[go: up one dir, main page]

EP0642649A1 - Method of separating higher-boiling hydrocarbons out of a mixture of gases. - Google Patents

Method of separating higher-boiling hydrocarbons out of a mixture of gases.

Info

Publication number
EP0642649A1
EP0642649A1 EP92917822A EP92917822A EP0642649A1 EP 0642649 A1 EP0642649 A1 EP 0642649A1 EP 92917822 A EP92917822 A EP 92917822A EP 92917822 A EP92917822 A EP 92917822A EP 0642649 A1 EP0642649 A1 EP 0642649A1
Authority
EP
European Patent Office
Prior art keywords
fraction
refrigerant
heat exchange
gas mixture
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92917822A
Other languages
German (de)
French (fr)
Other versions
EP0642649B1 (en
Inventor
Heinz Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0642649A1 publication Critical patent/EP0642649A1/en
Application granted granted Critical
Publication of EP0642649B1 publication Critical patent/EP0642649B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0247Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/12Refinery or petrochemical off-gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/18External refrigeration with incorporated cascade loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements

Definitions

  • the invention relates to a method for separating higher hydrocarbons from a gas mixture containing these and lower-boiling components by rectification, in which the gas mixture is partially condensed and fed to a separation column, at the bottom of which a fraction rich in higher hydrocarbons and at the top of which a lighter fraction boiling components rich fraction are withdrawn, the top fraction partially condensed and the condensate is returned to the top of the separation column as reflux.
  • This object is achieved in that the condensation of the gas mixture and the condensation of the top fraction are brought about by indirect heat exchange with a refrigerant which consists of several components and is conducted in an external circuit.
  • Such a procedure enables the refrigerant temperature to be adapted in a sliding manner to the requirements specified by the composition of the feed gas and products. Compared to a refrigerant cascade, for example, it enables both less equipment expenditure and less exergy losses. Peak cold can also be generated with reasonable effort, so that the method according to the invention can dispense with expansion turbines. The disadvantages associated with turbines in terms of flexibility are avoided.
  • the separation column used in the process is generally operated only as a reinforcement column, that is to say the partially condensed gas mixture is fed in in the lower region of the column.
  • an intermediate fraction is removed from the separation column at a central point, this is at least partially condensed in indirect heat exchange with the refrigerant and is returned to the separation column.
  • This heat exchange takes place at a temperature which lies between the temperature levels of the condensation of the feed gas mixture and that of the condensation of the top fraction.
  • the corresponding heat exchangers are preferably connected in series on the refrigerant side, so that optimum use is made of the sliding evaporation temperature profile of the multicomponent refrigerant.
  • the process is particularly economical to operate.
  • compressed refrigerant is separated into a gaseous and a liquid fraction within the external refrigeration cycle and the gaseous fraction is cooled and indirectly condensed in the indirect heat exchange with the portion remaining in the condensation of the top fraction and then condensed for indirect heat exchange with the top fraction.
  • the refrigerant remaining in gaseous form after compression is thus used in a particularly advantageous manner to transfer peak cold to the top fraction of the separation column. This further improves the energy balance of the process.
  • the refrigerant is preferably not only completely condensed, but additionally supercooled in order to have as high a proportion as possible in the liquid state after its relaxation.
  • the refrigerant that remains liquid after compression is also supercooled as much as possible.
  • the entire refrigerant flow can be combined again.
  • the refrigerant is brought into heat exchange with the gas mixture to be separated, and beforehand, if provided, into heat exchange with the intermediate fraction.
  • the method is carried out with a throughput that changes over time and / or a composition of the gas mixture to be separated that changes over time.
  • each process is subject to fluctuations in time, for example when starting and stopping a system.
  • changes with a much shorter period, generally less than an hour, preferably in the minute range, are meant here, which for example have temperature fluctuations of approximately 3 K / min and / or 10% load change per minute.
  • Such deviations from stationary behavior can also be predetermined by preceding method steps, for example if the gas mixture to be separated in the present method comes from a periodically operated apparatus, for example switchable reactors.
  • a process with the generation of peak cooling by turbines e.g. according to EP-B-0318 504) would lead to very high wear on the turbines and would therefore mean frequent downtime and high costs for the system, in particular due to production downtime.
  • the method according to the invention can cope with such fluctuations because the multi-component refrigerant circuit used is not subject to such signs of wear and yet, similar to the previously known methods, can provide cold at different temperature levels.
  • the throughput and / or the composition of the gas mixture to be separated is measured and the throughput of refrigerant in the various condensation stages is set as a function of this measured value.
  • the necessary adjustments to the refrigeration budget are therefore not made by a regulation, but by a controller.
  • Certain parameters must be included in the calculation of the manipulated variables, which can only be partially determined in advance by theoretical considerations.
  • empirical values are necessary, which must be determined by the operating personnel when a system is started up for the first time. Since the fluctuations in throughput and / or composition of the gas mixture to be separated are generally periodic, such values can be determined by tests and then predefined. Self-learning systems are also conceivable that optimize such parameters automatically and also during ongoing operation.
  • heat exchangers are therefore preferably used for the indirect heat exchange between the top fraction and the refrigerant, which are made of a material with high long-term stability against mechanical stresses. Stainless steel is preferred. It is expedient to design the heat exchanger in a wound construction, that is to say with tubes arranged in a helical manner on concentric cylinder surfaces.
  • a plate heat exchanger in particular an aluminum plate heat exchanger, can be used for the indirect heat exchange (7 ') between the gas mixture (6) to be separated and the refrigerant.
  • the dehydrogenation product gas is introduced via line 1 and is initially subjected to a pretreatment.
  • the gaseous portion in a HCl reactor 4 is freed of traces of chlorine and dried (5).
  • the pre-cleaned gas in line 6 now represents the gas mixture to be separated for the process according to the invention and is also referred to here as feed gas. For example, it contains 30 to 70% more volatile constituents that are to be separated off.
  • the feed gas in line 6 is cooled in heat exchanger 7 and partially (5 to 40%, preferably 10 to 30%) condensed and fed into a separation column 9 via line 8 above the sump.
  • the desired higher hydrocarbons are obtained as bottom product, are drawn off via line 27 and heated in heat exchanger 23.
  • the heavy-boiling components from separator 3 which have already been condensed out during the pretreatment, they are fed via line 32 for further treatment, for example a depropanizer.
  • Line 10 leads the top fraction of the separation column to a heat exchanger 11, in which the fraction is partially condensed.
  • the two-phase mixture is fed via line 12 into a separator 13, which is integrated in the separation column.
  • a phase separation device designed as a separate component could also be used.
  • the liquid from the separator flows back into the separation column; the gaseous fraction of the top fraction is discharged via a residual gas line 14 and heated to approximately ambient temperature in heat exchanger 15.
  • This gas can be supplied partially or entirely via line 17 to a compressor unit and then to a further workup, for example in a pressure swing adsorption.
  • residual gas is either removed via line 16 and used, for example, as fuel gas or to regenerate the dryer 5.
  • the cold required for the condensation of feed gas (heat exchanger 7) and top fraction (heat exchanger 11) is generated by a multi-component refrigerant circuit 18, in which a refrigerant is compressed and partially liquefied in known catfish.
  • the refrigerant contains, for example, C 2 H 4 , C 2 H 6 , iso-C 4 H 10 and some CH 4.
  • the exact composition is determined depending on the course of the respective evaporation curves.
  • Compressed refrigerant is introduced into a refrigerant separator 19 as a two-phase mixture.
  • the gaseous portion (line 20) is condensed to recover peak cold in indirect heat exchange 15 with the gaseous portion 14 of the top fraction and supercooled.
  • the temperature of the Kältemi ttel stream should be as low as possible that all refrigerant remains liquid even in the subsequent relaxation in throttle valve 25. As a result, a maximum amount of latent heat can be converted during the subsequent heat exchange 11 with the top fraction 10.
  • the liquid portion 21 of refrigerant from the refrigerant separator 19 is also subcooled, namely in heat exchanger 22 against low-pressure refrigerant and in heat exchanger 23 against the C 3+ / C 4+ product stream 27 from the bottom of the separation column 9 and again against low pressure refrigerant.
  • a first part of the supercooled liquid is expanded in the throttle valve 26a, combined with the refrigerant portion remaining in gaseous form in the separator 19, warmed in the heat exchangers 24, 7 and 22 and compressed again.
  • a second part is expanded in 26b, heated in the lower part of the heat exchanger 23 and then combined upstream of the heat exchanger 7 with the remaining low-pressure refrigerant.
  • an intermediate fraction 28 is led out of the separation column 9 in the exemplary embodiment, partially condensed in a heat exchange 24 with refrigerant and fed back into the separation column 9 via line 29.
  • several such intermediate fractions can be removed at different points for partial condensation. In individual cases, this must be decided on the basis of the trade-off between higher expenditure on equipment on the one hand and reduced exergy losses on the other.
  • the heat exchangers required in the exemplary embodiment are preferably implemented as wound apparatuses with stainless steel tubes.
  • the method works with a control device instead of an otherwise conventional regulating device.
  • the flow of gas mixture to be separated is measured in line 6 (30).
  • setpoints for the cooling requirement are determined and then the flow rate in the refrigerant lines is set. This manipulation takes place by activating the expansion valves 25, 26a, 26b.
  • the following numerical example relates to the separation of C 4 hydrocarbons from the product gas of a C 4 dehydrogenation. Due to the discontinuous operation of the dehydrogenation reactors, the throughput and composition of the product gas fluctuate with an approximately four-minute period. Two values are given for each size: left for the phase of maximum throughput of gas mixture to be broken down (612 mol / s through line 6) and the associated lower relative but higher absolute hydrogen content (approx. 55%, corresponds to 334 mol / s) ; right for minimum throughput (423 mol / s) and higher relative but lower absolute hydrogen content (approx. 64%, corresponds to 275 mol / s).
  • a feed gas before partial condensation (line 6)
  • the refrigerant has the following molar composition: CH 4 2%
  • FIG. 2 shows a further exemplary embodiment of the process according to the invention, which is also preferably used for working up a product gas from a C 3 or C 4 dehydrogenation.
  • Corresponding method steps and devices have the same reference symbols in both drawings.
  • Dehydrogenation product gas is fed in via line 1 and subjected to a pretreatment similar to that of the method in FIG. 1 (cooling by means of external cooling in heat exchanger 2, phase separation in separator 3, chlorine removal in HCl reactor 4, drying 5).
  • the feed gas in line 6 is cooled by heat exchanger 7 'and partially condensed.
  • the two-phase mixture is fed via line 8 above the bottom of the separation column 9.
  • the desired higher hydrocarbons are obtained as the bottom product, are drawn off via line 27 and heated in the heat exchanger 7 '. They are discharged from separator 3 separately from the high-boiling components that have already condensed out during the pretreatment.
  • Line 10 leads the top fraction of the separation column to a heat exchanger 11, in which the fraction is partially condensed.
  • the two-phase mixture is fed via line 12 into a separator 13 arranged in the upper region of the separation column.
  • the gaseous fraction of the top fraction is discharged via a residual gas line 14 and heated to approximately ambient temperature in heat exchanger 15. This gas can be drawn off via line 16 (for example to regenerate the dryer 5) and / or via line 17.
  • the cold required for the condensation of feed gas (heat exchanger 7 ') and top fraction (heat exchanger 11) is generated by a multi-component refrigerant circuit 18 in a manner similar to that in the method of FIG.
  • the gaseous portion of the compressed refrigerant (line 20) introduced into the refrigerant separator 19 is condensed and recovered in indirect heat exchange 15 with the portion 14 of the top fraction remaining in gaseous form, and then expanded in throttle valve 25, and in indirect heat exchange 11 with the top fraction 10 in order to recover peak cold brought from the separation column 9.
  • the liquefied portion 21 of refrigerant from the refrigerant separator 19 is subcooled in the heat exchanger 7 '.
  • the supercooled liquid is in the
  • Throttle valve 26 relaxes, with the gas remaining in the separator 19
  • Refrigerant portion combined, warmed in 1m heat exchanger 7 'and completely evaporated and then compressed again.
  • the intermediate cooling steps shown in FIG. 1 were dispensed with in the method of FIG.
  • the heat exchanger 7 ' is designed as a plate heat exchanger. It combines the functions of the heat exchangers 7, 22 and 23 of FIG. 1.
  • the control in the method of FIG. 2 is similar to that described for FIG. 1.
  • measuring devices for the flow of gas mixture (30) to be broken down in line 6 and for the pressure of the refrigerant (33) in line 20 are provided.
  • the measured values are converted in a control unit 31 into target values for the cooling requirement.
  • the flow in the refrigerant lines is set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Described is a method of separating higher-boiling hydrocarbons from a gas mixture containing these hydrocarbons plus lower-boiling compounds by fractional distillation. The gas mixture (6) is partially condensed (7) and passed into a separation column (9). A fraction (27) rich in higher-boiling hydrocarbons is drawn off at the bottom of the column (9) and a fraction (10) rich in lower-boiling compounds is drawn off at the head of the column. The head fraction (10) is partially condensed (11). The condensate thus formed is returned to the separation column (9). Both the partial condensation of the gas mixture and that of the head fraction are produced by indirect heat exchange (7, 11) with a refrigerant which is made up of several components and is circulated in an external circuit (18).

