EP0673240B1 - Stabilized medicinal aerosol solution formulations - Google Patents
Stabilized medicinal aerosol solution formulations Download PDFInfo
- Publication number
- EP0673240B1 EP0673240B1 EP94903467A EP94903467A EP0673240B1 EP 0673240 B1 EP0673240 B1 EP 0673240B1 EP 94903467 A EP94903467 A EP 94903467A EP 94903467 A EP94903467 A EP 94903467A EP 0673240 B1 EP0673240 B1 EP 0673240B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acid
- aerosol solution
- wght
- solution formulation
- formulation according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 103
- 238000009472 formulation Methods 0.000 title claims abstract description 89
- 239000000443 aerosol Substances 0.000 title claims abstract description 70
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000003814 drug Substances 0.000 claims abstract description 53
- 239000003380 propellant Substances 0.000 claims abstract description 43
- KEWHKYJURDBRMN-ZEODDXGYSA-M ipratropium bromide hydrate Chemical compound O.[Br-].O([C@H]1C[C@H]2CC[C@@H](C1)[N@@+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 KEWHKYJURDBRMN-ZEODDXGYSA-M 0.000 claims abstract description 41
- 229960001361 ipratropium bromide Drugs 0.000 claims abstract description 39
- 239000006184 cosolvent Substances 0.000 claims abstract description 28
- 239000002253 acid Substances 0.000 claims abstract description 24
- 235000019441 ethanol Nutrition 0.000 claims abstract description 24
- 150000007524 organic acids Chemical class 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 150000007522 mineralic acids Chemical class 0.000 claims abstract description 17
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 claims abstract description 11
- 230000003993 interaction Effects 0.000 claims abstract description 6
- YFMFNYKEUDLDTL-UHFFFAOYSA-N 1,1,1,2,3,3,3-heptafluoropropane Chemical compound FC(F)(F)C(F)C(F)(F)F YFMFNYKEUDLDTL-UHFFFAOYSA-N 0.000 claims abstract description 4
- LSLYOANBFKQKPT-DIFFPNOSSA-N 5-[(1r)-1-hydroxy-2-[[(2r)-1-(4-hydroxyphenyl)propan-2-yl]amino]ethyl]benzene-1,3-diol Chemical compound C([C@@H](C)NC[C@H](O)C=1C=C(O)C=C(O)C=1)C1=CC=C(O)C=C1 LSLYOANBFKQKPT-DIFFPNOSSA-N 0.000 claims abstract 2
- 229960001022 fenoterol Drugs 0.000 claims abstract 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 36
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 32
- 239000011668 ascorbic acid Substances 0.000 claims description 16
- 229960005070 ascorbic acid Drugs 0.000 claims description 16
- 235000010323 ascorbic acid Nutrition 0.000 claims description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- LERNTVKEWCAPOY-VOGVJGKGSA-N C[N+]1(C)[C@H]2C[C@H](C[C@@H]1[C@H]1O[C@@H]21)OC(=O)C(O)(c1cccs1)c1cccs1 Chemical compound C[N+]1(C)[C@H]2C[C@H](C[C@@H]1[C@H]1O[C@@H]21)OC(=O)C(O)(c1cccs1)c1cccs1 LERNTVKEWCAPOY-VOGVJGKGSA-N 0.000 claims description 4
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 claims description 4
- 229960001609 oxitropium bromide Drugs 0.000 claims description 4
- LCELQERNWLBPSY-KHSTUMNDSA-M oxitropium bromide Chemical compound [Br-].C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3[N+]([C@H](C2)[C@@H]2[C@H]3O2)(C)CC)=CC=CC=C1 LCELQERNWLBPSY-KHSTUMNDSA-M 0.000 claims description 4
- 229960002052 salbutamol Drugs 0.000 claims description 4
- 229960000257 tiotropium bromide Drugs 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 2
- 238000002144 chemical decomposition reaction Methods 0.000 claims 3
- 125000005909 ethyl alcohol group Chemical group 0.000 claims 1
- 238000006731 degradation reaction Methods 0.000 abstract description 9
- 230000015556 catabolic process Effects 0.000 abstract description 8
- 150000007513 acids Chemical class 0.000 abstract description 4
- 239000002904 solvent Substances 0.000 abstract description 2
- 229960004756 ethanol Drugs 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 34
- WXGNWUVNYMJENI-UHFFFAOYSA-N 1,1,2,2-tetrafluoroethane Chemical compound FC(F)C(F)F WXGNWUVNYMJENI-UHFFFAOYSA-N 0.000 description 23
- 239000000126 substance Substances 0.000 description 14
- 238000000354 decomposition reaction Methods 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- -1 glycol ethers Chemical class 0.000 description 7
- 239000000546 pharmaceutical excipient Substances 0.000 description 7
- 239000012141 concentrate Substances 0.000 description 6
- 150000004682 monohydrates Chemical class 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 230000001988 toxicity Effects 0.000 description 6
- 231100000419 toxicity Toxicity 0.000 description 6
- 239000004480 active ingredient Substances 0.000 description 5
- AWRLZJJDHWCYKN-UHFFFAOYSA-N 5-bromo-2-ethoxy-3-nitropyridine Chemical compound CCOC1=NC=C(Br)C=C1[N+]([O-])=O AWRLZJJDHWCYKN-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 description 4
- 230000032050 esterification Effects 0.000 description 4
- 238000005886 esterification reaction Methods 0.000 description 4
- 229960001037 fenoterol hydrobromide Drugs 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229940093915 gynecological organic acid Drugs 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 2
- JACRWUWPXAESPB-QMMMGPOBSA-N Tropic acid Natural products OC[C@H](C(O)=O)C1=CC=CC=C1 JACRWUWPXAESPB-QMMMGPOBSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229960002630 ipratropium bromide monohydrate Drugs 0.000 description 2
- 239000001282 iso-butane Substances 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 239000003186 pharmaceutical solution Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- UJPMYEOUBPIPHQ-UHFFFAOYSA-N 1,1,1-trifluoroethane Chemical compound CC(F)(F)F UJPMYEOUBPIPHQ-UHFFFAOYSA-N 0.000 description 1
- WGZYQOSEVSXDNI-UHFFFAOYSA-N 1,1,2-trifluoroethane Chemical compound FCC(F)F WGZYQOSEVSXDNI-UHFFFAOYSA-N 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- VBSTXRUAXCTZBQ-UHFFFAOYSA-N 1-hexyl-4-phenylpiperazine Chemical compound C1CN(CCCCCC)CCN1C1=CC=CC=C1 VBSTXRUAXCTZBQ-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- IROWCYIEJAOFOW-UHFFFAOYSA-N DL-Isoprenaline hydrochloride Chemical compound Cl.CC(C)NCC(O)C1=CC=C(O)C(O)=C1 IROWCYIEJAOFOW-UHFFFAOYSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- 150000008043 acidic salts Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000001078 anti-cholinergic effect Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 229940098165 atrovent Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229940124630 bronchodilator Drugs 0.000 description 1
- KEWHKYJURDBRMN-XSAPEOHZSA-M chembl2134724 Chemical compound O.[Br-].O([C@H]1C[C@H]2CC[C@@H](C1)[N+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 KEWHKYJURDBRMN-XSAPEOHZSA-M 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229940074928 isopropyl myristate Drugs 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 210000002850 nasal mucosa Anatomy 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229960002969 oleic acid Drugs 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000006068 taste-masking agent Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
- A61K9/0073—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
- A61K9/008—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy comprising drug dissolved or suspended in liquid propellant for inhalation via a pressurized metered dose inhaler [MDI]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/08—Bronchodilators
Definitions
- This invention relates to stable pharmaceutical solution formulations suitable for aerosol administration. More particularly, this invention relates to stable pharmaceutical solution formulations suitable for aerosol administration wherein either an inorganic acid or an organic acid is added to the aerosol solution formulation which contains a medicament in solution with an environmentally safe hydrofluorocarbon (HFC) as a propellant, together with an organic compound as a cosolvent.
- HFC hydrofluorocarbon
- the acid provides stability against degradation or decomposition of the medicament resulting largely from interaction of the medicament with the cosolvent and/or water present in the solution formulation.
- aerosol formulations of medicaments by means of pressurized, metered-dose inhalers (MDIs) is used widely in therapy, such as in the treatment of obstructive airway diseases and asthma.
- MDIs pressurized, metered-dose inhalers
- inhalation provides more rapid onset of action while minimizing systemic side effects.
- Aerosol formulations can be administered by inhalation through the mouth or topically by application to the nasal mucosa.
- Formulations for aerosol administration via MDIs can be solutions or suspensions.
- Solution formulations offer the advantage of being homogeneous in nature with the medicament and excipient completely dissolved in the propellant vehicle. Solution formulations also obviate physical stability problems associated with suspension formulations and thus assure more consistent uniform dosage administration while also eliminating the need for surfactants.
- the administration of aerosol solution formulations via MDIs is dependent upon the propulsive force of the propellant system used in its manufacture.
- the propellant comprised a mixture of chlorofluorocarbons (CFCs) to provide the desired solubility, vapor pressure, and stability of the formulation.
- CFCs chlorofluorocarbons
- HFC hydrofluorocarbon
- 4,174,295 discloses the use of propellant systems consisting of combinations of HFCs, which may also contain a saturated hydrocarbon component, suitable for application in the fields of home products such as hair lacquers, anti-perspiration products, perfumes, deodorants, paints, insecticides and the like.
- HFC-134(a) 1,1,1,2-tetrafluoroethane
- Adjuvant a compound having a higher polarity than the HFC-134(a)
- W091/11496 discloses the use of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227), optionally mixed with other propellant components, for use in preparing suspension aerosol formulations of medicaments.
- US-A-2 868 641 and US-A-3 282 781 disclose aerosol compositions comprising a medicament (epinephrine or isoproterenol HCl), a cosolvent, a propellant and ascorbic acid as anti-oxidant.
- a medicament epinephrine or isoproterenol HCl
- cosolvent epinephrine or isoproterenol HCl
- propellant epinephrine or isoproterenol HCl
- ascorbic acid as anti-oxidant
- aerosol suspension formulation means a pharmaceutical formulation of a medicament suitable for aerosol administration wherein the medicament is suspended, in the form of finely, divided particles, in an excipient.
