EP0698418A2 - Procédé et dispositif de dispersion et pulvérisation simultanées d'au moins deux fluides - Google Patents
Procédé et dispositif de dispersion et pulvérisation simultanées d'au moins deux fluides Download PDFInfo
- Publication number
- EP0698418A2 EP0698418A2 EP95112765A EP95112765A EP0698418A2 EP 0698418 A2 EP0698418 A2 EP 0698418A2 EP 95112765 A EP95112765 A EP 95112765A EP 95112765 A EP95112765 A EP 95112765A EP 0698418 A2 EP0698418 A2 EP 0698418A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- nozzle
- liquid
- gas
- liquids
- atomizing chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/06—Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane
- B05B7/062—Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet
- B05B7/065—Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet an inner gas outlet being surrounded by an annular adjacent liquid outlet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/04—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
- B05B7/0408—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing two or more liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/04—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
- B05B7/0416—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
- B05B7/0441—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/10—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
- F23D11/101—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet
- F23D11/102—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet in an internal mixing chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/44—Details; Accessories
- F23G5/442—Waste feed arrangements
- F23G5/446—Waste feed arrangements for liquid waste
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2209/00—Specific waste
- F23G2209/10—Liquid waste
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2900/00—Special features of, or arrangements for incinerators
- F23G2900/54402—Injecting fluid waste into incinerator
Definitions
- the invention relates to a method and a device for the simultaneous atomization and dispersion of at least two liquids using propellant gas, in which the resulting gas-liquid mixture is passed through an atomizing chamber consisting of series-connected expansion spaces and attached in the form of a spray cone from a downstream of the atomizing chamber Nozzle gap flows out.
- a method in which a liquid is mixed with a propellant gas in an internal atomizing chamber and then emerges through a nozzle gap at the end of the atomizing chamber is described in DE 32 16 420. It is characterized by an internal mixing of liquid and propellant in fluidically connected chambers, in which the propellant is expanded and compressed several times on the way until it leaves the nozzle. In this way, very good premixing takes place in the atomizer chamber before the mixture emerges from the nozzle with the conical annular gap and is dispersed even further during this expansion. Due to this pressure jump, the liquid is atomized very finely and introduced into the surrounding space as a hollow cone.
- DE 26 45 142 describes a method for generating a stream of at least two mixed and atomized fluids, in which the liquids and a propellant gas are first combined, mixed and pre-atomized in a first injector-like flow passage. The resulting gas-liquid mixture is then accelerated and, after leaving the nozzle body, strikes a baffle or reflection device. In this reflection and impact zone, the second mixing stage can be seen, another mixing and atomization takes place before the atomized mixed fluid leaves the nozzle in the form of an open parachute.
- the invention has for its object to develop a method and a device for the simultaneous dispersion and atomization of several liquids using propellant gas, in which the liquids are mixed homogeneously and reliably with high mixing quality and then atomized as a swarm of drops in the form of a closed hollow cone.
- immiscible liquids should be used.
- liquids F1 and F2 mixed with propellant gas are fed as individual streams T1 and T2 alternately in the circumferential direction into the atomizing chamber; i.e. the individual streams T1 and T2 seen in the circumferential direction alternately on the gutter.
- the spray cone emerging at the nozzle gap can advantageously be stabilized in that a rotationally symmetrical gas curtain with a radial flow component is generated within the nozzle gap.
- a gas with an axial flow component can also be blown in rotationally symmetrically outside the spray cone.
- a preferred application of this multi-phase mixing and dispersing process is that the multi-phase mixture consisting of several liquids and propellant gas is sprayed in a hollow cone shape through the nozzle gap into the combustion chamber of an incineration plant and is burned there together with solid dusty fuels or liquid or gaseous fuels.
- One of the liquids can consist of a liquid waste material with a fluctuating calorific value, to which a liquid of high calorific value is admixed in the atomizing chamber as a second liquid to regulate the flame temperature in the combustion chamber.
- Such incineration has been successfully used in the thermal disposal of waste containing chlorinated hydrocarbons.
- one of the liquids fed into the multi-phase mixing nozzle consists of the chlorinated hydrocarbon-containing waste material and the other liquid consists of a liquid fuel.
