EP0660043A1 - Dispositif de commande pour commander des appareils de commutation selon un programme de temps - Google Patents
Dispositif de commande pour commander des appareils de commutation selon un programme de temps Download PDFInfo
- Publication number
- EP0660043A1 EP0660043A1 EP93810909A EP93810909A EP0660043A1 EP 0660043 A1 EP0660043 A1 EP 0660043A1 EP 93810909 A EP93810909 A EP 93810909A EP 93810909 A EP93810909 A EP 93810909A EP 0660043 A1 EP0660043 A1 EP 0660043A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- microprocessor
- circuit block
- switching devices
- control device
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/24—Preventing development of abnormal or undesired conditions, i.e. safety arrangements
- F23N5/242—Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/08—Microprocessor; Microcomputer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/20—Opto-coupler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2227/00—Ignition or checking
- F23N2227/12—Burner simulation or checking
- F23N2227/16—Checking components, e.g. electronic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/16—Indicators for switching condition, e.g. "on" or "off"
- H01H9/167—Circuits for remote indication
Definitions
- the invention relates to a control device of the type mentioned in the preamble of claim 1.
- Devices of this type are used, for example, for controlling and monitoring the burner and the ignition device for oil and gas fires and for monitoring switches for actuators such as fuel valves and ventilation flaps, with the microprocessor evaluating the information supplied via line voltage-carrying signal lines and issuing corresponding control commands.
- the switch-off capability of the switching devices that switch safety-critical loads such as a fuel valve must be checked frequently in order to be able to detect a malfunction of the switching device before a dangerous situation arises.
- a control device for oil burners according to the preamble of claim 1 is known, in which information about the switching states of relay and sensor contacts are transmitted to a microprocessor by means of an amplifier.
- the switching states of the relay contacts are fed via signaling lines carrying line voltage to an amplifier which is connected on the output side to an input of the microprocessor, so that the microprocessor must have a number of inputs corresponding to the number of amplifiers.
- Isolators such as e.g. are used for the electrical isolation of the signal lines and the microprocessor.
- Optocoupler or transmitter used. There is one isolator per signal voltage.
- the microprocessor is programmed to perform a number of tests to determine whether a system with switched consumers is actually going through a switch-on phase in the correct way. For this purpose, signals are read in by the microprocessor and compared with setpoints. In the event of a faulty consumer status, the microprocessor switches the consumers off.
- mains voltage-carrying signal lines are connected via optocouplers to an interrogation unit of an AC voltage detector.
- the signal lines are each connected to the optocoupler via a low-pass filter, which consists of a resistor and a capacitor connected in series with it.
- the switching states of the AC switches are queried and saved via the signal lines.
- the switching states are compared with a target state - open or closed - and then a switch state signal is formed, which contains at least one piece of information - error or no error - in total for all AC switches that occur. From the switch status signal do not determine which AC switch can no longer be switched off, so that a simple display for diagnosis is not possible.
- Optocouplers for example, are used as isolators for the electrical isolation of the monitored system from the microprocessor. Optocoupler applications of this type are known from the specialist literature (TI Opto Cookbook from 1975, ISBN 3 88078 000 5).
- the optocouplers have the disadvantage that they are not fail-safe and have a higher failure rate compared to other electronic components, so that they have to be checked for a signal pretense even in an active operating state in safety-critical applications. Furthermore, the electromagnetic compatibility and thus the reliability of the control device decrease with an increasing number of optocouplers. Systems with many signal lines carrying mains voltage can incur high costs as long as an expensive isolating element such as an optocoupler or transmitter and an input pin on the microprocessor must be available per signal line.
- the invention has for its object to design a control device with a microprocessor according to the preamble of claim 1 such that it detects the information in the form of low-voltage signals about the state of switching devices that switch loads on or off in a simple and reliable manner , processed and transmitted to the microprocessor.
- a shift register is particularly suitable as a circuit block or, in the case of many switching devices to be monitored, an arrangement with a plurality of shift registers in cascade.