Description

Verfahren zum Abtrennen höherer Kohlenwasserstoffe  Process for the separation of higher hydrocarbons
aus einem Gasgemisch  from a gas mixture
Die Erfindung betrifft ein Verfahren zum Abtrennen höherer Kohlenwasserstoffe aus einem diese und leichter siedende Komponenten enthaltenden Gasgemisch durch rektlflkatorIsche Zerlegung, bei dem das Gasgemisch partiell kondensiert und einer Trennsäule zugeleitet wird, an deren Sumpf eine an höheren Kohlenwasserstoffen reiche Fraktion und an deren Kopf eine an leichter siedenden Komponenten reiche Fraktion abgezogen werden, wobei die Kopffrak- tlon teilweise kondensiert und das Kondensat als Rücklauf auf den Kopf der Trennsäule gegeben wird. The invention relates to a method for separating higher hydrocarbons from a gas mixture containing these and lower-boiling components by rectification, in which the gas mixture is partially condensed and fed to a separation column, at the bottom of which a fraction rich in higher hydrocarbons and at the top of which a lighter fraction boiling components rich fraction are withdrawn, the top fraction partially condensed and the condensate is returned to the top of the separation column as reflux.
Ein derartiges Verfahren ist aus der EP-B-0318504 bekannt. Die zur Kondensation von Einsatzgas und Kopffraktion benötigte Kälte wird bei dem bekannten Verfahren zum einen Teil von einem oder mehreren Kältekreisläufen, zum anderen Teil durch arbeitsleistende Entspannung von Einsatz- oder Restgas zur Verfügung gestellt. Die Kältekreisläufe arbeiten bei konstanter Verdampfungstemperatur und verursachen beim Wärmeaustausch mit kondensierendem Einsatz- oder Kopfgasgemisch relativ hohe Temperaturdifferenzen und damit Exergieverluste. Die für die Erzeugung von Spitzenkälte verwendeten Turbinen sind nicht für alle Verfahren geeignet. Insbesondere bei Temperaturschwankungen beispielsweise Infolge nicht-stationärer Prozeßbedingungen weisen sie einen hohen Verschleiß auf. Das vorbekannte Verfahren arbeitet daher wirtschaftlich nicht vollständig zufriedenstellend und ist nur unter Beachtung bestimmter Randbedingungen zuverlässig im Betrieb. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, das wirtschaftlich günstiger arbeitet und gegenüber Randbedingungen flexibler einzusetzen ist und sich Insbesondere auch für relativ stark schwankende Parameter des zu trennenden Gasgemisches eignet. Such a method is known from EP-B-0318504. The cold required for the condensation of feed gas and top fraction is made available in the known method on the one hand by one or more refrigeration circuits and on the other hand by work-related expansion of feed or residual gas. The refrigeration circuits work at constant evaporation temperature and cause relatively high temperature differences and thus exergy losses when exchanging heat with a condensing feed or top gas mixture. The turbines used to generate peak cold are not suitable for all processes. In particular in the case of temperature fluctuations, for example as a result of non-stationary process conditions, they exhibit high wear. The previously known method therefore does not work completely economically satisfactorily and is only reliable in operation if certain boundary conditions are observed. The invention is based on the object of specifying a method of the type mentioned at the outset which works more economically and can be used more flexibly with respect to boundary conditions and is also particularly suitable for relatively strongly fluctuating parameters of the gas mixture to be separated.
Diese Aufgabe wird dadurch gelöst, daß die Kondensation des Gasgemisches und die Kondensation der Kopffraktion durch indirekten Wärmeaustausch mit einem Kältemittel bewirkt werden, das aus mehreren Komponenten besteht und in einem externen Kreislauf geführt wird. This object is achieved in that the condensation of the gas mixture and the condensation of the top fraction are brought about by indirect heat exchange with a refrigerant which consists of several components and is conducted in an external circuit.
Eine solche Verfahrensführung ermöglicht eine gleitende Anpassung der Kältemitteltemperatur an die durch die Zusammensetzung von Einsatzgas und Produkten vorgegebenen Anforderungen. Es ermöglicht beispielsweise gegenüber einer Kältemittel-Kaskade sowohl geringeren apparativen Aufwand als auch geringere Exergieverluste. Auch Spitzenkälte kann mit vertretbarem Aufwand erzeugt werden, so daß das erfindungsgemäße Verfahren auf Entspannungsturbinen verzichten kann. Die mit Turbinen verbundenen Nachteile hinsichtlich der Flexibilität werden vermieden. Such a procedure enables the refrigerant temperature to be adapted in a sliding manner to the requirements specified by the composition of the feed gas and products. Compared to a refrigerant cascade, for example, it enables both less equipment expenditure and less exergy losses. Peak cold can also be generated with reasonable effort, so that the method according to the invention can dispense with expansion turbines. The disadvantages associated with turbines in terms of flexibility are avoided.
Die energetischen Vorteile des erfindungsgemäßen Verfahrens sind überraschenderweise so groß, daß sie die durch den Mehrkomponenten-Kältemittel-Kreislauf verursachten Mehrkosten nicht nur aufwiegen, sondern sich insgesamt eine deutliche Erhöhung der Wirtschaftlichkeit des Verfahrens ergibt. Zusätzlich sind Anwendungsmöglichkeiten des Verfahrens außerordentlich flexibel. The energetic advantages of the method according to the invention are surprisingly so great that they not only outweigh the additional costs caused by the multicomponent refrigerant circuit, but overall result in a significant increase in the economics of the method. In addition, possible uses of the method are extremely flexible.
Die in dem Verfahren eingesetzte Trennsäule wird in der Regel nur als Verstärkungssäule betrieben, das heißt das partiell kondensierte Gasgemisch wird im unteren Bereich der Kolonne eingespeist. The separation column used in the process is generally operated only as a reinforcement column, that is to say the partially condensed gas mixture is fed in in the lower region of the column.
Zur weiteren Verbesserung der Rektifizierwirkung der Trennsäule ist es günstig, wenn der Trennsäule an einer mittleren Stelle eine Zwischenfraktion entnommen, diese in indirektem Wärmeaustausch mit dem Kältemittel mindestens teilweise kondensiert und in die Trennsäule zurückgeleitet wird. Dieser Wärmeaustausch findet bei einer Temperatur statt, die zwischen den Temperaturniveaus der Kondensation des Elnsatzgasgemisches und demjenigen der Kondensation der Kopffraktion liegt. Vorzugswelse werden die entsprechenden Wärmetauscher kältemlttelseitig seriell geschaltet, so daß sich eine optimale Ausnutzung des gleitenden Verdampfungstemperaturverlaufs des Mehrkomponenten-Kältemittels ergibt. Dadurch ist das Verfahren energetisch besonders günstig zu betreiben. Selbstverständlich ist es auch möglich und in vielen Fällen auch vorteilhaft, mehrere solcher Zwischenfraktionen in analoger Weise zu entnehmen und einem indirekten Wärmeaustausch mit dem Kältemittel zuzuführen. To further improve the rectifying effect of the separation column, it is advantageous if an intermediate fraction is removed from the separation column at a central point, this is at least partially condensed in indirect heat exchange with the refrigerant and is returned to the separation column. This heat exchange takes place at a temperature which lies between the temperature levels of the condensation of the feed gas mixture and that of the condensation of the top fraction. The corresponding heat exchangers are preferably connected in series on the refrigerant side, so that optimum use is made of the sliding evaporation temperature profile of the multicomponent refrigerant. As a result, the process is particularly economical to operate. Of course, it is also possible and in many cases also advantageous to remove several such intermediate fractions in an analogous manner and to supply them with an indirect heat exchange with the refrigerant.
