EP0639631A1 - Process for preparing syngas - Google Patents
Process for preparing syngas Download PDFInfo
- Publication number
- EP0639631A1 EP0639631A1 EP94112796A EP94112796A EP0639631A1 EP 0639631 A1 EP0639631 A1 EP 0639631A1 EP 94112796 A EP94112796 A EP 94112796A EP 94112796 A EP94112796 A EP 94112796A EP 0639631 A1 EP0639631 A1 EP 0639631A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid
- products
- waste
- gas
- plastic waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000000047 product Substances 0.000 claims abstract description 24
- 239000002699 waste material Substances 0.000 claims abstract description 20
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 11
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 11
- 230000003647 oxidation Effects 0.000 claims abstract description 6
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 6
- 239000012263 liquid product Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 37
- 239000007789 gas Substances 0.000 claims description 30
- 239000013502 plastic waste Substances 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 21
- 230000004992 fission Effects 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000000460 chlorine Substances 0.000 claims description 11
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 11
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 11
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 10
- 229910052801 chlorine Inorganic materials 0.000 claims description 10
- 238000003776 cleavage reaction Methods 0.000 claims description 9
- 230000007017 scission Effects 0.000 claims description 9
- 238000002309 gasification Methods 0.000 claims description 7
- 239000004071 soot Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 3
- 239000007857 degradation product Substances 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 239000004033 plastic Substances 0.000 abstract description 22
- 229920003023 plastic Polymers 0.000 abstract description 22
- 238000005336 cracking Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 239000002956 ash Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000006298 dechlorination reaction Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- URBHJJGWUIXBFJ-UHFFFAOYSA-N [C].[Cl] Chemical class [C].[Cl] URBHJJGWUIXBFJ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000010763 heavy fuel oil Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000009997 thermal pre-treatment Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 150000003658 tungsten compounds Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/10—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
Definitions
- the invention relates to a process for converting plastic waste into synthesis gas, which can be used as a raw material for chemical synthesis.
- Plastic waste can only be disposed of by incineration without special precautionary measures if it is ensured that no pollutants are released into the environment. This requirement is only given in exceptional cases, because they often contain chlorine-containing, but also sulfur- or nitrogen-containing components, as well as heavy metals, which lead to undesired combustion products during combustion. Dust removal and flue gas scrubbing, if necessary special combustion devices, are then indispensable. Conveying and dosing problems can also occur if the waste contains non-flammable and non-melting foreign substances. In addition, economic reasons speak against burning high-quality finishing products of petrochemical raw materials such as their raw materials, namely petroleum and petroleum products.
- a gasoline-kerosene mixture is obtained by degrading polyethylene at 400 to 450 ° C (CA Vol. 76, 1972, 158024 q). This process can also be carried out in the presence of nickel catalysts (Chem. Ind. XXIII, 1971, 630).
- the splitting of carbon-containing organic waste Synthetic or predominantly synthetic origin takes place according to the process of EP-A-291 698 under hydrogenating conditions and results predominantly in hydrocarbon fractions in the gasoline and medium oil (diesel oil) boiling range.
- Waste from plastic and rubber are split thermally at 250 to 450 ° C in the presence of an auxiliary phase which is liquid at the reaction temperature by the process described in DE-C-2 205 001. Over 90% liquid hydrocarbons are formed and soot is only produced in minor amounts.
- a primary goal of thermal processing is the conversion of plastics into liquid fuels that can be easily conveyed and dosed and distributed homogeneously in the combustion air to ensure smoke-free and soot-free combustion.
- Prior use of the hydrocarbons e.g. as a solvent, extraction or cleaning agent is not excluded.
- a decisive disadvantage of the known methods is the need to degrade the plastics to a large extent while maintaining the appropriate temperatures and residence times.
- they require a complex separation of the solids often contained in the plastics, such as inorganic or organic pigments, opacifiers and fillers.
- the invention has for its object to convert plastic waste into technically usable raw materials.
- solids incorporated into the plastics are to be concentrated in the preparation process and are free of organic constituents, so that they can be disposed of in an environmentally friendly manner.
- This object is achieved by a process for producing synthesis gas from plastic waste. It is characterized in that the waste is thermally split predominantly into liquid products and the liquid split products are converted into synthesis gas by partial oxidation.
- plastic waste in the sense of the new process is very broad. It includes uniform substances and mixtures of substances of whatever origin and composition.
- the waste is derived from thermoplastic or thermosetting plastics based on their thermal behavior.