- the signal lines must be connected to the circuit block via coupling elements in such a way that the circuit block is not destroyed even in the event of overvoltages.
- the information about the states of the switching devices must be obtained from the distinction as to whether a low-voltage signal is of the same or alternating shape.
- the first subtask could be solved in that the signal lines via resistor networks consisting of resistors, capacitors and diodes, which are both overvoltages also derive overcurrents connected to the circuit block.
- the coupling element is reduced to a single high-resistance as a cost-effective solution.
- the digitization could be carried out at a point in time at which the amplitude of an AC voltage is recorded as logic "1" and the amplitude of a DC voltage as logic "0".
- several digitizations are carried out as multiple queries within a period of one to two network half-waves and an analysis of the values recorded one after the other, so that synchronization is not necessary.
- the invention has found a solution in which a circuit structure with a minimum of components is combined with an operating mode in which part of the task is solved by software. Such an embodiment of the invention is explained in more detail below with reference to the drawing.
- FIG. 1 shows a control device which has a microprocessor 1 as the timer and control logic device. It also contains two switching devices 2.1 and 2.2, two resistors 3.1 and 3.2, a circuit block 4 and a voltage supply circuit 5.
- the output of the first switching device 2.1 which switches a load L1 to a mains voltage U PG lying between a phase P and a zero point G, is connected to the input of the first resistor 3.1, while the output of the second switching device 2.2, via which a further load L2 is fed by the mains voltage U PG , is connected to the input of the second resistor 3.2.
- the outputs of the resistors 3.1 and 3.2 are connected to inputs 4.1 and 4.2 of the circuit block 4 arranged in parallel for processing the low-voltage signals which are present at the taps between the switching devices 2.1 and 2.2 and the loads L1 and L2.
- the circuit block 4 is fed by the voltage supply circuit 5.
- the circuit block 4 is connected to the microprocessor 1 via two control lines 6a and 6b and a serial data line 7 for transmitting the voltage levels present at the inputs 4.1 to 4.2, the control lines 6a and 6b and the data line 7 are each provided with a connecting element 8, 9 or 10.
- the microprocessor 1 is programmed by a time program to switch the loads L1 and L2 on and off in a specific sequence during the switch-on phase, for example of a gas burner, by means of the switching devices 2.1 and 2.2 and to carry out various processes such as e.g. monitor the formation of a flame and, if necessary, switch off the entire system so that the gas burner is never in a potentially explosive situation.
- the microprocessor 1 also executes a monitoring program for the detection of faulty states of the system to be controlled. In order to determine the state of one of the switching devices 2.1 or 2.2 - open or closed - the microprocessor 1 executes a test cycle which will be explained later.
- test cycles The frequency of the test cycles depends on the intended use of the control device and the corresponding legal regulations or standards. Automatic burner controls that comply with the EN 298 standard must detect a fault within three seconds of their occurrence. A test cycle is therefore typically every 200 milliseconds. In this way it is possible to reliably detect the state of each of the switching devices 2.1 and 2.2 within the prescribed three seconds even if the state of one of the switching devices 2.1 or 2.2 is currently changing during a test cycle.
- the voltage supply circuit 5 has a Zener diode ZD and a resistor R, which are connected in series between the phase P and the zero point G of the low-voltage network, the cathode of the Zener diode ZD being connected to the phase P.
- a capacitor C and a further diode D are connected in series with the Zener diode ZD, the cathode of the diode D being connected to the anode of the Zener diode ZD.
- a connection Vdd of the circuit block 4 is connected to the cathode of the Zener diode ZD, a connection GND of the circuit block 4 to the anode of the diode D, whereby the connection GND is connected to the negative pole and the connection Vdd to the positive pole of the voltage supply circuit 5.
- the circuit block 4 contains a circuit part 11 with parallel inputs 11.1 and 11.2, which are connected to the inputs 4.1 and 4.2, respectively.