Bei dem erfindungsgemäßen Verfahren ist es außerdem vorteilhaft, wenn verdichtetes Kältemittel Innerhalb des externen Kältekreislaufs In eine gasförmige und in eine flüssige Fraktion separiert wird und die gasförmige Fraktion in indirektem Wärmeaustausch mit dem bei der Kondensation der Kopffraktion gasförmig verbliebenen Anteil abgekühlt und dabei kondensiert wird und anschließend zum indirekten Wärmeaustausch mit der Kopffraktion geleitet wird. In the method according to the invention, it is also advantageous if compressed refrigerant is separated into a gaseous and a liquid fraction within the external refrigeration cycle and the gaseous fraction is cooled and indirectly condensed in the indirect heat exchange with the portion remaining in the condensation of the top fraction and then condensed for indirect heat exchange with the top fraction.
Das nach dem Verdichten gasförmig verbliebene Kältemittel wird damit auf besonders günstige Weise zur Übertragung von Spitzenkälte auf die Kopffraktion der Trennsäule ausgenutzt. Die Energiebilanz des Verfahrens wird dadurch weiter verbessert. The refrigerant remaining in gaseous form after compression is thus used in a particularly advantageous manner to transfer peak cold to the top fraction of the separation column. This further improves the energy balance of the process.
Bei dem Wärmeaustausch mit der gasförmig verbliebenen Kopffraktion wird das Kältemittel vorzugweise nicht nur vollständig kondensiert, sondern zusätzlich unterkühlt, um nach seiner Entspannung einen möglichst hohen Anteil in flüssigem Zustand zur Verfügung zu haben. Das nach dem Verdichten flüssig verblieben Kältemittel wird ebenfalls so weit wie möglich unterkühlt. When the heat is exchanged with the gaseous top fraction, the refrigerant is preferably not only completely condensed, but additionally supercooled in order to have as high a proportion as possible in the liquid state after its relaxation. The refrigerant that remains liquid after compression is also supercooled as much as possible.
Stromabwärts des Wärmetauschers zur Rücklauferzeugung kann der gesamte Kältemittelström wieder vereinigt werden. Das Kältemittel wird nach dem Wärmeaustausch mit der Kopffraktion, in der Regel ergänzt durch die nach dem Verdichten flüssig verbliebene Kältemittelfraktion, in Wärmeaustausch mit dem zu zerlegenden Gasgemisch und vorher, falls vorgesehen, in Wärmeaustausch mit der Zwischenfraktion gebracht. Gemäß einer Weiterbildung des Erfindungsgedankens wird das Verfahren mit zeitlich veränderlichem Durchsatz und/oder zeltlich veränderlicher Zusammensetzung des zu trennenden Gasgemisches durchgeführt. Downstream of the heat exchanger for generating the return, the entire refrigerant flow can be combined again. After the heat exchange with the top fraction, usually supplemented by the refrigerant fraction that remains liquid after compression, the refrigerant is brought into heat exchange with the gas mixture to be separated, and beforehand, if provided, into heat exchange with the intermediate fraction. According to a further development of the inventive concept, the method is carried out with a throughput that changes over time and / or a composition of the gas mixture to be separated that changes over time.
Selbstverständlich unterliegt jedes Verfahren zeitlichen Schwankungen, beispielsweise beim An- und Abfahren einer Anlage. Hier sind jedoch Veränderungen mit wesentlich kürzerer Periode, im allgemeinen kleiner als eine Stunde, vorzugsweise im Minutenbereich, gemeint, die beispielsweise Temperaturschwankungen von etwa 3 K/min und/oder 10% Laständerung pro Minute aufweisen. Derartige Abweichungen von stationärem Verhalten können auch durch vorausgehende Verfahrensschritte vorgegeben sein, beispielsweise wenn das in dem vorliegenden Verfahren zu trennende Gasgemisch aus einer periodisch betriebenen Apparatur, etwa umschaltbaren Reaktoren, stammt. Insbesondere bei derartigen Voraussetzungen würde ein Verfahren mit Erzeugung von Spitzenkälte durch Turbinen (z.B. gemäß EP-B-0318 504) zu sehr hohem Verschleiß der Turbinen führen und damit häufigen Stillstand und hohe Kosten für die Anlage, insbesondere durch Produktionsausfall bedeuten. Das erfindungsgemäße Verfahren kann dagegen solche Schwankungen verkraften, weil der verwendete Mehrkomponenten-Kältemittel-Kreislauf keinen derartigen Verschleißerscheinungen unterliegt und trotzdem ähnlich den vorbekannten Verfahren Kälte auf verschiedenen Temperaturniveaus zur Verfügung stellen kann. Of course, each process is subject to fluctuations in time, for example when starting and stopping a system. However, changes with a much shorter period, generally less than an hour, preferably in the minute range, are meant here, which for example have temperature fluctuations of approximately 3 K / min and / or 10% load change per minute. Such deviations from stationary behavior can also be predetermined by preceding method steps, for example if the gas mixture to be separated in the present method comes from a periodically operated apparatus, for example switchable reactors. In such conditions in particular, a process with the generation of peak cooling by turbines (e.g. according to EP-B-0318 504) would lead to very high wear on the turbines and would therefore mean frequent downtime and high costs for the system, in particular due to production downtime. The method according to the invention, on the other hand, can cope with such fluctuations because the multi-component refrigerant circuit used is not subject to such signs of wear and yet, similar to the previously known methods, can provide cold at different temperature levels.
Im Falle einer derartig nicht-stationären Durchführung des Verfahrens mit relativ kurzen Perioden stoßen herkömmliche Regel verfahren häufig an ihre Grenzen, da sie zu träge reagieren. Gemäß einer Weiterbildung des erfindungsgemäßen Verfahrens ist daher vorgesehen, daß der Durchsatz und/oder die Zusammensetzung des zu trennenden Gasgemisches gemessen und der Durchsatz an Kältemittel in den verschiedenen Kondensationsstufen in Abhängigkeit von diesem Meßwert eingestellt wird. Die notwendigen Anpassungen am Kältehaushalt werden also nicht durch eine Regelung, sondern durch eine Steuerung vorgenommen. Dabei müssen bestimmte Parameter in die Berechnung der Stellgrößen eingehen, die nur teilweise durch theoretische Betrachtungen im voraus bestimmt werden können. Darüber hinaus sind Erfahrungswerte notwendig, die bei der ersten Inbetriebnahme einer Anlage vom Bedienungspersonal ermittelt werden müssen. Da die Schwankungen in Durchsatz und/oder Zusammensetzung des zu trennenden Gasgemisches in der Regel periodisch sind, können derartige Werte durch Versuche ermittelt und anschließend fest vorgegeben werden. Denkbar sind auch selbstlernende Systeme, die solche Parameter automatisch und auch während des laufenden Betriebs optimieren. In the case of such a non-stationary implementation of the method with relatively short periods, conventional rule methods often reach their limits because they react too sluggishly. According to a development of the method according to the invention, it is therefore provided that the throughput and / or the composition of the gas mixture to be separated is measured and the throughput of refrigerant in the various condensation stages is set as a function of this measured value. The necessary adjustments to the refrigeration budget are therefore not made by a regulation, but by a controller. Certain parameters must be included in the calculation of the manipulated variables, which can only be partially determined in advance by theoretical considerations. In addition, empirical values are necessary, which must be determined by the operating personnel when a system is started up for the first time. Since the fluctuations in throughput and / or composition of the gas mixture to be separated are generally periodic, such values can be determined by tests and then predefined. Self-learning systems are also conceivable that optimize such parameters automatically and also during ongoing operation.