- the plastic waste includes used plastics that were used for packaging purposes or as materials, e.g. in the construction, electrical or textile industry, in machine and vehicle construction, or were processed into articles for everyday use, such as household and sports equipment or toys.
- Plastic waste is also faulty batches and unusable residues and residues from production and processing. Plastic waste can therefore briefly be called plastic material that cannot be regenerated or used for other economic purposes. According to the new procedure, waste e.g.
- plastics polyolefins, vinyl resins such as polyvinyl chloride, polyvinyl acetate and polyvinyl alcohol, furthermore polystyrenes, polycarbonates, polymethylene oxides, polyacrylates, polyurethanes, polyamides, polyester resins and hardened epoxy resins.
- the process is particularly easy to carry out with thermoplastics.
- the feed material from which coarse impurities such as metals, glass and ceramic materials have been mechanically separated, becomes thermally low molecular weight Dismantled fragments.
- all known processes are suitable for this process step, which preferably result in liquid decomposition products and / or soot only in a minor amount.
- the polymeric compounds can be cleaved in the presence or absence of hydrogen. Subsequent hydrogenation of the cleavage products is also possible; However, it is not absolutely necessary in any sub-step of the thermal pretreatment of the waste to work under hydrogenating conditions. The choice of the process suitable for the thermal degradation of the plastics therefore largely depends on the respective circumstances.
- the depolymerization of plastic waste not only leads to easily metered and homogeneous, liquid products. In particular, it also results in dechlorination of the chlorine-containing plastics that are often present in the plastic waste.
- the halogen is split off as hydrogen chloride, which is washed out from the gaseous degradation products in a known manner.
- the liquid fission products only contain chlorine in small amounts that can be tolerated in the subsequent gasification.
- auxiliary phase which is liquid at the reaction temperature has proven to be particularly suitable (cf. DE-C-2 205 001).
- This auxiliary phase is used in particular to transfer the heat to the feed materials in the cracking reactor. In addition, it promotes thermal degradation by allowing the starting materials to swell in a gel-like manner in many cases.
- auxiliary phase such substances are used with success that the waste products used and the Dissolve cleavage products at least partially at the given reaction temperature. Natural or artificial waxy hydrocarbons, polyglycols and in particular the liquid degradation products of the plastic waste itself have proven successful.
- the breakdown of the waste to be processed is promoted by mechanically crushing it before thermal decomposition. In addition, it can be accelerated by adding suitable catalysts. In this way, waste containing predominantly polyolefins can easily be broken down into low-molecular fragments in the presence of manganese, vanadium, copper, chromium, molybdenum or tungsten compounds at elevated temperatures.
- the catalytically active metals can already be present in the plastics in the form of the additives, so that their addition is unnecessary.
- the fission products boil in the area of crude gasoline (naphtha) and middle distillates and also have the viscosity of these petroleum fractions. They can therefore be pumped using conventional devices.
- Hydrocarbons generated during the splitting partly leave the reactor as vapors in a mixture with hydrogen chloride and small amounts of other fission gases such as carbon monoxide, hydrogen, nitrogen and ammonia. They are obtained from the gaseous mixture by partial condensation as an ash-free condensate. It is a for further processing, e.g. on naphtha, suitable raw material.
- the gas phase containing hydrogen chloride can e.g. be converted into about 30% hydrochloric acid.
- the remaining part of the fission product which contains all of the ash, is discharged in liquid form and converted into synthesis gas either alone or in a mixture with other raw materials, eg naphtha, with steam and oxygen.
- This reaction can also be carried out by known methods. Processes that allow problem-free separation of the ashes and their extraction without external admixtures are particularly suitable.
- the solution to this problem requires the highest possible carbon conversion in the reactor in order to avoid the discharge of soot together with the ash.
- special cooling devices must be provided for the raw gas that carries liquid ash. Direct cooling with water in a quench cooler or a system consisting of a radiation cooler and a convection cooler has proven its worth. The cooling stage is followed by water washes, in which the last ash residues are removed.
- the ashes can be stored in landfills or processed into metals.
- the gasification itself takes place at temperatures between 1100 and 1500 ° C and a pressure of 1 to 10 MPa.
- the raw gas leaving the gasification reactor at a temperature of 1300 to 1500 ° C. contains, in addition to soot, metals and / or metal compounds in the stated amount in liquid form. It is first pre-cooled in a radiation cooler to 500 to 1000 ° C, a temperature range in which the metallic contaminants solidify without substantial contact with the cooler wall. Some of the solid particles settle in the water sump of the radiation cooler and are discharged from there. For further cooling to 150 to 300 ° C, preferably 260 to 280 ° C, the remaining portion of fine metal particles and soot particles containing raw gas is passed into a convection cooler.
