EP0705245B1 - Novel intermediates for the preparation of antihistaminic 4-diphenylmethyl/diphenylmethoxy piperidine derivatives - Google Patents
Novel intermediates for the preparation of antihistaminic 4-diphenylmethyl/diphenylmethoxy piperidine derivatives Download PDFInfo
- Publication number
- EP0705245B1 EP0705245B1 EP94919264A EP94919264A EP0705245B1 EP 0705245 B1 EP0705245 B1 EP 0705245B1 EP 94919264 A EP94919264 A EP 94919264A EP 94919264 A EP94919264 A EP 94919264A EP 0705245 B1 EP0705245 B1 EP 0705245B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compound
- appropriate
- halo
- give
- described previously
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 0 CC1CC*CC1 Chemical compound CC1CC*CC1 0.000 description 9
- AWOYEMIXXAHPQT-UHFFFAOYSA-N CCOC(C1CCN(C)CC1)(c1ccccc1)c1ccccc1 Chemical compound CCOC(C1CCN(C)CC1)(c1ccccc1)c1ccccc1 AWOYEMIXXAHPQT-UHFFFAOYSA-N 0.000 description 2
- RZORFOKYPPSXFD-UHFFFAOYSA-N CCC(CC1)C=CC1I Chemical compound CCC(CC1)C=CC1I RZORFOKYPPSXFD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/16—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
- C07D295/18—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
- C07D295/182—Radicals derived from carboxylic acids
- C07D295/185—Radicals derived from carboxylic acids from aliphatic carboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/08—Bronchodilators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
- C07C235/70—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton
- C07C235/72—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms
- C07C235/76—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
- C07C235/78—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton the carbon skeleton containing rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/01—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
- C07C255/16—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound oxygen atoms bound to the same carbon atom of an acyclic carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C259/00—Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups
- C07C259/04—Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids
- C07C259/06—Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids having carbon atoms of hydroxamic groups bound to hydrogen atoms or to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C33/00—Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C33/40—Halogenated unsaturated alcohols
- C07C33/46—Halogenated unsaturated alcohols containing only six-membered aromatic rings as cyclic parts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/45—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
- C07C45/46—Friedel-Crafts reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/63—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/65—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by splitting-off hydrogen atoms or functional groups; by hydrogenolysis of functional groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/67—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
- C07C45/673—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by change of size of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/782—Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
- C07C49/792—Ketones containing a keto group bound to a six-membered aromatic ring polycyclic containing rings other than six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/794—Ketones containing a keto group bound to a six-membered aromatic ring having unsaturation outside an aromatic ring
- C07C49/798—Ketones containing a keto group bound to a six-membered aromatic ring having unsaturation outside an aromatic ring containing rings other than six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/80—Ketones containing a keto group bound to a six-membered aromatic ring containing halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/80—Ketones containing a keto group bound to a six-membered aromatic ring containing halogen
- C07C49/813—Ketones containing a keto group bound to a six-membered aromatic ring containing halogen polycyclic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/82—Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/82—Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups
- C07C49/825—Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups all hydroxy groups bound to the ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/82—Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups
- C07C49/83—Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups polycyclic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/82—Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups
- C07C49/835—Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups having unsaturation outside an aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/86—Ketones containing a keto group bound to a six-membered aromatic ring containing —CHO groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/40—Unsaturated compounds
- C07C59/76—Unsaturated compounds containing keto groups
- C07C59/86—Unsaturated compounds containing keto groups containing six-membered aromatic rings and other rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/40—Unsaturated compounds
- C07C59/76—Unsaturated compounds containing keto groups
- C07C59/88—Unsaturated compounds containing keto groups containing halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/007—Esters of unsaturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/73—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
- C07C69/738—Esters of keto-carboxylic acids or aldehydo-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/08—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
- C07D211/18—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D211/20—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms
- C07D211/22—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/06—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/02—Systems containing only non-condensed rings with a three-membered ring
Definitions
- the present invention is related to novel intermediates which are useful in the preparation of certain piperidine derivatives which are useful as antihistamines, antiallergy agents and bronchodilators US-A-4,254,129 (March 3, 1981), US-A-4,254,130 (March 3, 1981), US-A-4,285,958 (April 25, 1981) and US-A-4,550,116 (Oct. 29, 1985).
- R 1 represents hydrogen or hydroxy;
- R 2 represents hydrogen;
- n is an integer of from 1 to 5;
- m is an integer 0 or 1;
- R 3 is -COOH or -COOalkyl wherein the alkyl moiety has from 1 to 6 carbon atoms and is straight or branched; each of A is hydrogen or hydroxy; and pharmaceutically acceptable salts and individual optical isomers thereof, with the proviso that where R 1 and R 2 are taken together to form a second bond between the carbon atoms bearing R 1 and R 2 or where R 1 represented hydroxy, m is an integer 0.
- US-A- 4,550,116 discloses compounds of the general formula and pharmaceutically acceptable salts thereof which are prepared by condensation of ⁇ -substituted benzylhalides with N-(benzoylpropyl or phenyl-hydroxypropyl)-4-hydroxy piperidines or condensation of di-substituted-methoxy-piperidines with a benzoylpropyl halide or a phenyl-hydroxypropylhalide.
- ⁇ -haloalkyl substituted phenyl ketones wherein Z is hydrogen are prepared by reacting an appropriate straight or branched lower alkyl C 1 -C 6 ester of ⁇ , ⁇ -dimethylphenylacetic acid with the compound of the following formula: under the general conditions of a Friedl-Craft's acylation, wherein halo and m are described in column 11 of US-A-4,254,129.
- R 1 represents C 1 -C 6 alkyl and R 2 represent H, C 1 -C 6 alkyl, C 1 -C 6 alkoxy or R 1 and R 2 taken together with the nitrogen atom form a pyrrolidine, piperidine or morpholine.
- R 1 represents C 1 -C 6 alkyl and R 2 represents H, C 1 -C 6 alkyl, C 1 -C 6 alkoxy or R 1 and R 2 taken together with the nitrogen atom form a pyrrolidine, piperidine or morpholine.
- C 1 -C 6 alkyl refers to a straight or branched alkyl group having from 1 to 6 carbon atoms and as referred to herein are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, neopentyl and n-hexyl.
- C 1 -C 6 alkoxy refers to a straight or branched alkoxy group having from 1 to 6 carbon atoms and as referred to herein are methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, neopentoxy and n-hexoxy.
- Hal or halo refers to a halogen group and includes Cl, Br or I.
- the piperidine derivatives of the formula (XI) can form pharmaceutically acceptable salts.
- Pharmaceutically acceptable acid addition salts of the compounds of this invention are those of any suitable inorganic or organic acid. Suitable inorganic acids are, for example, hydrochloric, hydrobromic, sulfuric, and phosphoric acids.
- Suitable organic acids include carboxylic acids, such as, acetic, propionic, glycolic, lactic, pyruvic, malonic, succinic, fumaric, malic, tartaric, citric, cyclamic, ascorbic, maleic, hydroxymaleic, and dihydroxymaleic, benzoic, phenylacetic, 4-aminobenzoic, 4-hydroxybenzoic, anthranillic, cinnamic, salicyclic, 4-aminosalicyclic, 2-phenoxybenzoic, 2-acetoxybenzoic, and mandelic acid, sulfonic acids, such as, methanesulfonic, ethanesulfonic and ⁇ -hydroxyethanesulfonic acid.
- carboxylic acids such as, acetic, propionic, glycolic, lactic, pyruvic, malonic, succinic, fumaric, malic, tartaric, citric, cyclamic, ascorbic, maleic, hydroxymaleic, and di
- Non-toxic salts of the compounds of the above-identified formula formed with inorganic or organic bases are also included within the scope of this invention and include, for example, those of alkali metals, such as, sodium, potassium and lithium, alkaline earth metals, for example, calcium and magnesium, light metals of group IIIA, for example, aluminum, organic amines, such as, primary, secondary or tertiary amines, for example, cyclohexylamine, ethylamine, pyridine, methylaminoethanol and piperazine.
- the salts are prepared by conventional means as, for example, by treating a piperidine derivative of formula (I) with an appropriate acid or base.
- Reference - Scheme A provides various general synthetic procedures for preparing intermediates not covered by the present invention.
- step a the appropriate toluene derivative of structure (1) is methylated to give the corresponding ethylbenzene derivative of structure (2).
- toluene of structure (1) is reacted with a slight molar excess of an appropriate methylating agent, such as iodomethane, chloromethane or bromomethane in the presence of a suitable non-nucleophilic base, such as potassium t-butoxide or sodium hydride.
- a suitable non-nucleophilic base such as potassium t-butoxide or sodium hydride.
- the reaction is typically conducted in a suitable organic solvent, such as diglyme, tert-butyl methyl ether or methylene chloride, for a period of time ranging from 30 minutes to 24 hours and at a temperature range of from -78°C to room temperature.
- the corresponding ethylbenzene derivative of structure (2) is recovered from the reaction zone by extractive methods as is known in the art and may be purified by distillation.
- step b the appropriate ethylbenzene derivative of structure (2) is methylated to give the corresponding cumene derivative of structure (3) as described previously in step a, but using at least 2 molar equivalents of methylating agent.
- step c the appropriate toluene derivative of structure (1) is dimethylated to give the corresponding cumeme derivative of structure (3) as described previously in step a but using at least 2 molar equivalents of methylating agent.
- the reaction is carried out in a solvent, such as carbon disulfide, 1,2-dichloroethane, n-hexane, acetonitrile, 1-nitropropane, nitromethane, diethyl ether and carbon tetrachloride, methylene chloride, tetrachloroethane or nitrobenzene with methylene chloride being the preferred solvent.
- a solvent such as carbon disulfide, 1,2-dichloroethane, n-hexane, acetonitrile, 1-nitropropane, nitromethane, diethyl ether and carbon tetrachloride, methylene chloride, tetrachloroethane or nitrobenzene with methylene chloride being the preferred solvent.
- the reaction time varies from about 1/2 hour to 25 hours, preferably 10 to 16 hours and the reaction temperature varies from about 0°C to 25°C.
- the mixture is heated at about 70°C for about 2 hours after which a 30% sodium acetate solution is added and extracted with ether.
- the organic layer is dried and the solvent evaporated to give the corresponding ⁇ -halo tolylketone compound of structure (4).
- the ⁇ -halo tolylketone compound of structure (4) may be purified by procedures well known in the art, such as crystallization and/or distillation.
- Suitable Lewis acids for the acylation reaction described in step d are well known and appreciated in the art.
- suitable Lewis acids are boron trichloride, aluminum chloride, titanium tetrachloride, boron trifluoride, tin tetrachloride, ferric chloride, cobalt(II) chloride and zinc chloride, with aluminum chloride being preferred.
- the selection and utilization of suitable Lewis acids for the acylation reaction of step d is well known and appreciated by one of ordinary skill in the art.
- the phenol functionality of those toluene derivatives of structure (1), wherein A is hydroxy may be protected with a suitable protecting group.
- suitable protecting groups for the phenolic hydroxy include methyl ether, 2-methoxyethoxymethyl ether (MEM), cyclohexyl ether, o-nitrobenzyl ether, 9-anthryl ether, t-butyldimethylsilyl ether, acetate, benzoate, methyl carbamate, benzyl carbamate, aryl pivaloate and aryl methanesulfonate.
- step e the appropriate toluene derivative of structure (1) is acylated with an appropriate cyclopropyl compound of the structure wherein B is as previously defined to give the corresponding cyclopropyl tolylketone derivative of structure (5) as described previously in step d.
- step g the appropriate ethylbenzene derivative of structure (2) is acylated with an appropriate cyclopropyl compound of the structure wherein B is as previously defined to give the corresponding cyclopropyl ethylphenylketone derivative of structure (7) as described previously in step e.
- step i the appropriate cumene derivative of structure (3) is acylated with an appropriate cyclopropyl compound of the structure wherein B is as previously defined to give the corresponding cyclopropyl cumylketone derivative of structure (9) as described previously in step e.
- the appropriate cyclopropyl tolylketone derivative of structure (5) is reacted with an appropriate hydrogen halide in a suitable organic solvent, such as toluene, xylene and ethanol.
- a suitable organic solvent such as toluene, xylene and ethanol.
- the reaction is typically conducted at a temperature range of from room temperature to 70°C and for a period of time ranging from 20 minutes to 10 hours.
- the reaction is typically conducted at a temperature range of from -10°C to room temperature and for a period of time ranging from 10 minutes to 5 hours.
- the corresponding cyclopropyl tolylketone derivative of structure (5) is isolated from the reaction zone by extractive methods as are known in the art and may be purified by distillation.
- step p the appropriate ⁇ -halo ethylphenylketone compound of structure (6) is methylated to give the corresponding ⁇ -halo cumylketone compound of structure (8) as described previously in step a.
- step q the appropriate cyclopropyl tolylketone derivative of structure (5) is dimethylated to give the corresponding cyclopropyl cumylketone derivative of structure (9) as described previously in step c.
- step r the appropriate ⁇ -halo tolylketone compound of structure (4) is methylated to give the corresponding ⁇ -halo ethylphenylketone compound of structure (6) as described previously in step a.
- step s the appropriate ⁇ -halo tolylketone compound of structure (4) is dimethylated to give the corresponding ⁇ -halo cumylketone compound of structure (8) as described previously in step c.
- step t the appropriate cyclopropyl ethylphenylketone derivative of structure (7) is methylated to give the corresponding cyclopropyl cumylketone derivative of structure (9) as described previously in step a.
- step u the appropriate cyclopropyl tolylketone derivative of structure (5) is methylated to give the corresponding cyclopropyl ethylphenylketone derivative of structure (7) as described previously in step a.
- Reference - Scheme B provides various general synthetic procedures for preparing intermediates not covered by the present invention.
- step a the appropriate ⁇ -halo cumylketone compound of structure (8) is halogenated to give the corresponding ⁇ -halo-halocumylketone compound of structure (10).
- the appropriate ⁇ -halo-halocumylketone compound of structure (10) may be prepared by reacting an appropriate ⁇ -halo cumylketone compound of structure (8) with a suitable halogenating agent optionally in the presence of a catalytic amount of a suitable initiator.
- suitable brominating agents are N-bromosuccinimide, and 1,3-dibromo-5,5-dimethyl hydantoin, with N-bromosuccinimide being preferred.
- An example of suitable chlorinating agent is N-chlorosuccinimide and an example of a suitable iodinating agent is N-iodosuccinimide.
- Suitable initiators are benzoyl peroxide, AIBN, t-butyl peroxide and ultraviolet light.
- the reaction is carried out in a solvent, such as carbon tetrachloride, methylene chloride, 1,2-dichlorobenzene, 1,2-dichloroethane, ethyl formate or ethyl acetate, with carbon tetrachloride being the preferred solvent.
- the reaction time varies from about 1/2 hour to 8 hours, preferably 1/2 to 2 hours and the reaction temperature varies from about 25°C to the reflux temperature of the solvent employed, preferably 70°C to 80°C.
- the corresponding ⁇ -halo-halocumylketone compound of structure (10) is recovered from the reaction zone by extractive methods as are known in the art followed by evaporation of the solvent.
- the halogenation reaction of step a may be carried out in a 2-phase procedure.
- the appropriate ⁇ -halo-halocumylketone compound of structure (10) may be prepared by reacting an appropriate ⁇ -halo cumylketone compound of structure (8) with a suitable halogenating agent, such as sodium bromate/sodium bromide, in a solvent mixture such as methylene chloride and water, catalyzing the reaction with, for example, ultraviolet light.
- a suitable halogenating agent such as sodium bromate/sodium bromide
- the ⁇ -halo-halocumylketone compound of structure (10) may dehydrohalogenate to the corresponding ⁇ -methylstyrene, giving various mixtures of ⁇ -halo-halocumylketone compound of structure (10) and ⁇ -methylstyrene compounds.
- the ⁇ -methylstyrene compounds in such a mixture may be back-converted to ⁇ -halo-halocumylketone compound of structure (10) by treatment with anhydrous hydrogen halide gas.
- a solution of the mixture of ⁇ -halo-halocumylketone compound of structure (10) and ⁇ -methylstyrene compounds in a suitable organic solvent, such as methylene chloride or acetonitrile, is treated with a suitable anhydrous hydrogen halide gas, such as hydrogen chloride.
- a suitable organic solvent such as methylene chloride or acetonitrile
- the reaction is typically treated with the hydrogen halide gas for a period of time ranging from 30 minutes to 5 hours and at a temperature range of from 0°C to room temperature.
- the remediated ⁇ -halo-halocumylketone compound of structure (10) may be isolated by evaporation of solvent, but may be stored as a solution in the organic solvent containing hydrogen halide gas.
- halogen exchange of the benzylic halogen can be accomplished by thorough solvolysis in the presence of the appropriate hydrogen halide.
- the ⁇ -chloro-halocumylketone compound of structure (10) can be prepared from the ⁇ -bromo-halocumylketone compound of structure (10) by thorough aqueous solvolysis in the presence of hydrogen chloride.
- step b the appropriate cyclopropyl cumylketone derivative of structure (9) is halogenated to give the corresponding cyclopropyl halocumylketone compound of structure (11) as described previously in step a.
- step d the appropriate ⁇ -halo ethylphenylketone compound of structure (6) is halogenated to give the corresponding ⁇ -halo-haloethylphenylketone compound of structure (12) as described previously in step a.
- step e the appropriate ⁇ -halo tolylketone compound of structure (4) is halogenated to give the corresponding ⁇ -halo halotolylketone compound of structure (13) as described previously in step a.
- step f the appropriate cyclopropyl ethylphenylketone derivative of structure (7) is halogenated to give the corresponding cyclopropyl haloethylphenylketone compound of structure (14) as described previously in step a.
- step g the appropriate cyclopropyl tolylketone derivative of structure (5) is halogenated to give the corresponding cyclopropyl halotolylketone of structure (15) as described previously in step a.
- Reference -Scheme D provides various general synthetic procedures for preparing intermediates, not covered by the present invention.
- step a the appropriate ⁇ -halo-halocumylketone compound of structure (10) is cyanated to give the corresponding ⁇ -halo-cyanocumylketone compound of structure (19).
- the appropriate ⁇ -halo-cyanocumylketone compound of structure (19) may be prepared by reacting an appropriate ⁇ -halo-halocumylketone compound of structure (10) with a suitable cyanating agent.
- suitable cyanating agents are trimethylsilyl cyanide, diethylaluminum cyanide and tetrabutylammonium cyanide, with trimethylsilyl cyanide being preferred.
- the reaction is carried out in a solvent, such as methylene chloride, tetrachloroethane and carbon tetrachloride, with methylene chloride being the preferred solvent.
- a catalytic amount of a suitable Lewis acid may also be employed in the reaction.
- Lewis acids examples include boron trichloride, aluminum chloride, titanium tetrachloride, boron trifluoride, tin tetrachloride and zinc chloride, with tin tetrachloride being preferred.
- the reaction time varies from about 1/2 hour to 8 hours, preferably 1/2 to 2 hours and the reaction temperature varies from about 0°C to room temperature, preferably room temperature.
- the ⁇ -halo-cyanocumylketone compound of structure (16) is recovered from the reaction zone by an aqueous quench followed by extraction as is known in the art.
- the ⁇ -halo-cyanocumylketone compound of structure (16) may be purified by procedures well known in the art, such as chromatography and crystallization.
- step b the appropriate ⁇ -halo cumylketone compound of structure (8) is cyanated to give the corresponding ⁇ -halo-cyanocumylketone compound of structure (19).
- the ⁇ -halo-cyanocumylketone compound of structure (19) may be prepared by reacting an appropriate ⁇ -halo cumylketone compound of structure (8) with a suitable cyanating agent.
- suitable cyanating agent are cyanogen chloride, cyanogen bromide and cyanogen iodide, with cyanogen chloride being preferred. The reaction is carried out according to the procedures outlined by Tanner and Bunce, J. Am. Chem. Soc. , 91, 3028 (1969).