- aerosol solution formulation means a pharmaceutical formulation of a medicament suitable for aerosol administration wherein the medicament and excipients are completely dissolved.
- stable aerosol solution formulation means an aerosol solution formulation which exhibits substantial chemical stability over time.
- Ipratropium bromide is an anticholinergic bronchodilator marketed under the trademark "ATROVENT.”
- This medicament is administered as an aerosol suspension formulation which contains a mixture of CFCs (dichlorodifluoromethane, dichlorotetrafluoroethane, and trichloromonofluoromethane) as the propellant, and soya lecithin.
- ipratropium bromide can be obtained by dissolving ipratropium bromide in a homogeneous system comprising HFC-134(a), ethanol, and either an inorganic acid or an organic acid.
- HFC-134(a) a homogeneous system comprising HFC-134(a), ethanol, and either an inorganic acid or an organic acid.
- the particular type and amount of acid added to the system will define the level of acidity which is critical in obtaining a stable solution formulation.
- the present invention provides stabilized aerosol solution formulations comprising a medicament, selected from the group consisting of ipratropium bromide, oxitropium bromide, albuterol tiotropium bromide and feneterol an HFC propellant, a cosolvent, and an inorganic acid or an organic acid.
- a medicament selected from the group consisting of ipratropium bromide, oxitropium bromide, albuterol tiotropium bromide and feneterol
- an HFC propellant a cosolvent
- an inorganic acid or an organic acid may also be present in the propellant/cosolvent system.
- Suitable HFC propellants are those which, when mixed with the cosolvent(s), form a homogeneous propellant system in which a therapeutically effective amount of the medicament can be dissolved.
- the HFC propellant must be toxicologically safe and must have a vapor pressure which is suitable to enable the medicament to be administered via a pressurized MDI. Additionally, the HFC propellant must be compatible with the components of the MDI device (such as containers, valves, and sealing gaskets, etc.) which is employed to administer the medicament.
- Preferred HFC propellants are 1,1,1,2-tetrafluoroethane (HFC-134(a)) and 1,1,1,2,3,3,3,-heptafluoropropane (HFC-227).
- HFC-134(a) is particularly preferred.
- HFC propellants are HFC-32 (difluoromethane), HFC-143(a) (1,1,1-trifluoroethane), HFC-134 (1,1,2,2-tetrafluoroethane), and HFC-152a (1,1-difluoroethane).
- non-halogenated hydrocarbon propellants may be used in place of the HFC propellants in the present invention.
- non-halogenated hydrocarbons are saturated hydrocarbons, including propane, n-butane, and isobutane, and ethers, including diethyl ether.
- a substantially non-aqueous HFC propellant/cosolvent system is preferred.
- Water may be present in small amounts as an impurity in the HFC propellant/cosolvent system, may be introduced during the manufacturing process or may permeate into the system through the valve or valve/container seals or gaskets. If desired, small amounts of water may be added (up to about 5% by weight) to the HFC/propellant system, for example, to aid in manufacturing.
- a soluble surface active agent can be added in order to improve the performance of valve systems employed in the MDI devices used for the aerosol administration of the formulations.
- preferred surface active agents are oleic acid, sorbitan trioleate, lecithin, and isopropylmyristate.
- Other suitable lubricants are well known in the art (see, for example, Published European Patent Application No. 0372777 (EPO 893122705)).
- excipients are: (a) antioxidants, for example ascorbic acid and tocopherol; (b) taste masking agents, for example, menthol, sweeteners, and artificial or natural flavors; and (c) pressure modifying agents, for example, n-pentane, iso-pentane, neo-pentane, and n-hexane.
- antioxidants for example ascorbic acid and tocopherol
- taste masking agents for example, menthol, sweeteners, and artificial or natural flavors
- pressure modifying agents for example, n-pentane, iso-pentane, neo-pentane, and n-hexane.
- the medicaments used in the present invention are selected from the group consisting of ipratropium bromide, oxitropium bromide, albuterol, tiotropium bromide and feneterol.
- the medicament must be soluble in the HFC propellant/cosolvent system and, characteristically exhibit significant degradation or decomposition in the HFC propellant/cosolvent system.
- the degradation or decomposition of the medicament must be acid sensitive in that the rate of degradation or decomposition can be effectively reduced by the addition of acid.
- the decomposition and the degradation of the medicament may occur by various chemical mechanisms, the most significant being interaction of the medicament with the cosolvent or with the water present in the system to form hydrolysis, esterification, and/or ether products.
- the amount of medicament employed in the aerosol solution formulations of the present invention is that which is effective in producing the intended therapeutic effect, i.e., an amount such that one or more metered volumes of the formulation will deliver an effective amount of the medicament. It will be apparent to those skilled in the art that the potency of the particular medicament employed in the aerosol solution formulation will determine the amount of medicament in the formulation. In general, the medicament is present in an amount from about 0.001 to 10 percent by weight of the total weight of the formulation. An amount of from about 0.01 to 1.0 percent by weight of the total weight of the formulation is preferred.
- the most preferred example of the medicaments for use in the aerosol solution formulations of the present invention is ipratropium bromide.
- Other examples are oxitropium bromide (BA253), albuterol, tiotropium bromide (BA-679), and fenoterol hydrobromide.
- cosolvent may be any one of a number of organic solvents that are toxicologically safe and amenable to MDI solution formulations.
- solvent is meant any solvent which is miscible in the formulation in the amount desired and which, when added provides a formulation in which the medicament can be dissolved in therapeutically effective amounts.
- alcohols for example, ethyl alcohol and isopropyl alcohol
- glycols for example, propylene glycol, polyethylene glycols, polypropylene glycols, glycol ethers, and block copolymers of oxyethylene and oxypropylene
- other substances for example, glycerol, polyoxyethylene alcohols, and polyoxtethylene fatty acid esters.
- cosolvents that may be inert to interaction with the medicament(s) are hydrocarbons, for example, n-propane, n-butane, isobutane, n-pentane, iso-pentane, neo-pentane, and n-hexane; and ethers, for example, diethyl ether.
- hydrocarbons for example, n-propane, n-butane, isobutane, n-pentane, iso-pentane, neo-pentane, and n-hexane
- ethers for example, diethyl ether.
- a preferred cosolvent according to this invention is ethyl alcohol (ethanol).
- the function of the cosolvent is to increase the solubility of the medicament and the excipients in the formulation.
- the amount of cosolvent present in the formulation defines the maximum amount of medicament and excipients that can be dissolved at a particular temperature.
- the selection of the acid in the aerosol solution formulations of this invention depends on the medicament used and the acid concentration needed to effect an acceptable rate of degradation of the medicament. Ideally the preferred acid will have the same anion as that contained in the medicament, if any. However, in some instances, this may present solubility limitations.
- the acid may be any inorganic or mineral acid, for example, hydrochloric acid, sulfuric acid, nitric acid, or phosphoric acid, or the like.
- the acid may also be selected from the group of acids known to those skilled in the art as organic acids, which are in most cases considered to be weak acids relative to the inorganic acids. Representative of this group and preferred in this invention are ascorbic acid and citric acid, although other organic acids may also be suitable. However, according to this invention, citric acid is the most preferred acid because of MDI component compatibility.
- an aerosol solution formulation comprising a particular medicament may be formulated using acids selected from either of the above groups.
- the methods used to introduce the acid into the formulation may include: (1) the direct addition of the inorganic or organic acid; (2) the addition of the medicament as an acidic salt thereby generating the correct acidity level in situ, and (3) combinations of (1) and (2).
- Appropriate salts for introducing the medicament into the formulation will be apparent to those skilled in the art.
- a range of chemical compositions is given in Table 1 for aerosol solution formulations containing ipratropium bromide, HFC-134(a), and an inorganic acid, such as hydrochloric, nitric phosphoric, or sulfuric acid.
- the amount of alcohol present in the formulation defines the maximum amount of ipratropium bromide that can be dissolved at a particular temperature.
- the range of ipratropium bromide concentrations given in Table 1 is based on the maximum amount that can be safely dissolved without precipitation at room temperature for a given alcohol concentration.
- Acid content is given in units of normality which defines a pH range equivalent to 2.0 - 4.7 in an aqueous system.
- Ipratropium Bromide Aerosol Solution Formulations Range Of Chemical Compositions For An Inorganic Acid Formulation Component Contents per MDI Container Ipratropium Bromide as the Monohydrate 0.001 - 25% wght./wght. Dehydrated (Absolute) Ethanol, USP 1.0 - 50.0% wght./wght. 1,1,1,2-Tetrafluoroethane, (HFC-134(a)) (Dupont Pharmaceutical Toxicity Grade) 50.0 - 99.0% wght./wght. Inorganic Acid, USP/NF (Hydrochloric Acid) 0.01 - 0.00002 Normal Water (Purified), USP 0.0 - 5.0% wght./wght.
- a range of chemical compositions is given in Table 2 for aerosol solution formulations containing ipratropium bromide, HFC-134(a), and the organic acid, ascorbic acid.
- the range of ascorbic acid concentration presented in Table 2 was based on its acid dissociation constant(s), pKa(s), and the optimal pH range for a stable ipratropium bromide formulation (2.0-4.7) in an aqueous system.
- 0.0045-275 mg/ml would be required to correspond to an aqueous pH range of 2.0-4.7.
- solubility limitations in the formulation must also be taken into consideration given the fact that ascorbic acid is only soluble to about 20 mg/ml in absolute ethanol and is expected to have a lesser solubility in an absolute ethanol/HFC-134(a) system.
- Table 2 The information contained in Table 2 is presented for ascorbic acid and gives a range of ethanol content that is based on the expected room temperature solubility of ipratropium bromide (as the monohydrate).
- about 0.30 mg/ml of ascorbic acid is expected to be required in such a formulation corresponding to a pH-degradation rate minimum of pH 3.5 for ipratropium bromide in an aqueous system.
- the range of acid concentration required to effect an acceptable rate of decomposition for medicaments in primarily non-aqueous solution aerosol formulations will depend primarily on the chemical composition of the formulation (such as choice of cosolvent(s) and the chemical nature of the medicaments(s) present). This range is expected to be about 0.10 - 0.0000001 normal for the inorganic acids corresponding to an aqueous pH range of about 1.0-7.0 and must be calculated for the organic acids depending on their pKa values.
