EP0726548A1 - Sonic detector for monitoring intrusions - Google Patents
Sonic detector for monitoring intrusions Download PDFInfo
- Publication number
- EP0726548A1 EP0726548A1 EP95101937A EP95101937A EP0726548A1 EP 0726548 A1 EP0726548 A1 EP 0726548A1 EP 95101937 A EP95101937 A EP 95101937A EP 95101937 A EP95101937 A EP 95101937A EP 0726548 A1 EP0726548 A1 EP 0726548A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- comb
- filter
- detector according
- borne sound
- sound detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 title claims description 3
- 238000011156 evaluation Methods 0.000 claims description 10
- 230000000903 blocking effect Effects 0.000 claims description 8
- 230000007704 transition Effects 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 description 5
- 230000001960 triggered effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 241000202252 Cerberus Species 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/16—Actuation by interference with mechanical vibrations in air or other fluid
- G08B13/1654—Actuation by interference with mechanical vibrations in air or other fluid using passive vibration detection systems
- G08B13/1672—Actuation by interference with mechanical vibrations in air or other fluid using passive vibration detection systems using sonic detecting means, e.g. a microphone operating in the audio frequency range
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S367/00—Communications, electrical: acoustic wave systems and devices
- Y10S367/901—Noise or unwanted signal reduction in nonseismic receiving system
Definitions
- the invention relates to a structure-borne noise detector for monitoring cash register cabinets, armored cabinets, vaults and cash dispensers, with a sensor connected to the object to be monitored for recording structure-borne noise, and with evaluation electronics connected to the sensor, in which a mixture of the amplified sensor signal with a Carrier frequency and a filtering of the mixed signals in a narrow frequency range.
- noise detectors are used to detect attacks on protective objects made of steel or concrete and on armored cabinets with plastic-reinforced protective coatings.
- the function of the structure-borne noise or noise detector is based on the fact that when hard materials such as concrete or metal are processed, mass accelerations occur and mechanical vibrations are generated, which spread out in the material as structure-borne noise.
- the preferably piezoelectric sensor picks up these vibrations and converts them into electrical signals.
- the detector electronics analyze the signals and trigger an alarm if the result is appropriate.
- the evaluation electronics of this known structure-borne noise detector has the advantage that the evaluated frequency band is much more limited than when a bandpass filter is used, an interferer lying within the evaluated frequency band can of course still trigger a false alarm.
- the structure-borne noise generated during a break-in attempt lies in a characteristic frequency range, preferably in the kHz range near the upper hearing limit, between approximately 12 and 20 kHz, while typical interference noises are significantly lower-frequency or also higher-frequency.
- a characteristic frequency range preferably in the kHz range near the upper hearing limit, between approximately 12 and 20 kHz
- typical interference noises are significantly lower-frequency or also higher-frequency.
- the invention is now to provide evaluation electronics for a structure-borne noise detector, with which interference signals lying within the frequency range mentioned are also suppressed and thus the reliability and false alarm security of appropriately equipped structure-borne noise detectors is decisively improved.
- the evaluation electronics have a comb filter circuit, which consists of two parallel arranged, mirror-image comb filters, the outputs of which are led to a minimum level, of which only the smaller of the output signals of the two comb filters is fed to further processing.
- each comb filter has a filter period of not more than 500 Hz.
- the filter period is preferably 200 Hz.
- a normal attack or intrusion signal is relatively broadband and becomes an approximately equal signal at the outputs of both comb filters of the comb filter circuit deliver so that it does not matter which of the two signals is processed further.
- the smaller signal will only be insignificantly smaller than the larger one and will therefore trigger as quickly and as safely as this alarm. If, however, a relatively narrow-band interference radiation occurs in the frequency band under consideration, then because of the short filter period, it will certainly pass through one comb filter and not through the other, so that the occurrence of a certain difference between the output signals of the two comb filters is an indication is a jammer. If, as is proposed according to the invention, only the smaller of the two signals is processed further, the interference radiation is automatically suppressed and need not be analyzed in more detail.
- interference radiation has appeared in the narrow frequency range between 12 and 20 kHz, especially in recent times. It can be assumed with almost certainty that this interference radiation is caused by electronic devices, for example by clocked power supply units or by screen devices standing on the object to be monitored. Higher frequency interference radiation in the frequency range of approximately 25 kHz can be caused, for example, by ultrasonic penetration detectors.
- the structure-borne sound detector M shown in FIG. 1 contains a microphone 1 acting as a structure-borne sound pick-up and evaluation electronics E.
- the microphone is used to pick up the vibrations that are generated by mass accelerations that occur during the processing of hard materials and to convert these vibrations into electrical signals.