- the carbon monoxide / hydrogen mixture obtained by gasification of the depolymerized plastic waste can be used directly as a starting material for chemical reactions, for example for oxosynthesis.
- the C / H ratio of their fission products is lower than that of heavy fuel oils, the common raw material for synthesis gas production.
- the CO / H2 ratio of 1: 1 required for certain applications (eg in the oxo process) is therefore not always achieved.
- a hydrogen-rich fraction can be separated from the solid-free raw gas in a membrane system, which is burned or worked up by conversion to pure hydrogen.
- the gas mixture as a whole can also be converted into hydrogen by conversion.
- the figure shows the new process in the form of a block diagram.
- Plastic waste is broken down thermally in the depolymerization stage at temperatures which, depending on the process, are in the range of 200 to 500 ° C to liquid products, the flowability of which corresponds roughly to that of heavy heating oils at the same temperature.
- the depolymerization is accompanied by the elimination of hydrogen chloride from chlorine-containing plastics, the hydrogen chloride is washed out with water from the reaction product and in a known manner, e.g. to 30% crude acid, worked up. In special cases, the hydrogen chloride can also be neutralized in an alkaline wash.
- the splitting is followed by gasification, i.e. the partial oxidation of the depolymerized waste with oxygen in the presence of water vapor.
- hydrogen can also be obtained from the raw gas.
- it is converted, the resulting CO2 / H2 mixture is fed into a chemical wash and separated into CO2 and H2 in a pressure swing absorption stage.
- Returned packaging material made of plastic with a content of 2.5% by weight of water and 3.3% by weight of chlorine is suspended in a liquid auxiliary phase, which was obtained by thermal splitting of plastic waste, and to separate the water at about 130 ° C. heated.
- the plastic suspension is then transferred to the cleavage reactor, in which the feed material is depolymerized at about 350 ° C. and has a residence time of about 4 hours. Gaseous fission products are cooled to about 30 ° C and fed to an appropriate absorption system for the separation of hydrogen chloride.
- the liquid depolymerizate has the following composition.
- N 0.4% by weight
- Part of the liquid fission product is used as an auxiliary phase (suspension medium) for the thermal fission of further plastic waste, the rest is partially oxidized to water gas.
- the depolymerizate is reacted with oxygen and water vapor in a known manner at about 1400 ° C. and a pressure of 4 MPa.
- 400 kg of depolymerized material 325 Nm3 of oxygen and 110 kg of steam are required.
- the raw gas contains 43.8 vol .-% CO, 48.6 vol .-% H2 and 6.6 vol .-% CO2; the CO / H2 ratio is about 0.9.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Processing Of Solid Wastes (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Umwandlung von Kunststoffabfällen in Synthesegas, das als Rohstoff für chemische Synthesen verwendet werden kann.The invention relates to a process for converting plastic waste into synthesis gas, which can be used as a raw material for chemical synthesis.
Eines der drängendsten Umweltprobleme, dem sich die Fachweit gegenübersieht, ist die Beseitigung von Abfällen, darunter auch solchen aus Kunststoff. Die bisher vielfach geübte Lagerung derartiger Materialien in Mischung mit anderen Abfällen in Deponien hat sich als fragwürdig erwiesen, weil sie die langfristige Einwirkung auf Grundwasser und Boden nicht berücksichtigte. Durch Lagerung in Sonderdeponien bemüht man sich, solchen Umweltbelastungen vorzubeugen, weil aber entsprechende Abladestätten nur in begrenztem Umfang zur Verfügung stehen, wird die Lösung der Aufgabe, die Abfälle umweltneutral zu beseitigen, tatsächlich nur in die Zukunft verschoben.One of the most pressing environmental problems faced by experts in the field is the disposal of waste, including plastic waste. The previously widely practiced storage of such materials in a mixture with other waste in landfills has proven questionable because it did not take into account the long-term effects on groundwater and soil. By storing them in special landfills, efforts are made to prevent such environmental pollution, but because the corresponding unloading sites are only available to a limited extent, the solution to the task of disposing of the waste in an environmentally neutral manner is actually only postponed to the future.