- the distributor elements preferably consist of y-shaped pairs of bores with leg lines and common foot lines, the leg lines being connected to the gas and liquid collection channels and the foot lines opening into the atomizing chamber.
- the gutter is advantageously provided with a sharp tear-off edge on the inside.
- annular gap or radial gas bores for generating a gas curtain are arranged in the nozzle head within the spray cone emerging from the nozzle gap.
- a further stabilization of the spray cone can be achieved by a cylindrical gas curtain enveloping the spray cone.
- axially parallel gas holes are provided in the nozzle flange.
- the shape of the spray cone can advantageously be varied in that the nozzle gap can be adjusted with regard to its gap width.
- Fig. 3 it is indicated that the liquid collection channel for the liquid F1 with liquid supply lines 13 and the liquid collection channel for the liquid F2 is provided with a liquid supply line 14.
- the propellant gas compressed air
- the propellant gas is fed to the gas collection duct 6 through the gas feed line 15 (see FIG. 3).
- the foot lines 9 and 12 belonging to the distributor elements are oriented in the nozzle flange 1 in such a way that the liquids flowing through and accelerated by the propellant gas first strike an annular gutter 16 arranged in the upper part of the atomizing chamber 2.
- the gutter 16 has on its inside (towards the nozzle axis) a sharp tear-off edge 17.
- the individual streams T 1... N dispersed with the propellant gas are distributed in the trough-shaped depression of the gutter 16.
- the two liquid flows F 1 and F 2 each divided into the liquid collection channels are mixed intensively for the first time by the impact and the equalization in the gutter 16.
- At the tear-off edge 17 of the gutter 16 there is a first atomization of the premixed liquids F1 and F2.
- the relaxation spaces 19 are connected in series in terms of flow technology in the atomizer chamber 2, so that the multiphase gas / liquid mixture in the atomizer chamber 2 is alternately compressed and decompressed. Due to this alternating compression and expansion, a high mixing quality is achieved.
- the multi-phase mixture consisting of the propellant gas and the liquids F 1 and F 2 is formed by an annular outlet gap 20 that tapers conically in the direction of flow accelerates.
- the annular outlet gap 20 on the nozzle head 3 is arranged at an obtuse angle against the nozzle axis. Since the pressure losses in compression and expansion in the expansion spaces 19 connected in series decrease the pressure in the flow direction, the volume flow increases with the mass flow remaining the same.
- the pressurized multiphase mixture is atomized for the last time to form a hollow cone 22 (see FIG. 3). The swarm of droplets consisting of the multiphase mixture thus leaves the nozzle head 3 through the opening 21 along a conical surface.
- the outlet gap 20 is delimited on the one hand by a conical web 23 at the end of the atomizing chamber 2 and on the other hand by a cone plate 24 belonging to the nozzle head.
- the conical plate 24 is arranged on a central inner tube 25 extending from the nozzle head 1 and is adjustable in height. In this way, the slot width of the exit gap 20 can be adjusted. By adjusting the gap width, the throughput and also the shape of the hollow cone can be influenced within certain limits.
- a conical cap 26 is screwed onto the height-adjustable conical plate 24 such that an annular gap 27 remains between the conical plate 24 and the conical cap 26, the opening of which directly adjoins the outlet gap 21.
- Tapered plate 24 and tapered cap 26 together form the nozzle head 3.
- the annular gap 27 is connected to a central distributor space 28 in the tapered cap 26, which in turn is connected to the inner tube 25.
- the distributor space 28 additionally has gas bores 29 which extend radially outwards.
- An inert gas air or nitrogen
- an axial gas bores 30 in the extension of the gas collection channel 6 in the nozzle flange 1 also rotationally symmetrically a gas, e.g. outside the spray cone. Air blown in with an axial flow component. The spray cone is further stabilized by this cylindrical gas curtain.
- other distribution elements e.g. an annular gap interrupted at regular intervals.
- annular gas collection channel 6 which shows a cross section through the nozzle head 1, in particular the annular liquid collection channels 4 and 5 for the liquids F1 and F2 and the externally arranged, also annular gas collection channel 6 can be seen.