- the evaluation electronics E is known, for example, from US Pat. No. 4,290,058 and from the structure-borne sound detectors of the types GM31, GM35 and GM36 from Cerberus AG, and is only to be described briefly here.
- the microphone 1 reference is made to CH Patent Application No. 0 172/94 from Cerberus AG.
- the output signal of the microphone 1 is fed to a preamplifier 3 via an impedance converter 2.
- the preamplified signal passes through a further amplifier 4 to a mixer 5, where the amplified signal is mixed with the signal from an oscillator 7.
- the signal mixing product is fed via a sensitivity controller 8 to an intermediate frequency amplifier 9, which also contains a low-pass filter.
- the amplified IF signal passes into an A / D converter 10 and from there into a comb filter circuit 11, the output signal of which is fed to an integrator 12, in which the output signal of the comb filter circuit 11 is numerically integrated. As soon as the value at the integrator 12 exceeds the threshold of an alarm comparator 13, an alarm relay 14 triggers the alarm.
- the alarm comparator is connected as a Schmitt trigger.
- the switching thresholds are selected so that in the event of an alarm by the integrator 12, the alarm self-holding time is set to approximately 1 s via a timer 15.
- a trigger stage 16 is triggered, which charges the integrator 12 in a very short time and triggers an alarm. If the time interval between two successive noises is greater than approximately 5 to 10 s, then the integrator 12 is quickly discharged by a stage 17.
- the functions of comb filter circuit 11, integrator 12, alarm comparator 13 and stage 17 are calculated in a microprocessor ⁇ P.
- FIG. 2 shows a somewhat more detailed illustration of the comb filter circuit 11 from FIG. 1.
- it consists of two comb filters 18 and 18 ', which are arranged in parallel and have a mirror image, the outputs of which are led to a minimum stage 19, of which only the smaller of the output signals the comb filter 18, 18 'is forwarded to the integrator 12 (FIG. 1) and the larger signal is suppressed.
- a comb filter is known to be a filter with a periodic frequency response in which the pass and stop bands alternate.
- Comb filters are used, for example, in video signal processing in the color decoder of television receivers (see, for example: H. Schönfelder "Bildkommunikation" ', p.
- the transmission characteristic of one of the two comb filters 18, 18 'over a frequency range of 800 Hz shows the transmission characteristic of one of the two comb filters 18, 18 'over a frequency range of 800 Hz.
- the typical structure-borne noise vibrations generated in an intrusion test lie in a frequency range between 12 and 20 kHz. This frequency range is mixed down in the evaluation electronics E to a band between 0 and 4 kHz, over which band the transmission range of the two comb filters 18, 18 'also extends.
- the comb filters are each permeable for a frequency band of 100 Hz width and impermeable for an equally wide frequency band.
- the filter period P is 200 Hz and each of the two comb filters 18, 18 'each has 20 blocking and pass ranges, these being shifted by half a filter period in the two filters.
- FIGS. 4 and 5 show the frequency spectra of a normal attack or intrusion signal (FIG. 4) or an interference signal (FIG. 5), the signal curve being shown over a frequency range of 10 - 25 kHz and the frequency range of interest in the case of structure-borne sound detectors between 12 and 20 Hz is highlighted by two dash-dotted lines with hatching.
- the normal attack or intrusion signal shown in FIG. 4 is so broadband that the output signals of the two comb filters 18, 18 '(FIG. 2) will always be approximately the same size, so that it is necessary for deciding whether an intrusion or intrusion attempt is present and an alarm is to be triggered, it does not matter which of the two output signals is processed further.
- two components from which the signal shown is composed on the one hand a relatively small and quiet basic signal in which all frequencies from the area under consideration are represented approximately equally, and on the other hand a striking one , very narrow interference signal at around 16 kHz.
- This interference signal is so narrow that it is highly likely that only one of the two comb filters 18 or 18 'will let it through and block it by the other. Since the filter blocking the interference signal delivers the smaller output signal, the interference signal is therefore not taken into account in the further processing.
- the comb filters are dimensioned such that in the great majority of all cases the interference signal is suppressed by one of the two filters 18 or 18 '.
- the two comb filters 18, 18 ' are designed in such a way that interference signals which are precisely in the transition region A (FIG. 2) between the pass and the blocking region of the comb filters are reliably designed so that the blocking region is always somewhat wider than that Passband, so that both filters block in this transition area A and thus a possible interference signal is suppressed by both filters 18 and 18 '.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Burglar Alarm Systems (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
Die Erfindung betrifft einen Körperschallmelder zur Überwachung von Kassenschränken, Panzerschränken, Tresorräumen und Geldausgabe-Automaten, mit einem mit dem zu überwachenden Objekt verbundenen Sensor zur Aufnahme von Körperschall, und mit einer an den Sensor angeschlossenen Auswerteelektronik, in der eine Mischung des verstärkten Sensorsignals mit einer Trägerfrequenz und eine Filterung der gemischten Signale in einem schmalen Frequenzbereich erfolgt.The invention relates to a structure-borne noise detector for monitoring cash register cabinets, armored cabinets, vaults and cash dispensers, with a sensor connected to the object to be monitored for recording structure-borne noise, and with evaluation electronics connected to the sensor, in which a mixture of the amplified sensor signal with a Carrier frequency and a filtering of the mixed signals in a narrow frequency range.
