EP0714088A1 - Voice activity detection - Google Patents
Voice activity detection Download PDFInfo
- Publication number
- EP0714088A1 EP0714088A1 EP95402589A EP95402589A EP0714088A1 EP 0714088 A1 EP0714088 A1 EP 0714088A1 EP 95402589 A EP95402589 A EP 95402589A EP 95402589 A EP95402589 A EP 95402589A EP 0714088 A1 EP0714088 A1 EP 0714088A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vector
- autocorrelation
- value
- standard
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000694 effects Effects 0.000 title claims description 28
- 238000001514 detection method Methods 0.000 title claims description 20
- 239000013598 vector Substances 0.000 claims abstract description 51
- 230000005236 sound signal Effects 0.000 claims abstract description 26
- 230000004069 differentiation Effects 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 10
- 230000001755 vocal effect Effects 0.000 claims description 9
- 238000009499 grossing Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/93—Discriminating between voiced and unvoiced parts of speech signals
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/78—Detection of presence or absence of voice signals
Definitions
- the field of the invention is that of the detection of voice activity in an audio signal.
- a first solution consists in monitoring the evolution of the signal energy. If it increases rapidly, it can correspond to the appearance of a vocal activity but it can also correspond to a variation of the ambient noise. It follows that this method, although very simple to implement does not appear to be very reliable in relatively noisy environments as is the case for example in a motor vehicle.
- the autocorrelation coefficients of the audio signal are generally calculated to find the second maximum of these coefficients, the first maximum representing the energy. This is again a relatively complex technique which does not give complete satisfaction in terms of reliability.
- the present invention therefore provides a solution for detecting voice activity which provides acceptable reliability for reduced complexity.
- the device comprises reduction means for establishing a reduced standard by dividing the standard of the differentiation vector by a reduction value, this reduced standard representing a second voice activity indicator.
- the reduction value is equal to the energy of the signal or it is equal to the sum of the energy of the signal and a compression constant.
- the device comprises means for smoothing one of these voice activity indicators to produce a linear combination of the present value of this indicator and its previous value, this linear combination representing a third voice activity indicator.
- the device comprises decision means for producing a voice activity signal if one of these indicators exceeds a detection threshold.
- an advantageous solution consists in choosing the sum of the absolute values of the components of the differentiation vector as the norm of this vector.
- an audio signal is digital in nature, that is to say that it is in the form of a series of samples which correspond to the value of the signal at successive instants which repeat at the rate of a sampling frequency.
- the signal to be analyzed is analog in nature, if it comes from a microphone for example, it is first subjected to an analog-digital converter which operates at the rate of this sampling frequency to produce the audio signal .
- the audio signal being digital, it seems natural to realize the voice activity detection device by means of a digital signal processor.
- This processor can of course be used for other purposes.
- this detection device will not be described in its structure because it implements elementary operations well known to those skilled in the art such as additions, multiplications, comparisons. It is therefore a functional description which has been retained, because it seems far preferable to explain the implementation of the invention with the greatest clarity.
- the device therefore receives the audio signal and we consider a series of samples S (i) where i varies from 0 to N.
- the first operation performed by the device is the calculation of the autocorrelation coefficients R (k) of the signal for all the values of k between O and N:
- first R0 and second R q autocorrelation vectors have no utility in themselves. They have been introduced for the simple purpose of clarifying the presentation. The important point is the calculation of the differentiation vector. Thus, this vector is defined by the value of these components as defined above.
- the detection device calculates a standard ⁇ R ⁇ of the differentiation vector ⁇ R.
- this standard is equal to the sum of the absolute values of the components of the vector:
- the invention also applies if one chooses to choose another standard such as, in particular, the Euclidean standard or the maximum value of the absolute values of each of the components.
- This standard whatever it is, constitutes a first indicator of vocal activity.
- a first option is to compare this indicator with a threshold to establish that there is presence of voice activity in the audio signal if the indicator is greater than the threshold.
- the detection device calculates a reduced standard P by dividing the standard ⁇ R ⁇ of the differentiation vector by a reduction value.
- this reduction value can be chosen equal to the energy R (0) of the audio signal, which will tend to compress the dynamics of the ⁇ R ⁇ standard.
