[go: up one dir, main page]

EP0647372B1 - Steuerungssystem mit harmonischen filtern - Google Patents

Steuerungssystem mit harmonischen filtern Download PDF

Info

Publication number
EP0647372B1
EP0647372B1 EP92914435A EP92914435A EP0647372B1 EP 0647372 B1 EP0647372 B1 EP 0647372B1 EP 92914435 A EP92914435 A EP 92914435A EP 92914435 A EP92914435 A EP 92914435A EP 0647372 B1 EP0647372 B1 EP 0647372B1
Authority
EP
European Patent Office
Prior art keywords
signal
harmonic
input signal
signals
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92914435A
Other languages
English (en)
French (fr)
Other versions
EP0647372A4 (de
EP0647372A1 (de
Inventor
Graham Eatwell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noise Cancellation Technologies Inc
Original Assignee
Noise Cancellation Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noise Cancellation Technologies Inc filed Critical Noise Cancellation Technologies Inc
Priority to AT92914435T priority Critical patent/ATE180604T1/de
Publication of EP0647372A1 publication Critical patent/EP0647372A1/de
Publication of EP0647372A4 publication Critical patent/EP0647372A4/de
Application granted granted Critical
Publication of EP0647372B1 publication Critical patent/EP0647372B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17883General system configurations using both a reference signal and an error signal the reference signal being derived from a machine operating condition, e.g. engine RPM or vehicle speed
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/121Rotating machines, e.g. engines, turbines, motors; Periodic or quasi-periodic signals in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3028Filtering, e.g. Kalman filters or special analogue or digital filters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3032Harmonics or sub-harmonics
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3051Sampling, e.g. variable rate, synchronous, decimated or interpolated
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/512Wide band, e.g. non-recurring signals