Diese auch als Geräuschmelder bezeichneten Melder dienen zur Detektion von Angriffen auf Schutzobjekte aus Stahl oder Beton und auf Panzerschränke mit kunststoffverstärkten Schutzbeschichtungen. Die Funktion der Körperschall- oder Geräuschmelder beruht darauf, dass bei der Bearbeitung von harten Werkstoffen, wie beispielsweise Beton oder Metall, Massenbeschleunigungen entstehen und dadurch mechanische Schwingungen erzeugt werden, die sich im Material als Körperschall ausbreiten. Der vorzugsweise piezoelektrische Sensor nimmt diese Schwingungen auf und wandelt sie in elektrische Signale um. Die Melderelektronik analysiert die Signale und löst bei entsprechendem Ergebnis einen Alarm aus.These detectors, also known as noise detectors, are used to detect attacks on protective objects made of steel or concrete and on armored cabinets with plastic-reinforced protective coatings. The function of the structure-borne noise or noise detector is based on the fact that when hard materials such as concrete or metal are processed, mass accelerations occur and mechanical vibrations are generated, which spread out in the material as structure-borne noise. The preferably piezoelectric sensor picks up these vibrations and converts them into electrical signals. The detector electronics analyze the signals and trigger an alarm if the result is appropriate.
Wie bei allen automatischen Überwachungseinrichtungen ist es auch bei den Körperschallmeldern sehr wichtig, dass möglichst keine Fehlalarme ausgelöst, dass also Störsignale unterdrückt werden. Diese Störsignalunterdrückung erfolgt bei einem in der US-A-4,290.058 beschriebenen Körperschallmelder im wesentlichen dadurch, dass die vom Sensor aufgenommenen Schwingungen mit einer Trägerfrequenz gemischt werden, die periodisch und kontinuierlich ein bestimmtes Frequenzgebiet durchläuft, und dass die gemischten Signale in einem schmalbandigen Frequenzgebiet gefiltert werden.As with all automatic monitoring devices, it is also very important for structure-borne noise detectors that false alarms should not be triggered if possible, that interference signals should be suppressed. In the case of a structure-borne noise detector described in US Pat. No. 4,290,058, this interference signal suppression essentially occurs in that the vibrations picked up by the sensor are mixed with a carrier frequency which periodically and continuously runs through a specific frequency range, and in that the mixed signals are filtered in a narrow-band frequency range .
Obwohl die Auswerteelektronik dieses bekannten Körperschallmelders den Vorteil hat, dass das ausgewertete Frequenzband viel schärfer begrenzt ist als bei blosser Verwendung eines Bandpassfilters, kann selbstverständlich ein innerhalb des ausgewerteten Frequenzbandes liegender Störer immer noch einen Fehlalarm auslösen. Dabei liegen die bei einem Einbruchsversuch erzeugten Körperschallschwingungen in einem charakteristischen Frequenzgebiet, vorzugsweise im kHz-Bereich nahe der oberen Hörgrenze zwischen etwa 12 und 20 kHz, während typische Störgeräusche wesentlich niederfrequenter oder auch höherfrequenter sind. Die Erfahrung zeigt, dass in dem für die Körperschallschwingungen bei einem Einbruchsversuch charakteristischen Frequenzbereich immer wieder längere Zeit anhaltende Schwingungen auftreten, so dass es zur Auslösung von Fehlalarmen kommt.Although the evaluation electronics of this known structure-borne noise detector has the advantage that the evaluated frequency band is much more limited than when a bandpass filter is used, an interferer lying within the evaluated frequency band can of course still trigger a false alarm. The structure-borne noise generated during a break-in attempt lies in a characteristic frequency range, preferably in the kHz range near the upper hearing limit, between approximately 12 and 20 kHz, while typical interference noises are significantly lower-frequency or also higher-frequency. Experience shows that in the frequency range characteristic of structure-borne noise during a break-in attempt, sustained vibrations occur over and over again, so that false alarms are triggered.