- Another solution which provides its own advantages consists in assigning to this reduction value the sum of the energy R (0) of the audio signal and of a constant which will be called the floor value C.
- This reduced standard P in any event constitutes a second indicator of vocal activity which can also be compared to a threshold to establish the absence or the presence of vocal activity in this signal.
- the detection device smoothes this reduced standard.
- a reduced standard P i corresponds to the i th series.
- This smoothed value P ⁇ i constitutes a third voice activity indicator which can also be compared to a threshold to establish whether or not the audio signal has voice activity.
- the detection device therefore compares it to a detection threshold T.
- the simplest solution consists in assigning a constant value to this detection threshold.
- an advantageous solution consists in adapting this threshold to the level of the reduced standard P when the audio signal is devoid of voice activity.
- the invention naturally relates to the method for detecting voice activity which is implemented by this device.
- GSM pan-European digital cellular radiocommunication system
- the analog signal to be processed is sampled at the frequency of 8 kHz.
- the samples thus obtained are grouped in series of 160 which therefore each correspond to 20 ms.
- N the number of samples
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Computational Linguistics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Complex Calculations (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Cosmetics (AREA)
- Electrophonic Musical Instruments (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Time-Division Multiplex Systems (AREA)
Abstract
Description
Le domaine de l'invention est celui de la détection d'activité vocale dans un signal audio.The field of the invention is that of the detection of voice activity in an audio signal.
En présence d'un signal audio qui est souvent issu d'un microphone, il est parfois nécessaire de savoir si ce signal contient de la parole ou bien s'il ne comporte que du bruit.In the presence of an audio signal which often comes from a microphone, it is sometimes necessary to know whether this signal contains speech or whether it only contains noise.
En effet, la détection d'activité vocale va souvent conditionner certains traitements que le signal audio est susceptible de subir. Au nombre des applications typiques qu'il convient d'activer en présence d'un signal de parole, on peut identifier la reconnaissance de la parole, l'annulation d'écho ou encore la fonction d'enregistrement.Indeed, the detection of voice activity will often condition certain processing that the audio signal is likely to undergo. Among the typical applications that should be activated in the presence of a speech signal, one can identify speech recognition, echo cancellation or the recording function.
Au contraire, si l'on considère un signal de téléphonie où seule la parole représente l'information utile, il est maintenant courant dans le domaine des radiocommunications de ne pas transmettre ce signal si celui-ci ne comprend que du bruit, c'est que l'on appelle couramment la transmission discontinue.On the contrary, if we consider a telephony signal where only speech represents useful information, it is now common in the radiocommunication field not to transmit this signal if it only includes noise, this is commonly known as discontinuous transmission.
Ainsi, des solutions ont déjà été proposées pour tenter de détecter l'activité vocale dans un signal audio.Thus, solutions have already been proposed in an attempt to detect voice activity in an audio signal.
Une première solution consiste à suivre l'évolution de l'énergie du signal. Si celle-ci augmente rapidement, cela peut correspondre à l'apparition d'une activité vocale mais cela peut aussi correspondre à une variation du bruit ambiant. Il s'ensuit que cette méthode, bien que très simple à mettre en oeuvre ne se présente pas comme très fiable dans les milieux relativement bruités comme c'est le cas par exemple dans un véhicule automobile.A first solution consists in monitoring the evolution of the signal energy. If it increases rapidly, it can correspond to the appearance of a vocal activity but it can also correspond to a variation of the ambient noise. It follows that this method, although very simple to implement does not appear to be very reliable in relatively noisy environments as is the case for example in a motor vehicle.
On connaît également de nombreuses autres solutions qui ont été développées pour pallier le défaut de fiabilité de la précédente. C'est le cas notamment de celles qui mettent en oeuvre une transformée de Fourier du signal audio pour mesurer la distance spectrale le séparant d'un signal de bruit moyenné qui est mis à jour en l'absence de toute activité vocale. C'est également le cas des méthodes utilisant une analyse du signal en sous-bandes, méthodes qui sont proches de celles faisant appel à une transformée de Fourier. C'est encore le cas des méthodes faisant appel à l'analyse cepstrale.Many other solutions are also known which have been developed to overcome the lack of reliability of the previous one. This is particularly the case for those which implement a Fourier transform of the audio signal to measure the spectral distance separating it from an averaged noise signal which is updated in the absence of any vocal activity. This is also the case for methods using an analysis of the signal in sub-bands, methods which are close to those using a Fourier transform. This is also the case for methods using cepstral analysis.