- the circuit part 11 has the task of digitizing the voltage levels present at the inputs 11.1 and 11.2 and converting them into a serial data stream for transmission to the microprocessor 1 via the data line 7. For this reason, inputs 11.1 and 11.2 are very high-impedance with values that are typically in the G ⁇ range.
- the circuit part 11 is implemented as a shift register and can be controlled via only two control inputs.
- Each of the inputs 4.1 and 4.2 of the circuit block 4 is connected via two protective diodes D1S.1 and D2S.1 or D1S.2 and D2S.2 to the connection Vdd or to the connection GND, the cathodes of the protection diodes D1S.1 and D1S.2 are connected to the Vdd connection and the anodes of the protective diodes D2S.1 and D2S.2 are connected to the GND connection.
- These protective diodes are used to discharge overvoltages in order to prevent the circuit part 11 from being destroyed.
- all inputs are equipped as standard, so that in particular a commercially available shift register provided with protective diodes can be used as the entire circuit block 4.
- the resistors 3.1 and 3.2 are used as coupling elements and are typically 5 M ⁇ sized so that the control device can be used in various low-voltage networks with 115 V or 230 V as well as in low-voltage networks with 24 V, for example, and that the protective diodes D1S.1 , D1S.2, D2S.1 and D2S.2 with a voltage peak of four thousand volts superimposed on the mains voltage U PG cannot be destroyed.
- This control device works as follows: When the switching device 2.1 is open, as shown in FIG. 1, a current flows from the phase P via the capacitor C, the connection GND, the protective diode D2S.1, the input 4.1 during the positive half-wave of the mains voltage U PG , the resistor 3.1 and the load L1 to the zero point G. During the negative half-wave, a current flows from the zero point G via the load L1, the resistor 3.1, the input 4.1, the protective diode D1S.1 and the connection Vdd to the phase P.
- the circuit block 4 is fed by the voltage supply circuit 5 in such a way that the voltage difference between the connections Vdd and GND, thanks to the capacitor C, approximately corresponds on average over time to the Zener voltage of the Zener diode ZD. If a current flows through one of the protective diodes D1S.1 or D2S.1, then the voltage drop across these diodes corresponds approximately to their forward voltage U D.
- the voltage at input 4.1 with respect to the voltage at connection GND is thus approximately -U D during the positive half-wave of mains voltage U PG , during the negative half-wave Vdd - U D , except in the vicinity of the zero crossings.
- the input 4.2 is connected via the resistor 3.2 to the positive pole Vdd of the voltage supply circuit 5 and is therefore always at the potential Vdd.
- the voltage curve U 1 at the input 4.1 is therefore alternating, the voltage curve U 2 at the input 4.2 is uniform.
- the test cycle for determining the state of the switching devices 2.1 and 2.2 now consists in the time course of the To detect voltages U1 and U2 during a period of typically one to two half-waves of the mains voltage U PG and then evaluate them.
- Fig. 2 are the time course of the mains voltage U PG , the voltages U1 and U2 at the inputs 4.1 and 4.2, the polling clock U cl of the microprocessor 1 and the corresponding to a predetermined voltage level, for example in the middle of the level of the connections GND and Vdd of the circuit block 4 is represented as numbers "0" or "1" binary digitized values U 1, dig and U 2, dig .
- the interrogation clock U cl of the microprocessor 1 is selected to be higher than the frequency of the mains voltage U PG , for example by a factor of ten.
- the first part of the test cycle is that the microprocessor 1 by means of the circuit part 11, the levels of the voltages U1 and U2 at k predetermined times t1, t2 to t k as binary numbers "0" or "1" can be detected and transmitted, the Time period t k - t 1 is longer than a network half-wave.
- the sequence F1 of the numbers U 1, dig (t1), U 1, dig (t2), ... U 1, dig (t k ) contains both values "0” and values "1”
- the sequence F2 of the numbers U. 2, dig (t1), U 2, dig (t2), ... U 2, dig (t k ) contains only values "1".