- the leg lines 10 and 7 for the liquids F1 and F2 and the leg lines 11 and 8 for the propellant gas obliquely downwards, the gas leg lines 11 with the liquid leg lines 10 (for the liquid F1) and unite the gas leg lines 8 with the liquid leg lines 7 (for the liquid F2) (y-shaped distributor bores).
- the axial gas bores 30 are arranged.
- FIG. 3 schematically shows the swarm of drops 22 emerging from the outlet gap 21 on the nozzle head 3 in the form of a hollow cone.
- the homogeneous distribution of the liquids F 1 and F 2 could be demonstrated by means of small sample trays 32 set up on the bottom 31 inside the spray cone 22 by subsequent analysis of the samples.
- the multi-phase mixing nozzle With the aid of the multi-phase mixing nozzle described, it is possible to intensively mix and atomize two or more liquids with very different physical properties. Due to the extremely short average residence time in the entire multi-phase mixing nozzle in the range from 5 to 100 ms, chemical reactions that slowly occur between the liquids do not impair the atomization quality. It has also been found that, due to the extremely short residence time in the multiphase mixing nozzle, even polymerizing liquids can be mixed with one another and the mixture can be atomized without problems.
- the multi-phase mixing nozzle practically enables in-situ mixing and atomization. Polymerizing liquids could e.g. not premixed in a tank and then atomized.
- the flow guidance described in the vicinity of the outlet gap 21 also effectively and permanently prevents caking on the nozzle head in the form of salts or polymers. It has also been found that the multi-phase mixing nozzle requires only relatively low admission pressures for the propellant gas and the liquids in the range from 1 to 4 bar. This also enables the atomization of highly viscous liquid mixtures.
- a preferred application of the method according to the invention is that the multi-phase mixing nozzle is inserted into the combustion chamber of an incineration plant and a swarm of hollow cones is generated there.
- the combustion of liquid waste with a strongly fluctuating calorific value can be carried out successfully.
- the multi-phase mixing nozzle is supplied with the liquid waste material as liquid F 1 and a high-calorific liquid fuel as liquid F 2.
- the flow rate of the liquid fuel F2 can then be controlled so that the temperature in the combustion chamber remains constant.
- the combustion chamber temperature is the reference variable for the fuel flow. It is also possible for a reaction liquid which increases or decreases the flame temperature to be metered in in a controlled manner in the multiphase mixing nozzle in order to keep the flame temperature constant.
- the method according to the invention is particularly suitable for the disposal of liquid problematic waste materials in the chemical industry.
- different, immiscible wastewater or wastewater concentrate together with a liquid fuel are fed into the multiphase mixing nozzle, atomized and burned.
- the combustion process can be improved by the radial and rotationally symmetrical gas curtains (from the annular gap 27 and the axial gas bores 30) are used when oxygen-rich air is used as the gas, so that the gas curtains support and stabilize the combustion as an additional oxygen supplier.
- the process according to the invention can be used for the thermal disposal (combustion) of chlorinated hydrocarbon-containing waste materials with low and, above all, constant residual pollutant concentrations, one of the liquids fed into the multiphase mixing nozzle consisting of the chlorinated hydrocarbon-containing waste liquid, which as a second liquid is a liquid fuel is mixed into the atomizing chamber.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Environmental & Geological Engineering (AREA)