Durch die Erfindung soll nun eine Auswerteelektronik für einen Körperschallmelder angegeben werden, mit der auch innerhalb des genannten Frequenzbereichs liegende Störsignale unterdrückt werden und damit die Zuverlässigkeit und Fehlalarmsicherheit entsprechend ausgerüsteter Körperschallmelder entscheidend verbessert wird.The invention is now to provide evaluation electronics for a structure-borne noise detector, with which interference signals lying within the frequency range mentioned are also suppressed and thus the reliability and false alarm security of appropriately equipped structure-borne noise detectors is decisively improved.
Die gestellte Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Auswerteelektronik eine Kammfilterschaltung aufweist, welche aus zwei parallel angeordneten, spiegelbildlich aufgebauten Kammfiltern besteht, deren Ausgänge an eine Minimumstufe geführt sind, von welcher nur das jeweils kleinere der Ausgangssignale der beiden Kammfilter der Weiterverarbeitung zugeführt ist.The object is achieved according to the invention in that the evaluation electronics have a comb filter circuit, which consists of two parallel arranged, mirror-image comb filters, the outputs of which are led to a minimum level, of which only the smaller of the output signals of the two comb filters is fed to further processing.
Ein bevorzugtes Ausführungsbeispiel des erfindungsgemässen Körperschallmelders ist dadurch gekennzeichnet, dass jedes Kammfilter eine Filterperiode von nicht über 500 Hz aufweist. Vorzugsweise beträgt die Filterperiode 200 Hz.A preferred embodiment of the structure-borne noise detector according to the invention is characterized in that each comb filter has a filter period of not more than 500 Hz. The filter period is preferably 200 Hz.
Ein normales Angriffs- oder Einbruchssignal ist relativ breitbandig und wird an den Ausgängen beider Kammfilter der Kammfilterschaltung ein etwa gleich grosses Signal liefern, so dass es gleichgültig ist, welches der beiden Signale weiterverarbeitet wird. Das kleinere Signal wird nur unbedeutend kleiner sein als das grössere und wird daher gleich schnell und gleich sicher wie dieses Alarm auslösen. Wenn jedoch in dem betrachteten Frequenzband eine relativ schmalbandige Störstrahlung auftritt, dann wird diese, wegen der geringen Filterperiode, mit Sicherheit von dem einen Kammfilter durchgelassen und von dem anderen nicht, so dass das Auftreten einer bestimmten Differenz zwischen den Ausgangssignalen der beiden Kammfilter ein Hinweis auf einen Störer ist. Wenn nun, wie dies erfindungsgemäss vorgeschlagen wird, nur das jeweils kleinere der beiden Signale weiterverarbeitet wird, dann wird die Störstrahlung automatisch unterdrückt und braucht nicht näher analysiert zu werden.A normal attack or intrusion signal is relatively broadband and becomes an approximately equal signal at the outputs of both comb filters of the comb filter circuit deliver so that it does not matter which of the two signals is processed further. The smaller signal will only be insignificantly smaller than the larger one and will therefore trigger as quickly and as safely as this alarm. If, however, a relatively narrow-band interference radiation occurs in the frequency band under consideration, then because of the short filter period, it will certainly pass through one comb filter and not through the other, so that the occurrence of a certain difference between the output signals of the two comb filters is an indication is a jammer. If, as is proposed according to the invention, only the smaller of the two signals is processed further, the interference radiation is automatically suppressed and need not be analyzed in more detail.
Die praktische Erfahrung hat übrigens gezeigt, dass gerade in jüngerer Zeit unerwartet viel Störstrahlung in dem genannten schmalen Frequenzbereich zwischen 12 und 20 kHz auftritt. Es ist mit ziemlicher Sicherheit zu vermuten, dass diese Störstrahlung durch elektronische Geräte verursacht ist, beispielsweise durch getaktete Netzgeräte oder durch auf dem zu überwachenden Objekt stehende Bildschirmgeräte. Höherfrequente Störstrahlung im Frequenzbereich von etwa 25 kHz kann beispielsweise durch Ultraschalleindringdetektoren verursacht sein.Incidentally, practical experience has shown that unexpectedly a lot of interference radiation has appeared in the narrow frequency range between 12 and 20 kHz, especially in recent times. It can be assumed with almost certainty that this interference radiation is caused by electronic devices, for example by clocked power supply units or by screen devices standing on the object to be monitored. Higher frequency interference radiation in the frequency range of approximately 25 kHz can be caused, for example, by ultrasonic penetration detectors.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels und der Zeichnungen näher erläutert; es zeigen:
- Fig. 1
- ein Blockschema eines erfindungsgemässen Körperschallmelders mit einer Kammfilterschaltung,
- Fig. 2
- ein Schema der Kammfilterschaltung von Fig. 1,
- Fig. 3
- die Übertragungscharakteristik eines Kammfilters der Schaltung von Fig. 2,
- Fig. 4
- das Frequenzspektrum eines normalen Angriffs- oder Einbruchssignals; und
- Fig. 5
- das Frequenzspektrum eines Störsignals.