- Ipratropium Bromide Aerosol Solution MDI Formulations Range Of Chemical Compositions For An Organic Acid Formulation Component Contents per Container Ipratropium Bromide as the Monohydrate 0.001 - 2.5% wght./wght.
- 1,1,1,2-Tetrafluoroethane (HFC-134(a)) (Dupont Pharmaceutical Toxicity Grade) 84.4773% wght./wght. 84.4586% wght./wght. 84.4212% wght./wght. Citric Acid, USP 0.0040% wght./wght. 0.0040% wght./wght. 0.0040% wght./wght. Water (Purified), USP 0.5000% wght./wght. 0.5000% wght./wght. 0.5000% wght./wght. Total 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.000
- Table 4 gives a chemical composition for an aerosol formulation containing fenoterol hydrobromide, HFC-134(a) and citric acid.
- Fenoterol Hydrobromide Aerosol Solution Formulation Component Contents per MDI Container Fenoterol Hydrobromide 0.192% wght./wght. Dehydrated (Absolute) Ethanol, USP 30.000% wght./wght. 1,1,1,2-Tetrafluoroethane, (HFC-134(a)) (Dupont Pharmaceutical Toxicity Grade) 67.806% wght./wght. Citric Acid, USP 0.002% wght./wght. Water (Purified), USP 2.000% wght./wght. Total 100.000%
- the amount of drug in an aerosol solution formulation that can be delivered through the valve of an MDI will depend on the activeingredient concentration (mg/ml) in the formulation and the metering volume (ul) of the valve. Commonly used valve sizes are 25, 50, 63 and 100 ul.
- Metered dose inhalers containing aerosol solution formulations of medicaments can be manufactured using a number of conventional processing methods.
- One method, which is useful in the laboratory for the manufacture of small laboratory scale lots, is Dual Stage Pressure Fill. This method is shown in Tables 5 and 6 for two specific ipratropium bromide solution formulations using a 50-ul valve.
- Two methods for large scale manufacture are Single-Stage Cold Fill and Single-Stage Pressure Fill. Ipratropium Bromide Inhalation Aerosol, 0.021 mg Drug Delivered Through The Valve, 12 ml I.
- Composition Component Contents per Container Ipratropium Bromide Monohydrate 0.00505 gm Dehydrated (Absolute) Ethyl Alcohol, USP 2.02500 gm 1,1,1,2-Tetrafluoroethane, (HFC-134(a) (Dupont Pharmaceutical Toxicity Grade) 11.40209 gm Nitric Acid, USP/NF 0.00036 gm Water (Purified), USP 0.06750 gm TOTAL: 13.50000 II.
- the concentrate is added to an appropriate filling apparatus.
- the active ingredient concentrate is dispensed into aerosol containers.
- the headspace of the containers is purged with nitrogen or HFC-134(a) vapor (purging ingredients should not contain more than 1 ppm oxygen) and is sealed with valves.
- the HFC-134(a) propellant is then pressure-filled into the sealed containers.
- Device Components Suitable Aerosol Container 50 ul Aerosol Metering Valve III. Brief Description of Processing Method An active ingredient concentrate is prepared by dissolving the ipratropium bromide, as the monohydrate, ascorbic acid and water in ethyl alcohol.
- the concentrate is added to an appropriate filling apparatus.
- the active ingredient concentrate is dispensed into aerosol containers, the headspace of the containers is purged with Nitrogen or HFC-134(a) vapor (purging ingredients should not contain more than 1 ppm oxygen) and is sealed with valves.
- the HFC-134(a) propellant is then pressure filled into the sealed containers.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Pulmonology (AREA)
- Otolaryngology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
- This invention relates to stable pharmaceutical solution formulations suitable for aerosol administration. More particularly, this invention relates to stable pharmaceutical solution formulations suitable for aerosol administration wherein either an inorganic acid or an organic acid is added to the aerosol solution formulation which contains a medicament in solution with an environmentally safe hydrofluorocarbon (HFC) as a propellant, together with an organic compound as a cosolvent. The acid provides stability against degradation or decomposition of the medicament resulting largely from interaction of the medicament with the cosolvent and/or water present in the solution formulation.
- The administration of aerosol formulations of medicaments by means of pressurized, metered-dose inhalers (MDIs) is used widely in therapy, such as in the treatment of obstructive airway diseases and asthma. Compared with oral administration, inhalation provides more rapid onset of action while minimizing systemic side effects. Aerosol formulations can be administered by inhalation through the mouth or topically by application to the nasal mucosa.
- Formulations for aerosol administration via MDIs can be solutions or suspensions. Solution formulations offer the advantage of being homogeneous in nature with the medicament and excipient completely dissolved in the propellant vehicle. Solution formulations also obviate physical stability problems associated with suspension formulations and thus assure more consistent uniform dosage administration while also eliminating the need for surfactants.
- The administration of aerosol solution formulations via MDIs is dependent upon the propulsive force of the propellant system used in its manufacture. Traditionally, the propellant comprised a mixture of chlorofluorocarbons (CFCs) to provide the desired solubility, vapor pressure, and stability of the formulation. However, since it has been established in recent years that CFCs are environmentally harmful because they contribute to the depletion of the Earth's ozone layer, it is desirable to substitute environmentally safe hydrofluorocarbon (HFC) propellants or other non-chlorinated propellants for environmentally harmful CFC propellants in aerosol inhalation formulations. For example, U.S. Patent No. 4,174,295 discloses the use of propellant systems consisting of combinations of HFCs, which may also contain a saturated hydrocarbon component, suitable for application in the fields of home products such as hair lacquers, anti-perspiration products, perfumes, deodorants, paints, insecticides and the like.
- It is known in the art that certain HFCs have properties suitable for use as propellants for the aerosol administration of medicaments. For example, published European patent Application No. 0 372 777 (EPO89312270.5) describes the use of 1,1,1,2-tetrafluoroethane (HFC-134(a)) in combination with at least one "adjuvant" (a compound having a higher polarity than the HFC-134(a)) and a surface active agent to prepare suspension and solution formulations of medicaments suitable for administration by the aerosol route. Also, PCT Published Application No. W091/11496 (PCT/EP91/00178) discloses the use of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227), optionally mixed with other propellant components, for use in preparing suspension aerosol formulations of medicaments.
- US-A-2 868 641 and US-A-3 282 781 disclose aerosol compositions comprising a medicament (epinephrine or isoproterenol HCl), a cosolvent, a propellant and ascorbic acid as anti-oxidant.
- It has now been found that the use of propellant systems containing an HFC and a cosolvent in aerosol solution formulations presents a chemical stability problem that has not been previously recognized or resolved in the prior art. This is because in such HFC propellant/cosolvent systems, the medicament may interact with the cosolvent and/or water present in the system to produce decomposition or degradation products. It has now further been found that the addition of an acid, either an inorganic acid or an organic acid, to the HFC propellant/cosolvent system provides the requisite chemical stability to the medicament.
- The term "aerosol suspension formulation" means a pharmaceutical formulation of a medicament suitable for aerosol administration wherein the medicament is suspended, in the form of finely, divided particles, in an excipient.
- The term "aerosol solution formulation" means a pharmaceutical formulation of a medicament suitable for aerosol administration wherein the medicament and excipients are completely dissolved.
- The term "stabilized aerosol solution formulation" means an aerosol solution formulation which exhibits substantial chemical stability over time.
- Ipratropium bromide is an anticholinergic bronchodilator marketed under the trademark "ATROVENT." This medicament is administered as an aerosol suspension formulation which contains a mixture of CFCs (dichlorodifluoromethane, dichlorotetrafluoroethane, and trichloromonofluoromethane) as the propellant, and soya lecithin.
- Studies have demonstrated that stable aerosol solution formulations of ipratropium bromide can be obtained by dissolving ipratropium bromide in a homogeneous system comprising HFC-134(a), ethanol, and either an inorganic acid or an organic acid. The particular type and amount of acid added to the system will define the level of acidity which is critical in obtaining a stable solution formulation.
- Thus, the present invention provides stabilized aerosol solution formulations comprising a medicament, selected from the group consisting of ipratropium bromide, oxitropium bromide, albuterol tiotropium bromide and feneterol an HFC propellant, a cosolvent, and an inorganic acid or an organic acid. A small amount of water (up to about 5% by weight) may also be present in the propellant/cosolvent system.
- Suitable HFC propellants are those which, when mixed with the cosolvent(s), form a homogeneous propellant system in which a therapeutically effective amount of the medicament can be dissolved. The HFC propellant must be toxicologically safe and must have a vapor pressure which is suitable to enable the medicament to be administered via a pressurized MDI. Additionally, the HFC propellant must be compatible with the components of the MDI device (such as containers, valves, and sealing gaskets, etc.) which is employed to administer the medicament. Preferred HFC propellants are 1,1,1,2-tetrafluoroethane (HFC-134(a)) and 1,1,1,2,3,3,3,-heptafluoropropane (HFC-227). HFC-134(a) is particularly preferred. Other examples of HFC propellants are HFC-32 (difluoromethane), HFC-143(a) (1,1,1-trifluoroethane), HFC-134 (1,1,2,2-tetrafluoroethane), and HFC-152a (1,1-difluoroethane).
- It will be apparent to those skilled in the art that non-halogenated hydrocarbon propellants may be used in place of the HFC propellants in the present invention. Examples of non-halogenated hydrocarbons are saturated hydrocarbons, including propane, n-butane, and isobutane, and ethers, including diethyl ether.
- It will also be apparent to those skilled in the art that, although the use of a single HFC propellant is preferred, a mixture of two or more HFC propellants, or a mixture of at least one HFC propellant and one or more non-CFC propellants, may be employed in the aerosol solution formulation of the present invention.
- A substantially non-aqueous HFC propellant/cosolvent system is preferred. Water may be present in small amounts as an impurity in the HFC propellant/cosolvent system, may be introduced during the manufacturing process or may permeate into the system through the valve or valve/container seals or gaskets. If desired, small amounts of water may be added (up to about 5% by weight) to the HFC/propellant system, for example, to aid in manufacturing.