Il s'agit là de techniques beaucoup plus complexes qui, si elles apportent bien un gain au niveau de la fiabilité, ne donnent cependant pas complète satisfaction sur ce point.These are much more complex techniques which, although they bring a gain in terms of reliability, do not however give complete satisfaction on this point.
On connaît aussi des solutions qui mettent à profit une certaine périodicité de la parole au nombre desquelles figure celle décrite dans la demande de brevet EP 0 123 349. En effet, les sons voisés présentent tous une périodicité déterminée alors que le bruit est normalement apériodique ou bien présente une périodicité distincte de celle de la parole.Solutions are also known which take advantage of a certain periodicity of speech, among which is that described in
On peut donc rechercher la valeur de cette périodicité déterminée (ou "pitch" en anglais) pour reconnaître la présence de sons voisés.We can therefore search for the value of this determined periodicity (or "pitch" in English) to recognize the presence of voiced sounds.
Pour ce faire, on calcule généralement les coefficients d'autocorrélation du signal audio pour rechercher le second maximum de ces coefficients, le premier maximum représentant l'énergie. Il s'agit là encore d'une technique relativement complexe qui ne donne pas complète satisfaction sur le plan de la fiabilité.To do this, the autocorrelation coefficients of the audio signal are generally calculated to find the second maximum of these coefficients, the first maximum representing the energy. This is again a relatively complex technique which does not give complete satisfaction in terms of reliability.
La présente invention propose donc une solution pour détecter l'activité vocale qui procure une fiabilité acceptable pour une complexité réduite.The present invention therefore provides a solution for detecting voice activity which provides acceptable reliability for reduced complexity.
Selon l'invention, un dispositif de détection d'activité vocale dans un signal audio comprend :
- des moyens pour calculer les coefficients d'autocorrélation de ce signal,
- des moyens pour identifier un premier vecteur d'autocorrélation ayant pour composantes une première série de coefficients d'autocorrélation,
- des moyens pour identifier un second vecteur d'autocorrélation ayant pour composantes une deuxième série de coefficients d'autocorrélation décalée par rapport à la première série d'une valeur de décalage prédéterminée,
- des moyens pour soustraire le premier vecteur d'autocorrélation du second vecteur d'autocorrélation afin d'obtenir un vecteur de différentiation,
- des moyens pour calculer une norme de ce vecteur de différentiation, cette norme représentant un premier indicateur d'activité vocale.
- means for calculating the autocorrelation coefficients of this signal,
- means for identifying a first autocorrelation vector having as components a first series of autocorrelation coefficients,
- means for identifying a second autocorrelation vector having as components a second series autocorrelation coefficients offset from the first series by a predetermined offset value,
- means for subtracting the first autocorrelation vector from the second autocorrelation vector in order to obtain a differentiation vector,
- means for calculating a norm of this differentiation vector, this norm representing a first indicator of vocal activity.
De plus, le dispositif comprend des moyens de réduction pour établir une norme réduite en divisant la norme du vecteur de différentiation par une valeur de réduction, cette norme réduite représentant un deuxième indicateur d'activité vocale.In addition, the device comprises reduction means for establishing a reduced standard by dividing the standard of the differentiation vector by a reduction value, this reduced standard representing a second voice activity indicator.
A titre d'exemple, la valeur de réduction est égale à l'énergie du signal ou bien elle est égale à la somme de l'énergie du signal et d'une constante de compression.For example, the reduction value is equal to the energy of the signal or it is equal to the sum of the energy of the signal and a compression constant.
Selon une caractéristique additionnnelle du dispositif, celui-ci comprend des moyens de lissage de l'un de ces indicateurs d'activité vocale pour produire une combinaison linéaire de la valeur présente de cet indicateur et de sa valeur antérieure, cette combinaison linéaire représentant un troisième indicateur d'activité vocale.According to an additional characteristic of the device, it comprises means for smoothing one of these voice activity indicators to produce a linear combination of the present value of this indicator and its previous value, this linear combination representing a third voice activity indicator.