- Fig. 1
- 1 shows a block diagram of a structure-borne noise detector according to the invention with a comb filter circuit,
- Fig. 2
- 1 shows a diagram of the comb filter circuit of FIG. 1,
- Fig. 3
- the transmission characteristic of a comb filter of the circuit of Fig. 2,
- Fig. 4
- the frequency spectrum of a normal attack or intrusion signal; and
- Fig. 5
- the frequency spectrum of an interference signal.
Der in Fig. 1 dargestellte Körperschallmelder M enthält ein als Körperschallaufnehmer wirkendes Mikrofon 1 und eine Auswerteelektronik E. Das Mikrofon dient zur Ausfnahme der Schwingungen, die von bei der Bearbeitung von harten Werkstoffen entstehenden Massenbeschleunigungen erzeugt werden, und zur Umwandlung dieser Schwingungen in elektrische Signale. Die Auswerteelektronik E ist beispielsweise aus der US-A-4,290,058 und von der Körperschallmeldern der Typen GM31, GM35 und GM36 der Cerberus AG her bekannt, und soll hier nur kurz beschrieben werden. Bezüglich des Mikrofons 1 wird auf die CH-Patentanmeldung Nr. 0 172/94 der Cerberus AG verwiesen.The structure-borne sound detector M shown in FIG. 1 contains a microphone 1 acting as a structure-borne sound pick-up and evaluation electronics E. The microphone is used to pick up the vibrations that are generated by mass accelerations that occur during the processing of hard materials and to convert these vibrations into electrical signals. The evaluation electronics E is known, for example, from US Pat. No. 4,290,058 and from the structure-borne sound detectors of the types GM31, GM35 and GM36 from Cerberus AG, and is only to be described briefly here. With regard to the microphone 1, reference is made to CH Patent Application No. 0 172/94 from Cerberus AG.
Das Ausgangssignal des Mikrofons 1 wird über einen Impedanzwandler 2 einem Vorverstärker 3 zugeführt. Das vorverstärkte Signal gelangt über einen weiteren Verstärker 4 zu einem Mischer 5, wo das verstärkte Signal mit dem Signal eines Oszillators 7 gemischt wird. Das Signalmischprodukt wird über einen Empfindlichkeitsregler 8 einem Zwischenfrequenzverstärker 9 zugeführt, der auch ein Tiefpassfilter enthält. Das verstärkte ZF-Signal gelangt in einen A/D-Wandler 10 und von diesem in eine Kammfilterschaltung 11, deren Ausgangssignal einem Integrator 12 zugeführt ist, in welchem eine numerische Integration des Ausgangssignals der Kammfilterschaltung 11 erfolgt. Sobald der Wert am Integrator 12 die Schwelle eines Alarmkomparators 13 überschreitet, wird durch das Abfallen eines Alarmrelais 14 Alarm ausgelöst.The output signal of the microphone 1 is fed to a preamplifier 3 via an
Der Alarmkomparator ist als Schmitt-Trigger beschaltet. Dabei sind die Schaltschwellen so gewählt, dass bei Alarm durch den Integrator 12 die Alarmselbsthaltezeit über einen Timer 15 auf circa 1 s eingestellt ist. Bei starken Schlägen oder bei einer Sprengung wird eine Kippstufe 16 ausgelöst, die den Integrator 12 in sehr kurzer Zeit auflädt und eine Alarmauslösung bewirkt. Wenn der Zeitabstand zwischen zwei aufeinanderfolgenden Geräuschen grösser als circa 5bis 10 s ist, dann wird der Integrator 12 durch eine Stufe 17 schnell entladen. Die Funktionen von Kammfilterschaltung 11, Integrator 12, Alarmkomparator 13 und Stufe 17 werden in einem Mikroprozessor µP gerechnet.The alarm comparator is connected as a Schmitt trigger. The switching thresholds are selected so that in the event of an alarm by the
Fig. 2 zeigt eine etwas detailliertere Darstellung der Kammfilterschaltung 11 von Fig. 1. Darstellungsgemäss besteht diese aus zwei parallel angeordneten, spiegelbildlich aufgebauten, Kammfiltern 18 und 18', deren Ausgänge an eine Minimumstufe 19 geführt sind, von welcher nur das jeweils kleinere der Ausgangssignale der Kammfilter 18, 18' an den Integrator 12 (Fig. 1) weitergeleitet und das grössere Signal unterdrückt wird. Ein Kammfilter ist bekanntlich ein Filter mit einem periodischen Frequenzgang, bei dem Durchlass- und Sperrbereiche einander abwechseln. Kammfilter werden beispielsweise bei der Video-Signalverarbeitung im Farbdecoder von Fernsehempfängern verwendet (siehe dazu beispielsweise: H. Schönfelder "Bildkommunikation"', S. 188f, Springer Verlag, Berlin, Heidelberg, New York, 1983). Der spiegelbildliche Aufbau der beiden Kammfilter 18, 18' bedeutet, dass dort, wo bei dem einen Filter die Sperrbereiche liegen, bei dem anderen die Durchlassbereiche sind, und umgekehrt. Und das hat zur Folge, dass ein innerhalb eines Frequenzbandes mit einer einer halben Filterperiode entsprechenden Bandbreite auftretendes schmalbandiges Signal von einem der beiden Kammfilter 18 oder 18' durchgelassen und vom anderen nicht durchgelassen oder zumindest stark unterdrückt wird.FIG. 2 shows a somewhat more detailed illustration of the