Definitions

  • the invention relates to a method for obtaining the amplitudes of an input signal with varying fundamental frequency according to claim 1, a method for active cancellation of substantially period disturbances according to claim 6, a harmonic filter means according to claim 8 and an active control system using the harmonic filter means of claim 8.
  • the approaches differ in the way the controller output is obtained and adjusted.
  • the output is generated by filtering reference signals.
  • the amplitude and phase of each signal is adjusted in the time domain by a variable filter as in Swinbanks, while in the other approach the controller output is updated in the frequency domain using the Discrete Fourier Transform of the residual signal as in Chaplin for varying frequencies, and for fixed frequencies in "Adaptive Filtering in the Frequency Domain” by Dentino et al, IEEE Proceedings, Vol 69, No. 12, pages 474-75 (1978).
  • the first approach can be implemented digitally by using a frequency sampling filter followed by a two-coefficient FIR filter or by using a frequency sampling filter followed by a Hilbert transformer and two single coefficient filters.
  • the Fourier Transform approach of Chaplin has the advantage of being able, in the simplest case, to update the coefficients in a single step.
  • the coefficients of the two point filter, described by Bitmead and Anderson and others, are not independent so they cannot be updated in a single step using the simple LMS algorithm.
  • synchronous sampling has two disadvantages. Firstly, the anti-aliasing and smoothing filters must be set to cope with the slowest sampling rate. Since the upper control frequency is fixed, a large number of points may be required per cycle. Secondly, because of the varying sample rate, continuous system identification is complicated.
  • This invention relates to a harmonic filter, and its use as part of a control system.
  • the harmonic filter is shown in Figure 1. It consists of a pair of multipliers and low-pass filters.
  • the input signal is multiplied by sinusoidal signals at the frequency of the harmonic component to be identified.
  • the resulting signals are passed through the low-pass filters.
  • the output from the low-pass filters are estimates of the real and imaginary parts of the desired complex harmonic amplitude.
  • the phase of the sinusoidal signal is determined from a phase signal (from a tachometer or a phase locked loop for example) or from integrating a frequency signal.
  • the bandwidth of the low-pass filter is variable and is determined by the fundamental frequency of the input signal.
  • sensors are used to provide signals indicative of the performance of the system. These signals are sent to harmonic filters and the complex output from the filters are used to adapt the controller output.
  • harmonic filters are combined with output processors and an adaptive controller.
  • the output processor for one harmonic is shown in Figure 2.
  • the real and imaginary parts ofthe complex amplitude of the output are determined by the controller. These are then multiplied by sinusoidal signals and summed to provide one harmonic of the output signal.
  • the sinusoidal signals are the same as those used in the harmonic filters.
  • Each harmonic of the controller output is generated by an output processor (01, 02, 03,.7) which combines a complex amplitude, Y with sine and cosine signals.
  • the controller output is obtained by summing these components. If the controller is to be used as part of an active control system, this output is then converted to the required form and sent to an actuator which produces the canceling disturbance.
  • the input to the controller is a residual or error signal r(t).
  • r(t) is responsive to the combination of the original disturbance and the canceling disturbance as measured by a sensor.
  • the residual signal is then passed to one or more harmonic filters (HF1, HF2, HF3, «).
  • the harmonic components, (R1, R2, R3, Vietnamese), of this residual signal are then used to adjust the complex amplitudes, (Y1, Y2, Y3, across), of the output.
  • a steady state, periodic signal r(t) can be written as a sum of harmonic components where k is the harmonic number, K is the total number of harmonics in the signal, R k is the complex amplitude of the signal at the k-th harmonic, and ⁇ is the fundamental radian frequency.
  • the purpose of the harmonic filter is to determine the complex amplitudes R k .
  • R k is the discrete Fourier Transform of the signal.
  • the integral is calculated over a longer time to give the continuous Fourier transform.
  • the harmonic filter is designed to provide a real-time estimate of the harmonic components of a signal.
  • the basic approach is to multiply the signal by the appropriate cosine and sine values and then to low-pass filter the results.
  • This process shown in Figure 2, is equivalent to multiplying by a complex exponential signal, exp(ik ⁇ t), and then passing the result through a complex low-pass filter. The process is sometimes called heterodyning.
  • the multiplication by the complex exponential acts as demodulator, and the resulting signal has components at d.c. (zero frequency) and at twice the original frequency, for harmonic signals the harmonic frequencies are all shifted by +/- the frequency of the exponential signal, therefore the resulting signal may have components at the fundamental frequency. These must be filtered out to leave only the d.c. component.
  • the bandwidth of the filter With a fixed low-pass filter, the bandwidth of the filter must be set to cope with highest fundamental frequency likely to be encountered. When the system is operating at the lower frequencies, the low-pass filter is then much sharper than necessary, and therefore introduces much more delay than is necessary.
  • the bandwidth of the filter according to the current fundamental frequency it can be ensured that the harmonic filter has minimum delay. This is particularly important for use with control systems where any delay adversely affects the controller performance.
  • One way of implementing the low-pass filter is by a moving average process.
  • the period P is defined as the time taken for the phases to change by 2 ⁇ radians, i.e.
  • the method is complicated by the fact that the period P is not generally an exact number of samples. If the sampling rate is high enough compared to the frequency of the harmonic being identified the truncation error can be neglected and the integral approximated by using the M samples in the current cycle.