Par ailleurs, le dispositif comprend des moyens de décision pour produire un signal d'activité vocale si l'un de ces indicateurs excède un seuil de détection.Furthermore, the device comprises decision means for producing a voice activity signal if one of these indicators exceeds a detection threshold.
On peut trouver un intérêt à établir ce seuil de détection à partir de l'énergie du signal audio en l'absence de signal d'activité vocale.It may be advantageous to establish this detection threshold from the energy of the audio signal in the absence of a voice activity signal.
En outre, une solution avantageuse consiste à choisir la somme des valeurs absolues des composantes du vecteur de différentiation comme norme de ce vecteur.In addition, an advantageous solution consists in choosing the sum of the absolute values of the components of the differentiation vector as the norm of this vector.
L'invention concerne également une méthode de détection d'activité vocale dans un signal audio comprenant les opérations suivantes :
- calcul des coefficients d'autocorrélation de ce signal,
- identification d'un premier vecteur d'autocorrélation ayant pour composantes une première série de coefficients d'autocorrélation,
- identification d'un second vecteur d'autocorrélation ayant pour composantes une deuxième série de coefficients d'autocorrélation décalée par rapport à la première série d'une valeur de décalage prédéterminée,
- soustraction du premier vecteur d'autocorrélation du second vecteur d'autocorrélation afin d'obtenir un vecteur de différentiation,
- calcul d'une norme du vecteur de différentiation, cette norme représentant un premier indicateur d'activité vocale.
- calculation of the autocorrelation coefficients of this signal,
- identification of a first autocorrelation vector having as components a first series of autocorrelation coefficients,
- identification of a second autocorrelation vector having as components a second series of autocorrelation coefficients offset with respect to the first series by a predetermined offset value,
- subtraction of the first autocorrelation vector from the second autocorrelation vector in order to obtain a differentiation vector,
- calculation of a standard of the differentiation vector, this standard representing a first indicator of vocal activity.
La présente invention appraîtra maintenant de manière plus claire dans le cadre d'un exemple de réalisation donné à titre illustratif en se référant à la figure annexée qui représente le déroulement des opérations effectuées par le dispositif de détection d'activité vocale.The present invention will now appear more clearly in the context of an exemplary embodiment given by way of illustration with reference to the appended figure which represents the flow of operations carried out by the voice activity detection device.
On se place dans le cas où un signal audio est de nature numérique, c'est-à-dire qu'il se présente sous la forme d'une suite d'échantillons qui correspondent à la valeur du signal à des instants successifs qui se répètent au rythme d'une fréquence d'échantillonnage.We place ourselves in the case where an audio signal is digital in nature, that is to say that it is in the form of a series of samples which correspond to the value of the signal at successive instants which repeat at the rate of a sampling frequency.
Lorsque le signal à analyser est de nature analogique, s'il est issu d'un microphone par exemple, il est d'abord soumis à un convertisseur analogique-numérique qui fonctionne à la cadence de cette fréquence d'échantillonnage pour produire le signal audio.When the signal to be analyzed is analog in nature, if it comes from a microphone for example, it is first subjected to an analog-digital converter which operates at the rate of this sampling frequency to produce the audio signal .
Le signal audio étant numérique, il apparaît naturel de réaliser le dispositif de détection d'activité vocale au moyen d'un processeur de signal numérique. Ce processeur pourra bien entendu être utilisé à d'autres fins.The audio signal being digital, it seems natural to realize the voice activity detection device by means of a digital signal processor. This processor can of course be used for other purposes.
On comprend donc que ce dispositif de détection ne sera pas décrit dans sa structure car il met en oeuvre des opérations élémentaires bien connues de l'homme du métier telles que additions, multiplications, comparaisons. C'est donc une description fonctionnelle qui a été retenue, car elle semble de loin préférable pour expliciter la mise en oeuvre de l'invention avec la plus grande clarté.It is therefore understood that this detection device will not be described in its structure because it implements elementary operations well known to those skilled in the art such as additions, multiplications, comparisons. It is therefore a functional description which has been retained, because it seems far preferable to explain the implementation of the invention with the greatest clarity.
En référence à la figure unique, le dispositif reçoit donc le signal audio et on considère une série d'échantillons S(i) où i varie de 0 à N.With reference to the single figure, the device therefore receives the audio signal and we consider a series of samples S (i) where i varies from 0 to N.