Fig. 3 zeigt die Übertragungscharakteristik eines der beiden Kammfilter 18, 18' über einen Frequenzbereich von 800 Hz. Wie in der Beschreibungseinleitung erwähnt ist, liegen die bei einem Einbruchsversuch erzeugten typischen Körperschallschwingungen in einem Frequenzbereich zwischen 12 und 20 kHz. Dieser Frequenzbereich wird in der Auswerteelektronik E auf ein Band zwischen 0 und 4 kHz heruntergemischt, über welches Band sich auch der Übertragungsbereich der beiden Kammfilter 18, 18' erstreckt. Darstellungsgemäss sind die Kammfilter jeweils für ein Frequenzband von 100 Hz Breite durchlässig und für ein gleich breites Frequenzband undurchlässig. Die Filterperiode P beträgt als 200 Hz und jedes der beiden Kammfilter 18, 18' hat je 20 Sperr- und Durchlassbereiche, wobei diese in den beiden Filtern um eine halbe Filterperiode gegeneinander verschoben sind.3 shows the transmission characteristic of one of the two
In den Figuren 4 und 5 sind die Frequenzspektren eines normalen Angriffs- oder Einbruchssignals (Fig. 4) bzw. eines Störsignals (Fig. 5) dargestellt, wobei der Signalverlauf über einen Frequenzbereich von 10 - 25 kHz gezeigt und der bei Körperschallmeldern interessierende Frequenzbereich zwischen 12 und 20 Hz durch zwei strichpunktierte Linien mit einer Schraffur herausgehoben ist.FIGS. 4 and 5 show the frequency spectra of a normal attack or intrusion signal (FIG. 4) or an interference signal (FIG. 5), the signal curve being shown over a frequency range of 10 - 25 kHz and the frequency range of interest in the case of structure-borne sound detectors between 12 and 20 Hz is highlighted by two dash-dotted lines with hatching.
Das in Fig. 4 dargestellte normale Angriffs- oder Einbruchssignal ist so breitbandig, dass die Ausgangssignale der beiden Kammfilter 18, 18' (Fig. 2) immer etwa gleich gross sein werden, so dass es für die Entscheidung, ob ein Einbruchs- oder Angriffsversuch vorliegt und Alarm ausgelöst werden soll, nicht von Bedeutung ist, welches der beiden Ausgangssignale weiterverarbeitet wird.The normal attack or intrusion signal shown in FIG. 4 is so broadband that the output signals of the two
Beim Störsignal von Fig. 5 liegen die Verhältnisse anders: Hier erkennt man zwei Komponenten, aus denen sich das dargestellte Signal zusammensetzt: Einerseits ein relativ kleines und ruhiges Grundsignal, in dem alle Frequenzen aus dem betrachteten Bereich etwa gleich vertreten sind, und andererseits ein markantes, sehr schmales Störsignal bei etwa 16 kHz. Dieses Störsignal ist so schmal, dass es mit hoher Wahrscheinlichkeit nur von dem einen der beiden Kammfilter 18 oder 18' durchgelassen und von dem anderen gesperrt wird. Da das das Störsignal sperrende Filter das kleinere Ausgangssignal liefert, wird also das Störsignal bei der Weiterverarbeitung nicht berücksichtigt.The situation is different for the interference signal from FIG. 5: Here one recognizes two components from which the signal shown is composed: on the one hand a relatively small and quiet basic signal in which all frequencies from the area under consideration are represented approximately equally, and on the other hand a striking one , very narrow interference signal at around 16 kHz. This interference signal is so narrow that it is highly likely that only one of the two
Die Kammfilter sind so dimensioniert, dass in der grossen Mehrzahl aller Fälle das Störsignal von einem der beiden Filter 18 oder 18' unterdrückt wird. Damit auch Störsignale, die genau im Übergangsbereich A (Fig. 2) zwischen dem Durchlass- und dem Sperrbereich der Kammfilter liegen, mit Sicherheit unterdrückt werden, sind die beiden Kammfilter 18, 18' so ausgelegt, dass der Sperrbereich immer etwas breiter ist als der Durchlassbereich, so dass in diesem Übergangsbereich A beide Filter sperren und somit ein eventuelles Störsignal von beiden Filtern 18 und 18' unterdrückt wird.The comb filters are dimensioned such that in the great majority of all cases the interference signal is suppressed by one of the two