Daher hat man sich in letzter Zeit vielfach bemüht, Verfahren zur Aufarbeitung der genannten Abfälle zu entwickeln. Sie haben nicht allein die Schonung der Umwelt zum Ziel, sondern häufig auch die Gewinnung verwertbarer Produkte aus den ihrer eigentlichen Bestimmung nicht mehr unmittelbar zuzuführenden Stoffe.Therefore, efforts have recently been made many times to develop processes for processing the waste mentioned. Their goal is not only the protection of the environment, but often also the recovery of usable products from the substances that are no longer to be directly used for their intended purpose.
Die Aufarbeitung gebrauchter oder nicht typgerechter Kunststoffe zum wiederverwertbaren Ursprungsmaterial scheitert in den meisten Fällen daran, daß Abfälle Kunststoffe verschiedener stofflicher Zusammensetzung enthalten. Es ist leicht einzusehen, daß sich solche Gemische im allgemeinen nicht zu einem Ursprungswerkstoff aufarbeiten lassen. Die Trennung der Gemische in Anteile gleicher stofflicher Beschaffenheit scheitert an der Schwierigkeit, die einzelnen Komponenten zu identifizieren. Aber auch aus Abfällen identischer Kunststoffe kann nur ausnahmsweise das Ausgangsmaterial in ursprünglicher Qualität wiedergewonnen werden, weil durch die erforderlichen chemischen und/oder physikalischen Behandlungsschritte die molekulare Struktur der Polymerisate und damit ihre ursprünglichen Eigenschaften verändert werden.In most cases, the processing of used or non-type-appropriate plastics into recyclable original material fails because waste contains plastics of different material compositions. It is easy to see that such mixtures generally cannot be processed into an original material. The separation of the mixtures into parts of the same material nature fails due to the difficulty in identifying the individual components. But even from waste of identical plastics, the original material can only be recovered in its original quality in exceptional cases because the chemical and / or physical treatment steps required change the molecular structure of the polymers and thus their original properties.
Durch Verbrennen können Kunststoffabfälle nur dann ohne besondere Vorsichtsmaßnahmen entsorgt werden, wenn sichergestellt ist, daß hierbei keine Schadstoffe in die Umwelt gelangen. Diese Voraussetzung ist nur in Ausnahmefällen gegeben, denn häufig enthalten sie chlorhaltige, aber auch schwefel- oder stickstoffhaltige Bestandteile sowie Schwermetalle, die bei der Verbrennung zu unerwünschten Verbrennungsprodukten führen. Entstaubung und Rauchgaswäsche, gegebenenfalls spezielle Verbrennungsvorrichtungen, sind dann unerläßlich. Förder- und Dosierungsprobleme können zusätzlich dann auftreten, wenn die Abfälle nicht brennbare und nicht schmelzende Fremdstoffe enthält. Überdies sprechen wirtschaftliche Gründe dagegen, hochwertige Veredlungsprodukte petrochemischer Rohstoffe wie deren Rohstoffe, nämlich Erdöl und Erdölprodukte, zu verbrennen.Plastic waste can only be disposed of by incineration without special precautionary measures if it is ensured that no pollutants are released into the environment. This requirement is only given in exceptional cases, because they often contain chlorine-containing, but also sulfur- or nitrogen-containing components, as well as heavy metals, which lead to undesired combustion products during combustion. Dust removal and flue gas scrubbing, if necessary special combustion devices, are then indispensable. Conveying and dosing problems can also occur if the waste contains non-flammable and non-melting foreign substances. In addition, economic reasons speak against burning high-quality finishing products of petrochemical raw materials such as their raw materials, namely petroleum and petroleum products.