  • the estimate can be obtained using a Finite Impulse Response (FIR) filter with M+1 coefficients.
  • FIR Finite Impulse Response
  • the filter coefficients, W(n) are all unity except for the last one.
  • Both the length of the filter and the last coefficient of the filter are adjusted as the fundamental frequency of the noise changes.
  • Equation (5) can be calculated recursively, that is, the next estimate can be calculated from the current estimate by adding in the new terms and subtracting off the old terms.
  • R k ((m+1)T) (P m /2) .R k (mT) + X k (m+1) + (a M+1 - 1).
  • the filter is shown in Figure 5. It can be implemented in analog or sampled data form.
  • Another advantage is that a can be varied dynamically to reduce the integration time during transients.
  • the bandwidth of the filter In order to separate out the different harmonic components, the bandwidth of the filter must be adjusted as the fundamental frequency ofthe disturbance varies. Note that the bandwidth of the filter is varied according to the fundamental frequency, not the frequency ofthe harmonic being identified.
  • the low-pass filter is designed to have zeros in its frequency response at multiple fundamental frequency.
  • the exponential terms and sinusoidal terms used in the computation can be stored in a table.
  • the resolution of the table must be chosen carefully to avoid errors.
  • the exponential terms could be calculated at each output time, using interpolation from tabulated values, trigonometric identities or expansion formulae for example.
  • controller output varies on the same time scale as the output from the harmonic filters (see co-pending patent application [13]).
  • the outputs from the harmonic filters are used directly as inputs to a nonlinear control system.
  • controller output In active control systems the controller output must have a particular phase relative to the disturbance to be controlled. In this case some output processing is required, which is effectively an inverse heterodyner. One example of this is now described.
  • a constant rate is used for both input sampling and output.
  • the sampling period is denoted by T.
  • the output at time nT which is calculated by the output processor, is where ⁇ is the fundamental radian frequency, Re denotes the real part and Im denotes the imaginary part, and where k is the harmonic number, K is the total number of harmonics in the signal and Y is the complex amplitude ofthe output at the appropriate harmonic.
  • the values Y k can be stored in memory and the output calculated at each output time, as described by Ziegler.
  • the output processor uses the same sine and cosine terms as the input heterodyner.
  • the algorithms for adjusting the output values Y require knowledge of the harmonic components of the residual or error signal. These are provided by the outputs from the harmonic filters.
  • the known frequency domain adaptive algorithms can be used to update the complex amplitudes of the output.
  • R n -1 k where Y n / k is the vector of outputs at the n-th update and the k-th harmonic, R k is vector of residual components, ⁇ is the convergence step size, ⁇ is a leak applied to the output coefficients and B( ⁇ ) is a complex matrix related to the system transfer function matrix at the current frequency of this harmonic.
  • can be a complex matrix related to A( ⁇ ) and B( ⁇ ).
  • a pseudo-inverse form is preferred since it allows the harmonic components to converge at equal rates - which is one of the main advantages of frequency domain algorithms. It is also preferred for multichannel systems since it allows for various spatial modes of the system to converge at a uniform rate.
  • the convergence step sizes for the algorithms which update at every sample are determined by the response time of the whole system. This is the settling time of the physical system (the time taken for the system to reach a substantially steady state) plus a variable delay due to the low-pass filter.
  • the constant ⁇ in (12) must be replaced by frequency dependent parameter, ⁇ ( ⁇ ). This parameter must take account of the effective delay in variable filter.
  • the constant ⁇ can also be replaced by a frequency dependent parameter ⁇ ( ⁇ ). This parameter can be adapted to limit the amplitude of the output.
  • the adaption process is performed every sample interval or at a rate determined by the cycle length (fundamental period) of the noise.
  • the first approach has the disadvantage that the sampling rate and/or the number of harmonics to be controlled is limited by the processing power of the controller.
  • the second approach has the disadvantage the computational requirements vary with the frequency, which may not be known in advance, and also the adaption rate is limited by the fundamental period of the disturbance.
  • the harmonic components are available every sample and the controller output is calculated every sample, but the adaption process can be performed at a slower rate if required.
  • this slower rate is determined in advance to be a fixed fraction of the sampling rate, in another embodiment of the invention the adaption is performed as a background task by the processor. This ensures that optimal use is made of the available processing power.
  • the sampled data control systems described above use constant sampling rates. This facilitates the use of on-line system identification techniques to determine the system impulse response (and hence it transfer function matrix). Some of these techniques are well known for time domain control systems. Tretter describes some techniques for multichannel periodic systems.
  • a random (uncorrelated) test signal is added to the controller output after the output processor but before the Digital to Analog Converter (DAC).
  • the response at each sensor is then measured before the heterodyner, but after the Analog to Digital Converter (ADC).
  • ADC Analog to Digital Converter
  • This response is then correlated with the test signal to determine a change to the relevant impulse response.
  • the correlation is estimated from a single sample.
  • FIG. 6 One embodiment of the scheme is shown in Figure 6. This can be extended to multichannel system by applying the test signal to each actuator in turn or by using a different (uncorrelated) test signals for each actuator and driving all actuators simultaneously.
  • the plant in Figure 6 includes the DAC, smoothing filter, power amplifier, actuator, physical system, sensor, signal conditioning, anti-aliasing filter and ADC.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Networks Using Active Elements (AREA)
  • Feedback Control In General (AREA)