Bei relativ kurzzeitigen Schwankungen der Zusammensetzungen der Einsatz-, Zwischenprodukt- und Produktströme, die entweder indirekt über unterschiedlich hohe Durchsätze oder direkt über entsprechend anfallendes Einsatzgas entstehen, ergibt sich bei den bisher bekannten gattungsgemäßen Verfahren ein weiteres Problem. Die üblicherweise verwendeten Aluminium-Plattenwärmetauscher halten nämlich den resultierenden häufigen und kurzzeitigen Temperaturschwankungen und dadurch induzierten mechanischen Spannungen in der Regel nur sehr kurze Zelt stand. Auch gewickelte Wärmeaustauscher mit Aluminiumrohren, deren Aufbau für die Kompensation von thermischen Längenänderungen besser geeignet Ist, können mit der Zeit undicht werden. In the case of relatively short-term fluctuations in the compositions of the feed, intermediate and product streams, which arise either indirectly through differently high throughputs or directly via corresponding feed gas, a further problem arises in the previously known generic processes. The commonly used aluminum plate heat exchangers usually only withstand the resulting frequent and short-term temperature fluctuations and the mechanical stresses induced thereby for only a very short time. Even wound heat exchangers with aluminum tubes, the structure of which is better suited to compensating for thermal changes in length, can leak over time.
Gemäß einem weiteren Aspekt der Erfindung werden deshalb vorzugsweise für den Indirekten Wärmeaustausch zwischen der Kopffraktion und dem Kältemittel Wärmetauscher verwendet, die aus einem Material mit hoher Langzeitstabilität gegen mechanische Spannungen hergestellt sind. Dabei wird bevorzugt Edelstahl eingesetzt. Günstig ist eine Ausführung des Wärmetauschers in gewickelter Bauweise, also mit schraubenförmig auf konzentrischen Zylinderflächen angeordneten Rohren. In ähnlicher Weise ist es vorteilhaft, für den Indirekten Wärmeaustaus zwischen dem bei der Kondensation der Kopffraktion gasförmig verblieben Anteil und der gasförmigen Fraktion des Kältemittels und/oder für den Indirekten Wärmeaustausch (7) zwischen zu zerlegendem Gasgemisch (6) und Kältemittel und/oder für den Indirekten Wärmeaustausch (24) zwischen der Zwischenfraktion (28) und dem Kältemittel jeweils einen Wärmetauscher zu verwenden, der aus einem Material mit hoher LangzeltstabiHtät gegen mechanische Spannungen hergestellt ist. According to a further aspect of the invention, heat exchangers are therefore preferably used for the indirect heat exchange between the top fraction and the refrigerant, which are made of a material with high long-term stability against mechanical stresses. Stainless steel is preferred. It is expedient to design the heat exchanger in a wound construction, that is to say with tubes arranged in a helical manner on concentric cylinder surfaces. Similarly, it is advantageous for the indirect heat exchange between the portion remaining gaseous in the condensation of the top fraction and the gaseous fraction of the refrigerant and / or for the indirect heat exchange (7) between the gas mixture (6) and refrigerant to be separated and / or for the indirect heat exchange (24) between the intermediate fraction (28) and the refrigerant to use a heat exchanger, which is made of a material with high long-term stability against mechanical stress.
Gemäß einer Variante der Erfindung kann für den indirekten Wärmeaustausch (7') zwischen zu zerlegendem Gasgemisch (6) und Kältemittel ein Plattenwär- metauscher, Insbesondere ein Aluminium-Plattenwärmetauscher verwendet werden. According to a variant of the invention, a plate heat exchanger, in particular an aluminum plate heat exchanger, can be used for the indirect heat exchange (7 ') between the gas mixture (6) to be separated and the refrigerant.
Die Erfindung sowie weitere Einzelheiten der Erfindung werden nun anhand zweier Ausführungsbeispiele näher erläutert, die in den Zeichnungen als Verfahrensschemata dargestellt sind. Sie betreffen eine Anwendung des erfindungsgemäßen Verfahrens, in der dessen Vorzüge besonders stark zur Geltung kommen, nämlich die Aufarbeitung eines Produktgases aus eine C3- oder C4-Dehydrierung. Ein derartiges Gas enthält außer den höheren Kohlenwasserstoffen leichter flüchtige Anteile, vor allem Wasserstoff, aber auch geringere Anteile an Wasser, Kohlenmonoxld, Kohlendioxid, Stickstoff, C2 -Kohlenwasserstoffen usw. Die Verfahrensschritte der Erfindung dienen zur Abtrennung der unerwünschten leichteren Komponenten, die Voraussetzung ist für die weitere Verarbeitung der C3- beziehungsweise C4-Bestandteile. The invention and further details of the invention will now be explained in more detail using two exemplary embodiments, which are shown in the drawings as process diagrams. They relate to an application of the process according to the invention in which its advantages are particularly effective, namely the work-up of a product gas from a C 3 or C 4 dehydrogenation. In addition to the higher hydrocarbons, such a gas contains more volatile components, especially hydrogen, but also smaller amounts of water, carbon monoxide, carbon dioxide, nitrogen, C 2 -hydrocarbons, etc. The process steps of the invention serve to separate the undesired lighter components, which is a prerequisite for further processing of the C 3 or C 4 components.
Das Dehydrier-Produktgas wird beim Verfahren von Figur 1 über Leitung 1 herangeführt und zunächst einer Vorbehandlung unterzogen. Nach eine Abkühlung mit Hilfe einer externen Kälteanlage in einem Wärmetauscher 2 un einer nachfolgenden Phasentrennung in einem Abscheider 3 wird der gasförmig verbliebene Anteil in einem HCl-Reaktor 4 von Chlorspuren befreit und getrocknet (5). Das vorgereinigte Gas in Leitung 6 stellt nun das zu trennende Gasgemisch für das Verfahren gemäß der Erfindung dar und wird hier auch als Einsatzgas bezeichnet. Es enthält beispielsweise 30 bis 70% leichter flüchtige Bestandteile, die abgetrennt werden sollen. (Die Prozentangaben beziehen sich hier und im folgenden grundsätzlich auf die molaren Anteile.) Das Einsatzgas in Leitung 6 wird in Wärmetauscher 7 abgekühlt und partiell (zu 5 bis 40%, vorzugsweise 10 bis 30%) kondensiert und über Leitung 8 oberhalb des Sumpfes in eine Trennsäule 9 eingespeist. Am Boden der Trennsäule fallen die gewünschten höheren Kohlenwasserstoffe als Sumpfprodukt an, werden über Leitung 27 abgezogen und in Wärmetauscher 23 angewärmt. Zusammen mit den bereits bei der Vorbehandlung auskondensierten schwerersie- denden Komponenten aus Abscheider 3 werden sie über Leitung 32 der weiteren Behandlung, beispielsweise einem Depropanizer, zugeführt. In the process of FIG. 1, the dehydrogenation product gas is introduced via line 1 and is initially subjected to a pretreatment. After cooling with the help of an external refrigeration system in a heat exchanger 2 and a subsequent phase separation in a separator 3, the gaseous portion in a HCl reactor 4 is freed of traces of chlorine and dried (5). The pre-cleaned gas in line 6 now represents the gas mixture to be separated for the process according to the invention and is also referred to here as feed gas. For example, it contains 30 to 70% more volatile constituents that are to be separated off. (The percentages here and in the following basically refer to the molar proportions.) The feed gas in line 6 is cooled in heat exchanger 7 and partially (5 to 40%, preferably 10 to 30%) condensed and fed into a separation column 9 via line 8 above the sump. At the bottom of the separation column, the desired higher hydrocarbons are obtained as bottom product, are drawn off via line 27 and heated in heat exchanger 23. Together with the heavy-boiling components from separator 3 which have already been condensed out during the pretreatment, they are fed via line 32 for further treatment, for example a depropanizer.
Leitung 10 führt die Kopffraktion der Trennsäule zu einem Wärmetauscher 11, in dem die Fraktion partiell kondensiert wird. Das Zwei-Phasen-Gemisch wird über Leitung 12 in einen Abscheider 13 geführt, der in die Trennsäule integriert ist. Es könnte jedoch ebenso eine als separates Bauteil ausge- führte Phasentrenneinrichtung verwendet werden. Die Flüssigkeit aus dem Abscheider fließt als Rücklauf in die Trennsäule; der gasförmig verbliebene Anteil der Kopffraktion wird über eine Restgasleitung 14 abgeführt und in Wärmetauscher 15 auf etwa Umgebungstemperatur angewärmt. Dieses Gas kann teilweise oder ganz über Leitung 17 einer Verdichtereinheit und anschließend einer weiteren Aufarbeitung, etwa 1n einer Druckwechsel-Adsorption, zugeführt werden. Alternativ oder parallel dazu wird Restgas entweder über Leitung 16 entfernt und beispielsweise als Brenngas oder zu Regenerierung des Trockners 5 eingesetzt. Line 10 leads the top fraction of the separation column to a heat exchanger 11, in which the fraction is partially condensed. The two-phase mixture is fed via line 12 into a separator 13, which is integrated in the separation column. However, a phase separation device designed as a separate component could also be used. The liquid from the separator flows back into the separation column; the gaseous fraction of the top fraction is discharged via a residual gas line 14 and heated to approximately ambient temperature in heat exchanger 15. This gas can be supplied partially or entirely via line 17 to a compressor unit and then to a further workup, for example in a pressure swing adsorption. Alternatively or in parallel, residual gas is either removed via line 16 and used, for example, as fuel gas or to regenerate the dryer 5.