- Nozzles (AREA)
- Colloid Chemistry (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4430307A DE4430307A1 (de) | 1994-08-26 | 1994-08-26 | Verfahren und Vorrichtung zur gleichzeitigen Dispergierung und Zerstäubung von mindestens zwei Flüssigkeiten |
DE4430307 | 1994-08-26 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0698418A2 true EP0698418A2 (fr) | 1996-02-28 |
EP0698418A3 EP0698418A3 (fr) | 1996-11-20 |
EP0698418B1 EP0698418B1 (fr) | 2001-11-07 |
Family
ID=6526627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95112765A Expired - Lifetime EP0698418B1 (fr) | 1994-08-26 | 1995-08-14 | Procédé et dispositif de dispersion et pulvérisation simultanées d'au moins deux fluides |
Country Status (5)
Country | Link |
---|---|
US (1) | US5639024A (fr) |
EP (1) | EP0698418B1 (fr) |
AT (1) | ATE208237T1 (fr) |
DE (2) | DE4430307A1 (fr) |
ES (1) | ES2166795T3 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104888990A (zh) * | 2015-05-08 | 2015-09-09 | 中国环境科学研究院 | 双流体雾化喷枪 |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6158672A (en) * | 2000-01-12 | 2000-12-12 | Northrop Grumman Corporation | Spray gun atomizing air balance |
US20030098360A1 (en) * | 2000-03-03 | 2003-05-29 | Aggarwal Rakesh Kumar | Twin fluid centrifugal nozzle for spray dryers |
GB2362847A (en) * | 2000-06-02 | 2001-12-05 | Hamworthy Combustion Eng Ltd | Fuel burner nozzle |
KR100384065B1 (ko) * | 2000-07-07 | 2003-05-14 | 오창선 | 액체연료의 연소방법 |
DE10345342A1 (de) * | 2003-09-19 | 2005-04-28 | Engelhard Arzneimittel Gmbh | Verfahren zur Herstellung eines lagerstabilen Extraktes aus Efeublättern, sowie ein nach diesem Verfahren hergestellter Extrakt |
US20060283980A1 (en) * | 2005-06-20 | 2006-12-21 | Wang Muh R | Atomizer system integrated with micro-mixing mechanism |
US8097712B2 (en) | 2007-11-07 | 2012-01-17 | Beelogics Inc. | Compositions for conferring tolerance to viral disease in social insects, and the use thereof |
US8962584B2 (en) | 2009-10-14 | 2015-02-24 | Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. | Compositions for controlling Varroa mites in bees |
US9873096B2 (en) * | 2009-12-29 | 2018-01-23 | Indian Oil Corporation Limited | Feed nozzle assembly |
EP3231872B1 (fr) | 2010-03-08 | 2020-05-06 | Monsanto Technology LLC | Molécules polynucléotidiques pour régulation génique dans les végétaux |
US10806146B2 (en) | 2011-09-13 | 2020-10-20 | Monsanto Technology Llc | Methods and compositions for weed control |
MX377067B (es) | 2011-09-13 | 2025-03-07 | Monsanto Tech Llc | Métodos y composiciones para el control de malezas. |
US9840715B1 (en) | 2011-09-13 | 2017-12-12 | Monsanto Technology Llc | Methods and compositions for delaying senescence and improving disease tolerance and yield in plants |
US10760086B2 (en) | 2011-09-13 | 2020-09-01 | Monsanto Technology Llc | Methods and compositions for weed control |
CN109997852A (zh) | 2011-09-13 | 2019-07-12 | 孟山都技术公司 | 用于杂草控制的方法和组合物 |
UY34333A (es) | 2011-09-13 | 2013-04-30 | Monsanto Technology Llc | ?métodos y composiciones para el control de malezas, y métodos para reducir la expresión de enzima dhps? |
UA115535C2 (uk) | 2011-09-13 | 2017-11-27 | Монсанто Текнолоджи Ллс | Спосіб та композиція для боротьби з бур'янами (варіанти) |
US10829828B2 (en) | 2011-09-13 | 2020-11-10 | Monsanto Technology Llc | Methods and compositions for weed control |
UA116090C2 (uk) | 2011-09-13 | 2018-02-12 | Монсанто Текнолоджи Ллс | Спосіб та композиція для боротьби з бур'янами (варіанти) |
US9920326B1 (en) | 2011-09-14 | 2018-03-20 | Monsanto Technology Llc | Methods and compositions for increasing invertase activity in plants |