Claims (17)

  1. Verfahren zum Erhalten von Amplituden (Y) eines Eingangssignales (r(t)) mit sich ändernder Fundamentalfrequenz, dadurch gekennzeichnet, daß die komplexen harmonischen Amplituden (Y) eines Eingangssignales (r(t)) bestimmt werden, indem das Eingangssignal mit einem Paar orthogonaler Sinusschwingungssignale (SIN(K,PH1); COS(K,PH1)) bei der Frequenz einer jeden harmonischen Schwingungskomponente, die identifiziert werden soll, multipliziert wird, und daß die resultierenden Signale durch Tiefpaß-Filter (HF) mit variabler Bandbreite gesendet werden, um Abschätzungen für die Real- und Imaginärteile der gewünschten komplexen harmonischen Schwingungsamplitude (Y) bereitzustellen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Bandbreiten der Tiefpaß-Filter (HF) von der Fundamentalfrequenz des Signales (r(t)) abhängen.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Fundamentalfrequenz durch Messen der Fundamentalfrequenz der Quelle des Eingangssignales (r(t)) erhalten wird.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Phase der Quelle des Eingangssignales (r(t)) gemessen wird und dazu verwendet wird, die Phase der Sinusschwingungssignale zu bestimmen.
  5. Verfahren nach Anspruch 4, bei dem die Phase der Quelle des Eingangssignales (r(t)) erhalten wird, indem ein Signal (w) integriert wird, welches für die Frequenz der Quelle des Eingangssignales (r(t)) repräsentativ ist.
  6. Verfahren zur aktiven Unterdrückung von im wesentlichen periodischen Störungen, welches das Multiplizieren des Eingangssignales (r(t)) mit einem Signal umfaßt, das die Frequenz (w) des zu identifizierenden Signales aufweist, dadurch gekennzeichnet, daß
    die Überlagerung der anfänglichen Störung und der Gegenstörung erfaßt wird, um ein Eingangssignal (r(t)) zu erhalten,
    das Eingangssignal mit Paaren von orthogonalen Sinusschwingungssignalen (SIN(K,PH1);COS(K,PH1)) bei der Frequenz der zu identifizierenden Komponenten multipliziert wird,
    die resultierenden Signale durch Tiefpaß-Filter (HF) mit variabler Bandbreite gesendet werden, um komplexe Restsignale (R) bereitzustellen, welche Abschätzungen für die Real- und Imaginärteile der komplexen harmonischen Amplituden (Y) des Eingangssignales darstellen,
    diese komplexen Restsignale (R) dazu verwendet werden, die komplexen Amplituden eines Ausgangssignales anzupassen,
    die Real- und Imaginärteile der komplexen Amplituden (Y) dieses Ausgangssignales mit den Sinusschwingungssignalen multipliziert und
    aufsummiert werden, um das Ausgangssignal zu erzeugen, was bewirkt, daß das Ausgangssignal eine Gegenstörung hervorruft, welche mit der ursprünglichen Störung überlagert wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Phase der Quelle des Eingangssignales (r(t)) gemessen und dazu verwendet wird, die Phase der Sinusschwingungssignale (SIN(K,PH1);COS(K,PH1)) zu bestimmen.
  8. Harmonisches Filtermittel zum Erzeugen von Sinusschwingungssignalen mit der Frequenz, die der Frequenz des zu identifizierenden Signales entspricht, welches ein Multipliziermittel zum Multiplizieren des Eingangssignales (r(t)) mit den Sinusschwingungssignalen enthält, um ein Signal (R) zu erzeugen, welches gefiltert wird, dadurch gekennzeichnet, daß
    das Filtermittel (HF) ein Tiefpaß-Filtermittel mit variabler Bandbreite umfaßt, das dazu dient, die ersten Signale (R) zu filtern, um zweite Signale bereitzustellen, welche auf die Real- und Imaginärteile der gewünschten komplexen harmonischen Amplituden (Y) bezogen sind,
    das erzeugte Sinusschwingungssignal in einem Paar orthogonaler Sinusschwingungssignale (SIN) (K,PH1);COS(K,PH1)) mit der Frequenz der harmonischen, zu identifizierenden Komponenten besteht,