- step c the appropriate cyclopropyl halocumylketone compound of structure (11) is cyanated to give the corresponding cyclopropyl cyanocumylketone compound of structure (20) as described previously in step a.
- step d the appropriate cyclopropyl cumylketone derivative of structure (9) is cyanated to give the corresponding cyclopropyl cyanocumylketone compound of structure (20) as described previously in step b.
- step e the appropriate ⁇ -halo-haloethylphenylketone compound of structure (12) is cyanated to give the corresponding ⁇ -halo-cyanoethylphenylketone compound of structure (21) as described previously in step a.
- step f the appropriate ⁇ -halo-ethylphenylketone compound of structure (6) is cyanated to give the corresponding ⁇ -halo-cyanoethylphenylketone compound of structure (21) as described previously in step b.
- step g the appropriate ⁇ -halo halotolylketone compound of structure (13) is cyanated to give the corresponding ⁇ -halo cyanotolylketone compound of structure (22) as described previously in step a.
- step h the appropriate ⁇ -halo tolylketone compound of structure (4) is cyanated to give the corresponding ⁇ -halo cyanotolylketone compound of structure (22) as described previously in step b.
- step i the appropriate cyclopropyl ethylphenylketone compound of structure (7) is cyanated to give the corresponding cyclopropyl cyanoethylphenylketone compound of structure (23) as described previously in step b.
- step j the appropriate cyclopropyl haloethylphenylketone compound of structure (14) is cyanated to give the corresponding cyclopropyl cyanoethylphenylketone compound of structure (23) as described previously in step a.
- step k the appropriate cyclopropyl tolylketone compound of structure (5) is cyanated to give the corresponding cyclopropyl cyanotolylketone compound of structure (24) as described previously in step b.
- step l the appropriate cyclopropyl halotolylketone of structure (15) is cyanated to give the corresponding cyclopropyl cyanotolylketone compound of structure (24) as described previously in step a.
- Scheme G provides alternative various general synthetic procedures for preparing the novel intermediates of formula (III).
- step a the appropriate phenylacetic acid amide compound of structure (37) is methylated to give the corresponding ⁇ -methylphenylacetic acid amide compound of structure (38) as described previously in Scheme A, step a.
- phenylacetic acid amide compound of structure (37) are prepared from the corresponding phenylacetic acid by standard amide-forming reactions as are known in the art.
- the appropriate phenylacetic acids may be prepared by hyrdolysis of the corresponding 2-cyano-2-propylbenzene compound of structure (27) by techniques and procedures well known and appreciated by one of ordinary skill in the art.
- step b the appropriate ⁇ -methylphenylacetic acid amide compound of structure (38) is methylated to give the corresponding ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (39) as described previously in Scheme A, step a.
- ⁇ -methylphenylacetic acid amide compound of structure (38) are prepared from the corresponding ⁇ -methylphenylacetic acid by standard amide-forming reactions as are known in the art as as described in step a.
- step c the appropriate phenylacetic acid amide compound of structure (37) is dimethylated to give the corresponding ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (39) as described previously in Scheme A, step c.
- step e the appropriate phenylacetic acid amide compound of structure (37) is acylated with an appropriate cyclopropyl compound of the structure wherein B is as previously defined to give the corresponding cyclopropylketo-phenylacetic acid amide compound of structure (45) as described previously in Scheme A, step e.
- step g the appropriate ⁇ -methylphenylacetic acid amide compound of structure (38) is acylated with an appropriate cyclopropyl compound of the structure wherein B is as previously defined to give the corresponding cyclopropylketo- ⁇ -methylphenylacetic acid amide compound of structure (44) as described previously in Scheme A, step e.
- ⁇ , ⁇ -dimethylphenylacetic acid amide compounds of structure (39) are prepared from the corresponding ⁇ , ⁇ -dimethylphenylacetic acid by standard amide-forming reactions as are known in the art as as described in step a.
- step i the appropriate ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (39) is acylated with an appropriate cyclopropyl compound of the structure wherein B is as previously defined to give the corresponding cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (41) as described previously in Scheme A, step e.
- step j the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid amide compound of structure (42) is methylated to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -di-methylphenylacetic acid amide compound of structure (40) as described previously in Scheme a, step a.
- step m the appropriate ⁇ '-halo- ⁇ '-keto-phenylacetic acid amide compound of structure (43) is dimethylated to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (40) as described previously in Scheme A, step c.
- step n the appropriate ⁇ '-halo- ⁇ '-keto-phenylacetic acid amide compound of structure (43) is methylated to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid amide compound of structure (42) as described previously in Scheme A, step a.
- step q the appropriate cyclopropylketo- ⁇ -methylphenylacetic acid amide compound of structure (44) is methylated to give the corresponding cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (41) as described previously in Scheme A, step a.
- step r the appropriate cyclopropylketo-phenylacetic acid amide compound of structure (45) is dimethylated to give the corresponding cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (41) as described previously in Scheme A, step c.
- step u the appropriate cyclopropylketo-phenylacetic acid amide compound of structure (45) is methylated to give the corresponding cyclopropylketo- ⁇ -methylphenylacetic acid amide compound of structure (44) as described previously in Scheme A, step a.
- Scheme H provides various general synthetic procedures for preparing the above referred novel intermediates of formula (III).
- step a the nitrile functionality of the appropriate ⁇ -halo-cyanocumylketone compound of structure (19) is converted to the corresponding ester by reaction with an appropriate C 1 to C 6 alcohol to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (31).
- the ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (31) may be prepared by reacting an appropriate ⁇ -halo-cyanocumylketone compound of structure (19) with an appropriate C 1 -C 6 alcohol in the presence of a suitable anhydrous acid followed by treatment with water.
- appropriate alcohols are methanol, ethanol, propanol, and the like, with methanol being preferred.
- appropriate acids are hydrogen chloride and hydrogen bromide, with hydrogen chloride being preferred.
- the reaction time varies from about 1/2 hour to 48 hours, preferably 3 to 5 hours and the reaction temperature varies from about -20°C to room temperature, preferably -10°C to 0°C.
- the ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (28) is recovered from the reaction zone by evaporation of the solvent followed by extraction as is known in the art.
- the ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (31) may be purified by procedures well known in the art, such as chromatography.
- step b the nitrile functionality of the appropriate ⁇ -halo-cyanocumylketone compound of structure (19) is converted to the corresponding amide to give the ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (40) wherein R 1 and R 2 are both hydrogen.
- hydrolysis may be achieved by using a suitable acid, such as concentrated hydrochloric acid as is known in the art.
- step c the carboxy ester functionality of the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (31) is hydrolyzed to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (46).
- hydrolysis may be achieved by using a suitable non-nucleophilic base, such as sodium methoxide in methanol as is known in the art.
- suitable non-nucleophilic base such as sodium methoxide in methanol
- ester cleavage include potassium carbonate in methanol, methanolic ammonia, potassium carbonate, potassium hydroxide, calcium hydroxide, sodium hydroxide, magnesium hydroxide, sodium hydroxide/pyridine in methanol, potassium cyanide in ethanol and sodium hydroxide in aqueous alcohols, with potassium hydroxide being preferred.
- the reaction is typically carried out in an aqueous lower alcohol solvent, such as methanol, ethanol, isopropyl alcohol, n-butanol, 2-ethoxyethanol or ethylene glycol or pyridine, at temperatures ranging from room temperature to the reflux temperature of the solvent, and the reaction time varies from about 1/2 hour to 100 hours.
- an aqueous lower alcohol solvent such as methanol, ethanol, isopropyl alcohol, n-butanol, 2-ethoxyethanol or ethylene glycol or pyridine
- step d the carboxy functionality of the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (46) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (31).
- one such method involves reacting an appropriate ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (46) with an excess of an appropriate C 1 -C 6 alcohol which is straight or branched in the presence of a small amount of mineral acid, such as hydrochloric acid or sulfuric acid, hydrochloric acid being preferred, at reflux.
- Another suitable method involves reacting an appropriate ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (46) with an excess of diazomethane in a suitable solvent such as ether at room temperature to give the methyl ester.
- ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (28) may also be prepared by reacting an appropriate ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -di-methylphenylacetic acid compound of structure (46) with an excess of 2,2-dimethoxypropane in a suitable solvent such as methanol at 0°C to room temperature to give the methyl ester.
- Another suitable method involves first reacting an appropriate ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (46) with thionyl chloride in a suitable solvent such as methylene chloride to give an intermediate acid chloride, followed by addition of a suitable C 1 to C 6 alcohol which is straight or branched.
- Another suitable method involves the alkylation of the carboxylate anion with an appropriate electrophile, such as dimethyl sulfate or ethyl bromide, to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (31).
- electrophile such as dimethyl sulfate or ethyl bromide
- step e the nitrile functionality of the appropriate ⁇ -halo-cyanocumylketone compound of structure (19) is converted to the corresponding carboxy to give the ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (46).
- hydrolysis may be achieved by using a suitable acid, such as concentrated hydrochloric acid as is known in the art.
- step f the amide functionality of the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (40) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (46).
- hydrolysis may be achieved by using a suitable non-nucleophilic base, such as sodium methoxide in methanol as is known in the art.
- suitable non-nucleophilic base such as sodium methoxide in methanol
- ester cleavage include potassium carbonate in methanol, methanolic ammonia, potassium carbonate, potassium hydroxide, calcium hydroxide, sodium hydroxide, magnesium hydroxide, sodium hydroxide/pyridine in methanol, potassium cyanide in ethanoland sodium hydroxide in aqueous alcohols, with potassium hydroxide being preferred.
- the reaction is typically carried out in an aqueous lower alcohol solvent, such as methanol, ethanol, isopropyl alcohol, n-butanol, 2-ethoxyethanol or ethylene glycol or pyridine, at temperatures ranging from room temperature to the reflux temperature of the solvent, and the reaction time varies from about 1/2 hour to 100 hours.
- an aqueous lower alcohol solvent such as methanol, ethanol, isopropyl alcohol, n-butanol, 2-ethoxyethanol or ethylene glycol or pyridine
- step g the carboxy functionality of the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (46) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (40).
- step h the ⁇ -halo functionality of the appropriate ⁇ -halo-halocumylketone compound of structure (10) is carboxylated to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (46).
- a solution of the appropriate ⁇ -halo-halocumylketone compound of structure (10) and a suitable catalyst, such as tetraethylammonium bromide, in a suitable polar aprotic organic solvent, such as acetonitrile, N,N-dimethylacetamide, 1-methyl-2-pyrrolidinone or dimethylformamide, are placed in a jacketed glass cell and fitted with an expanded silver mesh cathode, magnesium anode and carbon dioxide delivery tube.
- Rotation of the electrodes provides stirring, while electrical contact with the electrodes is made via spring loaded sliding carbon brushes placed against the concentric metal shafts (insulated from each other with a length of plastic tubing) onto which the electrodes are mounted.
- Carbon dioxide is introduced into the cell at pressures of 1-10 atm, for a period of time ranging from 30 minutes to 50 hours and at a temperature range of from -30°C to 50°C.
- a suitable mineral acid such as hydrochloric acid
- ⁇ -halo functionality of the appropriate ⁇ -halo-halocumylketone compound of structure (10) for use in step h be a ⁇ -chloro.
- ⁇ -halo-halocumylketone compound of structure (10) with a transition metal catalyst such as palladium, nickel or cobalt, optionally in the presence of a phosphine catalysis using low to modest pressures of carbon monoxide as described by Stahly et al. in U.S. Patent 4,990,658, 1991 also provides the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (46).
- step i the appropriate the amide functionality of the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -di-methylphenylacetic acid amide compound of structure (40) is converted to the corresponding ester to give the ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (31).
- the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -di-methylphenylacetic acid amide compound of structure (40) is reacted with an appropriate hydrogen halide in an appropriate organic solvent such as ethanol.
- the reaction is typically conducted at a temperature range of from room temperature to reflux and for a period of time ranging from 5 minutes to 1 hour.
- the ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (31) is recovered from the reaction zone by extractive methods as is known in the art.
- step j the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (46) is ring-closed to give the corresponding cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (47) as described previously in Scheme A, step k.
- step l the nitrite functionality of the appropriate cyclopropyl cyanocumylketone compound of structure (20) is converted to the corresponding ester by reaction with an appropriate C 1 to C 6 alcohol to give the cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (32) as described previously in step a.
- step m the nitrile functionality of the appropriate cyclopropyl cyanocumylketone compound of structure (20) is converted to the corresponding amide to give the ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -di-methylphenylacetic acid amide compound of structure (41) wherein R 1 and R 2 are both hydrogen as described previously in step b.
- step n the carboxy ester functionality of the appropriate cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (32) is hydrolyzed to give the corresponding cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (47) as described previously in step c.
- step o the carboxy functionality of the appropriate cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (47) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (32) as described previously in step d.
- step p the nitrile functionality of the appropriate cyclopropyl cyanocumylketone compound of structure (20) is converted to the corresponding carboxy to give the cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (47) as described previously in step e.
- step q the amide functionality of the appropriate cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (41) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the corresponding cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (47) as described previously in step f.
- step q and step k may be combined and the ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (46) may be prepared from the corresponding cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (41) as described previously in Scheme A, step j.
- step r the carboxy functionality of the appropriate cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (47) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (41) as described previously in step g.
- step s the ⁇ -halo functionality of the appropriate cyclopropyl halocumylketone compound of structure (11) is carboxylated to give the corresponding cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (47) as described previously in step h.
- step t the appropriate the amide functionality of the appropriate cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (41) is converted to the corresponding ester to give the cyclopropylketo- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (32) as described previously in step i.
- step u the nitrile functionality of the appropriate ⁇ -halo-cyanoethylphenylketone compound of structure (21) is converted to the corresponding ester by reaction with an appropriate C 1 to C 6 alcohol to give the ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid ester compound of structure (33) as described previously in step a.
- step v the nitrile functionality of the appropriate ⁇ -halo-cyanoethylphenylketone compound of structure (21) is converted to the corresponding amide to give the ⁇ '-halo- ⁇ -keto- ⁇ -methylphenylacetic acid amide compound of structure (42) wherein R 1 and R 2 are both hydrogen as described previously in step b.
- step w the carboxy ester functionality of the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid ester compound of structure (33) is hydrolyzed to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid compound of structure (48) as described previously in step c.
- step x the carboxy functionality of the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid compound of structure (48) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid ester compound of structure (33) as described previously in step d.
- step ee and step x may be combined and the ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (33) may be prepared from the corresponding cyclopropylketo- ⁇ -methylphenylacetic acid compound of structure (49) as described previously in step d.
- step jj, step ee and step x may be combined and the ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (33) may be prepared from the corresponding cyclopropyl cyanoethylphenylketone compound of structure (23) as described previously in step d.
- step y the nitrile functionality of the appropriate ⁇ -halo-cyanoethylphenylketone compound of structure (21) is converted to the corresponding carboxy to give the ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid compound of structure (48) as described previously in step e.
- step z the amide functionality of the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid amide compound of structure (42) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid compound of structure (48) as described previously in step f.
- step aa the carboxy functionality of the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid compound of structure (48) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid amide compound of structure (42) as described previously in step g.
- step bb the ⁇ -halo functionality of the appropriate ⁇ -halo-haloethylphenylketone compound of structure (12) is carboxylated to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid compound of structure (48) as described previously in step h.
- step cc the appropriate the amide functionality of the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid amide compound of structure (42) is converted to the corresponding ester to give the ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid ester compound of structure (33) as described previously in step i.
- step dd the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid compound of structure (48) is ring-closed to give the corresponding cyclopropylketo- ⁇ -methylphenylacetic acid compound of structure (49) as described previously in Scheme A, step k.
- step ee the appropriate cyclopropylketo- ⁇ -methylphenylacetic acid compound of structure (49) is ring-opened to give the corresponding ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid compound of structure (48) as described previously in Scheme A, step j.
- step ff the nitrile functionality of the appropriate cyclopropyl cyanoethylphenylketone compound of structure (23) is converted to the corresponding ester by reaction with an appropriate C 1 to C 6 alcohol to give the cyclopropylketo- ⁇ -methylphenylacetic acid ester compound of structure (35) as described previously in step a.
- step gg the nitrile functionality of the appropriate cyclopropyl cyanoethylphenylketone compound of structure (23) is converted to the corresponding amide to give the cyclopropylketo- ⁇ -methylphenylacetic acid amide compound of structure (44) wherein R 1 and R 2 are both hydrogen as described previously in step b.
- step hh the carboxy ester functionality of the appropriate cyclopropylketo- ⁇ -methylphenylacetic acid ester compound of structure (35) is hydrolyzed to give the corresponding cyclopropylketo- ⁇ -methylphenylacetic acid compound of structure (49) as described previously in step c.
- step ii the carboxy functionality of the appropriate cyclopropylketo- ⁇ -methylphenylacetic acid compound of structure (49) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding cyclopropylketo- ⁇ -methylphenylacetic acid ester compound of structure (35) as described previously in step d.
- step jj the nitrile functionality of the appropriate cyclopropyl cyanoethylphenylketone compound of structure (23) is converted to the corresponding carboxy to give the cyclopropylketo- ⁇ -methylphenylacetic acid compound of structure (49) as described previously in step e.
- step kk the amide functionality of the appropriate cyclopropylketo- ⁇ -methylphenylacetic acid amide compound of structure (44) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the corresponding cyclopropylketo- ⁇ -methylphenylacetic acid compound of structure (49) as described previously in step f.
- step ll the carboxy functionality of the appropriate cyclopropylketo- ⁇ -methylphenylacetic acid compound of structure (49) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding cyclopropylketo- ⁇ -methylphenylacetic acid amide compound of structure (44) as described previously in step g.
- step mm the ⁇ -halo functionality of the appropriate cyclopropyl haloethylphenylketone compound of structure (14) is carboxylated to give the corresponding cyclopropylketo- ⁇ -methylphenylacetic acid compound of structure (49) as described previously in step h.
- step nn the appropriate the amide functionality of the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid amide compound of structure (42) is converted to the corresponding ester to give the ⁇ '-halo- ⁇ '-keto- ⁇ -methylphenylacetic acid ester compound of structure (33) as described previously in step i.
- step oo the nitrile functionality of the appropriate ⁇ -halo cyanotolylketone compound of structure (22) is converted to the corresponding ester by reaction with an appropriate C 1 to C 6 alcohol to give the ⁇ '-halo- ⁇ '-keto-phenylacetic acid ester compound of structure (34) as described previously in step a.
- step pp the nitrile functionality of the appropriate ⁇ -halo cyanotolylketone compound of structure (22) is converted to the corresponding amide to give the ⁇ '-halo- ⁇ '-keto-phenylacetic acid amide compound of structure (43) wherein R 1 and R 2 are both hydrogen as described previously in step b.
- step qq the carboxy ester functionality of the appropriate ⁇ '-halo- ⁇ '-keto-phenylacetic acid ester compound of structure (34) is hydrolyzed to give the corresponding ⁇ '-halo- ⁇ '-keto-methylphenylacetic acid compound of structure (50) as described previously in step c.
- step rr the carboxy functionality of the appropriate ⁇ '-halo- ⁇ '-keto-methylphenylacetic acid compound of structure (50) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ⁇ '-halo- ⁇ '-keto-phenylacetic acid ester compound of structure (34) as described previously in step d.
- step yy and step rr may be combined and the ⁇ '-halo- ⁇ '-keto-phenylacetic acid ester compound of structure (34) may be prepared from the corresponding ⁇ '-halo- ⁇ '-keto-methylphenylacetic acid compound of structure (50) as described previously in step d.
- step ddd, step yy and step rr may be combined the ⁇ '-halo- ⁇ '-keto-phenylacetic acid ester compound of structure (34) may be prepared from the corresponding cyclopropyl cyanotolylketone compound of structure (24) as described previously in step d.