Wie schon erwähnt wurde, ist die Kammfilterstufe 11 im Mikroprozessor µP gerechnet, und zwar entweder als FIR (= Finite Impulse Response)- oder als IIR (= Infinite Impulse Response)-Filter.As already mentioned, the
Claims (8)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES95101937T ES2224111T3 (en) | 1995-02-13 | 1995-02-13 | BODY SOUND DETECTOR FOR INTRUSION SUPERVISION. |
DE59510930T DE59510930D1 (en) | 1995-02-13 | 1995-02-13 | Structure-borne sound detector for burglary monitoring |
EP95101937A EP0726548B1 (en) | 1995-02-13 | 1995-02-13 | Sonic detector for monitoring intrusions |
CA002167624A CA2167624C (en) | 1995-02-13 | 1996-01-19 | Structure-borne sound detector for break-in surveillance |
AU42192/96A AU693972B2 (en) | 1995-02-13 | 1996-01-29 | Structure-borne sound detector for break-in surveillance |
US08/600,365 US5705985A (en) | 1995-02-13 | 1996-02-13 | Structure-borne sound detector for break-in surveillance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95101937A EP0726548B1 (en) | 1995-02-13 | 1995-02-13 | Sonic detector for monitoring intrusions |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0726548A1 true EP0726548A1 (en) | 1996-08-14 |
EP0726548B1 EP0726548B1 (en) | 2004-07-21 |
Family
ID=8218972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95101937A Expired - Lifetime EP0726548B1 (en) | 1995-02-13 | 1995-02-13 | Sonic detector for monitoring intrusions |
Country Status (6)
Country | Link |
---|---|
US (1) | US5705985A (en) |
EP (1) | EP0726548B1 (en) |
AU (1) | AU693972B2 (en) |
CA (1) | CA2167624C (en) |
DE (1) | DE59510930D1 (en) |
ES (1) | ES2224111T3 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9812842D0 (en) * | 1998-06-16 | 1998-08-12 | Ncr Int Inc | Automatic teller machines |
FR2809215B1 (en) * | 2000-05-18 | 2004-09-10 | F And F Internat | SELF-REGULATED ALARM DEVICE WITH VERY LOW ENERGY CONSUMPTION |
US6720875B2 (en) | 2000-05-18 | 2004-04-13 | F And F International S.A.R.L. | Self-adjusting alarm device with low energy consumption |
US9191762B1 (en) | 2012-02-23 | 2015-11-17 | Joseph M. Matesa | Alarm detection device and method |
US20160380814A1 (en) * | 2015-06-23 | 2016-12-29 | Roost, Inc. | Systems and methods for provisioning a battery-powered device to access a wireless communications network |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2900444A1 (en) * | 1979-01-08 | 1980-07-10 | Licentia Gmbh | METHOD AND CIRCUIT ARRANGEMENT FOR EVALUATING OUTPUT SIGNALS FROM SOUND RECEIVERS OF AN OBJECT PROTECTION MONITORING SYSTEM AND FOR GENERATING AN ALARM SIGNAL |
US4290058A (en) * | 1978-11-30 | 1981-09-15 | Cerberus Ag | Method and apparatus for intrusion detection by using sonic receivers |
FR2560701A1 (en) * | 1984-03-05 | 1985-09-06 | Sogesec Sarl | DIFFERENTIAL PRESSURE ACCESS DETECTOR |
FR2569027A1 (en) * | 1984-03-28 | 1986-02-14 | Vg Electronique Electro Guglie | Infrasound perimeter detection system, infrasound processing |
-
1995
- 1995-02-13 DE DE59510930T patent/DE59510930D1/en not_active Expired - Lifetime
- 1995-02-13 EP EP95101937A patent/EP0726548B1/en not_active Expired - Lifetime
- 1995-02-13 ES ES95101937T patent/ES2224111T3/en not_active Expired - Lifetime
-
1996
- 1996-01-19 CA CA002167624A patent/CA2167624C/en not_active Expired - Fee Related
- 1996-01-29 AU AU42192/96A patent/AU693972B2/en not_active Ceased
- 1996-02-13 US US08/600,365 patent/US5705985A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4290058A (en) * | 1978-11-30 | 1981-09-15 | Cerberus Ag | Method and apparatus for intrusion detection by using sonic receivers |
DE2900444A1 (en) * | 1979-01-08 | 1980-07-10 | Licentia Gmbh | METHOD AND CIRCUIT ARRANGEMENT FOR EVALUATING OUTPUT SIGNALS FROM SOUND RECEIVERS OF AN OBJECT PROTECTION MONITORING SYSTEM AND FOR GENERATING AN ALARM SIGNAL |
FR2560701A1 (en) * | 1984-03-05 | 1985-09-06 | Sogesec Sarl | DIFFERENTIAL PRESSURE ACCESS DETECTOR |
FR2569027A1 (en) * | 1984-03-28 | 1986-02-14 | Vg Electronique Electro Guglie | Infrasound perimeter detection system, infrasound processing |
Also Published As
Publication number | Publication date |
---|---|
AU693972B2 (en) | 1998-07-09 |
CA2167624C (en) | 2007-05-15 |