- If desired, pharmaceutically acceptable excipients can be included in the aerosol solution formulations of the present invention. For example, a soluble surface active agent can be added in order to improve the performance of valve systems employed in the MDI devices used for the aerosol administration of the formulations. Examples of preferred surface active agents are oleic acid, sorbitan trioleate, lecithin, and isopropylmyristate. Other suitable lubricants are well known in the art (see, for example, Published European Patent Application No. 0372777 (EPO 893122705)). Other excipients are: (a) antioxidants, for example ascorbic acid and tocopherol; (b) taste masking agents, for example, menthol, sweeteners, and artificial or natural flavors; and (c) pressure modifying agents, for example, n-pentane, iso-pentane, neo-pentane, and n-hexane.
- The medicaments used in the present invention are selected from the group consisting of ipratropium bromide, oxitropium bromide, albuterol, tiotropium bromide and feneterol. The medicament must be soluble in the HFC propellant/cosolvent system and, characteristically exhibit significant degradation or decomposition in the HFC propellant/cosolvent system. The degradation or decomposition of the medicament must be acid sensitive in that the rate of degradation or decomposition can be effectively reduced by the addition of acid.
- The decomposition and the degradation of the medicament may occur by various chemical mechanisms, the most significant being interaction of the medicament with the cosolvent or with the water present in the system to form hydrolysis, esterification, and/or ether products.
- The amount of medicament employed in the aerosol solution formulations of the present invention is that which is effective in producing the intended therapeutic effect, i.e., an amount such that one or more metered volumes of the formulation will deliver an effective amount of the medicament. It will be apparent to those skilled in the art that the potency of the particular medicament employed in the aerosol solution formulation will determine the amount of medicament in the formulation. In general, the medicament is present in an amount from about 0.001 to 10 percent by weight of the total weight of the formulation. An amount of from about 0.01 to 1.0 percent by weight of the total weight of the formulation is preferred.
- The most preferred example of the medicaments for use in the aerosol solution formulations of the present invention is ipratropium bromide. Other examples are oxitropium bromide (BA253), albuterol, tiotropium bromide (BA-679), and fenoterol hydrobromide.
- The chemical nature of the medicament defines the nature of the cosolvent, which may be any one of a number of organic solvents that are toxicologically safe and amenable to MDI solution formulations. By "cosolvent" is meant any solvent which is miscible in the formulation in the amount desired and which, when added provides a formulation in which the medicament can be dissolved in therapeutically effective amounts. Examples of cosolvents that contain hydroxyl functions (or other functions) capable of interacting with the medicament(s) in the formulation are: alcohols, for example, ethyl alcohol and isopropyl alcohol; glycols for example, propylene glycol, polyethylene glycols, polypropylene glycols, glycol ethers, and block copolymers of oxyethylene and oxypropylene; and other substances, for example, glycerol, polyoxyethylene alcohols, and polyoxtethylene fatty acid esters.
- Examples of cosolvents that may be inert to interaction with the medicament(s) are hydrocarbons, for example, n-propane, n-butane, isobutane, n-pentane, iso-pentane, neo-pentane, and n-hexane; and ethers, for example, diethyl ether.
- A preferred cosolvent according to this invention is ethyl alcohol (ethanol).
- The function of the cosolvent is to increase the solubility of the medicament and the excipients in the formulation. Thus, the amount of cosolvent present in the formulation defines the maximum amount of medicament and excipients that can be dissolved at a particular temperature.
- The selection of the acid in the aerosol solution formulations of this invention depends on the medicament used and the acid concentration needed to effect an acceptable rate of degradation of the medicament. Ideally the preferred acid will have the same anion as that contained in the medicament, if any. However, in some instances, this may present solubility limitations. The acid may be any inorganic or mineral acid, for example, hydrochloric acid, sulfuric acid, nitric acid, or phosphoric acid, or the like. The acid may also be selected from the group of acids known to those skilled in the art as organic acids, which are in most cases considered to be weak acids relative to the inorganic acids. Representative of this group and preferred in this invention are ascorbic acid and citric acid, although other organic acids may also be suitable. However, according to this invention, citric acid is the most preferred acid because of MDI component compatibility.
- According to this invention an aerosol solution formulation comprising a particular medicament may be formulated using acids selected from either of the above groups.
- The methods used to introduce the acid into the formulation may include: (1) the direct addition of the inorganic or organic acid; (2) the addition of the medicament as an acidic salt thereby generating the correct acidity level in situ, and (3) combinations of (1) and (2). Appropriate salts for introducing the medicament into the formulation will be apparent to those skilled in the art.
- Laboratory experiments have demonstrated that aerosol solution formulations of ipratropium bromide in HFC-134(a) and about 35% ethanol exhibit significant decomposition of the ipratropium bromide when stored at 50°C. The decomposition can be attributed to oxidation, chemical dehydration, hydrolysis and esterification. However, tropic acid ethyl ester is the chief degradation product. This ester can be formed by the direct reaction of ethanol with ipratropium bromide or by hydrolysis of ipratropium bromide followed by esterification of tropic acid with ethanol. Addition of 1% water reduced the decomposition due to dehydration. Carrying out the reaction under nitrogen atmosphere reduced the oxidation products.
- In aqueous solution the rate of hydrolysis and esterification is typically pH dependent. In aqueous solution, the degradation of ipratropium bromide exhibits a pH-rate minimum at pH 3.5. This corresponds to a hydrogen ion concentration of 3.2 X 10-4 molar (M) at 25°C. Although the concept of pH is poorly defined in non-aqueous systems, formulation evaluation studies were conducted using this concentration of hydrochloric acid in the HFC-134(a)/ethanol system containing ipratropium bromide. Samples stored at 50°C for five and one-half months exhibited less than 5.5% loss of ipratropium bromide. A summary of these results is illustrated in Figure 1.
- A range of chemical compositions is given in Table 1 for aerosol solution formulations containing ipratropium bromide, HFC-134(a), and an inorganic acid, such as hydrochloric, nitric phosphoric, or sulfuric acid. The amount of alcohol present in the formulation defines the maximum amount of ipratropium bromide that can be dissolved at a particular temperature. The range of ipratropium bromide concentrations given in Table 1 is based on the maximum amount that can be safely dissolved without precipitation at room temperature for a given alcohol concentration. Acid content is given in units of normality which defines a pH range equivalent to 2.0 - 4.7 in an aqueous system.
Ipratropium Bromide Aerosol Solution Formulations:
Range Of Chemical Compositions For An Inorganic Acid FormulationComponent Contents per MDI Container Ipratropium Bromide as the Monohydrate 0.001 - 25% wght./wght. Dehydrated (Absolute) Ethanol, USP 1.0 - 50.0% wght./wght. 1,1,1,2-Tetrafluoroethane, (HFC-134(a)) (Dupont Pharmaceutical Toxicity Grade) 50.0 - 99.0% wght./wght. Inorganic Acid, USP/NF (Hydrochloric Acid) 0.01 - 0.00002 Normal Water (Purified), USP 0.0 - 5.0% wght./wght. - A range of chemical compositions is given in Table 2 for aerosol solution formulations containing ipratropium bromide, HFC-134(a), and the organic acid, ascorbic acid. The range of ascorbic acid concentration presented in Table 2 was based on its acid dissociation constant(s), pKa(s), and the optimal pH range for a stable ipratropium bromide formulation (2.0-4.7) in an aqueous system. For ascorbic acid, 0.0045-275 mg/ml would be required to correspond to an aqueous pH range of 2.0-4.7. However, solubility limitations in the formulation must also be taken into consideration given the fact that ascorbic acid is only soluble to about 20 mg/ml in absolute ethanol and is expected to have a lesser solubility in an absolute ethanol/HFC-134(a) system. The information contained in Table 2 is presented for ascorbic acid and gives a range of ethanol content that is based on the expected room temperature solubility of ipratropium bromide (as the monohydrate). Optimally, about 0.30 mg/ml of ascorbic acid is expected to be required in such a formulation corresponding to a pH-degradation rate minimum of pH 3.5 for ipratropium bromide in an aqueous system.
- The range of concentration presented in Table 2 for ascorbic acid will differ for another organic acid depending on its acid dissociation constant(s). For example about 0.0039-27.7 mg/ml of citric acid would be required in the formulation corresponding to an optimal aqueous pH range of 2.0-4.7 for ipratropium bromide.
- The range of acid concentration required to effect an acceptable rate of decomposition for medicaments in primarily non-aqueous solution aerosol formulations will depend primarily on the chemical composition of the formulation (such as choice of cosolvent(s) and the chemical nature of the medicaments(s) present). This range is expected to be about 0.10 - 0.0000001 normal for the inorganic acids corresponding to an aqueous pH range of about 1.0-7.0 and must be calculated for the organic acids depending on their pKa values.
Ipratropium Bromide Aerosol Solution MDI Formulations:
Range Of Chemical Compositions For An Organic Acid FormulationComponent Contents per Container Ipratropium Bromide as the Monohydrate 0.001 - 2.5% wght./wght. Dehydrated (Absolute) Ethanol, USP 1.0 - 50.0% wght./wght. 1,1,1,2-Tetrafluoroethane, (HFC-134(a)) (Dupont Pharmaceutical Toxicity Grade) 50.0 - 99.0% wght./wght. Ascorbic Acid, USP 0.00015 - 5.0 mg/ml Water (Purified), USP 0.0 - 5.0% wght./wght. - Preferred examples of chemical compositions for aerosol solution formulations containing ipratropium bromide, HFC-134(a) and citric acid are shown in Table 3. The standard amount of ipratropium bromide in an MDI which is considered to supply an effective dosage is indicated as "regular strength." However, dosages of half strength and double strength are also preferred. The range of citric acid concentration presented in Table 3 was based on its acid dissociation constant(s), pKa(s), and optimal pH range for a stable ipratropium bromide formulation (2.0-4.7) in an aqueous system.