Erfindungsgemäß wird die für die Kondensation von Einsatzgas (Wärmetauscher 7) und Kopffraktion (Wärmetauscher 11) benötigte Kälte durch einen Mehrkom- ponenten-Kältemittel-Kreislauf 18 erzeugt, in dem in bekannter Welse ein Kältemittel verdichtet und teilweise verflüssigt wird. Das Kältemittel enthält beispielsweise C2H4, C2H6, Iso-C4H10 und etwas CH4 Die genaue Zusammensetzung wird in Abhängigkeit von dem Verlauf der jeweiligen Verdampfungskurven festgelegt. Hier ist eine genaue Anpassung an die Verdampfungseigenschaften von Einsatz- und Zwischenproduktströmen bei deren jeweiliger speziellen Zusammensetzung möglich. Verdichtetes Kältemittel wird als Zwei-Phasen-Gemisch in einen Kältemittel- abscheider 19 eingeleitet. Der gasförmige Anteil (Leitung 20) wird zur Rückgewinnung von Spitzenkälte in Indirektem Wärmeaustausch 15 mit dem gasförmig verbliebenen Anteil 14 der Kopffraktion kondensiert und unter- kühlt. Die Temperatur des Kältemi ttel Stroms sollte möglichst so niedrig sein, daß auch beim nachfolgenden Entspannen in Drosselventil 25 sämtliches Kältemittel flüssig bleibt. Dadurch kann beim anschließenden Wärmeaustausch 11 mit der Kopffraktion 10 ein maximaler Betrag an latenter Wärme umgesetzt werden. According to the invention, the cold required for the condensation of feed gas (heat exchanger 7) and top fraction (heat exchanger 11) is generated by a multi-component refrigerant circuit 18, in which a refrigerant is compressed and partially liquefied in known catfish. The refrigerant contains, for example, C 2 H 4 , C 2 H 6 , iso-C 4 H 10 and some CH 4. The exact composition is determined depending on the course of the respective evaporation curves. Here, an exact adaptation to the evaporation properties of feed and intermediate product streams with their respective special composition is possible. Compressed refrigerant is introduced into a refrigerant separator 19 as a two-phase mixture. The gaseous portion (line 20) is condensed to recover peak cold in indirect heat exchange 15 with the gaseous portion 14 of the top fraction and supercooled. The temperature of the Kältemi ttel stream should be as low as possible that all refrigerant remains liquid even in the subsequent relaxation in throttle valve 25. As a result, a maximum amount of latent heat can be converted during the subsequent heat exchange 11 with the top fraction 10.
Der flüssig verbliebene Anteil 21 an Kältemittel aus dem Kältemittelabschei- der 19 wird ebenfalls unterkühlt, und zwar in Wärmetauscher 22 gegen unter niedrigem Druck stehendes Kältemittel und in Wärmetauscher 23 gegen den C3+-/C4+ -Produktstrom 27 aus dem Sumpf der Trennsäule 9 und nochmals gegen Niederdruck-Kältemittel. Ein erster Teil der unterkühlten Flüssigkeit wird im Drosselventil 26a entspannt, mit dem im Abscheider 19 gasförmig verbliebenen Kältemittelanteil vereinigt, In den Wärmetauschern 24, 7 und 22 angewärmt und erneut verdichtet. Ein zweiter Teil wird in 26b entspannt, im unteren Teil des Wärmetauschers 23 angewärmt und anschließend stromaufwärts des Wärmetauschers 7 mit dem übrigen Niederdruck-Kältemittel vereinigt. The liquid portion 21 of refrigerant from the refrigerant separator 19 is also subcooled, namely in heat exchanger 22 against low-pressure refrigerant and in heat exchanger 23 against the C 3+ / C 4+ product stream 27 from the bottom of the separation column 9 and again against low pressure refrigerant. A first part of the supercooled liquid is expanded in the throttle valve 26a, combined with the refrigerant portion remaining in gaseous form in the separator 19, warmed in the heat exchangers 24, 7 and 22 and compressed again. A second part is expanded in 26b, heated in the lower part of the heat exchanger 23 and then combined upstream of the heat exchanger 7 with the remaining low-pressure refrigerant.
Zur weiteren Verbesserung der Energiebilanz des Verfahrens wird bei dem Ausführungsbeispiel eine Zwischenfraktion 28 aus der Trennsäule 9 herausgeführt, in Wärmetausch 24 mit Kältemittel partiell kondensiert und über Leitung 29 In die Trennsäule 9 zurückgespeist. Analog können auch mehrere solcher Zwischenfraktionen an verschiedenen Stellen zur partiellen Kondensation entnommen werden. Dies muß im Einzelfall anhand der Abwägung zwischen höherem apparativem Aufwand einerseits und verringerten Exergieverlusten andererseits entschieden werden. To further improve the energy balance of the method, an intermediate fraction 28 is led out of the separation column 9 in the exemplary embodiment, partially condensed in a heat exchange 24 with refrigerant and fed back into the separation column 9 via line 29. Similarly, several such intermediate fractions can be removed at different points for partial condensation. In individual cases, this must be decided on the basis of the trade-off between higher expenditure on equipment on the one hand and reduced exergy losses on the other.
Die in dem Ausführungsbeispiel benötigten Wärmetauscher werden bevorzugt als gewickelte Apparate mit Rohren aus Edelstahl realisiert. Gemäß einem Aspekt der Erfindung arbeitet das Verfahren mit einer Steuervorrichtung anstelle einer ansonsten üblichen Regeleinrichtung. Dazu wird der Durchfluß an zu zerlegendem Gasgemisch in Leitung 6 gemessen (30). Aus diesem Meßwert werden in einer Steuereinheit 31 mit Hilfe von zusätzlichen Parametern, die teils theoretisch errechnet wurden, teils auf Erfahrungen beruhen, Sollwerte für den Kältebedarf ermittelt und danach der Durchfluß in den Kältemittel leitungen eingestellt. Diese Manipulation findet durch Ansteuerung der Entspannungsventile 25, 26a, 26b statt. The heat exchangers required in the exemplary embodiment are preferably implemented as wound apparatuses with stainless steel tubes. According to one aspect of the invention, the method works with a control device instead of an otherwise conventional regulating device. For this purpose, the flow of gas mixture to be separated is measured in line 6 (30). From this measured value in a control unit 31 with the help of additional parameters, which were partly calculated theoretically, partly based on experience, setpoints for the cooling requirement are determined and then the flow rate in the refrigerant lines is set. This manipulation takes place by activating the expansion valves 25, 26a, 26b.
Das folgende Zahlenbeispiel bezieht sich auf die Abtrennung von C4-Kohlen- wasserstoffen aus dem Produktgas einer C4-Dehydrierung. Wegen des diskontinuierlichen Betriebs der Dehydrier-Reaktoren schwanken Durchsatz und Zusammensetzung des Produktgases mit einer etwa vierminütigen Perlode. Für jede Größe sind zwei Werte angegeben: links für die Phase maximalen Durchsatzes an zu zerlegendem Gasgesmlsch (612 mol/s durch Leitung 6) und damit verbundenen geringeren relativen, aber höheren absoluten Wasserstoff- anteils (etwa 55%, entspricht 334 mol/s); rechts für minimalen Durchsatz (423 mol/s) und höheren relativen, aber niedrigeren absoluten Wasserstoffge- halt (etwa 64%, entspricht 275 mol/s). The following numerical example relates to the separation of C 4 hydrocarbons from the product gas of a C 4 dehydrogenation. Due to the discontinuous operation of the dehydrogenation reactors, the throughput and composition of the product gas fluctuate with an approximately four-minute period. Two values are given for each size: left for the phase of maximum throughput of gas mixture to be broken down (612 mol / s through line 6) and the associated lower relative but higher absolute hydrogen content (approx. 55%, corresponds to 334 mol / s) ; right for minimum throughput (423 mol / s) and higher relative but lower absolute hydrogen content (approx. 64%, corresponds to 275 mol / s).