AU4219296A (en) | 1996-08-22 |
US5705985A (en) | 1998-01-06 |
CA2167624A1 (en) | 1996-08-14 |
EP0726548B1 (en) | 2004-07-21 |
ES2224111T3 (en) | 2005-03-01 |
DE59510930D1 (en) | 2004-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69636022T2 (en) | Fire alarm system with distinction of smoke particles | |
DE69708352T2 (en) | Method and device for detecting the presence of a particular living being in an environment monitored by a Doppler detector | |
DE3128980C2 (en) | Method and device for detecting the unauthorised passage of protected objects through a surveillance zone | |
DE19781749B4 (en) | System for monitoring the functionality of a filter | |
DE3603568C2 (en) | ||
DE2216236A1 (en) | Intrusion detection system | |
DE2710877C2 (en) | Burglar alarm system | |
DE2907546A1 (en) | ARRANGEMENT FOR DETECTING FIRE AND EXPLOSIONS | |
EP2189956B1 (en) | Fire alarm and method for detecting pollution | |
DE2260352C2 (en) | Device for detecting damage to glass panes or the like | |
DE2710834C2 (en) | Burglar alarm system | |
DE4103912C2 (en) | Method and device for combating snoring | |
EP0726548A1 (en) | Sonic detector for monitoring intrusions | |
DE3221997C2 (en) | ||
DE2253967B2 (en) | METHOD FOR DETERMINING ARRHYTHMIA IN THE COURSE OF HEART ACTION TENSIONS AND DEVICE FOR CARRYING OUT THE METHOD | |
DE2131113A1 (en) | Room protection and warning device with turbulence compensation | |
DE3412914A1 (en) | METHOD AND DEVICE FOR SECURING CLOSED SPACES | |
DE2362063C3 (en) | Circuit arrangement for the acquisition of physiological electrical measurement signals | |
EP0654771B1 (en) | Method for preventing false alarms in a fire detecting system and device for performing this method | |
DE10102283A1 (en) | Detecting manipulations on housings of automatic machines containing cash involves detecting, processing, evaluating sound waves/mechanical vibration patterns emitted by housing | |
CH643078A5 (en) | PROCESS AND ARRANGEMENT FOR THE BURGLAR REPORT. | |
DE69407167T2 (en) | INTERFERENCE RADIO DEVICE FOR INTRUSION MONITORING SYSTEMS | |
DE4036617A1 (en) | Burglar alarm | |
DE2852664C2 (en) | Procedure and arrangement for intrusion detection | |
EP2053574B1 (en) | Smoke detector with particle suppression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE ES FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19970206 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS BUILDING TECHNOLOGIES AG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS BUILDING TECHNOLOGIES AG |
|
RBV | Designated contracting states (corrected) |
Designated state(s): BE CH DE ES FR GB IT LI NL SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE ES FR GB IT LI NL SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59510930 Country of ref document: DE Date of ref document: 20040826 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2224111 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050422 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR Free format text: SIEMENS BUILDING TECHNOLOGIES AG#BELLERIVESTRASSE 36#8034 ZUERICH (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: SIEMENS AKTIENGESELLSCHAFT Free format text: SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE) Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090310 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20090213 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20090514 AND 20090520 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090216 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090218 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20090212 Year of fee payment: 15 Ref country code: IT Payment date: 20090225 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090217 Year of fee payment: 15 Ref country code: CH Payment date: 20090505 Year of fee payment: 15 |
|
BERE | Be: lapsed |
Owner name: *SIEMENS BUILDING TECHNOLOGIES A.G. Effective date: 20100228 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20100901 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100901 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100213 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100214 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140417 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59510930 Country of ref document: DE |