Ipratropium Bromide Aerosol Solution Formulations Containing Citric Acid Contents per MDI Container Component Half Strength Regular Strength Double Strength Ipratropium Bromide as the Monohydrate 0.0187% wght./wght. 0.0374% wght./wght. 0.0748% wght./wght. Dehydrated (Absolute) Ethanol, USP 15.0000% wght./wght. 15.0000% wght./wght. 15.0000% wght./wght. 1,1,1,2-Tetrafluoroethane, (HFC-134(a)) (Dupont Pharmaceutical Toxicity Grade) 84.4773% wght./wght. 84.4586% wght./wght. 84.4212% wght./wght. Citric Acid, USP 0.0040% wght./wght. 0.0040% wght./wght. 0.0040% wght./wght. Water (Purified), USP 0.5000% wght./wght. 0.5000% wght./wght. 0.5000% wght./wght. Total 100.0000% 100.0000% 100.0000% - As another preferred example, Table 4 gives a chemical composition for an aerosol formulation containing fenoterol hydrobromide, HFC-134(a) and citric acid.
Fenoterol Hydrobromide Aerosol Solution Formulation Component Contents per MDI Container Fenoterol Hydrobromide 0.192% wght./wght. Dehydrated (Absolute) Ethanol, USP 30.000% wght./wght. 1,1,1,2-Tetrafluoroethane, (HFC-134(a)) (Dupont Pharmaceutical Toxicity Grade) 67.806% wght./wght. Citric Acid, USP 0.002% wght./wght. Water (Purified), USP 2.000% wght./wght. Total 100.000% - The amount of drug in an aerosol solution formulation that can be delivered through the valve of an MDI will depend on the activeingredient concentration (mg/ml) in the formulation and the metering volume (ul) of the valve. Commonly used valve sizes are 25, 50, 63 and 100 ul.
- Metered dose inhalers containing aerosol solution formulations of medicaments can be manufactured using a number of conventional processing methods. One method, which is useful in the laboratory for the manufacture of small laboratory scale lots, is Dual Stage Pressure Fill. This method is shown in Tables 5 and 6 for two specific ipratropium bromide solution formulations using a 50-ul valve. Two methods for large scale manufacture are Single-Stage Cold Fill and Single-Stage Pressure Fill.
Ipratropium Bromide Inhalation Aerosol, 0.021 mg Drug Delivered Through The Valve, 12 ml
I. CompositionComponent Contents per Container Ipratropium Bromide Monohydrate 0.00505 gm Dehydrated (Absolute) Ethyl Alcohol, USP 2.02500 gm 1,1,1,2-Tetrafluoroethane, (HFC-134(a) (Dupont Pharmaceutical Toxicity Grade) 11.40209 gm Nitric Acid, USP/NF 0.00036 gm Water (Purified), USP 0.06750 gm TOTAL: 13.50000 II. Device Components Suitable Aerosol Container 50 ul Aerosol Metering Valve III. Brief Description of Processing Method An active ingredient concentrate is prepared by dissolving the ipratropium bromide, as the monohydrate, nitric acid, and water in ethyl alcohol. The concentrate is added to an appropriate filling apparatus. The active ingredient concentrate is dispensed into aerosol containers. The headspace of the containers is purged with nitrogen or HFC-134(a) vapor (purging ingredients should not contain more than 1 ppm oxygen) and is sealed with valves. The HFC-134(a) propellant is then pressure-filled into the sealed containers. Ipratropium Bromide Inhalation Aerosol, 0.021 mg Drug Delivered Through The Valve 12 ml
I. CompositionComponent Stated Contents Per Container Ipratropium Bromide Monohydrate 0.00505 gm Dehydrated (Absolute) Ethyl Alcohol, USP 2.02500 gm 1,1,1,2-Tetrafluoroethane (HFC-134A), (Dupont Pharmaceutical Toxicity Grade) 11.26745 gm Ascorbic Acid, USP 0.13500 gm Water (Purified), USP 0.06750 gm TOTAL: 13.50000 II. Device Components: Suitable Aerosol Container 50 ul Aerosol Metering Valve III. Brief Description of Processing Method An active ingredient concentrate is prepared by dissolving the ipratropium bromide, as the monohydrate, ascorbic acid and water in ethyl alcohol. The concentrate is added to an appropriate filling apparatus. The active ingredient concentrate is dispensed into aerosol containers, the headspace of the containers is purged with Nitrogen or HFC-134(a) vapor (purging ingredients should not contain more than 1 ppm oxygen) and is sealed with valves. The HFC-134(a) propellant is then pressure filled into the sealed containers.
Claims (16)
- An aerosol solution formulation comprising a medicament, selected from the group consisting of ipratropium bromide, oxitropium bromide, albuterol, tiotropium bromide and fenoterol, an HFC propellant, an organic cosolvent, and either an inorganic or an organic acid wherein the medicament chemically degrades or decomposes by interaction with the cosolvent or water or other mechanism, such chemical degradation having the capability of being reduced to acceptable levels by the addition of the inorganic or organic acid, and wherein the acid is present in an amount sufficient to reduce the chemical degradation to an acceptable level.
- An aerosol solution formulation according to Claim 1 wherein the HFC propellant is 1,1,1,2-tetrafluoroethane.
- An aerosol solution formulation according to Claim 1 wherein the HFC propellant is 1,1,1,2,3,3,3-heptafluoropropane.
- An aerosol solution formulation according to Claim 2 or 3 wherein the organic cosolvent is ethyl alcohol.
- An aerosol solution formulation according to Claim 4 wherein the ethyl alcohol is in the range of about 1.0 to 50.0 % wght./wght. of the formulation.
- An aerosol solution formulation according to Claim 5 wherein the inorganic acid is selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid.
- An aerosol solution formulation according to claim 5 wherein the organic acid is selected from the group consisting of ascorbic acid and citric acid.
- An aerosol solution formulation according to Claim 5 which contains water in an amount up to about 5.0 % wght./wght.
- An aerosol solution formulation comprising ipratropium bromide, an HFC propellant, ethyl alcohol and an inorganic acid or an organic acid wherein the ipratropium bromide chemical degradation by interaction with cosolvent or water is reduced to acceptable levels by the addition of the inorganic or organic acid to the aerosol solution formulation.
- An aerosol solution formulation according to Claim 9 wherein the HFC propellant is 1,1,1,2-tetrafluoroethane.
- An aerosol solution formulation according to claim 9 wherein the HFC propellant is 1,1,1,2,3,3,3-heptafluoropropane.
- An aerosol solution formulation according to claim 10 or 11 wherein the ethyl alcohol is within the range of about 1.0 to 50.0 % wght./wght.
- An aerosol solution formulation according to Claim 10 or 11 wherein the inorganic acid is selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid.
- An aerosol solution formulation according to claim 13 wherein the inorganic acid is within the range of about 0.00002 to 0.01 Normal.
- An aerosol solution formulation according to Claim 10 or 11 wherein the organic acid is selected from the group consisting of ascorbic acid and citric acid.
- An aerosol solution formulation according to claim 15 wherein the organic acid is ascorbic acid and which is within the range of about 0.0045 to 5.0 mg/ml or is citric acid and which is within the range of about 0.0039 to 27.7 mg/ml.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US98785292A | 1992-12-09 | 1992-12-09 | |
US987852 | 1992-12-09 | ||
US15354993A | 1993-11-22 | 1993-11-22 | |
US153549 | 1993-11-22 | ||
PCT/US1993/011801 WO1994013262A1 (en) | 1992-12-09 | 1993-12-06 | Stabilized medicinal aerosol solution formulations |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98110714 Division | 1998-06-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0673240A1 EP0673240A1 (en) | 1995-09-27 |
EP0673240B1 true EP0673240B1 (en) | 1999-03-24 |
Family
ID=26850651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94903467A Revoked EP0673240B1 (en) | 1992-12-09 | 1993-12-06 | Stabilized medicinal aerosol solution formulations |
Country Status (27)
Country | Link |
---|---|
US (3) | US5676930A (en) |
EP (1) | EP0673240B1 (en) |
JP (1) | JP3009924B2 (en) |
KR (1) | KR100312357B1 (en) |
AT (1) | ATE177941T1 (en) |
AU (2) | AU6048694A (en) |
BG (1) | BG62382B1 (en) |
BR (1) | BR9307627A (en) |
CA (1) | CA2151383C (en) |
CZ (1) | CZ284203B6 (en) |
DE (1) | DE69324161T2 (en) |
DK (1) | DK0673240T3 (en) |
ES (1) | ES2129117T3 (en) |
FI (1) | FI114283B (en) |
GB (1) | GB2288978B (en) |
GR (1) | GR3030529T3 (en) |
HU (1) | HU221163B1 (en) |
LV (1) | LV10911B (en) |
NO (1) | NO311487B1 (en) |
NZ (1) | NZ259192A (en) |
PL (1) | PL177078B1 (en) |
RO (1) | RO117414B1 (en) |
RU (1) | RU2126248C1 (en) |
SG (1) | SG52459A1 (en) |
SK (1) | SK280911B6 (en) |
UA (1) | UA27143C2 (en) |
WO (2) | WO1994013263A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1955694A1 (en) | 2003-07-11 | 2008-08-13 | Boehringer Ingelheim International GmbH | HFC solution formulations containing an anticholinergic |
EP2819669B1 (en) | 2012-02-28 | 2021-04-21 | Boehringer Ingelheim International GmbH | New tiotropium formula containing propellant |
Families Citing this family (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SK280911B6 (en) * | 1992-12-09 | 2000-09-12 | Boehringer Ingelheim Pharmaceuticals, Inc. | Pharmaceutical composition |