Die verschiedenen Ströme, für die in der Tabelle Daten angegeben sind, werden durch Großbuchstaben A bis G gekennzeichnet. Sie bedeuten im einzelnen: The different streams for which data are given in the table are identified by capital letters A to G. They mean in particular:
A Einsatzgas vor der partiellen Kondensation (Leitung 6) A feed gas before partial condensation (line 6)
B Einsatzgas nach der partiellen Kondensation (Leitung 8)  B feed gas after partial condensation (line 8)
C Sumpfprodukt (Leitung 27)  C bottom product (line 27)
D Kopffraktion vor der partiellen Kondensation (Leitung 10)  D head fraction before partial condensation (line 10)
E Kopffraktion nach der partiellen Kondensation (Leitung 12)  E head fraction after partial condensation (line 12)
F Zwischenfraktion vor der partiellen Kondensation (Leitung 28)  F intermediate fraction before partial condensation (line 28)
G Zwischenfraktion nach der partiellen Kondensation (Leitung 29)  G intermediate fraction after partial condensation (line 29)
Das Kältemittel weist in dieser speziellen Anwendung folgende molare Zusammensetzung auf: CH4 2% In this special application, the refrigerant has the following molar composition: CH 4 2%
C2H4 20%C 2 H 4 20%
C2H6 25%C 2 H 6 25%
Iso-C4H10 53% Iso-C 4 H 10 53%
Das Schema von Figur 2 zeigt ein weiteres Ausführungsbeispiel des erfin- dungsgemäßen Verfahrens, das ebenfalls vorzugsweise zur Aufarbeitung eines Produktgases aus einer C3- oder C4-Dehydrierung eingesetzt wird. Einander entsprechende Verfahrensschritte und Vorrichtungen tragen in beiden Zeichnungen die gleichen Bezugszeichen. The diagram in FIG. 2 shows a further exemplary embodiment of the process according to the invention, which is also preferably used for working up a product gas from a C 3 or C 4 dehydrogenation. Corresponding method steps and devices have the same reference symbols in both drawings.
Dehydrier-Produktgas wird über Leitung 1 herangeführt und einer ähnlichen Vorbehandlung wie beim Verfahren von Figur 1 unterzogen (Abkühlung mittels externer Kälte in Wärmetauscher 2, Phasentrennung in Abscheider 3, Chlorentfernung in HCl-Reaktor 4, Trocknung 5). Das Einsatzgas in Leitung 6 wird Wärmetauscher 7' abgekühlt und partiell kondensiert. Das Zwei-Phasengemisch wird über Leitung 8 oberhalb des Sumpfes der Trennsäule 9 zugespeist. Am Boden der Trennsäule fallen die gewünschten höheren Kohlenwasserstoffe als Sumpfprodukt an, werden über Leitung 27 abgezogen und im Wärmetauscher 7' angewärmt. Sie werden hier getrennt von den bereits bei der Vorbehandlung auskondensierten schwerersiedenden Komponenten aus Abscheider 3 abgeführt. Dehydrogenation product gas is fed in via line 1 and subjected to a pretreatment similar to that of the method in FIG. 1 (cooling by means of external cooling in heat exchanger 2, phase separation in separator 3, chlorine removal in HCl reactor 4, drying 5). The feed gas in line 6 is cooled by heat exchanger 7 'and partially condensed. The two-phase mixture is fed via line 8 above the bottom of the separation column 9. At the bottom of the separation column, the desired higher hydrocarbons are obtained as the bottom product, are drawn off via line 27 and heated in the heat exchanger 7 '. They are discharged from separator 3 separately from the high-boiling components that have already condensed out during the pretreatment.
Leitung 10 führt die Kopffraktion der Trennsäule zu einem Wärmetauscher 11, in dem die Fraktion partiell kondensiert wird. Das Zwei-Phasen-Gemisch wird über Leitung 12 in einen im oberen Bereich der Trennsäule angeordneten Abscheider 13 geführt. Der gasförmig verbliebene Anteil der Kopffraktion wird über eine Restgasleitung 14 abgeführt und in Wärmetauscher 15 auf etwa Umgebungstemperatur angewärmt. Dieses Gas kann über Leitung 16 (beispiels- weise zur Regenerierung des Trockners 5) und/oder über Leitung 17 abgezogen werden. Line 10 leads the top fraction of the separation column to a heat exchanger 11, in which the fraction is partially condensed. The two-phase mixture is fed via line 12 into a separator 13 arranged in the upper region of the separation column. The gaseous fraction of the top fraction is discharged via a residual gas line 14 and heated to approximately ambient temperature in heat exchanger 15. This gas can be drawn off via line 16 (for example to regenerate the dryer 5) and / or via line 17.
Gemäß der Erfindung wird die für die Kondensation von Einsatzgas (Wärmetau- scher 7') und Kopffraktion (Wärmetauscher 11) benötigte Kälte ähnlich wie im Verfahren von Figur 1 durch einen Mehrkomponenten-Kältemittel-Kreislauf 18 erzeugt. According to the invention, the cold required for the condensation of feed gas (heat exchanger 7 ') and top fraction (heat exchanger 11) is generated by a multi-component refrigerant circuit 18 in a manner similar to that in the method of FIG.
Der gasförmige Anteil des in Kältemittelabscheider 19 eingeleiteten verdichteten Kältemittels (Leitung 20) wird zur Rückgewinnung von Spitzenkälte in indirektem Wärmeaustausch 15 mit dem gasförmig verbliebenen Anteil 14 der Kopffraktion kondensiert und unterkühlt, anschließend in Drosselventil 25 entspannt, und in indirekten Wärmeaustausch 11 mit der Kopffraktion 10 aus der Trennsäule 9 gebracht. Der verflüssigte Anteil 21 an Kältemittel aus dem Kältemittelabscheider 19 wird in Wärmetauscher 7' unterkühlt. Die unterkühlte Flüssigkeit wir imThe gaseous portion of the compressed refrigerant (line 20) introduced into the refrigerant separator 19 is condensed and recovered in indirect heat exchange 15 with the portion 14 of the top fraction remaining in gaseous form, and then expanded in throttle valve 25, and in indirect heat exchange 11 with the top fraction 10 in order to recover peak cold brought from the separation column 9. The liquefied portion 21 of refrigerant from the refrigerant separator 19 is subcooled in the heat exchanger 7 '. The supercooled liquid is in the
Drosselventil 26 entspannt, mit dem im Abscheider 19 gasförmig verbliebenenThrottle valve 26 relaxes, with the gas remaining in the separator 19
Kältemittelanteil vereinigt, 1m Wärmetauscher 7' angewärmt und vollständig verdampft und anschließend erneut verdichtet. Refrigerant portion combined, warmed in 1m heat exchanger 7 'and completely evaporated and then compressed again.
Um die Investlonskosten der Anlage zu verringern wurde beim Verfahren von Figur 2 auf die In Figur 1 dargestellten Zwischenkühlungsschritte verzichtet. Der Wärmetauscher 7' Ist bei dieser Variante als Plattenwärmeaustau- scher ausgeführt. Er vereinigt die Funktionen der Wärmeaustauscher 7, 22 und 23 der Figur 1. In order to reduce the investment costs of the plant, the intermediate cooling steps shown in FIG. 1 were dispensed with in the method of FIG. In this variant, the heat exchanger 7 'is designed as a plate heat exchanger. It combines the functions of the heat exchangers 7, 22 and 23 of FIG. 1.
Die Steuerung bei dem Verfahren von Figur 2 läuft ähnlich wie oben bei Fi gur 1 beschrieben ab. Dazu sind Meßvorrichtungen für den Durchfluß an zu zerlegendem Gasgemisch (30) in Leitung 6 und für den Druck des Kältemittels (33) in Leitung 20 vorgesehen. Die Meßwerte werden in einer Steuereinheit 31 in Sollwerte für den Kältebedarf umgewandelt. Danach wird der Durchfluß in den Kältemittelleitungen (Entspannungsventile 25, 26) eingestellt. The control in the method of FIG. 2 is similar to that described for FIG. 1. For this purpose, measuring devices for the flow of gas mixture (30) to be broken down in line 6 and for the pressure of the refrigerant (33) in line 20 are provided. The measured values are converted in a control unit 31 into target values for the cooling requirement. Then the flow in the refrigerant lines (expansion valves 25, 26) is set.
Die Zahlenbeispiele aus der obigen Tabelle sind auch für die Variante nach Figur 2 gültig. Der Verzicht auf die Zwischenkühlung (Wärmetauscher 24 von Figur 1) bewirkt in den Parametern der übrigen Ströme nur geringfügige Änderungen. The numerical examples from the table above are also valid for the variant according to FIG. 2. Dispensing with intermediate cooling (heat exchanger 24 from FIG. 1) causes only minor changes in the parameters of the other flows.