- step ss the nitrile functionality of the appropriate ⁇ -halo cyanotolylketone compound of structure (22) is converted to the corresponding carboxy to give the ⁇ '-halo- ⁇ '-keto-methylphenylacetic acid compound of structure (50) as described previously in step e.
- step tt the amide functionality of the appropriate ⁇ '-halo- ⁇ '-keto-phenylacetic acid amide compound of structure (43) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the ⁇ '-halo- ⁇ '-keto-methylphenylacetic acid compound of structure (50) as described previously in step f.
- step uu the carboxy functionality of the appropriate ⁇ '-halo- ⁇ '-keto-methylphenylacetic acid compound of structure (50) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ⁇ '-halo- ⁇ '-keto-phenylacetic acid amide compound of structure (43) as described previously in step g.
- step vv the ⁇ -halo functionality of the appropriate ⁇ -halo halotolylketone compound of structure (13) is carboxylated to give the corresponding ⁇ '-halo- ⁇ '-keto-methylphenylacetic acid compound of structure (50) as described previously in step h.
- step ww the appropriate the amide functionality of the appropriate ⁇ '-halo- ⁇ '-keto-phenylacetic acid amide compound of structure (43) is converted to the corresponding ester to give the ⁇ '-halo- ⁇ '-keto-phenylacetic acid ester compound of structure (34) as described previously in step i.
- step xx the appropriate ⁇ '-halo- ⁇ '-keto-methylphenylacetic acid compound of structure (50) is ring-closed to give the corresponding cyclopropylketo-phenylacetic acid compound of structure (51) as described previously in Scheme A, step k.
- step yy the appropriate cyclopropylketo-phenylacetic acid compound of structure (51) is ring-opened to give the corresponding ⁇ '-halo- ⁇ '-keto-methylphenylacetic acid compound of structure (50) as described previously in Scheme A, step j.
- step zz the nitrile functionality of the appropriate cyclopropyl cyanotolylketone compound of structure (24) is converted to the corresponding ester by reaction with an appropriate C 1 to C 6 alcohol to give the cyclopropylketo-phenylacetic acid ester compound of structure (36) as described previously in step a.
- step aaa the nitrile functionality of the appropriate cyclopropyl cyanotolylketone compound of structure (24) is converted to the corresponding amide to give the cyclopropylketo-phenylacetic acid amide compound of structure (45) wherein R 1 and R 2 are both hydrogen as described previously in step b.
- step bbb the carboxy ester functionality of the appropriate cyclopropylketo-phenylacetic acid ester compound of structure (36) is hydrolyzed to give the corresponding cyclopropylketo-phenylacetic acid compound of structure (51) as described previously in step c.
- step ccc the carboxy functionality of the appropriate cyclopropylketo-phenylacetic acid compound of structure (51) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding cyclopropylketo-phenylacetic acid ester compound of structure (36) as described previously in step d.
- step ddd the nitrile functionality of the appropriate cyclopropyl cyanotolylketone compound of structure (24) is converted to the corresponding carboxy to give the cyclopropylketo-phenylacetic acid compound of structure (51) as described previously in step e.
- step eee the amide functionality of the appropriate cyclopropylketo-phenylacetic acid amide compound of structure (45) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the corresponding cyclopropylketo-phenylacetic acid compound of structure (51) as described previously in step f.
- step yy and step eee may be combined and the ⁇ '-halo- ⁇ '-keto-methylphenylacetic acid compound of structure (50) may be prepared from the corresponding cyclopropylketo-phenylacetic acid amide compound of structure (45) as described previously in Scheme A, step j.
- step fff the carboxy functionality of the appropriate cyclopropylketo-phenylacetic acid compound of structure (51) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding cyclopropylketo-phenylacetic acid amide compound of structure (45) as described previously in step g.
- step ggg the ⁇ -halo functionality of the appropriate cyclopropyl halotolylketone of structure (15) is carboxylated to give the corresponding cyclopropylketo-phenylacetic acid compound of structure (51) as described previously in step h.
- step hhh the appropriate the amide functionality of the appropriate cyclopropylketo-phenylacetic acid amide compound of structure (45) is converted to the corresponding ester to give the cyclopropylketo-phenylacetic acid ester compound of structure (36) as described previously in step i.
- Scheme L provides various general synthetic procedures for preparing the novel intermediates of formula (XI).
- step a the ⁇ '-halo functionality of the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenyl compound of structure (67) is alkylated with the appropriate piperidine compound of structure (68) to give the corresponding ⁇ '-piperidine- ⁇ '-keto- ⁇ , ⁇ -dimethylphenyl compound of structure (69).
- the ⁇ '-piperidine- ⁇ '-keto- ⁇ , ⁇ -dimethylphenyl compound of structure (69) may be prepared by reacting the appropriate ⁇ '-halo- ⁇ '-keto- ⁇ , ⁇ -dimethylphenyl compound of structure (67) with the appropriate piperidine compound of structure (68) in a suitable solvent preferably in the present of a suitable non-nucleophilic base and optionally in the presence of a catalytic amount of an iodide source, such as potassium or sodium iodide.
- the reaction time varies from about 4 to 120 hours and the reaction temperature varies from about 70°C to the reflux temperature of the solvent.
- Suitable solvent for the alkylation reaction include alcohol solvents such as, methanol, ethanol, isopropyl alcohol, or n-butanol; ketone solvents, such as, cyclohexanone, methyl isobutyl ketone; hydrocarbon solvents, such as, benzene, toluene or xylene; halogenated hydrocarbons, such as, chlorobenzene or methylene chloride or dimethylformamide.
- alcohol solvents such as, methanol, ethanol, isopropyl alcohol, or n-butanol
- ketone solvents such as, cyclohexanone, methyl isobutyl ketone
- hydrocarbon solvents such as, benzene, toluene or xylene
- halogenated hydrocarbons such as, chlorobenzene or methylene chloride or dimethylformamide.
- Suitable non-nucleophilic bases for the alkylation reaction include inorganic bases, for example, sodium bicarbonate, potassium carbonate, or potassium bicarbonate or organic bases, such as, a trialkylamine, for example, triethylamine or pyridine, or an excess of an appropriate piperidine compound of structure (68) may be used.
- inorganic bases for example, sodium bicarbonate, potassium carbonate, or potassium bicarbonate or organic bases, such as, a trialkylamine, for example, triethylamine or pyridine, or an excess of an appropriate piperidine compound of structure (68) may be used.
- piperidine compounds of structure (68) it is preferred that OH be unprotected for utilization in the alkyation reaction of step a, but those hydroxy functionalities present in the piperidine compounds of structure (68), may be protected with a suitable protecting group.
- suitable protecting groups for the piperidine compounds of structure (68) is well known by one of ordinary skill in the art and is described in "Protective Groups in Organic Syntheses", Theodora W. Greene, Wiley (1981).
- suitable protecting groups for those hydroxy functionalities present include ethers such as tetrahydrothiopyranyl, tetrahydrothiofuranyl, 2-(phenylselenyl)ethyl ether, o-nitrobenzyl ether, trimethylsilyl ether, isopropyldimethylsilyl ether, t-butyldimethylsilyl ether, t-butyldiphenylsilyl ether, tribenzylsilyl ether, triisopropylsilyl ether; and esters, such as acetate ester, isobutyrate ester, pivaloate ester, adamantoate ester, benzoate ester, 2,4,6-trimethylbenzoate (mesitoate) ester, methyl carbonate, p-nitrophenyl carbonate, p-nitrobenzyl carbonate, S-benzyl thiocarbonate and N-phenylcarbamate.
- ethers such
- piperidine compounds of structure (68) are readily available to one of ordinary skill in the art and are described in US-A- 4,254,129 (March 3, 1981), US-A- 4,254,130 (March 3, 1981), US-A- 4,285,958 (April 25, 1981) and US-A-4,550,116 (Oct. 29, 1985).
- step b the ⁇ '-halo functionality of the appropriate ⁇ -halo- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compound of structure (70) wherein R 5 is CONR 6 R 7 is alkylated with the appropriate piperidine compound of structure (68) to give the corresponding ⁇ '-piperidine- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compound of structure (71) wherein R 5 is, CONR 6 R 7 as described previously in step a.
- step c the ketone functionality of the appropriate ⁇ '-piperidine- ⁇ '-keto- ⁇ , ⁇ -dimethylphenyl compound of structure (69) wherein R 5 CONR 6 R 7 is reduced to give the corresponding ⁇ '-piperidine- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compound of structure (71) wherein R 5 is CONR 6 R 7 .
- Suitable reducing agents are, for example, lithium tri-tert-butylaluminohydride and diisobutylaluminum hydride. These reduction reactions are carried out in suitable solvents diethyl ether, tetrahydrofuran or dioxane at temperatures ranging from about 0°C to the reflux temperature of the solvent, and the reaction time varies from about 1/2 hour to 8 hours.
- Catalytic reduction may also be employed in the preparation of appropriate ⁇ '-piperidine- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compound of structure (71) wherein R 5 is CONR 6 R 7 from an appropriate ⁇ '-piperidine- ⁇ '-keto- ⁇ , ⁇ -dimethylphenyl compound of structure (69) wherein R 5 is, or CONR 6 R 7 , using hydrogen gas in the presence of a suitable catalyst such as Raney nickel, palladium, platinum or rhodium catalysts in lower alcohol solvents, such as, methanol, ethanol, isopropyl alcohol or n-butanol or acetic acid or their aqueous mixtures, or by the use of aluminum isopropoxide in isopropyl alcohol.
- a suitable catalyst such as Raney nickel, palladium, platinum or rhodium catalysts in lower alcohol solvents, such as, methanol, ethanol, isopropyl alcohol or n-butanol or acetic acid or their
- Reduction using sodium borohydride or potassium borohydride is preferred over catalytic reduction for those ⁇ '-piperidine- ⁇ '-keto- ⁇ , ⁇ -dimethylphenyl compound of structure (69) wherein R 5 is CONR 6 R 7 and wherein R 1 and R 2 taken together form a second bond between the carbon atoms bearing R 1 and R 2 .
- Suitable chiral reducing agents are, (R) and (S)-oxazaborolidine/BH 3 , potassium 9-O-(1,2:5,6-di-O-isopropylidine- ⁇ -D-glucofuransoyl)-9-boratabicyclo[3.3.1]nonane, (R) and (S)-B-3-pinanyl-9-borabicyclo[3.3.1]nonane, NB-Enantride, Lithium (R)-(+) and (S)-(-)-2,2'-dihydroxy-1,1'-binaphthyl alkoxyl aluminum hydride, (R)-(+) and (S)-(-)-2,2'-dihydroxy-6,6'-dimethylbipheryl borane-amine complex, tris[[(1S,2S,5R)-2-isopropyl-5-methyl-cyclohex-1-yl]methyl]aluminum, [[(1R
- Scheme M provides various alternative general synthetic procedures for preparing the novel intermediates of formula (XI).
- step a the appropriate ⁇ '-piperidine-2-methylethylphenyl compound of structure (72) is cyanated to give the corresponding ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetonitrile compound of structure (73) as described previously in Reference-Scheme D, step b.
- step b the appropriate ⁇ '-piperidine-2-methylethylphenyl compound of structure (72) is halogenated to give the corresponding ⁇ '-piperidine- ⁇ , ⁇ -dimethylbenzyl halide compound of structure (74) as described previously in Reference-Scheme B, step a.
- step c the nitrile functionality of the appropriate ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetonitrile compound of structure (73) is converted to the corresponding ester to give the ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (75) as described previously in Scheme H, step a.
- step d the halo functionality of the appropriate ⁇ '-piperidine- ⁇ , ⁇ -dimethylbenzyl halide compound of structure (74) is converted to the corresponding carboxy to give the ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (76) as described previously in Scheme H, step h.
- step e the nitrile functionality of the appropriate ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetonitrile compound of structure (73) is converted to the corresponding carboxy to give the ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (76) as described previously in Scheme H, step e.
- step f the nitrile functionality of the appropriate ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetonitrile compound of structure (73) is converted to the corresponding amide to give the ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (77) wherein R 1 and R 2 are each hydrogen as described previously in Scheme H, step b.
- step g the carboxy ester functionality of the appropriate ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (75) is hydrolyzed to give the corresponding ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (76) as described previously in Scheme H, step c.
- step h the carboxy functionality of the appropriate ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (76) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetic acid ester compound of structure (75) as described previously in Scheme H, step d.
- step i the carboxy functionality of the appropriate ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (76) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (77) as described previously in Scheme H, step g.
- step j the amide functionality of the appropriate ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetic acid amide compound of structure (77) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the ⁇ '-piperidine- ⁇ , ⁇ -dimethylphenylacetic acid compound of structure (76) as described previously in Scheme H, step f.
- suitable protecting groups for ketone functionalities include acyclic acetals and ketals such as dimethyl acetal, cyclic acetals and ketals such as 1,3-dioxanes and 1,3-dioxolanes, dithio acetals and ketals such as 1,3-dithiane and 1,3-dithiolane, hemithio acetals and ketals, O-substituted cyanohydrins, substituted hydrozones, imines, oxazolidines, imidazolidines and thiazolidines.
- acyclic acetals and ketals such as 1,3-dioxanes and 1,3-dioxolanes
- dithio acetals and ketals such as 1,3-dithiane and 1,3-dithiolane
- hemithio acetals and ketals O-substituted cyanohydrins, substituted hydrozones
- cleavage of ⁇ -methoxyethoxymethyl (MEM) protecting groups on any of the compounds depicted in Schemes A through M which bear protected hydroxy ketone functionalities can be achieved by using trifluoroacetic acid at room temperature or using 5 to 8 equivalents of powdered anhydrous zinc bromide in methylene chloride at about 25°C by the general procedure of E. J. Corey et al., Tetrahedron Letters , 11 , 809-812 1976 .
- the mixture of (R) and (S) isomers of the ⁇ '-piperidine- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compounds of structure (71) may be subjected to chiral chromatography to give the corresponding individual (R)- ⁇ '-piperidine- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compounds of structure (71) and (S)- ⁇ '-piperidine- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compounds of structure (71).
- One such method involves reacting the mixture of (R) and (S) isomers of the ⁇ '-piperidine- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compounds of structure (71) with appropriate chiral acids to give the corresponding mixture of diastereomeric acid addition salts.
- the individual (R)- ⁇ '-piperidine- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl chiral acid addition salt compounds of structure (71) and (S)- ⁇ '-piperidine- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl chiral acid addition salt compounds of structure (71) are obtained by recrystallization and the individual ⁇ '-piperidine-(R)- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compounds of structure (71) and ⁇ '-piperidine-(S)- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compounds of structure (71) are obtained by subjecting the individual ⁇ '-piperidine-(R)- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl chiral acid addition salt compounds of structure (71) and ⁇ '-piperidine-(S)- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl chiral acid addition salt compounds of structure (71) to base in order to free the piperidine nitrogen from the acid addition complex.
- Suitable chiral acids are tartaric acid (+), (-), O,O'-dibenzoyltartaric acid (+), (-), O,O'-di-p-toluyltartaric acid (+), (-), 2-Nitrotartranillic acid (+), (-), mandelic acid (+), (-), malic acid (+), (-), 2-phenoxypropionic acid (+), hydratropic acid (+), (-), N-acetylleucine (-), (+), N-( ⁇ -methylbenzyl)succinamide (+), (-), N-( ⁇ -methylbenzyl)phthalamic acid (+), (-), camphor-10-sulfonic acid (+), 3-bromocamphor-9-sulfonic acid (+), (-), camphor-3-sulfonic acid (+), quinic acid (+), (-), Di-O-isopropylidene-2-oxo-L-gulonic acid (-), Lasalocid (-), 1,1'-binaphthyl-2
- the individual (R) and (S) isomers of the ⁇ '-piperidine- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compounds of structure (71) can be prepared by reacting the mixture of (R) and (S) isomers of the ⁇ '-piperidine- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compounds of structure (71) with appropriate organic chiral acids to give the corresponding mixture of diastereomeric acid esters.
- the individual ⁇ '-piperidine-(R)- ⁇ '-ester- ⁇ , ⁇ -dimethylphenyl compounds of structure (71) and ⁇ '-piperidine-(S)- ⁇ '-ester- ⁇ , ⁇ -dimethylphenyl compounds of structure (71) are obtained by recrystallization or chromatography and the individual ⁇ '-piperidine-(R)- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compounds of structure (71) and ⁇ '-piperidine-(S)- ⁇ '-hydroxy- ⁇ , ⁇ -dimethylphenyl compounds of structure (71) are obtained by subjecting the individual ⁇ '-piperidine-(R)- ⁇ '-ester- ⁇ , ⁇ -dimethylphenyl compounds of structure (71) and ⁇ '-piperidine-(S)- ⁇ '-ester- ⁇ , ⁇ -dimethylphenyl compounds of structure (71) to hydrolysis conditions.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Pulmonology (AREA)
- Hydrogenated Pyridines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Plural Heterocyclic Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
- The present invention is related to novel intermediates which are useful in the preparation of certain piperidine derivatives which are useful as antihistamines, antiallergy agents and bronchodilators US-A-4,254,129 (March 3, 1981), US-A-4,254,130 (March 3, 1981), US-A-4,285,958 (April 25, 1981) and US-A-4,550,116 (Oct. 29, 1985).
- These antihistaminic piperidine derivatives can be described by the following formula: wherein
W represents -C(=O)- cr -CH(OH)-;
R1 represents hydrogen or hydroxy;
R2 represents hydrogen;
R1 and R2 taken together form a second bond between the carbon atoms bearing R1 and R2;
n is an integer of from 1 to 5;
m is an integer 0 or 1;
R3 is -COOH or -COOalkyl wherein the alkyl moiety has from 1 to 6 carbon atoms and is straight or branched;
each of A is hydrogen or hydroxy; and
pharmaceutically acceptable salts and individual optical isomers thereof,
with the proviso that where R1 and R2 are taken together to form a second bond between the carbon atoms bearing
R1 and R2 or where R1 represented hydroxy, m is an integer 0. - US-A- 4,550,116 discloses compounds of the general formula and pharmaceutically acceptable salts thereof which are prepared by condensation of α-substituted benzylhalides with N-(benzoylpropyl or phenyl-hydroxypropyl)-4-hydroxy piperidines or condensation of di-substituted-methoxy-piperidines with a benzoylpropyl halide or a phenyl-hydroxypropylhalide.
- In US-A-4,254,129, 4,254,130 and 4,285,958 4-[4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]-α-α-dimethylbenzeneacetic acid and related compounds are prepared by alkylation of a substituted piperidine derivative of the formula with a ω-haloalkyl substituted phenylketone of the formula wherein the substituents halo, R1, R2, n, Z and R6 are described in column 6 of US Patent 4,254,130.
It is further described that the ω-haloalkyl substituted phenyl ketones wherein Z is hydrogen are prepared by reacting an appropriate straight or branched lower alkyl C1-C6 ester of α,α-dimethylphenylacetic acid with the compound of the following formula: under the general conditions of a Friedl-Craft's acylation, wherein halo and m are described in column 11 of US-A-4,254,129. - Rovnyak G. et al describe the synthesis and antiinflammatory activities of (α-cyclopropyl-p-tolyl)acetic acid and related compounds. in Journal of Medical Chemistry, vol.16, no.15, 1973, pp. 487-490.
- In Sulfur Letters, vol. 15, no.3, 1993, pp. 127-133 Roche D. et al. disclose the synthesis of cyclopropylvinylsulfones by Peterson Olefination.