AU4655596A (en) * | 1995-01-17 | 1996-08-07 | Omega Pharmaceutical, Incorporated | Liquid stable vitamin c compositions and delivery systems, and methods of making and uses thereof |
US5653961A (en) * | 1995-03-31 | 1997-08-05 | Minnesota Mining And Manufacturing Company | Butixocort aerosol formulations in hydrofluorocarbon propellant |
CA2361954C (en) * | 1995-04-14 | 2003-07-08 | Smithkline Beecham Corporation | Metered dose inhaler for albuterol |
TW537903B (en) | 1995-06-27 | 2003-06-21 | Boehringer Ingelheim Kg | New stable pharmaceutical preparation for producing propellant gas-free aerosols |
DE19528145A1 (en) * | 1995-08-01 | 1997-02-06 | Boehringer Ingelheim Kg | New drugs and their use |
US6054488A (en) * | 1996-06-11 | 2000-04-25 | 3M Innovative Properties Company | Medicinal aerosol formulations of formoterol |
GB9616237D0 (en) | 1996-08-01 | 1996-09-11 | Norton Healthcare Ltd | Aerosol formulations |
US20030215396A1 (en) | 1999-09-15 | 2003-11-20 | Boehringer Ingelheim Pharma Kg | Method for the production of propellant gas-free aerosols from aqueous medicament preparations |
DE19653969A1 (en) * | 1996-12-20 | 1998-06-25 | Boehringer Ingelheim Kg | New aqueous pharmaceutical preparation for the production of propellant-free aerosols |
AU741439B2 (en) | 1996-12-30 | 2001-11-29 | Battelle Memorial Institute | Formulation and method for treating neoplasms by inhalation |
CZ296966B6 (en) * | 1997-02-24 | 2006-08-16 | Boehringer Ingelheim Pharma Gmbh & Co. Kg. | Pharmaceutical composition |
GB2326334A (en) * | 1997-06-13 | 1998-12-23 | Chiesi Farma Spa | Pharmaceutical aerosol compositions |
US20010031244A1 (en) * | 1997-06-13 | 2001-10-18 | Chiesi Farmaceutici S.P.A. | Pharmaceutical aerosol composition |
US6630140B1 (en) * | 1998-03-10 | 2003-10-07 | The Children's Hospital Of Philadelphia | Compositions and methods for treatment of asthma |
KR100600423B1 (en) * | 1998-06-18 | 2006-07-13 | 베링거 인겔하임 파마슈티칼즈, 인코포레이티드 | Aerosol pharmaceutical formulations comprising two or more active substances |
US6451285B2 (en) * | 1998-06-19 | 2002-09-17 | Baker Norton Pharmaceuticals, Inc. | Suspension aerosol formulations containing formoterol fumarate and a fluoroalkane propellant |
DE19847968A1 (en) * | 1998-10-17 | 2000-04-20 | Boehringer Ingelheim Pharma | Separate storage of an active material and a solvent comprises a closure cap and a container, with a chamber attached to the unit. |
DZ2947A1 (en) | 1998-11-25 | 2004-03-15 | Chiesi Farma Spa | Pressure metered dose inhaler. |
GB9902689D0 (en) * | 1999-02-08 | 1999-03-31 | Novartis Ag | Organic compounds |
DE19921693A1 (en) * | 1999-05-12 | 2000-11-16 | Boehringer Ingelheim Pharma | Pharmaceutical composition for treating respiratory disorders, e.g. asthma, comprises combination of anticholinergic and beta-mimetic agents having synergistic bronchospasmolytic activity and reduced side-effects |
US20040002548A1 (en) * | 1999-05-12 | 2004-01-01 | Boehringer Ingelheim Pharma Kg | Medicament compositions containing anticholinergically-effective compounds and betamimetics |
US20100197719A1 (en) * | 1999-05-12 | 2010-08-05 | Boehringer Ingelheim Pharma Kg | Medicament compositions containing anticholinergically-effective compounds and betamimetics |
US6315985B1 (en) * | 1999-06-18 | 2001-11-13 | 3M Innovative Properties Company | C-17/21 OH 20-ketosteroid solution aerosol products with enhanced chemical stability |
ES2165768B1 (en) | 1999-07-14 | 2003-04-01 | Almirall Prodesfarma Sa | NEW DERIVATIVES OF QUINUCLIDINE AND PHARMACEUTICAL COMPOSITIONS THAT CONTAIN THEM. |
IT1313553B1 (en) | 1999-07-23 | 2002-09-09 | Chiesi Farma Spa | OPTIMIZED FORMULATIONS CONSTITUTED BY SOLUTIONS OF STEROIDS GIVEN BY INHALATION. |
JP2003509359A (en) | 1999-09-11 | 2003-03-11 | グラクソ グループ リミテッド | Pharmaceutical formulation of fluticasone propionate |
ATE291898T1 (en) * | 1999-12-24 | 2005-04-15 | Glaxo Group Ltd | PHARMACEUTICAL AEROSOL FORMULATION CONTAINING SALMETEROL AND FLUTICASONE |
IT1317720B1 (en) * | 2000-01-07 | 2003-07-15 | Chiesi Farma Spa | DEVICE FOR THE ADMINISTRATION OF AEROSOL DOSED PRESSURIZED INPROPELLENT HYDROFLUOROALKANS. |
IT1317846B1 (en) * | 2000-02-22 | 2003-07-15 | Chiesi Farma Spa | FORMULATIONS CONTAINING AN ANTICOLINERGIC DRUG FOR THE TREATMENT OF CHRONIC OBSTRUCTIVE BRONCOPNEUMOPATHY. |
IT1318514B1 (en) * | 2000-05-12 | 2003-08-27 | Chiesi Farma Spa | FORMULATIONS CONTAINING A GLUCOCORTICOSTEROID DRUG FOR THE TREATMENT OF BRONCOPOLMONARY DISEASES. |
HU230804B1 (en) * | 2000-05-22 | 2018-06-28 | Chiesi Farmaceutici S.P.A | Stable pharmaceutical solution formulations for pressurised metered dose inhalers |
US6908928B2 (en) | 2000-10-12 | 2005-06-21 | Bi Pharma Kg. | Crystalline tiotropium bromide monohydrate, processes for the preparation thereof, and pharmaceutical compositions |
CN1221549C (en) * | 2000-10-12 | 2005-10-05 | 贝林格尔英格海姆法玛两合公司 | Crystalline monohydrate, method for producing the same and the use thereof in the production of a medicament |
US6620438B2 (en) * | 2001-03-08 | 2003-09-16 | Boehringer Ingelheim Pharma Kg | Pharmaceutical compositions based on anticholinergics and NK1-receptor antagonists |
US7776315B2 (en) * | 2000-10-31 | 2010-08-17 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Pharmaceutical compositions based on anticholinergics and additional active ingredients |
DE10063957A1 (en) * | 2000-12-20 | 2002-06-27 | Boehringer Ingelheim Pharma | New drug compositions based on anticholinergics and dopamine agonists |
US20020085978A1 (en) * | 2000-11-10 | 2002-07-04 | Mina Buenafe | Degradation-resistant glucocorticosteroid formulations |
US20100310477A1 (en) * | 2000-11-28 | 2010-12-09 | Boehringer Ingelheim Pharma Gmbh & Co. Kg. | Pharmaceutical compositions based on anticholingerics and additional active ingredients |
EP1241113A1 (en) | 2001-03-12 | 2002-09-18 | CHIESI FARMACEUTICI S.p.A. | Inhaler with means for improving chemical stability of medicinal aerosol solution contained therein |
DE10111843A1 (en) * | 2001-03-13 | 2002-09-19 | Boehringer Ingelheim Pharma | Compounds for the treatment of inflammatory diseases |
US6455028B1 (en) | 2001-04-23 | 2002-09-24 | Pharmascience | Ipratropium formulation for pulmonary inhalation |
AU2002303425A1 (en) * | 2001-04-24 | 2002-11-05 | Epigenesis Pharmaceuticals, Inc. | Composition, formulations and kit for treatment of respiratory and lung disease with non-glucocorticoid steroids and/or ubiquinone and a bronchodilating agent |
DK1273292T3 (en) | 2001-07-02 | 2004-10-04 | Chiesi Farma Spa | Optimized tobramycin formulation for aerosol formation |
DE10135355C1 (en) * | 2001-07-20 | 2003-04-17 | Schering Ag | Conjugates of macrocyclic metal complexes with biomolecules and their use in the preparation of NMR and radiodiagnostic agents and radiotherapy |
PL208686B1 (en) | 2001-09-18 | 2011-05-31 | Nycomed Danmark Aps | Compositions for treatment of common cold |
MXPA04003928A (en) * | 2001-10-26 | 2005-03-31 | Dey L P | Albuterol inhalation solution, system, kit and method for relieving symptoms of pediatric asthma. |
JP2003221335A (en) | 2001-10-26 | 2003-08-05 | Dey Lp | Albuterol and ipratropium inhalation solution, system, kit and method for relieving symptom of chronic obstructive pulmonary disease |
US20030140920A1 (en) * | 2001-10-26 | 2003-07-31 | Dey L.P. | Albuterol inhalation soultion, system, kit and method for relieving symptoms of pediatric asthma |
US6702997B2 (en) | 2001-10-26 | 2004-03-09 | Dey, L.P. | Albuterol inhalation solution, system, kit and method for relieving symptoms of pediatric asthma |
AU3297402A (en) * | 2001-10-26 | 2003-10-30 | Dey, L.P. | An albuterol and ipratropium inhalation solution, system, kit and method for relieving symptoms of chronic obstructive pulmonary disease |
US20030203930A1 (en) * | 2001-10-26 | 2003-10-30 | Imtiaz Chaudry | Albuterol and ipratropium inhalation solution, system, kit and method for relieving symptoms of chronic obstructive pulmonary disease |
US8084461B2 (en) | 2001-10-26 | 2011-12-27 | Dey, L.P. | Albuterol and ipratropium inhalation solution, system, kit and method for relieving symptoms of chronic obstructive pulmonary disease |
US20030191151A1 (en) * | 2001-10-26 | 2003-10-09 | Imtiaz Chaudry | Albuterol and ipratropium inhalation solution, system, kit and method for relieving symptoms of chronic obstructive pulmonary disease |
DE10161368A1 (en) * | 2001-12-14 | 2003-07-10 | Messer Griesheim Gmbh | Cryogenic cooling of aerosol product mixtures, especially for filling pharmaceutical dosed aerosols, comprises controlled thermal contact with vaporized cooling gas in heat exchanger |
US7186402B2 (en) | 2001-12-21 | 2007-03-06 | 3M Innovative Properties Company | Medicinal aerosol compositions with an amide and/or ester containing excipient compound |
CA2470520A1 (en) | 2001-12-21 | 2003-07-24 | 3M Innovative Properties Company | Medicinal aerosol compositions with a functionalized polyethyleneglycol excipient |