- the microprocessor 1 carries out a suitable analysis of the sequences F 1 and F 2 and determines the state of the switching devices 2.1 and 2.2.
- Network faults during a query can lead to one or more values of the sequences F 1 or F 2 having a different value than in the case of a query without a fault.
- a random query during a zero crossing of the mains voltage U PG can also lead to an incorrect value. All numerical values between “0” and “10” can therefore arise as a summation value.
- the microprocessor 1 is programmed to have values "9” and “10” as closed states, values "3", “4", “5", “6” or “7” as open states and values "0" or “1””to be interpreted as an error of the control device which should not occur. If a value "2" or "8" occurs, the microprocessor 1 repeats the query.
- the microprocessor 1 can also perform a shorter test cycle, in which the time period between the first query at time t 1 and the last query at time t k is slightly longer than the duration of a network half-wave.
- the summation value of the sequence F 1 is then subject to a probability distribution without interference, but cannot assume the value "1" or the value "k” since at least the query at time t k falls into a different network half-wave than the query at time t 1.
- the summation value of the sequence F2 has the value "k”.
- the microprocessor 1 interprets a value "k” as a closed state, a value in the range "1" to "k-1" as an open state and a value "0" as an error.
- the shortest test cycle which in the worst case takes a little longer than a network half-wave, results when the microprocessor 1 determines the state of the switching devices 2.1 and 2.2 as soon as either the value U 1, dig (t i ) recorded at the time t i differs from the previous value U 1, dig (t i-1 ) or the value U 2, dig (t i ) is different from the previous value U 2, dig (t i-1 ) or as soon as the time period between the first query at time t 1 and the last query at time t i is longer than the duration of a network half-wave.
- the state of the switching devices 2.1 and 2.2 is then determined from whether the two last recorded numerical values U 1, dig (t i-1 ) and U 1, dig (t i ) or U 2, dig (t i-1 ) and U 2, dig (t i ) are different or both are "1", as open or closed.
- the gain in speed goes hand in hand with an increase in susceptibility to interference on the Internet.
- the control device described enables the use of a microprocessor 1 with a number of inputs which is independent of the number m of the loads L1 to Lm to be controlled, so that a microprocessor 1 can be used whose number of inputs is significantly smaller than the number m of the loads to be controlled L1 to Lm can be.
- the proposed control device is further characterized by the possibility of using standardized components through an inexpensive construction.
- the number of components includes a minimum, which leads to fewer failures and increased reliability.
- the evaluation of the information obtained in the form of low-voltage signals is carried out entirely by the microprocessor 1, the method not requiring any particular time synchronization between the microprocessor 1 and another component of the control device.
- This software solution enables one very simple acquisition of certain physically available information and the determination of the desired information about the state of the switching devices by means of a small program which is stored in a memory.
- Circuit block 4 in particular requires no means of any kind, such as zero point detectors, integrators or averaging devices, etc., for data analysis or data preparation.
- the electrical supply of the microprocessor 1 can take place in various ways. It depends on the purpose of the control device. In the simplest case, the microprocessor 1 is also fed by the voltage supply circuit 5 and the circuit block 4 is connected directly to the microprocessor 1 via the lines 6a, 6b and 7 without the connecting elements 8, 9 and 10. In such a case, it can be economical to use some of the inputs of the microprocessor 1, which must be provided with appropriate protective diodes, as a circuit block 4 and to connect the resistors 3.1 and 3.2 directly to the inputs of the microprocessor 1.
- the connecting links 8, 9 and 10 are designed as galvanic isolating links.
- the microprocessor 1 can be separated from the circuit block 4 and thus also from the mains voltage U PG with only a few galvanic isolators 8, 9 and 10, so that also the number of galvanic isolators can be significantly smaller than the number m of loads L1 to Lm.
- An input coupling error occurs, for example, when the value read in at input 4.2 depends not only on the voltage level at input 4.2, but also on the voltage level at another input, for example 4.5.