US10240162B2 (en) | 2012-05-24 | 2019-03-26 | A.B. Seeds Ltd. | Compositions and methods for silencing gene expression |
BR112015008706A2 (pt) | 2012-10-18 | 2018-02-06 | Monsanto Technology Llc | métodos e composições para controle de praga de plantas |
US10683505B2 (en) | 2013-01-01 | 2020-06-16 | Monsanto Technology Llc | Methods of introducing dsRNA to plant seeds for modulating gene expression |
MX375327B (es) | 2013-01-01 | 2025-03-06 | A B Seeds Ltd | Métodos para introducir dsrna en semillas de plantas para modular la expresión genética. |
US10000767B2 (en) | 2013-01-28 | 2018-06-19 | Monsanto Technology Llc | Methods and compositions for plant pest control |
WO2014164797A2 (fr) | 2013-03-13 | 2014-10-09 | Monsanto Technology Llc | Procédés et compositions utilisables en vue de la lutte contre les mauvaises herbes |
CA2905027A1 (fr) | 2013-03-13 | 2014-10-09 | Monsanto Technology Llc | Procedes et compositions utilisables pour lutter contre les mauvaises herbes |
US20140283211A1 (en) | 2013-03-14 | 2014-09-18 | Monsanto Technology Llc | Methods and Compositions for Plant Pest Control |
US10568328B2 (en) | 2013-03-15 | 2020-02-25 | Monsanto Technology Llc | Methods and compositions for weed control |
US9850496B2 (en) | 2013-07-19 | 2017-12-26 | Monsanto Technology Llc | Compositions and methods for controlling Leptinotarsa |
PL3030663T3 (pl) | 2013-07-19 | 2020-04-30 | Monsanto Technology Llc | Kompozycje i sposoby kontroli leptinotarsa |
ES3008698T3 (en) | 2013-11-04 | 2025-03-24 | Greenlight Biosciences Inc | Compositions and methods for controlling arthropod parasite and pest infestations |
UA119253C2 (uk) | 2013-12-10 | 2019-05-27 | Біолоджикс, Інк. | Спосіб боротьби із вірусом у кліща varroa та у бджіл |
EP3116303B1 (fr) | 2014-01-15 | 2020-07-22 | Monsanto Technology LLC | Procédés et compositions pour la lutte contre les mauvaises herbes utilisant des polynucléotides epsps |
CN103769324B (zh) * | 2014-01-24 | 2015-08-19 | 山东建筑大学 | 内混式两相流喷嘴 |
WO2015153339A2 (fr) | 2014-04-01 | 2015-10-08 | Monsanto Technology Llc | Compositions et procédés pour lutter contre les insectes nuisibles |
US10988764B2 (en) | 2014-06-23 | 2021-04-27 | Monsanto Technology Llc | Compositions and methods for regulating gene expression via RNA interference |
WO2015200539A1 (fr) | 2014-06-25 | 2015-12-30 | Monsanto Technology Llc | Procédés et compositions pour administrer des acides nucléiques à des cellules végétales et réguler l'expression génique |
WO2016018887A1 (fr) | 2014-07-29 | 2016-02-04 | Monsanto Technology Llc | Compositions et méthodes pour lutter contre les insectes nuisibles |
RU2723049C2 (ru) | 2015-01-22 | 2020-06-08 | Монсанто Текнолоджи Ллс | Композиции и способы борьбы с leptinotarsa |
AU2016270870A1 (en) | 2015-06-02 | 2018-01-04 | Monsanto Technology Llc | Compositions and methods for delivery of a polynucleotide into a plant |
AU2016270913A1 (en) | 2015-06-03 | 2018-01-04 | Monsanto Technology Llc | Methods and compositions for introducing nucleic acids into plants |
JP6270896B2 (ja) * | 2016-03-29 | 2018-01-31 | 本田技研工業株式会社 | 塗装ノズル及び塗装装置並びにそれらを用いた塗装方法 |
US11278924B2 (en) * | 2017-11-21 | 2022-03-22 | Wagner Spray Tech Corporation | Plural component spray gun system |
CN113304904B (zh) * | 2021-05-25 | 2022-04-22 | 南通迈维特自动化科技有限公司 | 一种用于水溶液农药喷洒的雾化喷头结构 |
US20230027176A1 (en) * | 2021-07-26 | 2023-01-26 | Palo Alto Research Center Incorporated | Annular effervescent nozzle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2645142A1 (de) | 1976-05-27 | 1977-12-08 | Mitsubishi Precision Co Ltd | Verfahren zur erzeugung von gemischten und zerstaeubten fluida und vorrichtung zur durchfuehrung des verfahrens |