JP2005514437A (en) * | 2001-12-21 | 2005-05-19 | スリーエム イノベイティブ プロパティズ カンパニー | Pharmaceutical aerosol formulations containing ion-pair complexes |
GEP20063986B (en) * | 2002-03-01 | 2006-12-11 | Chiesi Farma Spa | Formoterol superfine formulation |
US20040126325A1 (en) * | 2002-03-12 | 2004-07-01 | David Lewis | Medicinal aerosol solution formulation products with improved chemical stability |
US7244415B2 (en) | 2002-03-28 | 2007-07-17 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | HFA suspension formulations of an anhydrate |
US7311894B2 (en) * | 2002-03-28 | 2007-12-25 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | HFA suspension formulations containing an anticholinergic |
WO2003099207A2 (en) * | 2002-05-24 | 2003-12-04 | Agennix Incorporated | Oral lactoferrin in the treatment of respiratory disorders |
MXPA04012410A (en) * | 2002-06-12 | 2005-10-19 | Epigenesis Pharmaceuticals Inc | Composition, formulations & kit for treatment of respiratory & lung disease with dehydroepiandrosterone(s) steroid & an anti-muscarinic agent(s). |
US7056916B2 (en) * | 2002-11-15 | 2006-06-06 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Medicaments for the treatment of chronic obstructive pulmonary disease |
BR0317340A (en) * | 2002-12-16 | 2005-11-08 | Boehringer Ingelheim Pharma | Hfc formulations in tiotropium containing solution |
US20050058606A1 (en) * | 2002-12-16 | 2005-03-17 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Tiotropium containing HFC solution formulations |
WO2004084858A2 (en) * | 2003-03-20 | 2004-10-07 | Boehringer Ingelheim Pharmaceuticals, Inc. | Formulation for a metered dose inhaler using hydro-fluoro-alkanes as propellants |
EP1915985A1 (en) * | 2003-03-20 | 2008-04-30 | Boehringer Ingelheim Pharmaceuticals Inc. | Formulation for a Metered Dose Inhaler Using Hydro-Fluoro-Alkanes as Propellants |
US20050026948A1 (en) * | 2003-07-29 | 2005-02-03 | Boehringer Ingelheim International Gmbh | Medicaments for inhalation comprising an anticholinergic and a betamimetic |
US20050101545A1 (en) * | 2003-07-31 | 2005-05-12 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with an anticholinergic bronchodilator for treatment of asthma or chronic obstructive pulmonary disease |
US20050038004A1 (en) * | 2003-07-31 | 2005-02-17 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with an anticholinergic bronchodilator for treatment of asthma or chronic obstructive pulmonary disease |
US20050026882A1 (en) * | 2003-07-31 | 2005-02-03 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a leukotriene receptor antagonist for treatment of asthma or chronic obstructive pulmonary disease |
US20090317476A1 (en) * | 2003-07-31 | 2009-12-24 | Robinson Cynthia B | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a leukotriene receptor antagonist for treatment of asthma or chronic obstructive pulmonary disease |
AR041873A1 (en) * | 2003-10-30 | 2005-06-01 | Pablo Cassara Srl Lab | A PHARMACEUTICAL FORMULATION IN ADEQUATE AEROSOL FOR ORAL OR NASAL INHALATION CONTAINING GLUCOCORTICOIDS IN A STABLE SOLUTION TO STORAGE; A METHOD FOR STABILIZING FORMULATIONS AND USE OF A STABILIZING AGENT |
KR20070000476A (en) * | 2004-02-27 | 2007-01-02 | 키에시 파르마슈티시 엣스. 피. 에이. | Stable pharmaceutical solution formulations for pressurized metered dose inhalers |
EP1595531A1 (en) * | 2004-05-13 | 2005-11-16 | CHIESI FARMACEUTICI S.p.A. | Stable pharmaceutical solution formulations for pressurized metered dose inhalers |
US20050255050A1 (en) * | 2004-05-14 | 2005-11-17 | Boehringer Ingelheim International Gmbh | Powder formulations for inhalation, comprising enantiomerically pure beta agonists |
US7220742B2 (en) | 2004-05-14 | 2007-05-22 | Boehringer Ingelheim International Gmbh | Enantiomerically pure beta agonists, process for the manufacture thereof and use thereof as medicaments |
ES2257152B1 (en) * | 2004-05-31 | 2007-07-01 | Laboratorios Almirall S.A. | COMBINATIONS THAT INCLUDE ANTIMUSCARINIC AGENTS AND BETA-ADRENERGIC AGONISTS. |
PL1809243T5 (en) | 2004-07-02 | 2022-12-27 | Boehringer Ingelheim International Gmbh | Aerosol suspension formulations containing tg 227 ea as a propellant |
GB0501956D0 (en) * | 2005-01-31 | 2005-03-09 | Arrow Internat | Nebulizer formulation |
GEP20105040B (en) * | 2005-02-25 | 2010-07-12 | Chiesi Farm Spa | Pharmaceutical aerosol formulations for pressurized metered dose inhalers comprising a sequestering agent |
CA2607391A1 (en) * | 2005-04-23 | 2006-11-02 | Boehringer Ingelheim International Gmbh | Combination of medicaments to be inhaled, containing a betamimetic agent and a steroid in addition to an anticholinergic agent |
PT1881980E (en) | 2005-05-02 | 2012-12-06 | Boehringer Ingelheim Int | Novel crystalline forms of tiotropium bromide |
MX2008001976A (en) * | 2005-08-15 | 2008-03-25 | Boehringer Ingelheim Int | Method for producing betamimetics. |
RU2457832C2 (en) * | 2005-09-25 | 2012-08-10 | Сипла Лимитед | Troventol-based composition |
TWI389692B (en) * | 2005-10-10 | 2013-03-21 | Boehringer Ingelheim Int | Aerosol formulations for the inhalation of beta-agonists |
TWI396541B (en) * | 2005-10-10 | 2013-05-21 | Boehringer Ingelheim Int | Novel combinations of medicaments for the treatment of respiratory diseases |
DE102006017320A1 (en) | 2006-04-11 | 2007-10-18 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Aerosol suspension formulations with TG 227 ea or TG 134 a as propellant |
DE102006023770A1 (en) * | 2006-05-20 | 2007-11-22 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Propellant-free aerosol formulation for inhalation |
WO2008008494A2 (en) * | 2006-07-13 | 2008-01-17 | Accentia Biopharmaceuticals, Inc. | Methods and compositions for treating mucosal inflammation |
EP2077132A1 (en) | 2008-01-02 | 2009-07-08 | Boehringer Ingelheim Pharma GmbH & Co. KG | Dispensing device, storage device and method for dispensing a formulation |
EP2100598A1 (en) | 2008-03-13 | 2009-09-16 | Laboratorios Almirall, S.A. | Inhalation composition containing aclidinium for treatment of asthma and chronic obstructive pulmonary disease |
EP2100599A1 (en) | 2008-03-13 | 2009-09-16 | Laboratorios Almirall, S.A. | Inhalation composition containing aclidinium for treatment of asthma and chronic obstructive pulmonary disease |
EP2201934A1 (en) | 2008-12-23 | 2010-06-30 | CHIESI FARMACEUTICI S.p.A. | Tiotropium aerosol formulation products with improved chemical stability |
EP2662472B1 (en) | 2009-03-31 | 2019-02-27 | Boehringer Ingelheim International Gmbh | Method for coating a surface of a component |
EP2432531B1 (en) | 2009-05-18 | 2019-03-06 | Boehringer Ingelheim International GmbH | Adapter, inhalation device and nebulizer |
ES2533535T3 (en) | 2009-11-17 | 2015-04-10 | Cipla Limited | Solutions for inhalation |
WO2011064163A1 (en) | 2009-11-25 | 2011-06-03 | Boehringer Ingelheim International Gmbh | Nebulizer |
KR101782306B1 (en) | 2009-11-25 | 2017-09-27 | 베링거 인겔하임 인터내셔날 게엠베하 | Nebulizer |
US10016568B2 (en) | 2009-11-25 | 2018-07-10 | Boehringer Ingelheim International Gmbh | Nebulizer |
US20120272951A1 (en) | 2009-12-16 | 2012-11-01 | 3M Innovative Properties Company | Formulations and methods for controlling mdi particle size delivery |
NZ600789A (en) | 2009-12-23 | 2014-09-26 | Chiesi Farma Spa | Aerosol formulation for copd |
ES2468840T7 (en) | 2009-12-23 | 2023-11-29 | Chiesi Farm Spa | Combination therapy for COPD |
WO2011160932A1 (en) | 2010-06-24 | 2011-12-29 | Boehringer Ingelheim International Gmbh | Nebulizer |
JP5409594B2 (en) * | 2010-12-22 | 2014-02-05 | キエシ・フアルマチエウテイチ・ソチエタ・ペル・アチオニ | Stable pharmaceutical solution formulation for pressurized metered dose inhalers |
US20120204871A1 (en) * | 2011-02-10 | 2012-08-16 | Julio Cesar Vega | Stable, non-corrosive formulations for pressurized metered dose inhalers |
EP2694220B1 (en) | 2011-04-01 | 2020-05-06 | Boehringer Ingelheim International GmbH | Medical device comprising a container |
EP2510928A1 (en) | 2011-04-15 | 2012-10-17 | Almirall, S.A. | Aclidinium for use in improving the quality of sleep in respiratory patients |
US9827384B2 (en) | 2011-05-23 | 2017-11-28 | Boehringer Ingelheim International Gmbh | Nebulizer |
GB201200504D0 (en) | 2011-12-19 | 2012-02-22 | Teva Branded Pharmaceutical Prod R & D Inc | An inhaler |
GB201200525D0 (en) | 2011-12-19 | 2012-02-29 | Teva Branded Pharmaceutical Prod R & D Inc | An inhalable medicament |
WO2013152894A1 (en) | 2012-04-13 | 2013-10-17 | Boehringer Ingelheim International Gmbh | Atomiser with coding means |
RU2496477C1 (en) * | 2012-09-20 | 2013-10-27 | Шолекс Девелопмент Гмбх | Ipratropium bromide solution |
RU2519653C1 (en) * | 2013-02-27 | 2014-06-20 | Шолекс Девелопмент Гмбх, | Aerosol preparation of ipratropium bromide for treating respiratory diseases |
PL2835146T3 (en) | 2013-08-09 | 2021-04-06 | Boehringer Ingelheim International Gmbh | Nebulizer |
WO2015018904A1 (en) | 2013-08-09 | 2015-02-12 | Boehringer Ingelheim International Gmbh | Nebulizer |
RU2536253C1 (en) * | 2013-10-09 | 2014-12-20 | Шолекс Девелопмент Гмбх | Combined aerosol preparation for treating respiratory diseases |