Statt sie zu verbrennen, hat man nicht mehr verwertbare Kunststoffe auch thermisch gespalten. Die hierzu entwickelten Verfahren sind vielgestaltig. So erhält man durch Abbau von Polyethylen bei 400 bis 450°C ein Gasolin-Kerosin-Gemisch (C.A. Vol. 76, 1972, 158024 q). Dieser Prozeß kann auch in Gegenwart von Nickelkatalysatoren durchgeführt werden (Chem. Ind. XXIII, 1971, 630). Die Spaltung Kohlenstoff enthaltender organischer Abfälle synthetischen oder überwiegend synthetischen Ursprungs erfolgt nach dem Verfahren der EP-A-291 698 unter hydrierenden Bedingungen und ergibt überwiegend Kohlenwasserstofffraktionen im Benzin und Mittelöl-(Dieselöl)Siedebereich. Abfälle aus Kunststoff und Kautschuk werden nach dem in der DE-C-2 205 001 beschriebenen Prozeß thermisch bei 250 bis 450°C in Gegenwart einer bei der Reaktionstemperatur flüssigen Hilfsphase gespalten. Es entstehen über 90 % flüssige Kohlenwasserstoffe und nur in untergeordneten Mengen Ruß.Instead of burning them, plastics that are no longer usable have also been thermally split. The processes developed for this are varied. A gasoline-kerosene mixture is obtained by degrading polyethylene at 400 to 450 ° C (CA Vol. 76, 1972, 158024 q). This process can also be carried out in the presence of nickel catalysts (Chem. Ind. XXIII, 1971, 630). The splitting of carbon-containing organic waste Synthetic or predominantly synthetic origin takes place according to the process of EP-A-291 698 under hydrogenating conditions and results predominantly in hydrocarbon fractions in the gasoline and medium oil (diesel oil) boiling range. Waste from plastic and rubber are split thermally at 250 to 450 ° C in the presence of an auxiliary phase which is liquid at the reaction temperature by the process described in DE-C-2 205 001. Over 90% liquid hydrocarbons are formed and soot is only produced in minor amounts.
Ein vordergründiges Ziel der thermischen Aufbereitung ist die Umwandlung der Kunststoffe in flüssige Brennstoffe, die leicht gefördert und dosiert und in der Verbrennungsluft homogen verteilt werden können, um eine rauch- und rußfreie Verbrennung sicherzustellen. Eine vorherige Verwendung der Kohlenwasserstoffe z.B. als Lösungs-, Extraktions- oder Reinigungsmittel ist dabei nicht ausgeschlossen.A primary goal of thermal processing is the conversion of plastics into liquid fuels that can be easily conveyed and dosed and distributed homogeneously in the combustion air to ensure smoke-free and soot-free combustion. Prior use of the hydrocarbons e.g. as a solvent, extraction or cleaning agent is not excluded.
Ein entscheidender Nachteil der bekannten Verfahren ist das Erfordernis, die Kunststoffe unter Einhaltung entsprechender Temperaturen und Verweilzeiten sehr weitgehend abzubauen. Überdies erfordern sie eine aufwendige Abtrennung der in den Kunststoffen oftmals enthaltenen Feststoffe wie anorganische oder organische Pigmente, Trübungsmittel und Füllstoffe.A decisive disadvantage of the known methods is the need to degrade the plastics to a large extent while maintaining the appropriate temperatures and residence times. In addition, they require a complex separation of the solids often contained in the plastics, such as inorganic or organic pigments, opacifiers and fillers.
Der Erfindung liegt die Aufgabe zugrunde, Kunststoffabfälle in technisch verwertbare Rohstoffe umzuwandeln. Hierbei sollen in die Kunststoffe eingearbeitete Feststoffe im Aufbereitungsprozeß konzentriert und frei von organischen Bestandteilen anfallen, so daß sie umweltschonend entsorgt werden können.The invention has for its object to convert plastic waste into technically usable raw materials. Here, solids incorporated into the plastics are to be concentrated in the preparation process and are free of organic constituents, so that they can be disposed of in an environmentally friendly manner.
Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von Synthesegas aus Kunststoffabfällen. Es ist dadurch gekennzeichnet, daß die Abfälle thermisch überwiegend zu flüssigen Produkten gespalten und die flüssigen Spaltprodukte durch partielle Oxidation in Synthesegas überführt werden.This object is achieved by a process for producing synthesis gas from plastic waste. It is characterized in that the waste is thermally split predominantly into liquid products and the liquid split products are converted into synthesis gas by partial oxidation.