La première opération qu'effectue le dispositif est le calcul des coefficients d'autocorrélation R(k) du signal pour toutes les valeurs de k comprises entre O et N :
A partir de ces coefficients d'autocorrélation R(k) on peut définir un premier R₀ et un second Rq vecteurs d'autocorrélation en considérant de plus une valeur de décalage q qui est un entier strictement positif. Le premier vecteur d'autocorrélation R₀ a pour composants les (N-q+1) premiers coefficients d'autocorrélation R(k) :
Le second vecteur d'autocorrélation Rq a pour composants les (N-q+1) derniers coefficients d'autocorrélation R(k) :
Le dispositif de détection calcule alors un vecteur de différentiation ΔR en soustrayant le premier vecteur d'autocorrélation R₀ du second vecteur d'autocorrélation Rq :
Si l'on note ΔR(k) la (k+1)ième composante de ce vecteur de différenciation, celle-ci vaut alors pour tout k compris entre 0 et N-q :
On s'aperçoit que les premiers R₀ et deuxième Rq vecteurs d'autocorrélation n'ont pas d'utilité en eux-mêmes. Ils ont été introduits dans le simple but de clarifier la présentation. Le point important est le calcul du vecteur de différenciation. Ainsi, ce vecteur se définit par la valeur de ces composantes telle que définie ci-dessus.We can see that the first R₀ and second R q autocorrelation vectors have no utility in themselves. They have been introduced for the simple purpose of clarifying the presentation. The important point is the calculation of the differentiation vector. Thus, this vector is defined by the value of these components as defined above.
Dès lors, le dispositif de détection calcule une norme ∥ΔR∥ du vecteur de différentiation ΔR. De manière avantageuse, cette norme est égale à la somme des valeurs absolues des composantes du vecteur :
Il va sans dire que l'invention s'applique également si l'on choisit de retenir une autre norme telle que, notamment, la norme euclidienne ou la valeur maximale des valeurs absolues de chacune des composantes.It goes without saying that the invention also applies if one chooses to choose another standard such as, in particular, the Euclidean standard or the maximum value of the absolute values of each of the components.
Cette norme, quelle qu'elle soit, constitue un premier indicateur d'activité vocale.This standard, whatever it is, constitutes a first indicator of vocal activity.
Une première option consiste à comparer cet indicateur à un seuil pour établir qu'il y a présence d'activité vocale dans le signal audio si l'indicateur est supérieur au seuil.A first option is to compare this indicator with a threshold to establish that there is presence of voice activity in the audio signal if the indicator is greater than the threshold.
Selon une seconde option, le dispositif de détection calcule une norme réduite P en divisant la norme ∥ΔR∥ du vecteur de différentiation par une valeur de réduction. A titre d'exemple, cette valeur de réduction peut être choisie égale à l'énergie R(0) du signal audio, ce qui va tendre à comprimer la dynamique de la norme ∥ΔR∥. Une autre solution qui procure ses avantages propres consiste à affecter à cette valeur de réduction la somme de l'énergie R(0) du signal audio et d'une constante que l'on nommera valeur plancher C.According to a second option, the detection device calculates a reduced standard P by dividing the standard ∥ΔR∥ of the differentiation vector by a reduction value. For example, this reduction value can be chosen equal to the energy R (0) of the audio signal, which will tend to compress the dynamics of the ∥ΔR∥ standard. Another solution which provides its own advantages consists in assigning to this reduction value the sum of the energy R (0) of the audio signal and of a constant which will be called the floor value C.
Cette norme réduite P, en tout état de cause constitue un deuxième indicateur d'activité vocale que l'on peut également comparer à un seuil pour établir l'absence ou la présence d'activité vocale dans ce signal.This reduced standard P, in any event constitutes a second indicator of vocal activity which can also be compared to a threshold to establish the absence or the presence of vocal activity in this signal.
Selon une troisième option, le dispositif de détection procède à un lissage de cette norme réduite. Ainsi, si l'on considère plusieurs séries successives de N échantillons du signal audio, une norme réduite Pi correspond à la iième série. La valeur lissée
On peut choisir α et β de sorte que leur somme soit égale à l'unité.We can choose α and β so that their sum is equal to unity.