Claims

Patentansprüche Claims
1. Verfahren zum Abtrennen höherer Kohlenwasserstoffe aus einem diese und leichter siedende Komponenten enthaltenden Gasgemisch durch rektifikatorische Zerlegung, bei dem das Gasgemisch (6) partiell kondensiert (7; 7') und einer Trennsäule (9) zugeleitet wird, an deren Sumpf eine an höheren Kohlenwasserstoffen reiche Fraktion (27) und an deren Kopf eine an leichter siedenden Komponenten reiche Fraktion (10) abgezogen werden, wobei die Kopffraktion (10) teilweise kondensiert (11) und das Kondensat als Rücklauf auf den Kopf der Trennsäule (9) gegeben wird, dadurch gekennzeichnet, daß die Kondensation (7; 7') des Gasgemisches (6) und die Kondensation (11) der Kopffraktion (10) durch Indirekten Wärmeaus- tausch mit einem Kältemittel bewirkt werden, das aus mehreren Komponen- ten besteht und in einem externen Kreislauf (18) geführt wird. 1. A process for separating higher hydrocarbons from a gas mixture containing these and lower-boiling components by rectification, in which the gas mixture (6) is partially condensed (7; 7 ') and fed to a separation column (9), at the bottom of which a higher Hydrocarbons-rich fraction (27) and a fraction (10) rich in lower-boiling components are drawn off from the top thereof, the top fraction (10) being partially condensed (11) and the condensate being fed back to the top of the separation column (9), characterized in that the condensation (7; 7 ') of the gas mixture (6) and the condensation (11) of the top fraction (10) are effected by indirect heat exchange with a refrigerant which consists of several components and in an external one Circuit (18) is performed.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Trennsäule (9) an einer mittleren Stelle eine Zwischenfraktion entnommen , di ese i n i ndi rektem Wärmeaustausch mi t dem Käl temi ttel mi ndestens teilweise kondensiert und in die Trennsäule (9) zurückgeleitet (29) wird. 2. The method according to claim 1, characterized in that the separation column (9) at an intermediate point, an intermediate fraction removed, di ese ini ndi direct heat exchange with the Käl temi ttel mi at least partially condensed and returned to the separation column (9) ) becomes.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß verdichtetes Kältemittel Innerhalb des externen Kältekreislaufs (18) in eine gasförmige (20) und in eine flüssige (21) Fraktion separiert (19) wird und daß die gasförmige Fraktion (20) in indirektem Wärmeaustausch mit dem bei der Kondensation der Kopffraktion gasförmig verbliebenen Anteil (14) abgekühlt und dabei kondensiert wird und anschließend zum Indirekten Wärmeaustausch (11) mit der Kopffraktion (10) geleitet wird. 3. The method according to claim 1 or 2, characterized in that compressed refrigerant within the external refrigeration circuit (18) in a gaseous (20) and in a liquid (21) fraction is separated (19) and that the gaseous fraction (20) in indirect heat exchange with the portion (14) remaining in gaseous form during the condensation of the top fraction is cooled and condensed in the process and is then conducted to the indirect heat exchange (11) with the top fraction (10).
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Verfahren mit zeitlich veränderlichem Durchsatz und/oder zeitlich veränderlicher Zusammensetzung des zu trennenden Gasgemisches (6) durchgeführt wird. 4. The method according to any one of claims 1 to 3, characterized in that the method is carried out with time-varying throughput and / or time-varying composition of the gas mixture to be separated (6).
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Durchsatz und/oder die Zusammensetzung des zu trennenden Gasgemisches (6) gemessen (30) und der Durchsatz an Kältemittel in den verschiedenen Kondensationsstufen (7; 7', 11, 15, 24) in Abhängigkeit von diesem Meßwert eingestellt (25, 26; 26a, 26b) wird. 5. The method according to claim 4, characterized in that the throughput and / or the composition of the gas mixture to be separated (6 ) measured (30) and the throughput of refrigerant in the various condensation stages (7; 7 ', 11, 15, 24) depending on this measured value is set (25, 26; 26a, 26b).
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß für den Indirekten Wärmeaustausch (11) zwischen Kopffraktion (10) und Kältemittel ein Wärmetauscher verwendet wird, der aus einem Material mit hoher Langzeitstabilität gegen mechanische Spannungen hergestellt ist. 6. The method according to any one of claims 1 to 5, characterized in that a heat exchanger is used for the indirect heat exchange (11) between the top fraction (10) and refrigerant, which is made of a material with high long-term stability against mechanical stresses.
7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß für den indirekten Wärmeaustausch (15) zwischen dem bei der Kondensation der Kopffraktion gasförmig verbliebenen Anteil (14) und der gasförmigen Fraktion (20) des Kältemittels ein Wärmetauscher verwendet wird, der aus einem Material mit hoher Langzeitstabilität gegen mechanische Spannungen hergestellt ist. 7. The method according to any one of claims 3 to 6, characterized in that a heat exchanger is used for the indirect heat exchange (15) between the portion remaining in gaseous form in the condensation of the top fraction (14) and the gaseous fraction (20) of the refrigerant, which is made of a material with high long-term stability against mechanical stress.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß für den indirekten Wärmeaustausch (7) zwischen zu zerlegendem Gasgemisch (6) und Kältemittel ein Wärmetauscher verwendet wird, der aus einem Material mit hoher Langzeitstabllität gegen mechanische Spannungen hergestellt ist. 8. The method according to any one of claims 1 to 7, characterized in that a heat exchanger is used for the indirect heat exchange (7) between the gas mixture to be dismantled (6) and refrigerant, which is made of a material with high long-term stability against mechanical stresses.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß für den Indirekten Wärmeaustausch (7') zwischen zu zerlegendem Gasgemisch (6) und Kältemittel ein Plattenwärmetauscher verwendet wird. 9. The method according to any one of claims 1 to 8, characterized in that a plate heat exchanger is used for the indirect heat exchange (7 ') between the gas mixture to be dismantled (6) and the refrigerant.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß für den indirekten Wärmeaustausch (7') zwischen zu zerlegendem Gasgemisch (6) und Kältemittel ein Alumlnium-Plattenwärmetauscher verwendet wird. 10. The method according to claim 9, characterized in that an aluminum plate heat exchanger is used for the indirect heat exchange (7 ') between the gas mixture to be dismantled (6) and the refrigerant.
11. Verfahren nach einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, daß für den Indirekten Wärmeaustausch (24) zwischen der Zwischenfraktion (28) und dem Kältemittel ein Wärmetauscher verwendet wird, der aus einem Material mit hoher Langzeitstabilität gegen mechanische Spannungen hergestellt ist. 11. The method according to any one of claims 2 to 10, characterized in that a heat exchanger is used for the indirect heat exchange (24) between the intermediate fraction (28) and the refrigerant, which is made of a material with high long-term stability against mechanical stresses.
EP92917822A 1991-08-19 1992-08-13 Method of separating higher-boiling hydrocarbons out of a mixture of gases Expired - Lifetime EP0642649B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4127406 1991-08-19
DE4127406A DE4127406A1 (en) 1991-08-19 1991-08-19 METHOD FOR REMOVING HIGHER CARBON HYDROCARBONS FROM A GAS MIXTURE
PCT/EP1992/001857 WO1993004327A1 (en) 1991-08-19 1992-08-13 Method of separating higher-boiling hydrocarbons out of a mixture of gases