- the test module 12 has a serial data input, a clock input and an input controlling the state of its parallel outputs 12.1 to 12.8, which are connected to the microprocessor 1 via lines 13, 14 and 15.
- the parallel outputs 12.1 to 12.8 are connected via lines 16 to the inputs 4.1 to 4.8 of the shift register 4. They can be switched into a state known to the specialist under the term tristate, in which they are high-impedance and do not influence the state of the lines 16 (for example U. Tietze and Ch. Schenk, semiconductor circuit technology, 5th edition, Springer Verlag Berlin Heidelberg New York, ISBN 3-540-09848-8).
- the test module 12 is advantageously formed by a second shift register and connected to the voltage supply circuit 5 in the same way as the shift register 4.
- the inputs 4.1 to 4.8 of the shift register 4 are still connected to the outputs of the resistors 3.1 to 3.8, only the switching device 2.1 and the resistor 3.1 being drawn for the sake of clarity.
- the microprocessor 1 In order to check the reliability of the data acquisition by means of the circuit block 4, the microprocessor 1 carries out a test cycle at certain times.
- the test cycle consists in the microprocessor 1 sending a test pattern, which consists of eight binary values "0" or "1", to the test module 12 via the serial line 13.
- these values are available at the outputs 12.1 to 12.8 as soon as the microprocessor 1 sets the outputs 12.1 to 12.8 in the conductive state via the control line 15, so that voltage levels U1 to U8 with values Vdd or GND in accordance with the previously sent test pattern are applied to the inputs 4.1 to 4.8 of the shift register 4.
- the microprocessor 1 now sends further commands to the shift register 4 for detecting the voltage levels U1 to U1 applied to its inputs 4.1 to 4.8 as binary values and for transmission to it, whereupon it compares the reported binary values with the sent test pattern.
- the microprocessor 1 is programmed to send a number of selected test patterns to the test module 12 and to read them in again via the shift register 4, so that both input coupling errors and hardware errors can be identified.
- a test cycle is ended by writing values "0" into the registers of the test module 12.
- the switching devices 2.1 to 2.8 are open or closed. If necessary, the control lines 13, 14 and 15 can be provided with galvanic isolators.
- the microprocessor 1 can also be programmed to perform a test cycle, which consists of a single test pattern, during the execution of each test cycle to determine the state of the switching devices 2.1 to 2.8, the test pattern being different from test cycle to test cycle.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electronic Switches (AREA)
- Keying Circuit Devices (AREA)
- Test And Diagnosis Of Digital Computers (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93810909A EP0660043B1 (fr) | 1993-12-24 | 1993-12-24 | Dispositif de commande pour commander des appareils de commutation selon un programme de temps |
DE59300336T DE59300336D1 (de) | 1993-12-24 | 1993-12-24 | Steuereinrichtung zur Betätigung von Schalteinrichtungen nach einem Zeitprogramm. |
JP30721194A JP3802093B2 (ja) | 1993-12-24 | 1994-12-12 | 時間プログラムに従ってスイッチング装置を操作する制御装置 |
US08/359,277 US5629879A (en) | 1993-12-24 | 1994-12-19 | Control device for the actuation of switchgears according to a time program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93810909A EP0660043B1 (fr) | 1993-12-24 | 1993-12-24 | Dispositif de commande pour commander des appareils de commutation selon un programme de temps |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0660043A1 true EP0660043A1 (fr) | 1995-06-28 |
EP0660043B1 EP0660043B1 (fr) | 1995-07-05 |
Family
ID=8215101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93810909A Expired - Lifetime EP0660043B1 (fr) | 1993-12-24 | 1993-12-24 | Dispositif de commande pour commander des appareils de commutation selon un programme de temps |