TR201802607T4 (en) | 2013-11-22 | 2018-03-21 | Teva Branded Pharmaceutical Prod R & D Inc | An inhalable drug. |
AU2014352813A1 (en) * | 2013-11-22 | 2016-05-26 | Teva Branded Pharmaceutical Products R&D, Inc. | An inhalable medicament |
MX380824B (en) | 2014-05-07 | 2025-03-12 | Boehringer Ingelheim Int | NEBULIZER AND CONTAINER. |
HUE055604T2 (en) | 2014-05-07 | 2021-12-28 | Boehringer Ingelheim Int | Nebulizer |
DK3139979T3 (en) | 2014-05-07 | 2023-10-09 | Boehringer Ingelheim Int | DEVICE, ATOMIZER AND PROCEDURE |
US10034866B2 (en) | 2014-06-19 | 2018-07-31 | Teva Branded Pharmaceutical Products R&D, Inc. | Inhalable medicament comprising tiotropium |
RU2577289C1 (en) * | 2015-03-26 | 2016-03-10 | Шолекс Девелопмент Гмбх | Aerosol preparation based on fenoterol hydrobromide for treating respiratory diseases |
CN115252552A (en) * | 2016-09-19 | 2022-11-01 | 墨西哥氟石股份公司 | Pharmaceutical composition |
EP3569221A1 (en) * | 2018-05-17 | 2019-11-20 | Notoxins IP B.V. | Aqueous formulations comprising ipratropium for topical treatment of hyperhidrosis |
WO2020152548A1 (en) * | 2019-01-24 | 2020-07-30 | Glenmark Pharmaceuticals Limited | Stable aerosol inhalation compositions of formoterol |
GB2584686A (en) * | 2019-06-11 | 2020-12-16 | Mexichem Fluor Sa De Cv | Methods |
CN111297835B (en) * | 2019-12-20 | 2022-11-25 | 上海方予健康医药科技有限公司 | Inhalation aerosol containing anticholinergic medicine and its preparation process and usage |
EP4225267A1 (en) * | 2020-10-09 | 2023-08-16 | Chiesi Farmaceutici S.p.A. | A pharmaceutical formulation for pressurised metered dose inhaler |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE555319A (en) * | 1956-03-21 | 1900-01-01 | ||
US3282781A (en) * | 1960-11-25 | 1966-11-01 | Merck & Co Inc | Inhalant compositions |
ZA815698B (en) * | 1980-08-28 | 1983-04-27 | Lilly Co Eli | Intranasal formulation |
US5225183A (en) * | 1988-12-06 | 1993-07-06 | Riker Laboratories, Inc. | Medicinal aerosol formulations |
GB8828477D0 (en) * | 1988-12-06 | 1989-01-05 | Riker Laboratories Inc | Medical aerosol formulations |
GB8900267D0 (en) * | 1989-01-06 | 1989-03-08 | Riker Laboratories Inc | Narcotic analgesic formulations and apparatus containing same |
US5439670A (en) * | 1989-11-28 | 1995-08-08 | Riker Laboratories, Inc. | Medicinal aerosol formulations |
DE4003270A1 (en) * | 1990-02-03 | 1991-08-08 | Boehringer Ingelheim Kg | NEW SPEED GASES AND THEIR USE IN MEDICINE PREPARATIONS |
DE4003272A1 (en) * | 1990-02-03 | 1991-08-08 | Boehringer Ingelheim Kg | NEW GAS MIXTURES AND THEIR USE IN MEDICINE PREPARATIONS |
US5118494A (en) * | 1990-03-23 | 1992-06-02 | Minnesota Mining And Manufacturing Company | Use of soluble fluorosurfactants for the preparation of metered-dose aerosol formulations |
US5190029A (en) * | 1991-02-14 | 1993-03-02 | Virginia Commonwealth University | Formulation for delivery of drugs by metered dose inhalers with reduced or no chlorofluorocarbon content |
EP0504112A3 (en) * | 1991-03-14 | 1993-04-21 | Ciba-Geigy Ag | Pharmaceutical aerosol formulations |
CA2111002C (en) * | 1991-06-10 | 2000-08-22 | Julianne Fassberg | Non-chlorofluorocarbon aerosol formulations |
IL104068A (en) * | 1991-12-12 | 1998-10-30 | Glaxo Group Ltd | Surfactant-free pharmaceutical aerosol formulation comprising 1,1,1,2-tetrafluoroethane or 1,1,1,2,3,3,3-heptafluoro-n- propane as propellant |
SK280911B6 (en) * | 1992-12-09 | 2000-09-12 | Boehringer Ingelheim Pharmaceuticals, Inc. | Pharmaceutical composition |
US5837699A (en) * | 1994-01-27 | 1998-11-17 | Schering Corporation | Use of mometasone furoate for treating upper airway passage diseases |
-
1993
- 1993-12-06 SK SK760-95A patent/SK280911B6/en not_active IP Right Cessation
- 1993-12-06 WO PCT/US1993/011856 patent/WO1994013263A1/en active Application Filing
- 1993-12-06 DK DK94903467T patent/DK0673240T3/en active
- 1993-12-06 PL PL93309333A patent/PL177078B1/en unknown
- 1993-12-06 AU AU60486/94A patent/AU6048694A/en not_active Withdrawn
- 1993-12-06 CZ CZ951490A patent/CZ284203B6/en not_active IP Right Cessation
- 1993-12-06 BR BR9307627A patent/BR9307627A/en not_active Application Discontinuation
- 1993-12-06 DE DE69324161T patent/DE69324161T2/en not_active Revoked
- 1993-12-06 AT AT94903467T patent/ATE177941T1/en not_active IP Right Cessation
- 1993-12-06 ES ES94903467T patent/ES2129117T3/en not_active Expired - Lifetime
- 1993-12-06 CA CA002151383A patent/CA2151383C/en not_active Expired - Lifetime
- 1993-12-06 EP EP94903467A patent/EP0673240B1/en not_active Revoked
- 1993-12-06 AU AU57405/94A patent/AU680227B2/en not_active Expired
- 1993-12-06 JP JP6514292A patent/JP3009924B2/en not_active Expired - Fee Related
- 1993-12-06 NZ NZ259192A patent/NZ259192A/en not_active IP Right Cessation
- 1993-12-06 SG SG1996004813A patent/SG52459A1/en unknown
- 1993-12-06 RO RO95-01110A patent/RO117414B1/en unknown
- 1993-12-06 KR KR1019950702333A patent/KR100312357B1/en not_active Expired - Lifetime
- 1993-12-06 RU RU95117235A patent/RU2126248C1/en active
- 1993-12-06 UA UA95073157A patent/UA27143C2/en unknown
- 1993-12-06 GB GB9511669A patent/GB2288978B/en not_active Expired - Lifetime
- 1993-12-06 HU HU9501663A patent/HU221163B1/en unknown
- 1993-12-06 WO PCT/US1993/011801 patent/WO1994013262A1/en not_active Application Discontinuation
-
1995
- 1995-06-07 US US08/475,060 patent/US5676930A/en not_active Expired - Lifetime
- 1995-06-08 NO NO19952269A patent/NO311487B1/en not_active IP Right Cessation
- 1995-06-09 LV LVP-95-163A patent/LV10911B/en unknown
- 1995-06-09 FI FI952842A patent/FI114283B/en not_active IP Right Cessation
- 1995-06-29 BG BG99760A patent/BG62382B1/en not_active Expired - Lifetime
-
1997
- 1997-04-14 US US08/843,180 patent/US5955058A/en not_active Expired - Lifetime
-
1999
- 1999-05-03 US US09/303,610 patent/US6045778A/en not_active Expired - Lifetime
- 1999-06-16 GR GR990401605T patent/GR3030529T3/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1955694A1 (en) | 2003-07-11 | 2008-08-13 | Boehringer Ingelheim International GmbH | HFC solution formulations containing an anticholinergic |
EP2819669B1 (en) | 2012-02-28 | 2021-04-21 | Boehringer Ingelheim International GmbH | New tiotropium formula containing propellant |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0673240B1 (en) | Stabilized medicinal aerosol solution formulations | |
EP1646364B1 (en) | Hfc solution formulations containing an anticholinergic | |
JP3323199B2 (en) | Aerosol formulation without chlorofluorocarbon | |
EP1277467B1 (en) | Non-chlorofluorocarbon aerosol formulations | |
US20090175802A1 (en) | Tiotropium containing hfc solution formulations | |
KR20050085650A (en) | Tiotropium containing hfc solution formulations | |
CN1054282C (en) | Stabilized medicinal aerosol solution formulations | |
HK1011620B (en) | Stabilized medicinal aerosol solution formulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950710 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19960418 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
REF | Corresponds to: |
Ref document number: 177941 Country of ref document: AT Date of ref document: 19990415 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69324161 Country of ref document: DE Date of ref document: 19990429 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2129117 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19990325 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: CHIESI FARMACEUTICI S.P.A. Effective date: 19991223 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: CHIESI FARMACEUTICI S.P.A. |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20041215 Year of fee payment: 12 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20051124 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20051212 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20051213 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20051214 Year of fee payment: 13 Ref country code: NL Payment date: 20051214 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20051215 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20051219 Year of fee payment: 13 Ref country code: DK Payment date: 20051219 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20051220 Year of fee payment: 13 Ref country code: AT Payment date: 20051220 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20051221 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20051222 Year of fee payment: 13 Ref country code: GB Payment date: 20051222 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20060116 Year of fee payment: 13 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20060323 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 20060323 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MP4A Effective date: 20061106 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20061231 Year of fee payment: 14 |
|
NLR2 | Nl: decision of opposition |
Effective date: 20060323 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: ECNC |