- The present invention provides novel intermediates useful for the preparation of certain antihistaminic piperidine derivatives of formula (I') wherein
W represents -C(=O)- or -CH(OH)-;
R3 is -COOH or -COOalkyl wherein the alkyl moiety has from 1 to 6 carbon atoms and is straight or branched;
each of A is hydrogen or hydroxy; and
pharmaceutically acceptable salts and individual optical isomers thereof. - The novel intermediates are described by the following formulae: wherein R1 represents C1-C6 alkyl and
R2 represent H, C1-C6alkyl, C1-C6alkoxy or R1 and R2 taken together with the nitrogen atom form a pyrrolidine, piperidine or morpholine. wherein
W represents -C(=O)- or -CH(OH)-;
R1 represents C1-C6 alkyl
and R2 represents H, C1-C6alkyl, C1-C6alkoxy or R1 and R2 taken together with the nitrogen atom form a pyrrolidine, piperidine or morpholine. - Another embodiment of the present invention involves a process for preparing the piperidine derivatives of formula wherein
W represents -C(=O)- or -CH(OH)-;
R3 is -COOH or -COOalkyl wherein the alkyl moiety has from 1 to 6 carbon atoms and is straight or branched;
each of A is hydrogen or hydroxy; and
pharmaceutically acceptable salts and individual optical isomers thereof, comprising the steps of: - (a) reacting a toluene compound of the formula with a ω-halo compound of the formula wherein B is halo or hydroxy, Hal represents Cl, Br or I and n is as defined above, in the presence of a suitable Lewis acid to produce a ω-halo-tolylketone compound;
- (b) reacting the ω-halo-tolylketone compound with a suitable base to give a cyclopropyl-tolylketone compound;
- (c) reacting the cyclopropyl-tolylketone compound with a suitable halogenating agent to give a cyclopropyl-halotolylketone compound;
- (d) reacting the cyclopropyl-halotolylketone compound with a suitable cyanating agent to give a cyclopropyl cyanotolylketone compound;
- (e) reacting the cyclopropyl cyanotolylketone compound with a suitable methylating agent to give a cyclopropyl cyanocumylketone compound;
- (f) reacting the cyclopropyl cyanocumylketone compound with a suitable base to give a cyclopropylketo-α,α-dimethylphenylacetic acid amide;
- (g) reacting the cyclopropylketo-α,α-dimethylphenylacetic acid amide with an appropriate straight or branched C1-C6 alcohol in the presence of a suitable anhydrous acid to give a ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound;
- (h) reacting the ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound with a piperidine compound of the formula wherein R1, R2 and m are as defined above in the presence of a suitable non-nucleophilic base to produce a ω'-piperidine-α'-keto-α,α-dimethylphenyl derivative;
- (i) optionally hydrolyzing the ω'-piperidine-α'-keto-α,α-dimethylphenyl derivative to produce a ω'-piperidine-α'-keto-α,α-dimethylphenyl derivative of formula (I) wherein R3 is COON and W is -C(=O)-;
- (j) optionally reacting the ω'-piperidine-α'-keto-α,α-dimethylphenyl derivative of formula (I) wherein R3 is COOH and W is -C(=O)- with a suitable reducing agent to produce a ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl derivative of formula (I) wherein R3 is -COOH and W is -CH(OH)-; and
- (k) optionally reacting the ω'-piperidine-a'-hydroxy-α,α-dimethylphenyl derivative of formula (I) wherein R3 is -COOH and W is -CH(OH)- or the appropriate ω'-piperidine-α'-keto-α,α-dimethylphenyl derivative of formula (I) wherein R3 is -COOH and W is -C(=O)- with an appropriate straight or branched C1-C6 alcohol in the presence of a suitable acid to produce a ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl derivative of formula (I) wherein R3 is -COOalkyl and W is CH(OH)- or a ω'-piperidine-α'-keto-α,α-dimethylphenyl derivative of formula (II) wherein R3 is -COOalkyl and W is -C(=O)-; and
- (l) optionally reacting the ω'-piperidine-α'-keto-α,α-dimethylphenyl derivative of formula (II) wherein R3 is -COOH and W is -C(=O)-, the ω'-piperidine-α'-keto-α,α-dimethylphenyl derivative of formula (II) wherein R3 is -COOalkyl and W is -C(=O)-, the ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl derivative of formula (I) wherein R3 is -COOH and W is -CH(OH)- or the ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl of formula (I) wherein R3 is -COOalkyl and W is -CH(OH)- with an appropriate deprotecting reagent, with the proviso that each of the hydroxy groups present in the compounds described in steps a-k are optionally protected or unprotected.
-
- As used herein, the term "C1-C6alkyl" or "alkyl" refers to a straight or branched alkyl group having from 1 to 6 carbon atoms and as referred to herein are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, neopentyl and n-hexyl. The term "C1-C6alkoxy" refers to a straight or branched alkoxy group having from 1 to 6 carbon atoms and as referred to herein are methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, neopentoxy and n-hexoxy. The term "Hal" or "halo" refers to a halogen group and includes Cl, Br or I.
- The piperidine derivatives of the formula (XI) can form pharmaceutically acceptable salts. Pharmaceutically acceptable acid addition salts of the compounds of this invention are those of any suitable inorganic or organic acid. Suitable inorganic acids are, for example, hydrochloric, hydrobromic, sulfuric, and phosphoric acids. Suitable organic acids include carboxylic acids, such as, acetic, propionic, glycolic, lactic, pyruvic, malonic, succinic, fumaric, malic, tartaric, citric, cyclamic, ascorbic, maleic, hydroxymaleic, and dihydroxymaleic, benzoic, phenylacetic, 4-aminobenzoic, 4-hydroxybenzoic, anthranillic, cinnamic, salicyclic, 4-aminosalicyclic, 2-phenoxybenzoic, 2-acetoxybenzoic, and mandelic acid, sulfonic acids, such as, methanesulfonic, ethanesulfonic and β-hydroxyethanesulfonic acid. Non-toxic salts of the compounds of the above-identified formula formed with inorganic or organic bases are also included within the scope of this invention and include, for example, those of alkali metals, such as, sodium, potassium and lithium, alkaline earth metals, for example, calcium and magnesium, light metals of group IIIA, for example, aluminum, organic amines, such as, primary, secondary or tertiary amines, for example, cyclohexylamine, ethylamine, pyridine, methylaminoethanol and piperazine. The salts are prepared by conventional means as, for example, by treating a piperidine derivative of formula (I) with an appropriate acid or base.
- Reference - Scheme A provides various general synthetic procedures for preparing intermediates not covered by the present invention.
- In step a, the appropriate toluene derivative of structure (1) is methylated to give the corresponding ethylbenzene derivative of structure (2).
- For example, toluene of structure (1) is reacted with a slight molar excess of an appropriate methylating agent, such as iodomethane, chloromethane or bromomethane in the presence of a suitable non-nucleophilic base, such as potassium t-butoxide or sodium hydride. The reaction is typically conducted in a suitable organic solvent, such as diglyme, tert-butyl methyl ether or methylene chloride, for a period of time ranging from 30 minutes to 24 hours and at a temperature range of from -78°C to room temperature. The corresponding ethylbenzene derivative of structure (2) is recovered from the reaction zone by extractive methods as is known in the art and may be purified by distillation.
- In step b, the appropriate ethylbenzene derivative of structure (2) is methylated to give the corresponding cumene derivative of structure (3) as described previously in step a, but using at least 2 molar equivalents of methylating agent.
- In step c, the appropriate toluene derivative of structure (1) is dimethylated to give the corresponding cumeme derivative of structure (3) as described previously in step a but using at least 2 molar equivalents of methylating agent.
- In step d, the appropriate toluene derivative of structure (1) is acylated with an appropriate ω-halo compound of the structure Hal-(CH2)n-C(=O)-B, wherein B is Hal or hydroxy, Hal is Cl, Br or I and n is as previously defined to give the corresponding ω-halo tolylketone compound of structure (4).
- For example, the appropriate ω-halo tolylketone compound of structure (4) may be prepared by reacting an appropriate toluene derivative of structure (1) with an appropriate ω-halo compound of the structure Hal-(CH2)n-C(=O)-B, wherein B is Hal or hydroxy, Hal is Cl, Br or I and n is as previously defined, which are known in the art or are prepared by procedures well known in the art, under the general conditions of a Friedel-Crafts acylation using a suitable Lewis acid. The reaction is carried out in a solvent, such as carbon disulfide, 1,2-dichloroethane, n-hexane, acetonitrile, 1-nitropropane, nitromethane, diethyl ether and carbon tetrachloride, methylene chloride, tetrachloroethane or nitrobenzene with methylene chloride being the preferred solvent. The reaction time varies from about 1/2 hour to 25 hours, preferably 10 to 16 hours and the reaction temperature varies from about 0°C to 25°C. The corresponding ω-halo tolylketone compound of structure (4) is recovered from the reaction zone by an aqueous quench followed by extraction as is known in the art. The ω-halo tolylketone compound of structure (4) may be purified by procedures well known in the art, such as crystallization and/or distillation.
- Alternatively, the appropriate toluene derivative of structure (1) may be acylated with the ω-halo compound of the structure Hal-(CH2)n-C(=O)-B, wherein B is hydroxy, Hal is Cl, Br or I and n is as previously defined in the presence of a Lewis acid to give the corresponding ω-halo tolylketone compound of structure (4) as described in Arch. Pharm. 306, 807 1973. In general, an appropriate toluene derivative of structure (1) and the ω-halo compound of the structure Hal-(CH2)n-C(=O)-B, wherein B is hydroxy, are melted together at about 50°C, then cooled to about 10°C after which a Lewis acid is added in an amount about 2.2 times the molar amount of the appropriate toluene derivative of structure (1) employed. The mixture is heated at about 70°C for about 2 hours after which a 30% sodium acetate solution is added and extracted with ether. The organic layer is dried and the solvent evaporated to give the corresponding ω-halo tolylketone compound of structure (4). The ω-halo tolylketone compound of structure (4) may be purified by procedures well known in the art, such as crystallization and/or distillation.
- Suitable Lewis acids for the acylation reaction described in step d are well known and appreciated in the art. Examples of suitable Lewis acids are boron trichloride, aluminum chloride, titanium tetrachloride, boron trifluoride, tin tetrachloride, ferric chloride, cobalt(II) chloride and zinc chloride, with aluminum chloride being preferred. The selection and utilization of suitable Lewis acids for the acylation reaction of step d is well known and appreciated by one of ordinary skill in the art.
- The starting ω-halo compound of the structure Hal-(CH2)n-C(=O)-B, wherein B is Hal or hydroxy, Hal is Cl, Br or I and n is as previously defined are commercially available easily prepared by generally known methods.
- While also not necessary for utilization in the acylation reaction of step d, the phenol functionality of those toluene derivatives of structure (1), wherein A is hydroxy may be protected with a suitable protecting group. For example, suitable protecting groups for the phenolic hydroxy include methyl ether, 2-methoxyethoxymethyl ether (MEM), cyclohexyl ether, o-nitrobenzyl ether, 9-anthryl ether, t-butyldimethylsilyl ether, acetate, benzoate, methyl carbamate, benzyl carbamate, aryl pivaloate and aryl methanesulfonate.
-
- In step f, the appropriate ethylbenzene derivative of structure (2) is acylated with an appropriate ω-halo compound of the structure Hal-(CH2)n-C(=O)-B, wherein B is Hal or hydroxy, Hal is Cl, Br or I and n is as previously defined to give the corresponding ω-halo ethylphenylketone compound of structure (6) as described previously in step d.
-
- In step h, the appropriate cumene derivative of structure (3) is acylated with an appropriate ω-halo compound of the structure Hal-(CH2)n-C(=O)-B, wherein B is Hal or hydroxy, Hal is Cl, Br or I and n is as previously defined to give the corresponding ω-halo cumylketone compound of structure (8) as described previously in step d.
-
- In step j, the cyclopropyl functionality of the appropriate cyclopropyl tolylketone derivative of structure (5) is ring-opened to give the corresponding ω-halo tolylketone compound of structure (4) wherein n = 3.
- For example, the appropriate cyclopropyl tolylketone derivative of structure (5) is reacted with an appropriate hydrogen halide in a suitable organic solvent, such as toluene, xylene and ethanol. The reaction is typically conducted at a temperature range of from room temperature to 70°C and for a period of time ranging from 20 minutes to 10 hours. The corresponding ω-halo tolylketone compound of structure (4) wherein n = 3 is isolated from the reaction zone by evaporation of the solvent or may be stored in a solution of the hydrogen halide.
- In step k, the appropriate ω-halo tolylketone compound of structure (4) wherein n = 3 is ring-closed to give the corresponding cyclopropyl tolylketone derivative of structure (5).
- For example, the appropriate ω-halo tolylketone compound of structure (4) wherein n = 3 is reacted with an appropriate non-nucleophilic base, such as sodium hydroxide or potassium hydroxide in a suitable organic protic solvent, such as methanol or ethanol. The reaction is typically conducted at a temperature range of from -10°C to room temperature and for a period of time ranging from 10 minutes to 5 hours. The corresponding cyclopropyl tolylketone derivative of structure (5) is isolated from the reaction zone by extractive methods as are known in the art and may be purified by distillation.
- In step 1, the cyclopropyl functionality of the appropriate cyclopropyl ethylphenylketone derivative of structure (7) is ring-opened to give the corresponding ω-halo ethylphenylketone compound of structure (6) wherein n = 3 as described previously in step j.
- In step m, the appropriate ω-halo ethylphenylketone compound of structure (6) wherein n = 3 is ring-closed to give the corresponding cyclopropyl ethylphenylketone derivative of structure (7) as described previously in step k.
- In step n, the cyclopropyl functionality of the appropriate cyclopropyl cumylketone derivative of structure (9) is ring-opened to give the corresponding ω-halo cumylketone compound of structure (8) wherein n = 3 as described previously in step j.
- In step o, the appropriate ω-halo cumylketone compound of structure (8) wherein n = 3 is ring-closed to give the corresponding cyclopropyl cumylketone derivative of structure (9) as described previously in step k.
- In step p, the appropriate ω-halo ethylphenylketone compound of structure (6) is methylated to give the corresponding ω-halo cumylketone compound of structure (8) as described previously in step a.
- In step q, the appropriate cyclopropyl tolylketone derivative of structure (5) is dimethylated to give the corresponding cyclopropyl cumylketone derivative of structure (9) as described previously in step c.
- In step r, the appropriate ω-halo tolylketone compound of structure (4) is methylated to give the corresponding ω-halo ethylphenylketone compound of structure (6) as described previously in step a.
- In step s, the appropriate ω-halo tolylketone compound of structure (4) is dimethylated to give the corresponding ω-halo cumylketone compound of structure (8) as described previously in step c.
- In step t, the appropriate cyclopropyl ethylphenylketone derivative of structure (7) is methylated to give the corresponding cyclopropyl cumylketone derivative of structure (9) as described previously in step a.
-
- Reference - Scheme B provides various general synthetic procedures for preparing intermediates not covered by the present invention.
- In step a, the appropriate ω-halo cumylketone compound of structure (8) is halogenated to give the corresponding ω-halo-halocumylketone compound of structure (10).
- For example, the appropriate ω-halo-halocumylketone compound of structure (10) may be prepared by reacting an appropriate ω-halo cumylketone compound of structure (8) with a suitable halogenating agent optionally in the presence of a catalytic amount of a suitable initiator. Examples of suitable brominating agents are N-bromosuccinimide, and 1,3-dibromo-5,5-dimethyl hydantoin, with N-bromosuccinimide being preferred. An example of suitable chlorinating agent is N-chlorosuccinimide and an example of a suitable iodinating agent is N-iodosuccinimide. Examples of suitable initiators are benzoyl peroxide, AIBN, t-butyl peroxide and ultraviolet light. The reaction is carried out in a solvent, such as carbon tetrachloride, methylene chloride, 1,2-dichlorobenzene, 1,2-dichloroethane, ethyl formate or ethyl acetate, with carbon tetrachloride being the preferred solvent. The reaction time varies from about 1/2 hour to 8 hours, preferably 1/2 to 2 hours and the reaction temperature varies from about 25°C to the reflux temperature of the solvent employed, preferably 70°C to 80°C. The corresponding ω-halo-halocumylketone compound of structure (10) is recovered from the reaction zone by extractive methods as are known in the art followed by evaporation of the solvent.
- In addition, the halogenation reaction of step a may be carried out in a 2-phase procedure. For example, the appropriate ω-halo-halocumylketone compound of structure (10) may be prepared by reacting an appropriate ω-halo cumylketone compound of structure (8) with a suitable halogenating agent, such as sodium bromate/sodium bromide, in a solvent mixture such as methylene chloride and water, catalyzing the reaction with, for example, ultraviolet light. The corresponding ω-halo-halocumylketone compound of structure (10) is recovered from the reaction zone by extractive methods as are known in the art followed by evaporation of the solvent.
- The ω-halo-halocumylketone compound of structure (10) may dehydrohalogenate to the corresponding α-methylstyrene, giving various mixtures of ω-halo-halocumylketone compound of structure (10) and α-methylstyrene compounds. The α-methylstyrene compounds in such a mixture may be back-converted to ω-halo-halocumylketone compound of structure (10) by treatment with anhydrous hydrogen halide gas. Typically, a solution of the mixture of ω-halo-halocumylketone compound of structure (10) and α-methylstyrene compounds in a suitable organic solvent, such as methylene chloride or acetonitrile, is treated with a suitable anhydrous hydrogen halide gas, such as hydrogen chloride. The reaction is typically treated with the hydrogen halide gas for a period of time ranging from 30 minutes to 5 hours and at a temperature range of from 0°C to room temperature. The remediated ω-halo-halocumylketone compound of structure (10) may be isolated by evaporation of solvent, but may be stored as a solution in the organic solvent containing hydrogen halide gas.
- In addition, halogen exchange of the benzylic halogen can be accomplished by thorough solvolysis in the presence of the appropriate hydrogen halide.
- For example, the ω-chloro-halocumylketone compound of structure (10) can be prepared from the ω-bromo-halocumylketone compound of structure (10) by thorough aqueous solvolysis in the presence of hydrogen chloride.
- In step b, the appropriate cyclopropyl cumylketone derivative of structure (9) is halogenated to give the corresponding cyclopropyl halocumylketone compound of structure (11) as described previously in step a.
- In step c, the cyclopropyl functionality of the appropriate cyclopropyl halocumylketone compound of structure (11) is ring-opened to give the corresponding ω-halo-halocumylketone compound of structure (10) wherein n = 3 as described previously in Scheme A, step j.
- In step d, the appropriate ω-halo ethylphenylketone compound of structure (6) is halogenated to give the corresponding ω-halo-haloethylphenylketone compound of structure (12) as described previously in step a.
- In step e, the appropriate ω-halo tolylketone compound of structure (4) is halogenated to give the corresponding ω-halo halotolylketone compound of structure (13) as described previously in step a.
- In step f, the appropriate cyclopropyl ethylphenylketone derivative of structure (7) is halogenated to give the corresponding cyclopropyl haloethylphenylketone compound of structure (14) as described previously in step a.
- In step g, the appropriate cyclopropyl tolylketone derivative of structure (5) is halogenated to give the corresponding cyclopropyl halotolylketone of structure (15) as described previously in step a.
- In step h, the appropriate cyclopropyl halotolylketone of structure (15) is ring-opened to give the corresponding ω-halo halotolylketone compound of structure (13) wherein n = 3 as described previously in Scheme A, step j.
-
-
- In step a, the appropriate ω-halo-halocumylketone compound of structure (10) is cyanated to give the corresponding ω-halo-cyanocumylketone compound of structure (19).
- For example, the appropriate ω-halo-cyanocumylketone compound of structure (19) may be prepared by reacting an appropriate ω-halo-halocumylketone compound of structure (10) with a suitable cyanating agent. Examples of suitable cyanating agents are trimethylsilyl cyanide, diethylaluminum cyanide and tetrabutylammonium cyanide, with trimethylsilyl cyanide being preferred. The reaction is carried out in a solvent, such as methylene chloride, tetrachloroethane and carbon tetrachloride, with methylene chloride being the preferred solvent. A catalytic amount of a suitable Lewis acid may also be employed in the reaction. Examples of suitable Lewis acids are boron trichloride, aluminum chloride, titanium tetrachloride, boron trifluoride, tin tetrachloride and zinc chloride, with tin tetrachloride being preferred. The reaction time varies from about 1/2 hour to 8 hours, preferably 1/2 to 2 hours and the reaction temperature varies from about 0°C to room temperature, preferably room temperature. The ω-halo-cyanocumylketone compound of structure (16) is recovered from the reaction zone by an aqueous quench followed by extraction as is known in the art. The ω-halo-cyanocumylketone compound of structure (16) may be purified by procedures well known in the art, such as chromatography and crystallization.