DE3216420A1 (de) | 1982-05-03 | 1983-11-03 | Bayer Ag, 5090 Leverkusen | Verfahren zur spaltung von verduennter schwefelsaeure |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1785803A (en) * | 1923-12-06 | 1930-12-23 | Adams Henry | Atomizing mixing nozzle |
DE630863C (de) * | 1933-07-17 | 1936-06-08 | Hans Barthel | Vorrichtung zur Feinverteilung und Zerstaeubung von Stoffen in fluessiger, Pulver- oder Gasform |
US2259011A (en) * | 1939-05-24 | 1941-10-14 | William F Doyle | Atomizer for liquid fuels |
US2319591A (en) * | 1941-05-09 | 1943-05-18 | Nat Airoil Burner Company Inc | Method of treating imperfectly combustible liquids or semiliquids |
FR1099400A (fr) * | 1954-04-26 | 1955-09-05 | Perfectionnements au chauffage par combustibles liquides et gazeux des fours hoffmann et autres | |
US2893646A (en) * | 1958-10-07 | 1959-07-07 | Charles C Batts | Fluid spray nozzle |
FR1320016A (fr) * | 1961-07-03 | 1963-03-08 | Ibm | Dispositifs de contrôle de formats d'impressions |
DE1263619B (de) * | 1966-05-06 | 1968-03-14 | Huels Chemische Werke Ag | Zweistoffduese zur Zerstaeubungstrocknung |
FR2052003A5 (fr) * | 1969-07-08 | 1971-04-09 | Tunzini Sames | |
FR2288940A1 (fr) * | 1974-10-24 | 1976-05-21 | Pillard Chauffage | Perfectionnements aux bruleurs de combustibles liquides pulverises par la detente d'un fluide auxiliaire et procede d'utilisation de ceux-ci |
BE853725A (fr) * | 1977-04-19 | 1977-08-16 | Socometal S A | Bruleur industriel a dechets ou residus liquides ou pateux |
SU677769A1 (ru) * | 1977-11-21 | 1979-08-05 | Запорожский Проектно-Конструкторский И Технологический Институт | Распылительное устройство |
AU1109683A (en) * | 1981-12-07 | 1983-06-30 | Dewald, Jack J. | Improved method and apparatus for combustion of oil |
US4699587A (en) * | 1985-05-23 | 1987-10-13 | Ishikawajima-Harima Jukogyo Kabushiki Kaisha | Burner |
DE3625659A1 (de) * | 1986-07-29 | 1988-02-04 | Utp Schweissmaterial | Verfahren zum beschichten von bauteilen, sowie vorrichtung zur durchfuehrung des verfahrens |
SU1641449A1 (ru) * | 1989-01-26 | 1991-04-15 | Казахский Проектно-Конструкторский Технологический Институт "Казпктиагрострой" | Пистолет-распылитель |
DE4230535C2 (de) * | 1992-09-10 | 1996-06-13 | Metacap Gmbh Fabrikation Farbs | Zweikomponenten-Spritzpistole |
US5484107A (en) * | 1994-05-13 | 1996-01-16 | The Babcock & Wilcox Company | Three-fluid atomizer |
-
1994
- 1994-08-26 DE DE4430307A patent/DE4430307A1/de not_active Withdrawn
-
1995
- 1995-08-14 DE DE59509798T patent/DE59509798D1/de not_active Expired - Fee Related
- 1995-08-14 ES ES95112765T patent/ES2166795T3/es not_active Expired - Lifetime
- 1995-08-14 EP EP95112765A patent/EP0698418B1/fr not_active Expired - Lifetime
- 1995-08-14 AT AT95112765T patent/ATE208237T1/de not_active IP Right Cessation
- 1995-08-18 US US08/517,012 patent/US5639024A/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2645142A1 (de) | 1976-05-27 | 1977-12-08 | Mitsubishi Precision Co Ltd | Verfahren zur erzeugung von gemischten und zerstaeubten fluida und vorrichtung zur durchfuehrung des verfahrens |
DE3216420A1 (de) | 1982-05-03 | 1983-11-03 | Bayer Ag, 5090 Leverkusen | Verfahren zur spaltung von verduennter schwefelsaeure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104888990A (zh) * | 2015-05-08 | 2015-09-09 | 中国环境科学研究院 | 双流体雾化喷枪 |
Also Published As
Publication number | Publication date |
---|---|
EP0698418B1 (fr) | 2001-11-07 |
DE4430307A1 (de) | 1996-02-29 |
ES2166795T3 (es) | 2002-05-01 |
EP0698418A3 (fr) | 1996-11-20 |
US5639024A (en) | 1997-06-17 |
DE59509798D1 (de) | 2001-12-13 |
ATE208237T1 (de) | 2001-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0698418B1 (fr) | Procédé et dispositif de dispersion et pulvérisation simultanées d'au moins deux fluides | |