De plus, il convient d'initialiser
Cette valeur lissée
Quel que soit l'indicateur d'activité vocale retenu, le dispositif de détection le compare donc à un seuil de détection T. La solution la plus simple consiste à affecter une valeur constante à ce seuil de détection.Whatever the voice activity indicator selected, the detection device therefore compares it to a detection threshold T. The simplest solution consists in assigning a constant value to this detection threshold.
Cependant, une solution avantageuse consiste à adapter ce seuil au niveau de la norme réduite P lorsque le signal audio est dépourvu d'activité vocale.However, an advantageous solution consists in adapting this threshold to the level of the reduced standard P when the audio signal is devoid of voice activity.
On peut donc calculer la valeur moyenne de la norme réduite sur plusieurs séries successives d'échantillons du signal audio pour lesquelles aucune activité vocale n'a été détectée et multiplier cette valeur moyenne par un coefficient constant pour obtenir le seuil de détection T. Il s'agit là d'une technique analogue à celle du lissage bien connue de l'homme du métier et elle ne sera donc pas plus détaillée.We can therefore calculate the average value of the reduced standard over several successive series of samples of the audio signal for which no voice activity has been detected and multiply this average value by a constant coefficient to obtain the detection threshold T. It s 'This is a technique similar to that of smoothing well known to those skilled in the art and it will therefore not be more detailed.
Outre le dispositif de détection proprement dit, l'invention concerne naturellement la méthode de détection d'activité vocale qui est mise en oeuvre par ce dispositif.In addition to the actual detection device, the invention naturally relates to the method for detecting voice activity which is implemented by this device.
A titre d'application numérique et pour présenter un cas concret d'utilisation de l'invention, on prendra pour illustration le système paneuropéen de radiocommunication cellulaire numérique dit système GSM. Dans ce système le signal analogique à traiter est échantillonné à la fréquence de 8 kHz. Les échantillons ainsi obtenus sont regroupés en séries de 160 qui correspondent donc chacune à 20 ms.By way of digital application and to present a concrete case of use of the invention, we will take as illustration the pan-European digital cellular radiocommunication system called GSM system. In this system the analog signal to be processed is sampled at the frequency of 8 kHz. The samples thus obtained are grouped in series of 160 which therefore each correspond to 20 ms.
Ainsi, N, le nombre d'échantillons, vaut 160 et l'on choisira de manière avantageuse de fixer la valeur de décalage q égale à l'unité.Thus, N, the number of samples, is worth 160 and it will be advantageous to choose to set the offset value q equal to unity.
Les composantes du vecteur de différentiation s'écrivent alors pour tout k compris entre 1 et 160 :
La norme de ce vecteur peut donc s'écrire :
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9413962A FR2727236B1 (en) | 1994-11-22 | 1994-11-22 | DETECTION OF VOICE ACTIVITY |
FR9413962 | 1994-11-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0714088A1 true EP0714088A1 (en) | 1996-05-29 |
EP0714088B1 EP0714088B1 (en) | 1999-08-18 |
Family
ID=9469024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95402589A Expired - Lifetime EP0714088B1 (en) | 1994-11-22 | 1995-11-17 | Voice activity detection |
Country Status (10)
Country | Link |
---|---|
US (1) | US5732141A (en) |
EP (1) | EP0714088B1 (en) |
JP (1) | JPH08221097A (en) |
AT (1) | ATE183598T1 (en) |
AU (1) | AU698712B2 (en) |
CA (1) | CA2163295A1 (en) |
DE (1) | DE69511508T2 (en) |
ES (1) | ES2136815T3 (en) |
FI (1) | FI955584A (en) |
FR (1) | FR2727236B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19716862A1 (en) * | 1997-04-22 | 1998-10-29 | Deutsche Telekom Ag | Voice activity detection |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6556967B1 (en) | 1999-03-12 | 2003-04-29 | The United States Of America As Represented By The National Security Agency | Voice activity detector |
US6381568B1 (en) | 1999-05-05 | 2002-04-30 | The United States Of America As Represented By The National Security Agency | Method of transmitting speech using discontinuous transmission and comfort noise |