    die Bandbreiten des Tiefpaß-Filters von der Fundamentalfrequenz (w) des Signals abhängen.
  9. Aktives Steuersystem zum Unterdrücken von im wesentlichen periodischen Störungen mit
    Sensormitteln um die Überlagerung der ursprünglichen Störung und der Gegenstörung zu erfassen, um ein Eingangssignal (r(t)) zu erhalten, dadurch gekennzeichnet, daß
    es zusätzlich dem Anspruch 8 entsprechende harmonische Filtermittel enthält, um komplexe Restsignale (R) zu erzeugen, welche Abschätzungen für die Real- und Imaginärteile der komplexen harmonischen Amplituden (Y) des Eingangssignales (r(t)) bei den zu steuernden Frequenzen darstellen,
    in ihm ein Anpassungsmittel vorgesehen ist, welches die komplexen Restsignale (R) dazu verwendet, die komplexen Amplituden (Y) eines Ausgangssignales an Ausgangssignalverarbeitungsmittel (01, 02, 03) anzupassen, welche dazu dienen, die Real- und Imaginärteile dieser komplexen Amplituden (Y) mit Sinusschwingungssignalen (SIN(K,PH1);COS(K,PH1)) zu multiplizieren und aufzuaddieren, um die Ausgangssignale bereitzustellen,
    in ihm ein Gebermittel vorgesehen ist, um eine Gegenstörung zu erzeugen, welche der ursprünglichen Störung überlagert wird.
  10. Steuersystem nach Anspruch 9, dadurch gekennzeichnet, daß es ein zweites Sensormittel zum Bestimmen eines Phasensignales enthält, welches mit der Phase der Quelle des Eingangssignales (r(t)) verknüpft ist und in dem das Phasensignal dazu verwendet wird, die Phase der Sinusschwingungssignale (SIN(K,PH1);COS(K,PH1)) zu bestimmen.
  11. Steuersystem nach Anspruch 9, dadurch gekennzeichnet, daß von dem harmonischen Filtermittel (HF), dem Anpassungsmittel oder den Mitteln zum Erzeugen von Ausgangssignalen (01, 02, 03) wenigstens eines ein System für abgetastete Daten (sampled data system) darstellt.
  12. Steuersystem nach Anspruch 9, dadurch gekennzeichnet, daß von dem harmonischen Filtermittel (HF), dem Anpassungsmittel oder den Mitteln zum Erzeugen von Ausgangssignalen (01, 02, 03) wenigstens eines einen analogen Schaltkreis darstellt.
  13. Steuersystem nach Anspruch 9, dadurch gekennzeichnet, daß das Anpassungsmittel einen digitalen Prozessor darstellt, in dem die Schrittweite des Anpassungs-Algorithmus wenigstens teilweise durch die Fundamentalfrequenz der Störung bestimmt wird.
  14. Steuersystem nach Anspruch 9, dadurch gekennzeichnet, daß das Anpassungsmittel einen analogen Schaltkreis darstellt, welcher eine Rückkopplungsschleife bildet und in dem die Verstärkung der Rückkopplungsschleife wenigstens teilweise durch die Fundamentalfrequenz der Störung bestimmt wird.
  15. Steuersystem nach Anspruch 9, dadurch gekennzeichnet, daß das harmonische Filtermittel (HF) und die Anpassungsmittel (01, 02, 03) von einem oder mehreren digitalen Prozessoren gebildet werden und daß in diesen der Anpassungsvorgang als ein Hintergrund-Rechenvorgang durchgeführt wird.
  16. Steuersystem nach Anspruch 9, dadurch gekennzeichnet, daß es eine Mehrzahl von Sensor- und/oder Gebermitteln enthält und daß das Anpassungsmittel jegliche Wechselwirkung zwischen den Gebermitteln und den Sensormitteln berücksichtigt.
  17. Steuersystem nach Anspruch 9, dadurch gekennzeichnet, daß es Mittel zur Online-Systemidentifikation enthält (siehe Fig. 6).
EP92914435A 1992-06-25 1992-06-25 Steuerungssystem mit harmonischen filtern Expired - Lifetime EP0647372B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT92914435T ATE180604T1 (de) 1992-06-25 1992-06-25 Steuerungssystem mit harmonischen filtern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1992/005228 WO1994000911A1 (en) 1992-06-25 1992-06-25 Control system using harmonic filters