EP0902233B1 (fr) | Buse de pulvérisation par pression combinée | |
EP0794383B1 (fr) | Méthode d'exploitation d'une buse de pulvérisation par pression | |
CH680467A5 (fr) | ||
DE3520781A1 (de) | Verfahren und vorrichtung zum verbrennen fluessiger und/oder fester brennstoffe in pulverisierter form | |
DE69128333T2 (de) | Brennkammer und Verbrennungsvorrichtung | |
DE10304386A1 (de) | Doppelfluid-Verwirbelungsdüse mit selbstreinigendem Zapfen | |
EP0924460B1 (fr) | Buse de pulvérisation par pression à deux étages | |
DE19752245C2 (de) | Zweistoffdüse und Niederdruck-Zerstäubungsvorrichtung mit mehreren benachbarten Zweistoffdüsen | |
DE2722226A1 (de) | Vorrichtung zum zerstaeuben von fluessigkeiten und zum mischen von gasen | |
EP0762057B1 (fr) | Dispositif de mélange de carburant et de l'air pour un combusteur de turbine à gaz | |
EP0711953A2 (fr) | Brûleur à prémélange | |
EP0742411B1 (fr) | Alimentation en air pour une chambre de combustion à prémélange | |
DD253144A3 (de) | Duese zur zerstaeubung von fluessigkeiten | |
DE69423900T2 (de) | V-jet atomisateur | |
DE3423373A1 (de) | Duese zur zerstaeubung viskoser fluessigkeiten | |
EP0924459A1 (fr) | Procédé et dispositif pour l'injection d'un mélange de carburant et de liquide dans une chambre de combustion | |
EP0914869B1 (fr) | Buse à caractéristiques de pulvérisation constantes dans une grande plage de dimensions | |
EP0777082A2 (fr) | Brûleur à prémélange | |
DE2552864A1 (de) | Verfahren und brenner zum verbrennen von fluessigen brennstoffen | |
DE102005039412A1 (de) | Zweistoffzerstäubervorrichtung | |
EP0121877A2 (fr) | Buse de pulvérisation en forme d'un cône creux | |
DE19854382B4 (de) | Verfahren und Vorrichtung zur Zerstäubung flüssigen Brennstoffs für eine Feuerungsanlage | |
DE3442148A1 (de) | Zerstaeuberduese mit aufgesetzter verteilerkappe zur reduzierung der stickoxid-emission bei der verbrennung von fluessigen brennstoffen | |
DE19822607A1 (de) | Vorrichtung zum Mischen von Flüssigkeiten mit gas- oder dampfförmigen Medien |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE ES FR GB IT LI NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE ES FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19970515 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20010404 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 208237 Country of ref document: AT Date of ref document: 20011115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM & CO. PATENTANWAELTE Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59509798 Country of ref document: DE Date of ref document: 20011213 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020110 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2166795 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: BAYER AG Free format text: BAYER AG# #51368 LEVERKUSEN (DE) -TRANSFER TO- BAYER AG# #51368 LEVERKUSEN (DE) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20080803 Year of fee payment: 14 Ref country code: ES Payment date: 20080922 Year of fee payment: 14 Ref country code: DE Payment date: 20080730 Year of fee payment: 14 Ref country code: CH Payment date: 20080912 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080827 Year of fee payment: 14 Ref country code: FR Payment date: 20080818 Year of fee payment: 14 Ref country code: AT Payment date: 20080814 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080827 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090119 Year of fee payment: 14 |
|
BERE | Be: lapsed |
Owner name: *BAYER A.G. Effective date: 20090831 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20100301 Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100302 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090815 |