EP1170728A1 (en) * | 2000-07-05 | 2002-01-09 | Alcatel | System for adaptively reducing noise in speech signals |
EP1304682A1 (en) * | 2000-07-05 | 2003-04-23 | Alcatel | Distributed speech recognition system |
EP1175058A1 (en) * | 2000-07-21 | 2002-01-23 | Alcatel | Processor system, and terminal, and network-unit, and method |
US7305099B2 (en) * | 2003-08-12 | 2007-12-04 | Sony Ericsson Mobile Communications Ab | Electronic devices, methods, and computer program products for detecting noise in a signal based on autocorrelation coefficient gradients |
EP1729410A1 (en) * | 2005-06-02 | 2006-12-06 | Sony Ericsson Mobile Communications AB | Device and method for audio signal gain control |
CN101983402B (en) * | 2008-09-16 | 2012-06-27 | 松下电器产业株式会社 | Speech analyzing apparatus, speech analyzing/synthesizing apparatus, correction rule information generating apparatus, speech analyzing system, speech analyzing method, correction rule information and generating method |
US9002030B2 (en) | 2012-05-01 | 2015-04-07 | Audyssey Laboratories, Inc. | System and method for performing voice activity detection |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0123349A1 (en) * | 1983-04-20 | 1984-10-31 | Philips Electronics Uk Limited | Apparatus for distinguishing between speech and certain other signals |
EP0335521A1 (en) * | 1988-03-11 | 1989-10-04 | BRITISH TELECOMMUNICATIONS public limited company | Voice activity detection |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3919479A (en) * | 1972-09-21 | 1975-11-11 | First National Bank Of Boston | Broadcast signal identification system |
JPS597120B2 (en) * | 1978-11-24 | 1984-02-16 | 日本電気株式会社 | speech analysis device |
JPS5672499A (en) * | 1979-11-19 | 1981-06-16 | Hitachi Ltd | Pretreatment for voice identifier |
US4720802A (en) * | 1983-07-26 | 1988-01-19 | Lear Siegler | Noise compensation arrangement |
JPS62204652A (en) * | 1986-03-04 | 1987-09-09 | Nec Corp | Audible frequency signal identification system |
US4815137A (en) * | 1986-11-06 | 1989-03-21 | American Telephone And Telegraph Company | Voiceband signal classification |
FR2623382B1 (en) * | 1987-11-24 | 1991-05-03 | Peugeot Cycles | DEVICE FOR FIXING A COVERING, IN PARTICULAR A SEAT COVERING |
US5276765A (en) * | 1988-03-11 | 1994-01-04 | British Telecommunications Public Limited Company | Voice activity detection |
US5410632A (en) * | 1991-12-23 | 1995-04-25 | Motorola, Inc. | Variable hangover time in a voice activity detector |
-
1994
- 1994-11-22 FR FR9413962A patent/FR2727236B1/en not_active Expired - Fee Related
-
1995
- 1995-11-17 EP EP95402589A patent/EP0714088B1/en not_active Expired - Lifetime
- 1995-11-17 ES ES95402589T patent/ES2136815T3/en not_active Expired - Lifetime
- 1995-11-17 AT AT95402589T patent/ATE183598T1/en not_active IP Right Cessation
- 1995-11-17 DE DE69511508T patent/DE69511508T2/en not_active Expired - Fee Related
- 1995-11-20 CA CA002163295A patent/CA2163295A1/en not_active Abandoned
- 1995-11-20 AU AU37937/95A patent/AU698712B2/en not_active Ceased
- 1995-11-20 US US08/560,645 patent/US5732141A/en not_active Expired - Fee Related
- 1995-11-20 FI FI955584A patent/FI955584A/en unknown
- 1995-11-22 JP JP7304462A patent/JPH08221097A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0123349A1 (en) * | 1983-04-20 | 1984-10-31 | Philips Electronics Uk Limited | Apparatus for distinguishing between speech and certain other signals |
EP0335521A1 (en) * | 1988-03-11 | 1989-10-04 | BRITISH TELECOMMUNICATIONS public limited company | Voice activity detection |
Non-Patent Citations (1)
Title |
---|
K.S. RAFILA ET AL.: "Voiced/Unvoiced/Mixed excitation classification of speech using the autocorrelation of the output of an adpcm system", IEEE INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING, 24 August 1989 (1989-08-24), FAIRBORN,OHIO, pages 537 - 540, XP000089110 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19716862A1 (en) * | 1997-04-22 | 1998-10-29 | Deutsche Telekom Ag | Voice activity detection |
US6374211B2 (en) | 1997-04-22 | 2002-04-16 | Deutsche Telekom Ag | Voice activity detection method and device |
Also Published As
Publication number | Publication date |
---|---|
ES2136815T3 (en) | 1999-12-01 |
FR2727236A1 (en) | 1996-05-24 |
JPH08221097A (en) | 1996-08-30 |
DE69511508T2 (en) | 2000-07-06 |
ATE183598T1 (en) | 1999-09-15 |
FR2727236B1 (en) | 1996-12-27 |
AU698712B2 (en) | 1998-11-05 |