- In step b, the appropriate ω-halo cumylketone compound of structure (8) is cyanated to give the corresponding ω-halo-cyanocumylketone compound of structure (19).
- For example, the ω-halo-cyanocumylketone compound of structure (19) may be prepared by reacting an appropriate ω-halo cumylketone compound of structure (8) with a suitable cyanating agent. Examples of suitable cyanating agent are cyanogen chloride, cyanogen bromide and cyanogen iodide, with cyanogen chloride being preferred. The reaction is carried out according to the procedures outlined by Tanner and Bunce, J. Am. Chem. Soc., 91, 3028 (1969).
- In step c, the appropriate cyclopropyl halocumylketone compound of structure (11) is cyanated to give the corresponding cyclopropyl cyanocumylketone compound of structure (20) as described previously in step a.
- In step d, the appropriate cyclopropyl cumylketone derivative of structure (9) is cyanated to give the corresponding cyclopropyl cyanocumylketone compound of structure (20) as described previously in step b.
- In step e, the appropriate ω-halo-haloethylphenylketone compound of structure (12) is cyanated to give the corresponding ω-halo-cyanoethylphenylketone compound of structure (21) as described previously in step a.
- In step f, the appropriate ω-halo-ethylphenylketone compound of structure (6) is cyanated to give the corresponding ω-halo-cyanoethylphenylketone compound of structure (21) as described previously in step b.
- In step g, the appropriate ω-halo halotolylketone compound of structure (13) is cyanated to give the corresponding ω-halo cyanotolylketone compound of structure (22) as described previously in step a.
- In step h, the appropriate ω-halo tolylketone compound of structure (4) is cyanated to give the corresponding ω-halo cyanotolylketone compound of structure (22) as described previously in step b.
- In step i, the appropriate cyclopropyl ethylphenylketone compound of structure (7) is cyanated to give the corresponding cyclopropyl cyanoethylphenylketone compound of structure (23) as described previously in step b.
- In step j, the appropriate cyclopropyl haloethylphenylketone compound of structure (14) is cyanated to give the corresponding cyclopropyl cyanoethylphenylketone compound of structure (23) as described previously in step a.
- In step k, the appropriate cyclopropyl tolylketone compound of structure (5) is cyanated to give the corresponding cyclopropyl cyanotolylketone compound of structure (24) as described previously in step b.
- In step l, the appropriate cyclopropyl halotolylketone of structure (15) is cyanated to give the corresponding cyclopropyl cyanotolylketone compound of structure (24) as described previously in step a.
- Starting materials for use in Reference-Scheme D are readily available to one of ordinary skill in the art.
-
- Scheme G provides alternative various general synthetic procedures for preparing the novel intermediates of formula (III).
- In step a, the appropriate phenylacetic acid amide compound of structure (37) is methylated to give the corresponding α-methylphenylacetic acid amide compound of structure (38) as described previously in Scheme A, step a.
- Appropriate phenylacetic acid amide compound of structure (37) are prepared from the corresponding phenylacetic acid by standard amide-forming reactions as are known in the art. The appropriate phenylacetic acids may be prepared by hyrdolysis of the corresponding 2-cyano-2-propylbenzene compound of structure (27) by techniques and procedures well known and appreciated by one of ordinary skill in the art.
- In step b, the appropriate α-methylphenylacetic acid amide compound of structure (38) is methylated to give the corresponding α,α-dimethylphenylacetic acid amide compound of structure (39) as described previously in Scheme A, step a.
- Appropriate α-methylphenylacetic acid amide compound of structure (38) are prepared from the corresponding α-methylphenylacetic acid by standard amide-forming reactions as are known in the art as as described in step a.
- In step c, the appropriate phenylacetic acid amide compound of structure (37) is dimethylated to give the corresponding α,α-dimethylphenylacetic acid amide compound of structure (39) as described previously in Scheme A, step c.
- In step d, the appropriate phenylacetic acid amide compound of structure (37) is acylated with an appropriate ω-halo compound of the structure Hal-(CH2)n-C(=O)-B, wherein B is Hal or hydroxy, Hal is Cl, Br or I and n is as previously defined to give the corresponding ω'-halo-α'-keto-phenylacetic acid amide compound of structure (43) as described previously in Scheme A, step d.
- In step e, the appropriate phenylacetic acid amide compound of structure (37) is acylated with an appropriate cyclopropyl compound of the structure wherein B is as previously defined to give the corresponding cyclopropylketo-phenylacetic acid amide compound of structure (45) as described previously in Scheme A, step e.
- In step f, the appropriate α-methylphenylacetic acid amide compound of structure (38) is acylated with an appropriate ω-halo compound of the structure Hal-(CH2)n-C(=O)-B, wherein B is Hal or hydroxy, Hal is Cl, Br or I and n is as previously defined to give the corresponding ω'-halo-α'-keto-α-methylphenylacetic acid amide compound of structure (42) as described previously in Scheme A, step d.
- In step g, the appropriate α-methylphenylacetic acid amide compound of structure (38) is acylated with an appropriate cyclopropyl compound of the structure wherein B is as previously defined to give the corresponding cyclopropylketo-α-methylphenylacetic acid amide compound of structure (44) as described previously in Scheme A, step e.
- In step h, the appropriate α,α-dimethylphenylacetic acid amide compound of structure (39) is acylated with an appropriate ω-halo compound of the structure Hal-(CH2)n-C(=O)-B, wherein B is Hal or hydroxy, Hal is Cl, Br or I and n is as previously defined to give the corresponding ω'-halo-α'-keto-α,α-di-methylphenylacetic acid amide compound of structure (40) as described previously in Scheme A, step d.
- Appropriate α,α-dimethylphenylacetic acid amide compounds of structure (39) are prepared from the corresponding α,α-dimethylphenylacetic acid by standard amide-forming reactions as are known in the art as as described in step a.
- In step i, the appropriate α,α-dimethylphenylacetic acid amide compound of structure (39) is acylated with an appropriate cyclopropyl compound of the structure wherein B is as previously defined to give the corresponding cyclopropylketo-α,α-dimethylphenylacetic acid amide compound of structure (41) as described previously in Scheme A, step e.
- In step j, the appropriate ω'-halo-α'-keto-α-methylphenylacetic acid amide compound of structure (42) is methylated to give the corresponding ω'-halo-α'-keto-α,α-di-methylphenylacetic acid amide compound of structure (40) as described previously in Scheme a, step a.
- In step k, the cyclopropyl functionality of the appropriate cyclopropylketo-α,α-dimethylphenylacetic acid amide compound of structure (41) is ring-opened to give the corresponding ω'-halo-α'-keto-α,α-di-methylphenylacetic acid amide compound of structure (40) wherein n = 3 as described previously in Scheme A, step j.
- In step l, the appropriate ω'-halo-α'-keto-α,α-dimethylphenylacetic acid amide compound of structure (40) wherein n = 3 is ring-closed to give the corresponding cyclopropylketo-α,α-dimethylphenylacetic acid amide compound of structure (41) as described previously in Scheme A, step k.
- In step m, the appropriate ω'-halo-α'-keto-phenylacetic acid amide compound of structure (43) is dimethylated to give the corresponding ω'-halo-α'-keto-α,α-dimethylphenylacetic acid amide compound of structure (40) as described previously in Scheme A, step c.
- In step n, the appropriate ω'-halo-α'-keto-phenylacetic acid amide compound of structure (43) is methylated to give the corresponding ω'-halo-α'-keto-α-methylphenylacetic acid amide compound of structure (42) as described previously in Scheme A, step a.
- In step o, the cyclopropyl functionality of the appropriate cyclopropylketo-α-methylphenylacetic acid amide compound of structure (44) is ring-opened to give the corresponding ω'-halo-α'-keto-α-methylphenylacetic acid amide compound of structure (42) wherein n = 3 as described previously in Scheme A, step j.
- In step p, the appropriate ω'-halo-α'-keto-α-methylphenylacetic acid amide compound of structure (42) wherein n = 3 is ring-closed to give the corresponding cyclopropylketo-α-methylphenylacetic acid amide compound of structure (44) as described previously in Scheme A, step k.
- In step q, the appropriate cyclopropylketo-α-methylphenylacetic acid amide compound of structure (44) is methylated to give the corresponding cyclopropylketo-α,α-dimethylphenylacetic acid amide compound of structure (41) as described previously in Scheme A, step a.
- In step r, the appropriate cyclopropylketo-phenylacetic acid amide compound of structure (45) is dimethylated to give the corresponding cyclopropylketo-α,α-dimethylphenylacetic acid amide compound of structure (41) as described previously in Scheme A, step c.
- In step s, the cyclopropyl functionality of the appropriate cyclopropylketo-phenylacetic acid amide compound of structure (45) is ring-opened to give the corresponding ω'-halo-α'-keto-phenylacetic acid amide compound of structure (43) wherein n = 3 as described previously in Scheme A, step j.
- In step t, the appropriate ω'-halo-α'-keto-phenylacetic acid amide compound of structure (43) wherein n = 3 is ring-closed to give the corresponding cyclopropylketo-phenylacetic acid amide compound of structure (45) as described previously in Scheme A, step k.
- In step u, the appropriate cyclopropylketo-phenylacetic acid amide compound of structure (45) is methylated to give the corresponding cyclopropylketo-α-methylphenylacetic acid amide compound of structure (44) as described previously in Scheme A, step a.
- Starting materials for use in Scheme C are readily available to one of ordinary skill in the art.
-
- Scheme H provides various general synthetic procedures for preparing the above referred novel intermediates of formula (III).
- In step a, the nitrile functionality of the appropriate ω-halo-cyanocumylketone compound of structure (19) is converted to the corresponding ester by reaction with an appropriate C1 to C6 alcohol to give the corresponding ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (31).
- For example, the ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (31) may be prepared by reacting an appropriate ω-halo-cyanocumylketone compound of structure (19) with an appropriate C1-C6 alcohol in the presence of a suitable anhydrous acid followed by treatment with water. Examples of appropriate alcohols are methanol, ethanol, propanol, and the like, with methanol being preferred. Examples of appropriate acids are hydrogen chloride and hydrogen bromide, with hydrogen chloride being preferred. The reaction time varies from about 1/2 hour to 48 hours, preferably 3 to 5 hours and the reaction temperature varies from about -20°C to room temperature, preferably -10°C to 0°C. The ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (28) is recovered from the reaction zone by evaporation of the solvent followed by extraction as is known in the art. The ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (31) may be purified by procedures well known in the art, such as chromatography.
- In step b, the nitrile functionality of the appropriate ω-halo-cyanocumylketone compound of structure (19) is converted to the corresponding amide to give the ω'-halo-α'-keto-α,α-dimethylphenylacetic acid amide compound of structure (40) wherein R1 and R2 are both hydrogen.
- For example, hydrolysis may be achieved by using a suitable acid, such as concentrated hydrochloric acid as is known in the art.
- In step c, the carboxy ester functionality of the appropriate ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (31) is hydrolyzed to give the corresponding ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46).
- For example, hydrolysis may be achieved by using a suitable non-nucleophilic base, such as sodium methoxide in methanol as is known in the art. Other methods known in the art for ester cleavage include potassium carbonate in methanol, methanolic ammonia, potassium carbonate, potassium hydroxide, calcium hydroxide, sodium hydroxide, magnesium hydroxide, sodium hydroxide/pyridine in methanol, potassium cyanide in ethanol and sodium hydroxide in aqueous alcohols, with potassium hydroxide being preferred. The reaction is typically carried out in an aqueous lower alcohol solvent, such as methanol, ethanol, isopropyl alcohol, n-butanol, 2-ethoxyethanol or ethylene glycol or pyridine, at temperatures ranging from room temperature to the reflux temperature of the solvent, and the reaction time varies from about 1/2 hour to 100 hours.
- In step d, the carboxy functionality of the appropriate ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (31).
- For example, one such method involves reacting an appropriate ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46) with an excess of an appropriate C1-C6 alcohol which is straight or branched in the presence of a small amount of mineral acid, such as hydrochloric acid or sulfuric acid, hydrochloric acid being preferred, at reflux. Another suitable method involves reacting an appropriate ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46) with an excess of diazomethane in a suitable solvent such as ether at room temperature to give the methyl ester. In addition, the ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (28) may also be prepared by reacting an appropriate ω'-halo-α'-keto-α,α-di-methylphenylacetic acid compound of structure (46) with an excess of 2,2-dimethoxypropane in a suitable solvent such as methanol at 0°C to room temperature to give the methyl ester. Another suitable method involves first reacting an appropriate ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46) with thionyl chloride in a suitable solvent such as methylene chloride to give an intermediate acid chloride, followed by addition of a suitable C1 to C6 alcohol which is straight or branched. Another suitable method involves the alkylation of the carboxylate anion with an appropriate electrophile, such as dimethyl sulfate or ethyl bromide, to give the corresponding ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (31). Such methods are well known in the art and are described in J. Org. Chem., 29, 2490-2491 (1964).
- Alternatively, step k and step d may be combined and the ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (34) wherein n = 3 may be prepared from the corresponding cyclopropylketo-α,α-dimethylphenylacetic acid compound of structure (50).
- Alternatively, step p, step k and step d may be combined and the ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (31) wherein n = 3 may be prepared from the corresponding cyclopropyl cyanocumylketone compound of structure (20).
- In step e, the nitrile functionality of the appropriate ω-halo-cyanocumylketone compound of structure (19) is converted to the corresponding carboxy to give the ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46).
- For example, hydrolysis may be achieved by using a suitable acid, such as concentrated hydrochloric acid as is known in the art.
- In step f, the amide functionality of the appropriate ω'-halo-α'-keto-α,α-dimethylphenylacetic acid amide compound of structure (40) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the corresponding ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46).
- For example, hydrolysis may be achieved by using a suitable non-nucleophilic base, such as sodium methoxide in methanol as is known in the art. Other methods known in the art for ester cleavage include potassium carbonate in methanol, methanolic ammonia, potassium carbonate, potassium hydroxide, calcium hydroxide, sodium hydroxide, magnesium hydroxide, sodium hydroxide/pyridine in methanol, potassium cyanide in ethanoland sodium hydroxide in aqueous alcohols, with potassium hydroxide being preferred. The reaction is typically carried out in an aqueous lower alcohol solvent, such as methanol, ethanol, isopropyl alcohol, n-butanol, 2-ethoxyethanol or ethylene glycol or pyridine, at temperatures ranging from room temperature to the reflux temperature of the solvent, and the reaction time varies from about 1/2 hour to 100 hours.
- In step g, the carboxy functionality of the appropriate ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ω'-halo-α'-keto-α,α-dimethylphenylacetic acid amide compound of structure (40).
- In step h, the α-halo functionality of the appropriate ω-halo-halocumylketone compound of structure (10) is carboxylated to give the corresponding ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46).
- For example, a solution of the appropriate ω-halo-halocumylketone compound of structure (10) and a suitable catalyst, such as tetraethylammonium bromide, in a suitable polar aprotic organic solvent, such as acetonitrile, N,N-dimethylacetamide, 1-methyl-2-pyrrolidinone or dimethylformamide, are placed in a jacketed glass cell and fitted with an expanded silver mesh cathode, magnesium anode and carbon dioxide delivery tube. Rotation of the electrodes provides stirring, while electrical contact with the electrodes is made via spring loaded sliding carbon brushes placed against the concentric metal shafts (insulated from each other with a length of plastic tubing) onto which the electrodes are mounted. Carbon dioxide is introduced into the cell at pressures of 1-10 atm, for a period of time ranging from 30 minutes to 50 hours and at a temperature range of from -30°C to 50°C. The corresponding ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46) is isolated, after acidification with a suitable mineral acid, such as hydrochloric acid, by extractive methods as are known in the art.
- It is preferred that the ω-halo functionality of the appropriate ω-halo-halocumylketone compound of structure (10) for use in step h be a ω-chloro.
- Alternatively, the treatment of appropriate ω-halo-halocumylketone compound of structure (10) with a transition metal catalyst such as palladium, nickel or cobalt, optionally in the presence of a phosphine catalysis using low to modest pressures of carbon monoxide as described by Stahly et al. in U.S. Patent 4,990,658, 1991 also provides the corresponding ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46).
- In step i, the appropriate the amide functionality of the appropriate ω'-halo-α'-keto-α,α-di-methylphenylacetic acid amide compound of structure (40) is converted to the corresponding ester to give the ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (31).
- For example,the appropriate ω'-halo-α'-keto-α,α-di-methylphenylacetic acid amide compound of structure (40) is reacted with an appropriate hydrogen halide in an appropriate organic solvent such as ethanol. The reaction is typically conducted at a temperature range of from room temperature to reflux and for a period of time ranging from 5 minutes to 1 hour. The ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (31) is recovered from the reaction zone by extractive methods as is known in the art.
- In step j, the appropriate ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46) is ring-closed to give the corresponding cyclopropylketo-α,α-dimethylphenylacetic acid compound of structure (47) as described previously in Scheme A, step k.
- In step k, the appropriate cyclopropylketo-α,α-dimethylphenylacetic acid compound of structure (47) is ring-opened to give the corresponding ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46) wherein n = 3 as described previously in Scheme A, step j.
- In step l, the nitrite functionality of the appropriate cyclopropyl cyanocumylketone compound of structure (20) is converted to the corresponding ester by reaction with an appropriate C1 to C6 alcohol to give the cyclopropylketo-α,α-dimethylphenylacetic acid ester compound of structure (32) as described previously in step a.
- In step m, the nitrile functionality of the appropriate cyclopropyl cyanocumylketone compound of structure (20) is converted to the corresponding amide to give the ω'-halo-α'-keto-α,α-di-methylphenylacetic acid amide compound of structure (41) wherein R1 and R2 are both hydrogen as described previously in step b.
- In step n, the carboxy ester functionality of the appropriate cyclopropylketo-α,α-dimethylphenylacetic acid ester compound of structure (32) is hydrolyzed to give the corresponding cyclopropylketo-α,α-dimethylphenylacetic acid compound of structure (47) as described previously in step c.
- In step o, the carboxy functionality of the appropriate cyclopropylketo-α,α-dimethylphenylacetic acid compound of structure (47) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding cyclopropylketo-α,α-dimethylphenylacetic acid ester compound of structure (32) as described previously in step d.
- In step p, the nitrile functionality of the appropriate cyclopropyl cyanocumylketone compound of structure (20) is converted to the corresponding carboxy to give the cyclopropylketo-α,α-dimethylphenylacetic acid compound of structure (47) as described previously in step e.
- In step q, the amide functionality of the appropriate cyclopropylketo-α,α-dimethylphenylacetic acid amide compound of structure (41) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the corresponding cyclopropylketo-α,α-dimethylphenylacetic acid compound of structure (47) as described previously in step f.
- In addition, step q and step k may be combined and the ω'-halo-α'-keto-α,α-dimethylphenylacetic acid compound of structure (46) may be prepared from the corresponding cyclopropylketo-α,α-dimethylphenylacetic acid amide compound of structure (41) as described previously in Scheme A, step j.
- In step r, the carboxy functionality of the appropriate cyclopropylketo-α,α-dimethylphenylacetic acid compound of structure (47) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding cyclopropylketo-α,α-dimethylphenylacetic acid amide compound of structure (41) as described previously in step g.
- In step s, the α-halo functionality of the appropriate cyclopropyl halocumylketone compound of structure (11) is carboxylated to give the corresponding cyclopropylketo-α,α-dimethylphenylacetic acid compound of structure (47) as described previously in step h.