Publications (2)

Publication Number Publication Date
EP0642649A1 true EP0642649A1 (en) 1995-03-15
EP0642649B1 EP0642649B1 (en) 1996-01-10

Family

ID=6438620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92917822A Expired - Lifetime EP0642649B1 (en) 1991-08-19 1992-08-13 Method of separating higher-boiling hydrocarbons out of a mixture of gases

Country Status (7)

Country Link
US (1) US5430223A (en)
EP (1) EP0642649B1 (en)
AU (1) AU674288B2 (en)
CA (1) CA2115918A1 (en)
DE (2) DE4127406A1 (en)
ES (1) ES2082494T3 (en)
WO (1) WO1993004327A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4235006A1 (en) * 1992-10-16 1994-04-21 Linde Ag Process for separating a feed stream consisting essentially of hydrogen, methane and C¶3¶ / C¶4¶ hydrocarbons
DE19526225C1 (en) * 1995-07-18 1997-01-02 Linde Ag Refrigerant circuit for cooling fluids
US7082787B2 (en) * 2004-03-09 2006-08-01 Bp Corporation North America Inc. Refrigeration system
US7833339B2 (en) 2006-04-18 2010-11-16 Franklin Industrial Minerals Mineral filler composition
US7651559B2 (en) 2005-11-04 2010-01-26 Franklin Industrial Minerals Mineral composition
JP2009540262A (en) * 2006-06-15 2009-11-19 エルコールド フライシア ホブロ エーピーエス Refrigerant and refrigeration system
RU2576934C1 (en) * 2015-02-24 2016-03-10 Андрей Владиславович Курочкин Fractioning refrigerator-condenser

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455158A (en) * 1983-03-21 1984-06-19 Air Products And Chemicals, Inc. Nitrogen rejection process incorporating a serpentine heat exchanger
US4501600A (en) * 1983-07-15 1985-02-26 Union Carbide Corporation Process to separate nitrogen from natural gas
DE3408760A1 (en) * 1984-03-09 1985-09-12 Linde Ag, 6200 Wiesbaden METHOD FOR DETERMINING C (DOWN ARROW) 3 (DOWN ARROW) (DOWN ARROW) + (DOWN ARROW) HYDROCARBONS
US4714487A (en) * 1986-05-23 1987-12-22 Air Products And Chemicals, Inc. Process for recovery and purification of C3 -C4+ hydrocarbons using segregated phase separation and dephlegmation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9304327A1 *

Also Published As

Publication number Publication date
EP0642649B1 (en) 1996-01-10
AU2429792A (en) 1993-03-16
US5430223A (en) 1995-07-04
CA2115918A1 (en) 1993-03-04
DE4127406A1 (en) 1993-02-25
AU674288B2 (en) 1996-12-19
DE59205048D1 (en) 1996-02-22
WO1993004327A1 (en) 1993-03-04
ES2082494T3 (en) 1996-03-16

Similar Documents

Publication Publication Date Title
DE3146335C2 (en) Process for generating oxygen product gas
EP0399197B1 (en) Process and apparatus for the low temperature separation of air
DE2535132C3 (en) Process and device for the production of pressurized oxygen by two-stage low-temperature rectification of air
DE69214409T2 (en) Process and apparatus for producing impure oxygen
EP2225007A2 (en) Method and device for separating off low-boiling components from hydrocarbon mixtures
WO1997004279A1 (en) Method and device for the production of variable amounts of a pressurized gaseous product
EP0093448A2 (en) Process and apparatus for obtaining gaseous oxygen at elevated pressure
DE69909143T2 (en) Separation of carbon monoxide from nitrogen-contaminated gas mixtures containing hydrogen and methane
DE102007010032A1 (en) Procedure for separating a nitrogen-rich fraction from a liquefied natural gas, comprises supplying the natural gas after its liquefaction and super cooling, to a stripping column that serves the separation of the nitrogen-rich fraction
EP0642649B1 (en) Method of separating higher-boiling hydrocarbons out of a mixture of gases
DE3428968A1 (en) METHOD AND DEVICE FOR DISASSEMBLING ROHARGON
DE2854508A1 (en) Low temp. gas mixt. sepn. process - uses only additionally compressed gas stream in expansion machine
EP0010223B1 (en) Process for decomposing a gas mixture
DE3814187C2 (en) Air separation process by cryogenic rectification
DE3035844A1 (en) Medium-purity oxygen prodn. - uses part of nitrogen current to counter cooling losses and heats remainder
DE2049181B2 (en) Process for generating cold by compressing a mixture of different refrigerants with different boiling points
DE10249383A1 (en) Method and device for the variable generation of oxygen by low-temperature separation of air
DE4441920C1 (en) Method and appliance for obtaining nitrogen by cryogenic separation of air
DE2518557C3 (en) Process for air separation with liquid generation by cryogenic rectification
EP0559117B1 (en) Process and apparatus for separating a gas mixture
EP0775880A2 (en) Double column process and apparatus for cryogenic air separation
DE2608404A1 (en) PROCESS AND DEVICE FOR SEPARATION OF SUBSTANCE MIXTURES BY RECTIFICATION
EP1050728B1 (en) Single column process and device for cryogenic air separation
DE102023000844A1 (en) Process and a system for the cryogenic separation of nitrogen from a feed gas
DE729475C (en) Process for gas separation using an auxiliary material cycle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19950626

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960110

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19960110

Ref country code: FR

Effective date: 19960110

REF Corresponds to:

Ref document number: 59205048

Country of ref document: DE

Date of ref document: 19960222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2082494

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960805

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960830

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960903

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19961003

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 19970831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19980910