Publications (3)

Publication Number Publication Date
EP0647372A1 EP0647372A1 (de) 1995-04-12
EP0647372A4 EP0647372A4 (de) 1996-02-07
EP0647372B1 true EP0647372B1 (de) 1999-05-26

Family

ID=22231180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92914435A Expired - Lifetime EP0647372B1 (de) 1992-06-25 1992-06-25 Steuerungssystem mit harmonischen filtern

Country Status (5)

Country Link
EP (1) EP0647372B1 (de)
CA (1) CA2138552C (de)
DE (1) DE69229282T2 (de)
DK (1) DK0647372T3 (de)
WO (1) WO1994000911A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361303A (en) * 1993-04-01 1994-11-01 Noise Cancellation Technologies, Inc. Frequency domain adaptive control system
JP3572486B2 (ja) * 1994-03-25 2004-10-06 本田技研工業株式会社 振動騒音制御装置
US5713438A (en) * 1996-03-25 1998-02-03 Lord Corporation Method and apparatus for non-model based decentralized adaptive feedforward active vibration control
CN112504616A (zh) * 2020-11-18 2021-03-16 中国空气动力研究与发展中心 一种天平动态力谐波抑制方法及装置
CN119179954B (zh) * 2024-11-26 2025-02-11 中国电力科学研究院有限公司 一种筛选次同步振荡曲线的方法和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513249A (en) * 1979-04-23 1985-04-23 Baghdady Elie J Method and apparatus for signal detection, separation and suppression
US4328591A (en) * 1979-04-23 1982-05-04 Baghdady Elie J Method and apparatus for signal detection, separation and suppression
US4713782A (en) * 1984-08-23 1987-12-15 Hewlett-Packard Company Method and apparatus for measuring a transfer function
DE3707760C1 (de) * 1987-03-11 1988-06-23 Ant Nachrichtentech Verfahren zur Taktsynchronisation
GB2255256B (en) * 1991-04-12 1994-11-02 W S Atkins Engineering Science Method of and apparatus for reducing vibrations

Also Published As

Publication number Publication date
EP0647372A4 (de) 1996-02-07
DK0647372T3 (da) 1999-12-06
WO1994000911A1 (en) 1994-01-06
CA2138552A1 (en) 1994-01-06
EP0647372A1 (de) 1995-04-12
CA2138552C (en) 1998-07-07
DE69229282T2 (de) 2000-02-24
DE69229282D1 (de) 1999-07-01

Similar Documents

Publication Publication Date Title
US5469087A (en) Control system using harmonic filters
Glover Adaptive noise canceling applied to sinusoidal interferences
EP0721179B1 (de) Adaptiver Tonbestimmungsanordnung mit begrenstem und adaptivem Ausgang
US4878188A (en) Selective active cancellation system for repetitive phenomena
US4490841A (en) Method and apparatus for cancelling vibrations
US5311446A (en) Signal processing system for sensing a periodic signal in the presence of another interfering signal
US11100911B1 (en) Systems and methods for adapting estimated secondary path
Kim et al. Active control of multi-tonal noise with reference generator based on on-line frequency estimation
EP0654901B1 (de) Schnelles Konvergenzsystem eines adaptiven Filters zur Erzeugung eines zeitabhängigen Signals zur Kompensation eines primären Signals
EP0746290A1 (de) Verbessertes verfahren und system für on-line system indentifizierung
GB2107960A (en) Method and apparatus for cancelling vibrations
EP0647372B1 (de) Steuerungssystem mit harmonischen filtern
JP3732227B2 (ja) 繰り返し事象を制御する適応制御システム
JP3579898B2 (ja) 車両の振動制御装置および振動制御方法
WO1994000911A9 (en) Control system using harmonic filters
Kim et al. Delayed-X LMS algorithm: An efficient ANC algorithm utilizing robustness of cancellation path model
EP0805432A2 (de) Rückkopplungsverfahren zur Kontrolle des Rauschens mit mehreren Eingängen und Ausgängen
JPH09511081A (ja) 時間領域適応制御システム
US6954771B2 (en) Adaptive line enhancer
CA2247808A1 (en) Active feedback control system for transient narrow-band disturbance rejection over a wide spectral range
JP3697702B2 (ja) 車両の振動制御装置および振動制御方法
JP3502401B2 (ja) 騒音低減装置
CN120340452A (zh) 一种窄带主动噪声控制方法及其系统
EP0466989A2 (de) Anordnung und Verfahren zur Realzeitvorhersage von Signalen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

A4 Supplementary search report drawn up and despatched
AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

17Q First examination report despatched

Effective date: 19970702

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990526

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990526

REF Corresponds to:

Ref document number: 180604

Country of ref document: AT

Date of ref document: 19990615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990625

REF Corresponds to:

Ref document number: 69229282

Country of ref document: DE

Date of ref document: 19990701

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWALTSBUERO G. PETSCHNER

K2C3 Correction of patent specification (complete document) published

Effective date: 19990526

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070427

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070507

Year of fee payment: 16

Ref country code: AT

Payment date: 20070507

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070509

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070605

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070628

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070629

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070511

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070529

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070605

Year of fee payment: 16

BERE Be: lapsed

Owner name: *NOISE CANCELLATION TECHNOLOGIES INC.

Effective date: 20080630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080625

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090101

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080625

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080625

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080626