- In step t, the appropriate the amide functionality of the appropriate cyclopropylketo-α,α-dimethylphenylacetic acid amide compound of structure (41) is converted to the corresponding ester to give the cyclopropylketo-α,α-dimethylphenylacetic acid ester compound of structure (32) as described previously in step i.
- In step u, the nitrile functionality of the appropriate ω-halo-cyanoethylphenylketone compound of structure (21) is converted to the corresponding ester by reaction with an appropriate C1 to C6 alcohol to give the ω'-halo-α'-keto-α-methylphenylacetic acid ester compound of structure (33) as described previously in step a.
- In step v, the nitrile functionality of the appropriate ω-halo-cyanoethylphenylketone compound of structure (21) is converted to the corresponding amide to give the ω'-halo-α-keto-α-methylphenylacetic acid amide compound of structure (42) wherein R1 and R2 are both hydrogen as described previously in step b.
- In step w, the carboxy ester functionality of the appropriate ω'-halo-α'-keto-α-methylphenylacetic acid ester compound of structure (33) is hydrolyzed to give the corresponding ω'-halo-α'-keto-α-methylphenylacetic acid compound of structure (48) as described previously in step c.
- In step x, the carboxy functionality of the appropriate ω'-halo-α'-keto-α-methylphenylacetic acid compound of structure (48) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ω'-halo-α'-keto-α-methylphenylacetic acid ester compound of structure (33) as described previously in step d.
- Alternatively, step ee and step x may be combined and the ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (33) may be prepared from the corresponding cyclopropylketo-α-methylphenylacetic acid compound of structure (49) as described previously in step d.
- Alternatively, step jj, step ee and step x may be combined and the ω'-halo-α'-keto-α,α-dimethylphenylacetic acid ester compound of structure (33) may be prepared from the corresponding cyclopropyl cyanoethylphenylketone compound of structure (23) as described previously in step d.
- In step y, the nitrile functionality of the appropriate ω-halo-cyanoethylphenylketone compound of structure (21) is converted to the corresponding carboxy to give the ω'-halo-α'-keto-α-methylphenylacetic acid compound of structure (48) as described previously in step e.
- In step z, the amide functionality of the appropriate ω'-halo-α'-keto-α-methylphenylacetic acid amide compound of structure (42) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the ω'-halo-α'-keto-α-methylphenylacetic acid compound of structure (48) as described previously in step f.
- In step aa, the carboxy functionality of the appropriate ω'-halo-α'-keto-α-methylphenylacetic acid compound of structure (48) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ω'-halo-α'-keto-α-methylphenylacetic acid amide compound of structure (42) as described previously in step g.
- In step bb, the α-halo functionality of the appropriate ω-halo-haloethylphenylketone compound of structure (12) is carboxylated to give the corresponding ω'-halo-α'-keto-α-methylphenylacetic acid compound of structure (48) as described previously in step h.
- In step cc, the appropriate the amide functionality of the appropriate ω'-halo-α'-keto-α-methylphenylacetic acid amide compound of structure (42) is converted to the corresponding ester to give the ω'-halo-α'-keto-α-methylphenylacetic acid ester compound of structure (33) as described previously in step i.
- In step dd, the appropriate ω'-halo-α'-keto-α-methylphenylacetic acid compound of structure (48) is ring-closed to give the corresponding cyclopropylketo-α-methylphenylacetic acid compound of structure (49) as described previously in Scheme A, step k.
- In step ee, the appropriate cyclopropylketo-α-methylphenylacetic acid compound of structure (49) is ring-opened to give the corresponding ω'-halo-α'-keto-α-methylphenylacetic acid compound of structure (48) as described previously in Scheme A, step j.
- In step ff, the nitrile functionality of the appropriate cyclopropyl cyanoethylphenylketone compound of structure (23) is converted to the corresponding ester by reaction with an appropriate C1 to C6 alcohol to give the cyclopropylketo-α-methylphenylacetic acid ester compound of structure (35) as described previously in step a.
- In step gg, the nitrile functionality of the appropriate cyclopropyl cyanoethylphenylketone compound of structure (23) is converted to the corresponding amide to give the cyclopropylketo-α-methylphenylacetic acid amide compound of structure (44) wherein R1 and R2 are both hydrogen as described previously in step b.
- In step hh, the carboxy ester functionality of the appropriate cyclopropylketo-α-methylphenylacetic acid ester compound of structure (35) is hydrolyzed to give the corresponding cyclopropylketo-α-methylphenylacetic acid compound of structure (49) as described previously in step c.
- In step ii, the carboxy functionality of the appropriate cyclopropylketo-α-methylphenylacetic acid compound of structure (49) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding cyclopropylketo-α-methylphenylacetic acid ester compound of structure (35) as described previously in step d.
- In step jj, the nitrile functionality of the appropriate cyclopropyl cyanoethylphenylketone compound of structure (23) is converted to the corresponding carboxy to give the cyclopropylketo-α-methylphenylacetic acid compound of structure (49) as described previously in step e.
- In step kk, the amide functionality of the appropriate cyclopropylketo-α-methylphenylacetic acid amide compound of structure (44) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the corresponding cyclopropylketo-α-methylphenylacetic acid compound of structure (49) as described previously in step f.
- In addition, step kk and step ee may be combined and the ω'-halo-α'-keto-α-methylphenylacetic acid compound of structure (48) wherein n = 3 may be prepared from the corresponding cyclopropylketo-α-methylphenylacetic acid amide compound of structure (44) as described previously in Scheme A, step j.
- In step ll, the carboxy functionality of the appropriate cyclopropylketo-α-methylphenylacetic acid compound of structure (49) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding cyclopropylketo-α-methylphenylacetic acid amide compound of structure (44) as described previously in step g.
- In step mm, the α-halo functionality of the appropriate cyclopropyl haloethylphenylketone compound of structure (14) is carboxylated to give the corresponding cyclopropylketo-α-methylphenylacetic acid compound of structure (49) as described previously in step h.
- In step nn, the appropriate the amide functionality of the appropriate ω'-halo-α'-keto-α-methylphenylacetic acid amide compound of structure (42) is converted to the corresponding ester to give the ω'-halo-α'-keto-α-methylphenylacetic acid ester compound of structure (33) as described previously in step i.
- In step oo, the nitrile functionality of the appropriate ω-halo cyanotolylketone compound of structure (22) is converted to the corresponding ester by reaction with an appropriate C1 to C6 alcohol to give the ω'-halo-α'-keto-phenylacetic acid ester compound of structure (34) as described previously in step a.
- In step pp, the nitrile functionality of the appropriate ω-halo cyanotolylketone compound of structure (22) is converted to the corresponding amide to give the ω'-halo-α'-keto-phenylacetic acid amide compound of structure (43) wherein R1 and R2 are both hydrogen as described previously in step b.
- In step qq, the carboxy ester functionality of the appropriate ω'-halo-α'-keto-phenylacetic acid ester compound of structure (34) is hydrolyzed to give the corresponding ω'-halo-α'-keto-methylphenylacetic acid compound of structure (50) as described previously in step c.
- In step rr, the carboxy functionality of the appropriate ω'-halo-α'-keto-methylphenylacetic acid compound of structure (50) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ω'-halo-α'-keto-phenylacetic acid ester compound of structure (34) as described previously in step d.
- Alternatively, step yy and step rr may be combined and the ω'-halo-α'-keto-phenylacetic acid ester compound of structure (34) may be prepared from the corresponding ω'-halo-α'-keto-methylphenylacetic acid compound of structure (50) as described previously in step d.
- Alternatively, step ddd, step yy and step rr may be combined the ω'-halo-α'-keto-phenylacetic acid ester compound of structure (34) may be prepared from the corresponding cyclopropyl cyanotolylketone compound of structure (24) as described previously in step d.
- In step ss, the nitrile functionality of the appropriate ω-halo cyanotolylketone compound of structure (22) is converted to the corresponding carboxy to give the ω'-halo-α'-keto-methylphenylacetic acid compound of structure (50) as described previously in step e.
- In step tt, the amide functionality of the appropriate ω'-halo-α'-keto-phenylacetic acid amide compound of structure (43) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the ω'-halo-α'-keto-methylphenylacetic acid compound of structure (50) as described previously in step f.
- In step uu, the carboxy functionality of the appropriate ω'-halo-α'-keto-methylphenylacetic acid compound of structure (50) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ω'-halo-α'-keto-phenylacetic acid amide compound of structure (43) as described previously in step g.
- In step vv, the α-halo functionality of the appropriate ω-halo halotolylketone compound of structure (13) is carboxylated to give the corresponding ω'-halo-α'-keto-methylphenylacetic acid compound of structure (50) as described previously in step h.
- In step ww, the appropriate the amide functionality of the appropriate ω'-halo-α'-keto-phenylacetic acid amide compound of structure (43) is converted to the corresponding ester to give the ω'-halo-α'-keto-phenylacetic acid ester compound of structure (34) as described previously in step i.
- In step xx, the appropriate ω'-halo-α'-keto-methylphenylacetic acid compound of structure (50) is ring-closed to give the corresponding cyclopropylketo-phenylacetic acid compound of structure (51) as described previously in Scheme A, step k.
- In step yy, the appropriate cyclopropylketo-phenylacetic acid compound of structure (51) is ring-opened to give the corresponding ω'-halo-α'-keto-methylphenylacetic acid compound of structure (50) as described previously in Scheme A, step j.
- In step zz, the nitrile functionality of the appropriate cyclopropyl cyanotolylketone compound of structure (24) is converted to the corresponding ester by reaction with an appropriate C1 to C6 alcohol to give the cyclopropylketo-phenylacetic acid ester compound of structure (36) as described previously in step a.
- In step aaa, the nitrile functionality of the appropriate cyclopropyl cyanotolylketone compound of structure (24) is converted to the corresponding amide to give the cyclopropylketo-phenylacetic acid amide compound of structure (45) wherein R1 and R2 are both hydrogen as described previously in step b.
- In step bbb, the carboxy ester functionality of the appropriate cyclopropylketo-phenylacetic acid ester compound of structure (36) is hydrolyzed to give the corresponding cyclopropylketo-phenylacetic acid compound of structure (51) as described previously in step c.
- In step ccc, the carboxy functionality of the appropriate cyclopropylketo-phenylacetic acid compound of structure (51) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding cyclopropylketo-phenylacetic acid ester compound of structure (36) as described previously in step d.
- In step ddd, the nitrile functionality of the appropriate cyclopropyl cyanotolylketone compound of structure (24) is converted to the corresponding carboxy to give the cyclopropylketo-phenylacetic acid compound of structure (51) as described previously in step e.
- In step eee, the amide functionality of the appropriate cyclopropylketo-phenylacetic acid amide compound of structure (45) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the corresponding cyclopropylketo-phenylacetic acid compound of structure (51) as described previously in step f.
- In addition, step yy and step eee may be combined and the ω'-halo-α'-keto-methylphenylacetic acid compound of structure (50) may be prepared from the corresponding cyclopropylketo-phenylacetic acid amide compound of structure (45) as described previously in Scheme A, step j.
- In step fff, the carboxy functionality of the appropriate cyclopropylketo-phenylacetic acid compound of structure (51) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding cyclopropylketo-phenylacetic acid amide compound of structure (45) as described previously in step g.
- In step ggg, the α-halo functionality of the appropriate cyclopropyl halotolylketone of structure (15) is carboxylated to give the corresponding cyclopropylketo-phenylacetic acid compound of structure (51) as described previously in step h.
- In step hhh, the appropriate the amide functionality of the appropriate cyclopropylketo-phenylacetic acid amide compound of structure (45) is converted to the corresponding ester to give the cyclopropylketo-phenylacetic acid ester compound of structure (36) as described previously in step i.
- Starting materials for use in Scheme H are readily available to one of ordinary skill in the art.
-
- Scheme L provides various general synthetic procedures for preparing the novel intermediates of formula (XI).
- In step a, the ω'-halo functionality of the appropriate ω'-halo-α'-keto-α,α-dimethylphenyl compound of structure (67) is alkylated with the appropriate piperidine compound of structure (68) to give the corresponding ω'-piperidine-α'-keto-α,α-dimethylphenyl compound of structure (69).
- For example, the ω'-piperidine- α'-keto-α,α-dimethylphenyl compound of structure (69) may be prepared by reacting the appropriate ω'-halo-α'-keto-α,α-dimethylphenyl compound of structure (67) with the appropriate piperidine compound of structure (68) in a suitable solvent preferably in the present of a suitable non-nucleophilic base and optionally in the presence of a catalytic amount of an iodide source, such as potassium or sodium iodide. The reaction time varies from about 4 to 120 hours and the reaction temperature varies from about 70°C to the reflux temperature of the solvent. Suitable solvent for the alkylation reaction include alcohol solvents such as, methanol, ethanol, isopropyl alcohol, or n-butanol; ketone solvents, such as, cyclohexanone, methyl isobutyl ketone; hydrocarbon solvents, such as, benzene, toluene or xylene; halogenated hydrocarbons, such as, chlorobenzene or methylene chloride or dimethylformamide. Suitable non-nucleophilic bases for the alkylation reaction include inorganic bases, for example, sodium bicarbonate, potassium carbonate, or potassium bicarbonate or organic bases, such as, a trialkylamine, for example, triethylamine or pyridine, or an excess of an appropriate piperidine compound of structure (68) may be used.
- For those piperidine compounds of structure (68), it is preferred that OH be unprotected for utilization in the alkyation reaction of step a, but those hydroxy functionalities present in the piperidine compounds of structure (68), may be protected with a suitable protecting group. The selection and utilization of suitable protecting groups for the piperidine compounds of structure (68), is well known by one of ordinary skill in the art and is described in "Protective Groups in Organic Syntheses", Theodora W. Greene, Wiley (1981). For example, suitable protecting groups for those hydroxy functionalities present include ethers such as tetrahydrothiopyranyl, tetrahydrothiofuranyl, 2-(phenylselenyl)ethyl ether, o-nitrobenzyl ether, trimethylsilyl ether, isopropyldimethylsilyl ether, t-butyldimethylsilyl ether, t-butyldiphenylsilyl ether, tribenzylsilyl ether, triisopropylsilyl ether; and esters, such as acetate ester, isobutyrate ester, pivaloate ester, adamantoate ester, benzoate ester, 2,4,6-trimethylbenzoate (mesitoate) ester, methyl carbonate, p-nitrophenyl carbonate, p-nitrobenzyl carbonate, S-benzyl thiocarbonate and N-phenylcarbamate.
- The piperidine compounds of structure (68) are readily available to one of ordinary skill in the art and are described in US-A- 4,254,129 (March 3, 1981), US-A- 4,254,130 (March 3, 1981), US-A- 4,285,958 (April 25, 1981) and US-A-4,550,116 (Oct. 29, 1985).
- In step b, the ω'-halo functionality of the appropriate ω-halo-α'-hydroxy-α,α-dimethylphenyl compound of structure (70) wherein R5 is CONR6R7 is alkylated with the appropriate piperidine compound of structure (68) to give the corresponding ω'-piperidine- α'-hydroxy-α,α-dimethylphenyl compound of structure (71) wherein R5 is, CONR6R7 as described previously in step a.
- In step c, the ketone functionality of the appropriate ω'-piperidine-α'-keto-α,α-dimethylphenyl compound of structure (69) wherein R5 CONR6R7 is reduced to give the corresponding ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl compound of structure (71) wherein R5 is CONR6R7.
- For example, reduction of the appropriate ω'-piperidine-α'-keto-α,α-dimethylphenyl compound of structure (69) wherein R5 is, CONR6R7, using, for example, a suitable reducing agent such as sodium borohydride, potassium borohydride, sodium cyanoborohydride, or tetramethylammonium borohydride is carried out in lower alcohol solvents, such as, methanol, ethanol, isopropyl alcohol or n-butanol at temperatures ranging from about 0°C to the reflux temperature of the solvent, and the reaction time varies from about 1/2 hour to 8 hours. Other suitable reducing agents are, for example, lithium tri-tert-butylaluminohydride and diisobutylaluminum hydride. These reduction reactions are carried out in suitable solvents diethyl ether, tetrahydrofuran or dioxane at temperatures ranging from about 0°C to the reflux temperature of the solvent, and the reaction time varies from about 1/2 hour to 8 hours.
- Catalytic reduction may also be employed in the preparation of appropriate ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl compound of structure (71) wherein R5 is CONR6R7 from an appropriate ω'-piperidine-α'-keto-α,α-dimethylphenyl compound of structure (69) wherein R5 is, or CONR6R7, using hydrogen gas in the presence of a suitable catalyst such as Raney nickel, palladium, platinum or rhodium catalysts in lower alcohol solvents, such as, methanol, ethanol, isopropyl alcohol or n-butanol or acetic acid or their aqueous mixtures, or by the use of aluminum isopropoxide in isopropyl alcohol.
- Reduction using sodium borohydride or potassium borohydride is preferred over catalytic reduction for those ω'-piperidine-α'-keto-α,α-dimethylphenyl compound of structure (69) wherein R5 is CONR6R7 and wherein R1 and R2 taken together form a second bond between the carbon atoms bearing R1 and R2.
- In addition, a chiral reduction of the appropriate ω'-piperidine-α'-keto-α,α-dimethylphenyl compound of structure (69) wherein R5 is, CONR6R7, using, for example, (+)-B-chlorodiisopinocamphenylborane gives the corresponding (R)-ω'-piperidine-α'-keto-α,α-dimethylphenyl compound of structure (69) wherein R5 is hydrogen, CN, COOalkyl or CONR6R7 and (-)-B-chlorodiisopinocamphenylborane gives the corresponding (S)-ω'-piperidine-α'-keto-α,α-dimethylphenyl compound of structure (69) wherein R5 is, CONR6R7. Other suitable chiral reducing agents are, (R) and (S)-oxazaborolidine/BH3, potassium 9-O-(1,2:5,6-di-O-isopropylidine-α-D-glucofuransoyl)-9-boratabicyclo[3.3.1]nonane, (R) and (S)-B-3-pinanyl-9-borabicyclo[3.3.1]nonane, NB-Enantride, Lithium (R)-(+) and (S)-(-)-2,2'-dihydroxy-1,1'-binaphthyl alkoxyl aluminum hydride, (R)-(+) and (S)-(-)-2,2'-dihydroxy-6,6'-dimethylbipheryl borane-amine complex, tris[[(1S,2S,5R)-2-isopropyl-5-methyl-cyclohex-1-yl]methyl]aluminum, [[(1R,3R)-2,2-dimethylbicyclo[2.2.1]hept-3-yl]methyl]beryllium chloride, (R)-BINAP-ruthenium complex/H2 and 6,6'-bis(diphenylphosphino)-3,3'-dimethoxy-2,2',4,4'-tetramethyl-1,1'-biphenyl.
-
- Scheme M provides various alternative general synthetic procedures for preparing the novel intermediates of formula (XI).
- In step a, the appropriate ω'-piperidine-2-methylethylphenyl compound of structure (72) is cyanated to give the corresponding ω'-piperidine-α,α-dimethylphenylacetonitrile compound of structure (73) as described previously in Reference-Scheme D, step b.
- In step b, the appropriate ω'-piperidine-2-methylethylphenyl compound of structure (72) is halogenated to give the corresponding ω'-piperidine-α,α-dimethylbenzyl halide compound of structure (74) as described previously in Reference-Scheme B, step a.
- In step c, the nitrile functionality of the appropriate ω'-piperidine-α,α-dimethylphenylacetonitrile compound of structure (73) is converted to the corresponding ester to give the ω'-piperidine-α,α-dimethylphenylacetic acid ester compound of structure (75) as described previously in Scheme H, step a.
- In step d, the halo functionality of the appropriate ω'-piperidine-α,α-dimethylbenzyl halide compound of structure (74) is converted to the corresponding carboxy to give the ω'-piperidine-α,α-dimethylphenylacetic acid compound of structure (76) as described previously in Scheme H, step h.