Country Status (4)
Country | Link |
---|---|
US (1) | US5629879A (fr) |
EP (1) | EP0660043B1 (fr) |
JP (1) | JP3802093B2 (fr) |
DE (1) | DE59300336D1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0920038A1 (fr) | 1997-11-25 | 1999-06-02 | Electrowatt Technology Innovation AG | Circuit de surveillance d'un commutateur à courant alternatif |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6957172B2 (en) * | 2000-03-09 | 2005-10-18 | Smartsignal Corporation | Complex signal decomposition and modeling |
FR2807194B1 (fr) * | 2000-03-31 | 2002-05-31 | Alstom | Circuit electrique pour la transmission d'une information d'etat, notamment d'un organe de materiel ferroviaire roulant, et systeme electrique incorporant un tel circuit |
US6728600B1 (en) | 2000-06-08 | 2004-04-27 | Honeywell International Inc. | Distributed appliance control system having fault isolation |
US8275577B2 (en) | 2006-09-19 | 2012-09-25 | Smartsignal Corporation | Kernel-based method for detecting boiler tube leaks |
US8311774B2 (en) | 2006-12-15 | 2012-11-13 | Smartsignal Corporation | Robust distance measures for on-line monitoring |
US8660980B2 (en) | 2011-07-19 | 2014-02-25 | Smartsignal Corporation | Monitoring system using kernel regression modeling with pattern sequences |
US9250625B2 (en) | 2011-07-19 | 2016-02-02 | Ge Intelligent Platforms, Inc. | System of sequential kernel regression modeling for forecasting and prognostics |
US9256224B2 (en) | 2011-07-19 | 2016-02-09 | GE Intelligent Platforms, Inc | Method of sequential kernel regression modeling for forecasting and prognostics |
US8620853B2 (en) | 2011-07-19 | 2013-12-31 | Smartsignal Corporation | Monitoring method using kernel regression modeling with pattern sequences |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4777479A (en) * | 1987-04-03 | 1988-10-11 | Unisys Corporation | Switch position indicator |
DE3801952A1 (de) * | 1988-01-23 | 1989-07-27 | Vdo Schindling | Ueberwachungseinrichtung fuer eine elektronische verarbeitungseinheit |
US4974179A (en) * | 1989-01-27 | 1990-11-27 | Honeywell Inc. | Method and apparatus for preventing race conditions in a control system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4303383A (en) * | 1979-11-09 | 1981-12-01 | Honeywell Inc. | Condition control system with safety feedback means |
US4298334A (en) * | 1979-11-26 | 1981-11-03 | Honeywell Inc. | Dynamically checked safety load switching circuit |
CH682608A5 (de) * | 1991-10-28 | 1993-10-15 | Landis & Gyr Business Support | Anordnung zur Ueberwachung von Wechselstromschaltern. |
DE59302293D1 (de) * | 1993-12-24 | 1996-05-23 | Landis & Gyr Tech Innovat | Steuereinrichtung zur Betätigung von Schalteinrichtungen |
-
1993
- 1993-12-24 DE DE59300336T patent/DE59300336D1/de not_active Expired - Lifetime
- 1993-12-24 EP EP93810909A patent/EP0660043B1/fr not_active Expired - Lifetime
-
1994
- 1994-12-12 JP JP30721194A patent/JP3802093B2/ja not_active Expired - Lifetime
- 1994-12-19 US US08/359,277 patent/US5629879A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4777479A (en) * | 1987-04-03 | 1988-10-11 | Unisys Corporation | Switch position indicator |
DE3801952A1 (de) * | 1988-01-23 | 1989-07-27 | Vdo Schindling | Ueberwachungseinrichtung fuer eine elektronische verarbeitungseinheit |
US4974179A (en) * | 1989-01-27 | 1990-11-27 | Honeywell Inc. | Method and apparatus for preventing race conditions in a control system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0920038A1 (fr) | 1997-11-25 | 1999-06-02 | Electrowatt Technology Innovation AG | Circuit de surveillance d'un commutateur à courant alternatif |
WO1999027552A1 (fr) * | 1997-11-25 | 1999-06-03 | Siemens Building Technologies Ag | Circuit de surveillance d'un commutateur a courant alternatif |
US6486647B1 (en) | 1997-11-25 | 2002-11-26 | Siemens Building Technologies Ag | Circuit for monitoring an alternative current power switch |
Also Published As
Publication number | Publication date |
