Ngk Insulators, Ltd. | Dielectric filter having coupling electrodes for connecting resonator electrodes, and method of adjusting frequency characteristic of the filter |
Non-Patent Citations (2)
Title |
---|
"Filters with Single Transmission Zeros at Real or Imaginary Frequencies", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-24, no. 4, April 1976 (1976-04-01), pages 172 - 181 |
S.B. COHN: "Parallel-Coupled Transmission-Line-Resonator Filters", IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, 1958, pages 223FF |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004023599A1 (en) * | 2002-09-03 | 2004-03-18 | Robert Bosch Gmbh | Pulsed radar sensor |
Also Published As
Publication number | Publication date |
---|---|
US5648747A (en) | 1997-07-15 |
DE19509251A1 (en) | 1996-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69320521T2 (en) | Low pass high frequency filter | |
DE69223341T4 (en) | Dielectric filter | |
DE69229514T2 (en) | Band stop | |
DE69904520T2 (en) | Symmetrical dielectric filter | |
DE68918918T2 (en) | Microwave filter. | |
DE60037550T2 (en) | Broadband balancing circuit for wireless and high-frequency applications | |
EP0732762A1 (en) | Planar filter | |
DE69514155T2 (en) | Resonator with improved bandpass characteristics | |
DE112019003857T5 (en) | FILTER | |
DE60307903T2 (en) | IMPEDANZANPASSUNGSKOPPLER | |
DE69712802T2 (en) | Dielectric filter | |
WO1998027607A1 (en) | Microwave filter | |
DE10325595B3 (en) | High-frequency filter, especially in the manner of a duplex filter | |
DE3780736T2 (en) | DIFFERENT ELEMENT FILTER OF THE E-SURFACE TYPE. | |
DE3340566C2 (en) | ||
DE2752333A1 (en) | STRIP LINE CAPACITOR | |
DE69715776T2 (en) | Distributed constant filter | |
DE69328243T2 (en) | FILTER AND METHOD FOR ITS PRODUCTION | |
DE4221012C2 (en) | Bandpass filter | |
DE2506425C2 (en) | Waveguide / microstrip transition | |
DE69123092T2 (en) | Microwave stripe resonators | |
DE60110033T2 (en) | Band-pass filter with a compact dielectric structure consisting of half-wave resonators and intermediate evanescent waveguides | |
DE112018006410T5 (en) | CONVERTER AND ANTENNA DEVICE | |
DE3923209C2 (en) | ||
DE69919445T2 (en) | High frequency filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI |
|
17P | Request for examination filed |
Effective date: 19970318 |
|
17Q | First examination report despatched |
Effective date: 20000327 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20010301 |