- In step e, the nitrile functionality of the appropriate ω'-piperidine-α,α-dimethylphenylacetonitrile compound of structure (73) is converted to the corresponding carboxy to give the ω'-piperidine-α,α-dimethylphenylacetic acid compound of structure (76) as described previously in Scheme H, step e.
- In step f, the nitrile functionality of the appropriate ω'-piperidine-α,α-dimethylphenylacetonitrile compound of structure (73) is converted to the corresponding amide to give the ω'-piperidine-α,α-dimethylphenylacetic acid amide compound of structure (77) wherein R1 and R2 are each hydrogen as described previously in Scheme H, step b.
- In step g, the carboxy ester functionality of the appropriate ω'-piperidine-α,α-dimethylphenylacetic acid ester compound of structure (75) is hydrolyzed to give the corresponding ω'-piperidine-α,α-dimethylphenylacetic acid compound of structure (76) as described previously in Scheme H, step c.
- In step h, the carboxy functionality of the appropriate ω'-piperidine-α,α-dimethylphenylacetic acid compound of structure (76) may be esterified by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ω'-piperidine-α,α-dimethylphenylacetic acid ester compound of structure (75) as described previously in Scheme H, step d.
- In step i, the carboxy functionality of the appropriate ω'-piperidine-α,α-dimethylphenylacetic acid compound of structure (76) may be amidated by techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding ω'-piperidine-α,α-dimethylphenylacetic acid amide compound of structure (77) as described previously in Scheme H, step g.
- In step j, the amide functionality of the appropriate ω'-piperidine-α,α-dimethylphenylacetic acid amide compound of structure (77) is converted to the corresponding acid by acid hydrolysis as is known in the art to give the ω'-piperidine-α,α-dimethylphenylacetic acid compound of structure (76) as described previously in Scheme H, step f.
- Starting materials for use in Scheme M are readily available to one of ordinary skill in the art.
- As one skilled in the art would appreciate, the compounds depicted in Schemes A through M which bear α-ketone functionalities may be protected prior to use in the synthesis depicted in Schemes A through M using suitable protecting groups. The selection and utilization of suitable protecting groups for ketone groups is well known by one of ordinary skill in the art and is described in "Protective Groups in Organic Syntheses", Theodora W. Greene, Wiley (1981). For example, suitable protecting groups for ketone functionalities include acyclic acetals and ketals such as dimethyl acetal, cyclic acetals and ketals such as 1,3-dioxanes and 1,3-dioxolanes, dithio acetals and ketals such as 1,3-dithiane and 1,3-dithiolane, hemithio acetals and ketals, O-substituted cyanohydrins, substituted hydrozones, imines, oxazolidines, imidazolidines and thiazolidines.
- As one skilled in the art would appreciate, the compounds depicted in Schemes A through M which bear protected hydroxy and/or ketone functionalities may be reacting with appropriate deprotecting agents prior to use in any of the steps depicted in Schemes A through M. The selection and utilization of appropriate deprotecting reagents is well known by one of ordinary skill in the art and is described in "Protective Groups in Organic Syntheses", Theodora W. Greene, Wiley (1981). Examples of appropriate deprotecting reagents are mineral acids, strong organic acids, Lewis acids, aqueous mineral bases, catalytic hydrogenation and the like.
- For example, cleavage of β-methoxyethoxymethyl (MEM) protecting groups on any of the compounds depicted in Schemes A through M which bear protected hydroxy ketone functionalities, for example, can be achieved by using trifluoroacetic acid at room temperature or using 5 to 8 equivalents of powdered anhydrous zinc bromide in methylene chloride at about 25°C by the general procedure of E. J. Corey et al., Tetrahedron Letters, 11, 809-812 1976.
- In addition, the individual (R) and (S) isomers of the ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl compounds of structure (71) can be prepared by techniques are procedures well known and appreciated by one of ordinary skill in the art.
- For example, the mixture of (R) and (S) isomers of the ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl compounds of structure (71) may be subjected to chiral chromatography to give the corresponding individual (R)-ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl compounds of structure (71) and (S)-ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl compounds of structure (71).
- In addition, the individual (R) and (S) isomers of the ω-halo-α'-hydroxy-α,α-dimethylphenyl compound of structure (70) and the ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl compounds of structure (71) can be prepared by techniques and procedures well known and appreciated by one of ordinary skill in the art and described in "Enanatiomers, Racemates, and Resolutions", Jacques, Collet and Wilen, Wiley (1981).
- One such method involves reacting the mixture of (R) and (S) isomers of the ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl compounds of structure (71) with appropriate chiral acids to give the corresponding mixture of diastereomeric acid addition salts. The individual (R)-ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl chiral acid addition salt compounds of structure (71) and (S)-ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl chiral acid addition salt compounds of structure (71) are obtained by recrystallization and the individual ω'-piperidine-(R)-α'-hydroxy-α,α-dimethylphenyl compounds of structure (71) and ω'-piperidine-(S)-α'-hydroxy-α,α-dimethylphenyl compounds of structure (71) are obtained by subjecting the individual ω'-piperidine-(R)-α'-hydroxy-α,α-dimethylphenyl chiral acid addition salt compounds of structure (71) and ω'-piperidine-(S)-α'-hydroxy-α,α-dimethylphenyl chiral acid addition salt compounds of structure (71) to base in order to free the piperidine nitrogen from the acid addition complex. Examples of suitable chiral acids are tartaric acid (+), (-), O,O'-dibenzoyltartaric acid (+), (-), O,O'-di-p-toluyltartaric acid (+), (-), 2-Nitrotartranillic acid (+), (-), mandelic acid (+), (-), malic acid (+), (-), 2-phenoxypropionic acid (+), hydratropic acid (+), (-), N-acetylleucine (-), (+), N-(α-methylbenzyl)succinamide (+), (-), N-(α-methylbenzyl)phthalamic acid (+), (-), camphor-10-sulfonic acid (+), 3-bromocamphor-9-sulfonic acid (+), (-), camphor-3-sulfonic acid (+), quinic acid (+), (-), Di-O-isopropylidene-2-oxo-L-gulonic acid (-), Lasalocid (-), 1,1'-binaphthyl-2,2'-phosphoric acid (+), (-), chloestenonesulfonic acid.
- In addition, the individual (R) and (S) isomers of the ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl compounds of structure (71) can be prepared by reacting the mixture of (R) and (S) isomers of the ω'-piperidine-α'-hydroxy-α,α-dimethylphenyl compounds of structure (71) with appropriate organic chiral acids to give the corresponding mixture of diastereomeric acid esters. The individual ω'-piperidine-(R)-α'-ester-α,α-dimethylphenyl compounds of structure (71) and ω'-piperidine-(S)-α'-ester-α,α-dimethylphenyl compounds of structure (71) are obtained by recrystallization or chromatography and the individual ω'-piperidine-(R)-α'-hydroxy-α,α-dimethylphenyl compounds of structure (71) and ω'-piperidine-(S)-α'-hydroxy-α,α-dimethylphenyl compounds of structure (71) are obtained by subjecting the individual ω'-piperidine-(R)-α'-ester-α,α-dimethylphenyl compounds of structure (71) and ω'-piperidine-(S)-α'-ester-α,α-dimethylphenyl compounds of structure (71) to hydrolysis conditions.
Claims (3)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10177004A EP2261207A1 (en) | 1993-06-25 | 1994-05-26 | Intermediates for the preparation of antihistaminic 4-diphenylmethyl/diphenylmethoxy piperidine derivatives |
EP02012626A EP1260504A1 (en) | 1993-06-25 | 1994-05-26 | Process for the preparation of antihistaminic 4-diphenylmethyl piperidine derivatives |
EP10177005A EP2261208A1 (en) | 1993-06-25 | 1994-05-26 | Intermediates for the preparation of antihistaminic 4-diphenylmethyl/diphenylmethoxy piperidine derivatives |
EP08008300A EP1953142A1 (en) | 1993-06-25 | 1994-05-26 | Process for the preparation of antihistaminic 4-diphenylmethyl piperidine derivatives |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8269393A | 1993-06-25 | 1993-06-25 | |
US82693 | 1993-06-25 | ||
US14408493A | 1993-10-27 | 1993-10-27 | |
US144084 | 1993-10-27 | ||
US23746694A | 1994-05-11 | 1994-05-11 | |
US237466 | 1994-05-11 | ||
PCT/US1994/005982 WO1995000480A1 (en) | 1993-06-25 | 1994-05-26 | Novel intermediates for the preparation of antihistaminic 4-diphenylmethyl/diphenylmethoxy piperidine derivatives |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02012626A Division EP1260504A1 (en) | 1993-06-25 | 1994-05-26 | Process for the preparation of antihistaminic 4-diphenylmethyl piperidine derivatives |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0705245A1 EP0705245A1 (en) | 1996-04-10 |
EP0705245B1 true EP0705245B1 (en) | 2003-01-02 |
Family
ID=27374315
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10177004A Withdrawn EP2261207A1 (en) | 1993-06-25 | 1994-05-26 | Intermediates for the preparation of antihistaminic 4-diphenylmethyl/diphenylmethoxy piperidine derivatives |
EP10177005A Withdrawn EP2261208A1 (en) | 1993-06-25 | 1994-05-26 | Intermediates for the preparation of antihistaminic 4-diphenylmethyl/diphenylmethoxy piperidine derivatives |
EP02012626A Withdrawn EP1260504A1 (en) | 1993-06-25 | 1994-05-26 | Process for the preparation of antihistaminic 4-diphenylmethyl piperidine derivatives |
EP08008300A Withdrawn EP1953142A1 (en) | 1993-06-25 | 1994-05-26 | Process for the preparation of antihistaminic 4-diphenylmethyl piperidine derivatives |
EP94919264A Expired - Lifetime EP0705245B1 (en) | 1993-06-25 | 1994-05-26 | Novel intermediates for the preparation of antihistaminic 4-diphenylmethyl/diphenylmethoxy piperidine derivatives |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10177004A Withdrawn EP2261207A1 (en) | 1993-06-25 | 1994-05-26 | Intermediates for the preparation of antihistaminic 4-diphenylmethyl/diphenylmethoxy piperidine derivatives |
EP10177005A Withdrawn EP2261208A1 (en) | 1993-06-25 | 1994-05-26 | Intermediates for the preparation of antihistaminic 4-diphenylmethyl/diphenylmethoxy piperidine derivatives |
EP02012626A Withdrawn EP1260504A1 (en) | 1993-06-25 | 1994-05-26 | Process for the preparation of antihistaminic 4-diphenylmethyl piperidine derivatives |
EP08008300A Withdrawn EP1953142A1 (en) | 1993-06-25 | 1994-05-26 | Process for the preparation of antihistaminic 4-diphenylmethyl piperidine derivatives |
Country Status (21)
Country | Link |
---|---|
US (11) | US6242606B1 (en) |
EP (5) | EP2261207A1 (en) |
JP (3) | JP3712208B2 (en) |
KR (1) | KR100333790B1 (en) |
CN (3) | CN1275916C (en) |
AT (1) | ATE230395T1 (en) |
AU (2) | AU699559B2 (en) |
CA (3) | CA2362337C (en) |
DE (1) | DE69431954T2 (en) |
DK (1) | DK0705245T3 (en) |
ES (1) | ES2190442T3 (en) |
FI (2) | FI114912B (en) |
HK (2) | HK1032226A1 (en) |
HU (1) | HU226037B1 (en) |
IL (20) | IL143613A (en) |
MX (4) | MXPA01007692A (en) |
NO (3) | NO313191B1 (en) |
NZ (1) | NZ267830A (en) |
TW (1) | TW334420B (en) |
WO (1) | WO1995000480A1 (en) |
ZA (1) | ZA944380B (en) |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK0701443T4 (en) * | 1992-08-03 | 2000-12-18 | Sepracor Inc | Terfenadine metabolites and their optically pure isomers for the treatment of allergic disorders |
DK0703902T3 (en) * | 1993-06-24 | 1999-08-23 | Albany Molecular Res Inc | Process for the preparation of piperidine derivatives |
US20020007068A1 (en) | 1999-07-16 | 2002-01-17 | D'ambra Thomas E. | Piperidine derivatives and process for their production |
JP3712208B2 (en) * | 1993-06-25 | 2005-11-02 | メレルファーマスーティカルズ インコーポレイテッド | Novel intermediate for the production of antihistaminic 4-diphenylmethyl / diphenylmethoxypiperidine derivatives |
CN1148849A (en) | 1994-05-18 | 1997-04-30 | 赫彻斯特马里恩鲁斯公司 | Process for preparing anhydrous and hydrate forms of antihistaminic pipeeridine derivatives, polymorphs and spseudormophs thereof |
JPH11504650A (en) * | 1995-05-08 | 1999-04-27 | ヘキスト・マリオン・ルセル・インコーポレイテツド | Alpha- (substituted alkylphenyl) -4- (hydroxydiphenylmethyl) -1-piperidinebutanol derivatives, their preparation and their use as antihistamines, antiallergic agents and bronchodilators |
AU7104596A (en) * | 1995-09-12 | 1997-04-01 | Albany Molecular Research, Inc. | Piperidine derivatives and processes for their production |
US6153754A (en) | 1995-12-21 | 2000-11-28 | Albany Molecular Research, Inc. | Process for production of piperidine derivatives |
US6201124B1 (en) | 1995-12-21 | 2001-03-13 | Albany Molecular Research, Inc. | Process for production of piperidine derivatives |
ES2124167B1 (en) * | 1996-06-04 | 1999-09-16 | Espanola Prod Quimicos | NEW DERIVATIVES OF BENZMIDAZOLE WITH ANTIHISTAMINE ACTIVITY. |
US5925761A (en) * | 1997-02-04 | 1999-07-20 | Sepracor Inc. | Synthesis of terfenadine and derivatives |
FR2776302B1 (en) | 1998-03-19 | 2002-04-12 | Hoechst Marion Roussel Inc | NEW PROCESS FOR THE PREPARATION OF FEXOFENADINE |
US6683094B2 (en) | 1998-07-02 | 2004-01-27 | Aventis Pharmaceuticals Inc. | Antihistaminic piperidine derivatives and intermediates for the preparation thereof |
US6700012B2 (en) | 1998-07-02 | 2004-03-02 | Aventis Pharmaceuticals Inc. | Antihistaminic piperidine derivatives and intermediates for the preparation thereof |
AU2007200674C1 (en) * | 1998-07-02 | 2011-02-24 | Aventisub Llc | Novel antihistaminic piperidine derivatives and intermediates for the preparation thereof |
DE69942876D1 (en) * | 1998-07-02 | 2010-12-02 | Aventisub Ii Inc | ANTIHISTAMINIC PIPERIDINE DERIVATIVES AND INTERMEDIATE PRODUCTS FOR THEIR PREPARATION |
US7018401B1 (en) | 1999-02-01 | 2006-03-28 | Board Of Regents, The University Of Texas System | Woven intravascular devices and methods for making the same and apparatus for delivery of the same |
AU3676100A (en) * | 1999-04-09 | 2000-11-14 | Mochida Pharmaceutical Co., Ltd. | Remedies for neuropathic pain |
US6613906B1 (en) * | 2000-06-06 | 2003-09-02 | Geneva Pharmaceuticals, Inc. | Crystal modification |
GB0018691D0 (en) * | 2000-07-28 | 2000-09-20 | Rolabo Sl | Process |
US6613907B2 (en) | 2000-11-08 | 2003-09-02 | Amr Technology, Inc. | Process for the production of piperidine derivatives with microorganisms |
US20030021849A1 (en) * | 2001-04-09 | 2003-01-30 | Ben-Zion Dolitzky | Polymorphs of fexofenadine hydrochloride |
MXPA03009259A (en) * | 2001-04-09 | 2004-06-03 | Teva Pharma | Polymorphs of fexofenadine hydrochloride. |
DE03757471T1 (en) * | 2002-06-10 | 2005-09-01 | Teva Pharmaceutical Industries Ltd. | POLYMORPH FORM XVI OF FEXOFENADINE HYDROCHLORIDE |
EP1575893A1 (en) * | 2002-12-16 | 2005-09-21 | Ranbaxy Laboratories Limited | Process for the preparation of fexofenadine |
US7648509B2 (en) * | 2003-03-10 | 2010-01-19 | Ilion Medical Llc | Sacroiliac joint immobilization |
KR20070007196A (en) * | 2004-04-26 | 2007-01-12 | 테바 파마슈티컬 인더스트리즈 리미티드 | Crystalline Forms of Fexofenadine Hydrochloride and Methods for Making the Same |
DE102004031849A1 (en) * | 2004-06-30 | 2006-01-26 | Sanofi-Aventis Deutschland Gmbh | Process for the carbonylation of phenylalkyl derivatives with carbon monoxide |
US7498443B2 (en) * | 2004-09-17 | 2009-03-03 | Albany Molecular Research, Inc. | Process for production of carebastine |
US7498345B2 (en) * | 2004-09-17 | 2009-03-03 | Albany Molecular Research, Inc. | Process for production of piperidine derivatives |
EP1685106A2 (en) * | 2004-09-28 | 2006-08-02 | Teva Pharmaceutical Industries, Inc. | Fexofendadine crystal form and processes for its preparation thereof |
CN100443470C (en) * | 2006-07-21 | 2008-12-17 | 杭州保灵有限公司 | Prepn of ebastine |
ITMI20061491A1 (en) * | 2006-07-27 | 2008-01-28 | Archimica Srl | PROCESS FOR THE PREPARATION OF FEXOPHENADINE. |
ITMI20061492A1 (en) * | 2006-07-27 | 2008-01-28 | Archimica Srl | PROCESS FOR THE PREPARATION OF FEXOPHENADINE. |
EP2083766B1 (en) | 2006-10-22 | 2016-01-27 | IDEV Technologies, INC. | Methods for securing strand ends and the resulting devices |
AU2007309087B2 (en) | 2006-10-22 | 2012-07-05 | Idev Technologies, Inc. | Devices and methods for stent advancement |
WO2009102155A2 (en) | 2008-02-12 | 2009-08-20 | Yuhan Corporation | Process for preparation of 2-methyl-2´-phenylpropionic acid derivatives and novel intermediate compounds |
WO2009136412A2 (en) * | 2008-04-25 | 2009-11-12 | Matrix Laboratories Limited | PROCESS FOR PREPARATION OF 4-[4-(4-(HYDROXYDIPHENYLMETHYL)- 1-PIPERIDINYL]-1-OXOBUTYL]-α,α-DIMETHYLBENZENE ACETIC ACID METHYL ESTER AND USE THEREOF |
DE102010005038A1 (en) * | 2009-02-14 | 2010-08-19 | Lofo High Tech Film Gmbh | Optical compensation films |
CN101585764B (en) * | 2009-06-06 | 2012-02-15 | 浙江大学宁波理工学院 | Method for synthesizing 2-[4-(4-chlorobutyryl)phenyl]-2-methylpropanoic acid |
CN101585768B (en) * | 2009-06-06 | 2012-01-04 | 浙江大学宁波理工学院 | Method for synthesizing 2-[4-(4-chlorobutyryl)phenyl]-2-methacrylate |
CN101585782B (en) * | 2009-06-06 | 2012-04-25 | 浙江大学宁波理工学院 | Method for synthesizing N-methyl-N-methoxy-2- (4-cyclopropylcarbonylphenyl) -2-methylpropanamide |
CN101585767B (en) * | 2009-06-06 | 2012-02-15 | 浙江大学宁波理工学院 | Method for synthesizing 2-[4-(4-chlorobutyryl)phenyl]-2-methacrylate |
CN101585763B (en) * | 2009-06-06 | 2012-01-04 | 浙江大学宁波理工学院 | Method for synthesizing 2-[4-(4-chlorobutyryl)phenyl]-2-methylpropanoic acid |