---|---|
JP3802093B2 (ja) | 2006-07-26 |
JPH07282702A (ja) | 1995-10-27 |
US5629879A (en) | 1997-05-13 |
DE59300336D1 (de) | 1995-09-07 |
EP0660043B1 (fr) | 1995-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4441070C2 (de) | Sicherheitsschalteranordnung | |
DE4242792C2 (de) | Sicherheitsschalteranordnung | |
DE10035174A1 (de) | Peripheriebaustein mit hoher Fehlersicherheit für speicherprogrammierbare Steuerungen | |
EP0676055B1 (fr) | Agencement de circuits permettant de surveiller une pluralite de bobines | |
WO2017174338A1 (fr) | Élément de bus et procédé de fonctionnement d'un élément de bus | |
EP0660043B1 (fr) | Dispositif de commande pour commander des appareils de commutation selon un programme de temps | |
WO1996028769A1 (fr) | Ensemble commutateur de securite | |
EP2434358A1 (fr) | Procédé de fonctionnement d'un système redondant et système | |
EP1594021B1 (fr) | Dispositif de circuit et procédé de test de contacts de commutation d'un circuit numérique de sortie | |
EP1034553B1 (fr) | Circuit de surveillance d'un commutateur a courant alternatif | |
EP0660044B1 (fr) | Dispositif de commande pour commander des appareils de commutation | |
DE4232720C1 (de) | Anordnung zur Funktionsüberwachung und Meßwertauswertung von Füllstands-Sensoren, insbesondere Vibrations-Füllstands-Grenzschaltern | |
EP2117094B1 (fr) | Commutation de surveillance et procédé de contrôle d'une commutation | |
DE19508841A1 (de) | Sicherheitsschalteranordnung | |
EP1748299A1 (fr) | Circuit électronique, système avec un circuit électronique et procédé pour tester un circuit électronique | |
EP3465720B1 (fr) | Dispositif de mise hors circuit sans erreur d'un consommateur | |
DE2400604B2 (de) | Elektronisches Fehleranzeigesystem | |
EP1282859B1 (fr) | Composant peripherique ayant un degre de protection eleve contre les erreurs, destine a des dispositfs de commande a memoire programmable | |
EP0815459A1 (fr) | Circuits et procede de controle de generateurs non intermittents de signaux | |
DE3739227C2 (fr) | ||
DE2438257C2 (de) | Schaltungsanordnung zur Überwachung eines binären Signalgebers | |
DE4319750C2 (de) | Verfahren und Vorrichtung zur Funktionsüberwachung von Schalteinrichtungen einer Brückenschaltung sowie deren Verwendung | |
EP0660042B1 (fr) | Circuit de couplage de lignes sous tension avec un micro-processeur | |
DE1271778B (de) | Elektronische Schaltungsanordnung zum Nachweis von Stoerungen von Verstaerkern und Umschaltanordnung auf gleichartige Ersatzgeraete | |
EP3584648B1 (fr) | Agencement de circuit permettant de commuter une charge électrique et procédé de vérification de l'état d'une sortie de sécurité d'un agencement de circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
17P | Request for examination filed |
Effective date: 19940701 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE GB IT LI |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE GB IT LI |
|
REF | Corresponds to: |
Ref document number: 59300336 Country of ref document: DE Date of ref document: 19950907 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950814 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Free format text: LANDIS & GYR TECHNOLOGY INNOVATION AG TRANSFER- SIEMENS BUILDING TECHNOLOGIES AG C-IPR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20070305 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20071219 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20071213 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20081224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081224 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130218 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59300336 Country of ref document: DE Owner name: SIEMENS SCHWEIZ AG, CH Free format text: FORMER OWNER: LANDIS & GYR TECHNOLOGY INNOVATION AG, ZUG, CH Effective date: 20130507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59300336 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20131225 |