CA2163295A1 (en) | 1996-05-23 |
AU3793795A (en) | 1996-05-30 |
US5732141A (en) | 1998-03-24 |
DE69511508D1 (en) | 1999-09-23 |
EP0714088B1 (en) | 1999-08-18 |
FI955584A0 (en) | 1995-11-20 |
FI955584A (en) | 1996-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0127718B1 (en) | Process for activity detection in a voice transmission system | |
KR100269216B1 (en) | Pitch determination method with spectro-temporal auto correlation | |
EP1730729A1 (en) | Improved voice signal conversion method and system | |
FR2522179A1 (en) | METHOD AND APPARATUS FOR RECOGNIZING WORDS FOR RECOGNIZING PARTICULAR PHONEMES OF THE VOICE SIGNAL WHATEVER THE PERSON WHO SPEAKS | |
EP0867856A1 (en) | Method and apparatus for vocal activity detection | |
EP0714088B1 (en) | Voice activity detection | |
EP0234993B1 (en) | Method and device for automatic target recognition starting from doppler echos | |
WO2005106853A1 (en) | Method and system for the quick conversion of a voice signal | |
EP1606792B1 (en) | Method for analyzing fundamental frequency information and voice conversion method and system implementing said analysis method | |
EP2795618B1 (en) | Method of detecting a predetermined frequency band in an audio data signal, detection device and computer program corresponding thereto | |
EP0490740A1 (en) | Method and apparatus for pitch period determination of the speech signal in very low bitrate vocoders | |
EP3192073B1 (en) | Discrimination and attenuation of pre-echoes in a digital audio signal | |
EP1039736B1 (en) | Method and device for adaptive identification and related adaptive echo canceller | |
EP0534837A1 (en) | Speech processing method in presence of acoustic noise using non-linear spectral subtraction and hidden Markov models | |
EP1116216A1 (en) | Method and device for detecting voice activity | |
FR2905489A1 (en) | PHASE ESTIMATION PROCESS FOR SINUSOIDAL MODELING OF A DIGITAL SIGNAL. | |
Stegmann et al. | Robust classification of speech based on the dyadic wavelet transform with application to CELP coding | |
EP0616315A1 (en) | Digital speech coding and decoding device, process for scanning a pseudo-logarithmic LTP codebook and process of LTP analysis | |
US7155387B2 (en) | Noise spectrum subtraction method and system | |
JP2932996B2 (en) | Harmonic pitch detector | |
EP0015363B1 (en) | Speech detector with a variable threshold level | |
EP0821345B1 (en) | Method to determine the fundamental frequency of a speech signal | |
EP1605440B1 (en) | Method for signal source separation from a mixture signal | |
EP1192618B1 (en) | Audio coding with adaptive liftering | |
EP1192621B1 (en) | Audio encoding with harmonic components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19961011 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19981203 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALCATEL |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990818 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALCATEL |
|
REF | Corresponds to: |
Ref document number: 183598 Country of ref document: AT Date of ref document: 19990915 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69511508 Country of ref document: DE Date of ref document: 19990923 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19991118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991130 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2136815 Country of ref document: ES Kind code of ref document: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
BERE | Be: lapsed |
Owner name: ALCATEL Effective date: 19991130 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20011016 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20011026 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20011105 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20011119 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021118 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021130 |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20031213 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20071123 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20071126 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20071120 Year of fee payment: 13 Ref country code: FR Payment date: 20071122 Year of fee payment: 13 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20081117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081117 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081130 |