CN101585805B (en) * | 2009-06-06 | 2011-07-06 | 浙江大学宁波理工学院 | Preparation method of an antiallergic agent fexofenadine hydrochloride |
CN101585762B (en) * | 2009-06-06 | 2012-12-19 | 浙江大学宁波理工学院 | Method for synthesizing 2-(4-cyclopropoxycarbonylphenyl)-2-methylpropanoic acid |
EP2289867A3 (en) | 2009-08-19 | 2012-04-25 | Jubilant Organosys Limited | A process for producing 4-(4-halo-1-oxybutyl)-alpha,alpha-dimethylbenzene acetic acid or alkyl esters thereof |
CN101671292B (en) * | 2009-10-10 | 2011-09-07 | 浙江大学宁波理工学院 | Synthetic method of fexofenadine hydrochloride |
CN102070512B (en) * | 2009-11-21 | 2014-11-19 | 浙江华海药业股份有限公司 | Synthesizing route and preparation method of high-purity fexofenadine and intermediate thereof |
EP2371817A1 (en) * | 2010-04-01 | 2011-10-05 | Arevipharma GmbH | Process for the preparation of 1-[4-(1,1-dimethylethyl)phenyl]-4-[4-(diphenylmethoxy)-1-piperidinyl]-1-butanone and acid addition salts thereof |
US9023095B2 (en) | 2010-05-27 | 2015-05-05 | Idev Technologies, Inc. | Stent delivery system with pusher assembly |
CN104557671B (en) * | 2013-10-10 | 2018-04-13 | 池州东升药业有限公司 | A kind of synthetic method of fexofenadine and intermediate |
ITMI20132039A1 (en) * | 2013-12-06 | 2015-06-07 | Dipharma Francis Srl | "METHOD FOR THE PREPARATION OF SYNTHETIC INTERMEDIATES" |
CA2974449C (en) | 2015-01-22 | 2023-08-29 | Sanofi-Aventis Deutschland Gmbh | Process for the production of 2-[4-(cyclopropanecarbonyl)phenyl]-2-methyl-propanenitrile |
US10696633B2 (en) * | 2015-10-22 | 2020-06-30 | Sanofi-Aventis Deutschland Gmbh | Process for the preparation of fexofenadine and of intermediates used therein |
CN106380441B (en) * | 2016-08-29 | 2020-08-14 | 上海雅本化学有限公司 | Synthetic method of fexofenadine intermediate |
JP7291142B2 (en) | 2018-07-27 | 2023-06-14 | 株式会社クラレ | Method for producing 1-acyloxy-2-methyl-2-propene |
CN109212055B (en) * | 2018-08-19 | 2021-05-07 | 丁立平 | Gas chromatography-mass spectrometry combined method for determining four trace monohalogenated phenylacetic acids in drinking water |
CN112047829B (en) * | 2020-08-31 | 2023-05-26 | 成都艾必克医药科技有限公司 | Synthesis method of alcaine intermediate 2- (4-ethyl-3-iodophenyl) -2-methylpropanoic acid |
CN114621083A (en) * | 2022-03-30 | 2022-06-14 | 西安万隆制药股份有限公司 | Antihistamine medicine fexofenadine hydrochloride impurity and synthesis method and application thereof |
CN116496205A (en) | 2022-05-06 | 2023-07-28 | 成都施贝康生物医药科技有限公司 | A kind of salt of Carristine and its application |
CN116375634A (en) | 2023-01-03 | 2023-07-04 | 成都施贝康生物医药科技有限公司 | Crystalline and Amorphous Forms of Carristine p-Toluenesulfonate |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3402840A (en) | 1967-02-24 | 1968-09-24 | Case Co J I | Loader bucket control |
US4028404A (en) | 1967-07-31 | 1977-06-07 | Allen & Hanburys Limited | Acetic acid derivatives |
GB1242169A (en) | 1969-04-09 | 1971-08-11 | Ucb Sa | Piperidine derivatives |
US3839431A (en) | 1970-07-13 | 1974-10-01 | Squibb & Sons Inc | Cyclopropylmethylphenylacetic acids and derivatives |
US3898271A (en) | 1971-06-08 | 1975-08-05 | Squibb & Sons Inc | Cyclopropylmethylphenylacetic acids and derivatives |
US3806526A (en) | 1972-01-28 | 1974-04-23 | Richardson Merrell Inc | 1-aroylalkyl-4-diphenylmethyl piperidines |
US3965257A (en) | 1972-01-28 | 1976-06-22 | Richardson-Merrell Inc. | Compositions and methods for the treatment of the symptoms of histamine induced allergic reactions |
BE794596A (en) | 1972-01-28 | 1973-05-16 | Richardson Merrell Inc | SUBSTITUTED PIPERIDINOALCANONE OXIMES AND THEIR PREPARATION PROCESS |
BE794598A (en) | 1972-01-28 | 1973-05-16 | Richardson Merrell Inc | NEW OLEFINIC DERIVATIVES OF PIPERIDINES SUBSTITUTED IN 4 AND THEIR PREPARATION PROCESS |
US3878217A (en) | 1972-01-28 | 1975-04-15 | Richardson Merrell Inc | Alpha-aryl-4-substituted piperidinoalkanol derivatives |
GB1442707A (en) * | 1973-07-07 | 1976-07-14 | Yoshitomi Pharmaceutical | Substituted phenylalkanoic acids and their derivatives and pharma ceutical compositions thereof |
US3941795A (en) | 1974-02-08 | 1976-03-02 | Richardson-Merrell Inc. | α-ARYL-4-SUBSTITUTED PIPERIDINOALKANOL DERIVATIVES |
US3931197A (en) | 1974-02-08 | 1976-01-06 | Richardson-Merrell Inc. | Substituted piperidine derivatives |
US3946022A (en) | 1974-03-04 | 1976-03-23 | Richardson-Merrell Inc. | Piperidine derivatives |
US3956296A (en) | 1974-12-11 | 1976-05-11 | A. H. Robins Company, Incorporated | 1-Substituted-4-benzylpiperidines |
US3922276A (en) | 1974-12-11 | 1975-11-25 | Robins Co Inc A H | 1-Substituted-4-benzylidenepiperidines |
GB1559977A (en) | 1975-11-25 | 1980-01-30 | Ici Ltd | Amines |
JPS5835519B2 (en) * | 1976-01-16 | 1983-08-03 | ウェルファイド株式会社 | Isodoridine derivative |
DD141422A5 (en) | 1978-01-27 | 1980-04-30 | Schering Ag | PROCESS FOR THE PREPARATION OF PHENYL ACID DERIVATIVES |
JPS55124742A (en) * | 1979-03-20 | 1980-09-26 | Kyowa Hakko Kogyo Co Ltd | Novel aminoalcohol derivative |
US4285957A (en) * | 1979-04-10 | 1981-08-25 | Richardson-Merrell Inc. | 1-Piperidine-alkanol derivatives, pharmaceutical compositions thereof, and method of use thereof |
US4254130A (en) * | 1979-04-10 | 1981-03-03 | Richardson-Merrell Inc. | Piperidine derivatives |
US4285958A (en) * | 1979-04-10 | 1981-08-25 | Richardson-Merrell Inc. | 1-Piperidine-alkylene ketones, pharmaceutical compositions thereof and method of use thereof |
US4254129A (en) * | 1979-04-10 | 1981-03-03 | Richardson-Merrell Inc. | Piperidine derivatives |
US4407023A (en) | 1981-06-29 | 1983-10-04 | Norton C W | Two-piece snap-together floor and ceiling plate |
JPS588081A (en) * | 1981-07-03 | 1983-01-18 | Yoshitomi Pharmaceut Ind Ltd | Phenylacetic acid derivative |
JPS58164801A (en) | 1982-03-20 | 1983-09-29 | 新日本製鐵株式会社 | Crane rail excellent in damage resistance |
US4434182A (en) | 1982-11-01 | 1984-02-28 | Fmc Corporation | Insecticidal substituted-biphenylmethyl oxime ethers |
US4452985A (en) * | 1983-02-14 | 1984-06-05 | American Home Products Corporation | 2-Guanyl-4-(substituted phenyl) thiazole derivatives |
GB8321157D0 (en) * | 1983-08-05 | 1983-09-07 | Fordonal Sa | Piperidine derivatives |
JPS60115547A (en) * | 1983-11-29 | 1985-06-22 | Nissan Chem Ind Ltd | P-(halomethyl)phenyl ketone and its production |
US4563254A (en) * | 1985-02-07 | 1986-01-07 | Texaco Inc. | Means and method for the electrochemical carbonylation of nitrobenzene or 2-5 dinitrotoluene with carbon dioxide to provide a product |
FR2586710B1 (en) | 1985-09-05 | 1990-03-30 | Poudres & Explosifs Ste Nale | ORGANIC ELECTROLYSIS CELL WITH CONSUMABLE ELECTRODE |
US4742175A (en) | 1986-05-07 | 1988-05-03 | Merrell Dow Pharmaceuticals Inc. | Preparation of polymorphically pure terfenadine |
DE3724923A1 (en) | 1987-07-28 | 1989-02-09 | Boehringer Mannheim Gmbh | NEW SULFUR COMPOUNDS, METHOD FOR THEIR PRODUCTION AND MEDICINAL PRODUCTS |
DE3730718A1 (en) | 1987-09-12 | 1989-03-23 | Basf Ag | TETRACYCLIC CHINAZOLE DERIVATIVES, PRODUCTION AND USE |
CA2015949A1 (en) | 1989-05-22 | 1990-11-22 | Yasuo Ito | Piperidine derivative, method for preparation thereof, and a pharmaceutical composition comprising the same |
US4990658B1 (en) | 1989-12-18 | 1994-08-30 | Ethyl Corp | Process for preparing ibuprofen and its alkyl esters |
JPH05287193A (en) * | 1992-02-12 | 1993-11-02 | Kawasaki Steel Corp | Thermoplastic resin composition |
WO1993021156A1 (en) | 1992-04-10 | 1993-10-28 | Merrell Dow Pharmaceuticals Inc. | 4-diphenylmethyl piperidine derivatives and process for their preparation |
EP0571253B1 (en) | 1992-05-19 | 1998-11-04 | Adir Et Compagnie | Benzimidazole derivatives with antidiabetic and antiplatelet aggregation activity |
DK0703902T3 (en) | 1993-06-24 | 1999-08-23 | Albany Molecular Res Inc | Process for the preparation of piperidine derivatives |
JP3712208B2 (en) * | 1993-06-25 | 2005-11-02 | メレルファーマスーティカルズ インコーポレイテッド | Novel intermediate for the production of antihistaminic 4-diphenylmethyl / diphenylmethoxypiperidine derivatives |
US6147216A (en) * | 1993-06-25 | 2000-11-14 | Merrell Pharmaceuticals Inc. | Intermediates useful for the preparation of antihistaminic piperidine derivatives |
US6201124B1 (en) * | 1995-12-21 | 2001-03-13 | Albany Molecular Research, Inc. | Process for production of piperidine derivatives |
US6153754A (en) * | 1995-12-21 | 2000-11-28 | Albany Molecular Research, Inc. | Process for production of piperidine derivatives |
-
1994
- 1994-05-26 JP JP50283195A patent/JP3712208B2/en not_active Expired - Lifetime
- 1994-05-26 EP EP10177004A patent/EP2261207A1/en not_active Withdrawn
- 1994-05-26 CN CNB2004100587163A patent/CN1275916C/en not_active Expired - Lifetime
- 1994-05-26 EP EP10177005A patent/EP2261208A1/en not_active Withdrawn
- 1994-05-26 CA CA002362337A patent/CA2362337C/en not_active Expired - Lifetime
- 1994-05-26 WO PCT/US1994/005982 patent/WO1995000480A1/en active IP Right Grant
- 1994-05-26 ES ES94919264T patent/ES2190442T3/en not_active Expired - Lifetime
- 1994-05-26 NZ NZ267830A patent/NZ267830A/en not_active IP Right Cessation
- 1994-05-26 CN CNB001010352A patent/CN1159277C/en not_active Expired - Lifetime
- 1994-05-26 EP EP02012626A patent/EP1260504A1/en not_active Withdrawn
- 1994-05-26 HU HU9503705A patent/HU226037B1/en unknown
- 1994-05-26 AU AU70466/94A patent/AU699559B2/en not_active Expired
- 1994-05-26 CN CNB941930319A patent/CN1168717C/en not_active Expired - Lifetime
- 1994-05-26 KR KR1019950705911A patent/KR100333790B1/en not_active IP Right Cessation
- 1994-05-26 DE DE69431954T patent/DE69431954T2/en not_active Expired - Lifetime
- 1994-05-26 CA CA002166059A patent/CA2166059C/en not_active Expired - Lifetime
- 1994-05-26 EP EP08008300A patent/EP1953142A1/en not_active Withdrawn
- 1994-05-26 EP EP94919264A patent/EP0705245B1/en not_active Expired - Lifetime
- 1994-05-26 DK DK94919264T patent/DK0705245T3/en active
- 1994-05-26 AT AT94919264T patent/ATE230395T1/en active
- 1994-05-26 CA CA002362339A patent/CA2362339C/en not_active Expired - Lifetime
- 1994-06-20 ZA ZA944380A patent/ZA944380B/en unknown
- 1994-06-21 TW TW083105636A patent/TW334420B/en not_active IP Right Cessation
- 1994-06-22 IL IL14361394A patent/IL143613A/en not_active IP Right Cessation
- 1994-06-22 IL IL14360794A patent/IL143607A/en not_active IP Right Cessation
- 1994-06-22 IL IL143612A patent/IL143612A/en not_active IP Right Cessation
- 1994-06-22 IL IL174850A patent/IL174850A/en not_active IP Right Cessation
- 1994-06-22 IL IL143611A patent/IL143611A/en not_active IP Right Cessation
- 1994-06-22 IL IL11008694A patent/IL110086A/en not_active IP Right Cessation
- 1994-06-22 IL IL14361994A patent/IL143619A/en not_active IP Right Cessation
- 1994-07-14 US US08/275,685 patent/US6242606B1/en not_active Expired - Lifetime
-
1995
- 1995-12-22 NO NO19955255A patent/NO313191B1/en not_active IP Right Cessation
- 1995-12-22 FI FI956248A patent/FI114912B/en not_active IP Right Cessation
-
1999
- 1999-02-08 AU AU15458/99A patent/AU734870B2/en not_active Expired
-
2000
- 2000-11-29 US US09/725,259 patent/US6552200B2/en not_active Expired - Fee Related
- 2000-11-29 US US09/725,291 patent/US6566526B2/en not_active Expired - Fee Related
- 2000-11-29 US US09/725,298 patent/US6340761B1/en not_active Expired - Fee Related
- 2000-12-01 US US09/726,580 patent/US6555689B2/en not_active Expired - Fee Related
- 2000-12-01 US US09/726,625 patent/US6479663B2/en not_active Expired - Fee Related
- 2000-12-05 US US09/729,203 patent/US6548675B2/en not_active Expired - Fee Related
- 2000-12-08 US US09/731,654 patent/US6559312B2/en not_active Expired - Fee Related
-
2001
- 2001-03-28 US US09/818,966 patent/US6441179B1/en not_active Expired - Fee Related
- 2001-04-04 US US09/824,788 patent/US6348597B2/en not_active Expired - Fee Related
- 2001-04-20 HK HK01102808A patent/HK1032226A1/en not_active IP Right Cessation
- 2001-06-06 IL IL14361301A patent/IL143613A0/en unknown
- 2001-06-06 IL IL14360801A patent/IL143608A0/en unknown
- 2001-06-06 IL IL14361901A patent/IL143619A0/en unknown
- 2001-06-06 IL IL14360701A patent/IL143607A0/en unknown
- 2001-06-06 IL IL14360901A patent/IL143609A0/en unknown
- 2001-06-06 IL IL14361801A patent/IL143618A0/en unknown
- 2001-06-06 IL IL14361001A patent/IL143610A0/en unknown
- 2001-06-06 IL IL14361601A patent/IL143616A0/en unknown
- 2001-06-06 IL IL14361501A patent/IL143615A0/en unknown
- 2001-06-06 IL IL14361401A patent/IL143614A0/en unknown
- 2001-06-06 IL IL14361101A patent/IL143611A0/en unknown
- 2001-06-06 IL IL14361201A patent/IL143612A0/en unknown
- 2001-06-06 IL IL14361701A patent/IL143617A0/en unknown
- 2001-07-30 MX MXPA01007692A patent/MXPA01007692A/en active IP Right Grant
- 2001-07-30 MX MXPA01007687A patent/MXPA01007687A/en active IP Right Grant
- 2001-07-30 MX MXPA01007688A patent/MXPA01007688A/en active IP Right Grant
- 2001-07-30 MX MXPA01007693A patent/MXPA01007693A/en active IP Right Grant
-
2002
- 2002-05-03 NO NO20022129A patent/NO319850B1/en not_active IP Right Cessation
-
2003
- 2003-02-12 US US10/364,641 patent/US6777555B2/en not_active Expired - Fee Related
- 2003-09-25 FI FI20031381A patent/FI119932B/en not_active IP Right Cessation
- 2003-10-28 NO NO20034811A patent/NO319873B1/en not_active IP Right Cessation
-
2005
- 2005-05-02 JP JP2005133801A patent/JP4384617B2/en not_active Expired - Lifetime
- 2005-09-07 HK HK05107826A patent/HK1075884A1/en not_active IP Right Cessation
-
2008
- 2008-12-10 JP JP2008313946A patent/JP4824740B2/en not_active Expired - Lifetime
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0705245B1 (en) | Novel intermediates for the preparation of antihistaminic 4-diphenylmethyl/diphenylmethoxy piperidine derivatives | |
US6147216A (en) | Intermediates useful for the preparation of antihistaminic piperidine derivatives | |
EP0635004B1 (en) | 4-diphenylmethyl piperidine derivatives and process for their preparation | |
EP1401815A1 (en) | Process for the preparation of a highly pure pharmaceutical intermediate, 4-(cyclopropylcarbonyl)-alpha,alpha-dimethylphenyl acetic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960112 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19960502 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
REF | Corresponds to: |
Ref document number: 230395 Country of ref document: AT Date of ref document: 20030115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: 20030102 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69431954 Country of ref document: DE Date of ref document: 20030206 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20030401168 Country of ref document: GR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2190442 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20031003 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: PC4A Owner name: AVENTIS INC., US Effective date: 20060803 |
|
NLS | Nl: assignments of ep-patents |
Owner name: AVENTIS INC. Effective date: 20060705 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20100325 AND 20100331 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20100401 AND 20100407 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20100408 AND 20100414 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: PC4A Owner name: AVENTISUB INC., US Effective date: 20100826 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: PC4A Owner name: AVENTIS HOLDINGS INC., US Effective date: 20100907 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: AVENTISUB II INC. Effective date: 20120302 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20120607 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20120426 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20130326 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20130513 Year of fee payment: 20 Ref country code: LU Payment date: 20130529 Year of fee payment: 20 Ref country code: GB Payment date: 20130522 Year of fee payment: 20 Ref country code: SE Payment date: 20130513 Year of fee payment: 20 Ref country code: CH Payment date: 20130514 Year of fee payment: 20 Ref country code: IE Payment date: 20130510 Year of fee payment: 20 Ref country code: DE Payment date: 20130522 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20130518 Year of fee payment: 20 Ref country code: FR Payment date: 20130531 Year of fee payment: 20 Ref country code: BE Payment date: 20130531 Year of fee payment: 20 Ref country code: NL Payment date: 20130510 Year of fee payment: 20 Ref country code: GR Payment date: 20130412 Year of fee payment: 20 Ref country code: PT Payment date: 20130527 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69431954 Country of ref document: DE |
|
BE20 | Be: patent expired |
Owner name: *AVENTIS INC. Effective date: 20140526 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Effective date: 20140526 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: MAXIMUM VALIDITY LIMIT REACHED Effective date: 20140526 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20140526 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20140525 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MK9A |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 230395 Country of ref document: AT Kind code of ref document: T Effective date: 20140526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140526 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140525 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: MA Ref document number: 20030401168 Country of ref document: GR Effective date: 20140527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140603 Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140527 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140527 |