Der Begriff Kunststoffabfälle im Sinne des neuen Verfahrens ist sehr weit zu fassen. Er schließt einheitliche Stoffe und Stoffgemische gleich welcher Herkunft und Zusammensetzung ein. Nach ihrem thermischen Verhalten leiten sich die Abfälle von thermoplastischen oder duroplastischen Kunststoffen her. Zu den Kunststoffabfällen zahlen gebrauchte Kunststoffe, die zu Verpackungszwecken dienten oder als Werkstoffe, z.B. in der Bau-, Elektro- oder Textilindustrie, im Maschinen- und Fahrzeugbau, verwendet wurden oder zu Artikeln des täglichen Bedarfs, wie Haushalts- und Sportgeräte oder Spielzeug verarbeitet worden waren. Kunststoffabfälle sind auch Fehlchargen und nicht verwertbare Reste und Rückstände aus Produktion und Verarbeitung. Als Kunststoffabfälle kann man daher kurz Kunststoffmaterial bezeichnen, das sich nicht regenerieren oder einer anderen wirtschaftlichen Verwertung zuführen läßt. Nach dem neuen Verfahren lassen sich Abfälle z.B. folgender Kunststoffe verarbeiten: Polyolefine, Vinylharze wie Polyvinylchlorid, Polyvinylacetat und Polyvinylalkohol, ferner Polystyrole, Polycarbonate, Polymethylenoxide, Polyacrylate, Polyurethane, Polyamide, Polyesterharze sowie gehärtete Epoxidharze. Besonders einfach ist das Verfahren mit thermoplastischen Kunststoffen durchzuführen.The term plastic waste in the sense of the new process is very broad. It includes uniform substances and mixtures of substances of whatever origin and composition. The waste is derived from thermoplastic or thermosetting plastics based on their thermal behavior. The plastic waste includes used plastics that were used for packaging purposes or as materials, e.g. in the construction, electrical or textile industry, in machine and vehicle construction, or were processed into articles for everyday use, such as household and sports equipment or toys. Plastic waste is also faulty batches and unusable residues and residues from production and processing. Plastic waste can therefore briefly be called plastic material that cannot be regenerated or used for other economic purposes. According to the new procedure, waste e.g. Process the following plastics: polyolefins, vinyl resins such as polyvinyl chloride, polyvinyl acetate and polyvinyl alcohol, furthermore polystyrenes, polycarbonates, polymethylene oxides, polyacrylates, polyurethanes, polyamides, polyester resins and hardened epoxy resins. The process is particularly easy to carry out with thermoplastics.
Erfindungsgemäß wird das Einsatzmaterial, aus dem grobe Verunreinigungen wie Metalle, Glas und keramische Werkstoffe mechanisch abgetrennt wurden, thermisch zu niedermolekularen Bruchstücken abgebaut. Grundsätzlich sind für diesen Verfahrensschritt alle bekannten Prozesse geeignet, die bevorzugt flüssige und nur in untergeordneter Menge gasförmige Zersetzungsprodukte und/oder Ruß ergeben. Die Spaltung der polymeren Verbindungen kann in Gegenwart oder Abwesenheit von Wasserstoff erfolgen. Ebenso ist eine nachträgliche Hydrierung der Spaltprodukte möglich; es ist jedoch in keinem Teilschritt der thermischen Vorbehandlung der Abfälle zwingend erforderlich, unter hydrierenden Bedingungen zu arbeiten. Die Wahl des für den thermischen Abbau der Kunststoffe geeigneten Verfahrens hängt daher weitgehend von den jeweiligen Gegebenheiten ab.According to the invention, the feed material, from which coarse impurities such as metals, glass and ceramic materials have been mechanically separated, becomes thermally low molecular weight Dismantled fragments. In principle, all known processes are suitable for this process step, which preferably result in liquid decomposition products and / or soot only in a minor amount. The polymeric compounds can be cleaved in the presence or absence of hydrogen. Subsequent hydrogenation of the cleavage products is also possible; However, it is not absolutely necessary in any sub-step of the thermal pretreatment of the waste to work under hydrogenating conditions. The choice of the process suitable for the thermal degradation of the plastics therefore largely depends on the respective circumstances.
Die Depolymerisation der Kunststoffabfälle führt nicht nur zu gut dosierbaren und homogenen, flüssigen Produkten. Sie hat insbesondere auch eine Entchlorierung der in den Kunststoffabfällen vielfach vorhandenen, Chlor enthaltenden Kunststoffe zur Folge. Das Halogen wird als Chlorwasserstoff abgespalten, der aus den gasförmigen Abbauprodukten in bekannter Weise ausgewaschen wird. Die flüssigen Spaltprodukte enthalten Chlor nur noch in geringen Mengen, die bei der anschließenden Vergasung tolerierbar sind.The depolymerization of plastic waste not only leads to easily metered and homogeneous, liquid products. In particular, it also results in dechlorination of the chlorine-containing plastics that are often present in the plastic waste. The halogen is split off as hydrogen chloride, which is washed out from the gaseous degradation products in a known manner. The liquid fission products only contain chlorine in small amounts that can be tolerated in the subsequent gasification.
Als besonders geeignet hat sich die thermische Aufbereitung der Kunststoffabfälle bei Temperaturen zwischen 250 und 450°C unter Verwendung einer, bei der Reaktionstemperatur flüssigen Hilfsphase erwiesen (vgl. DE-C-2 205 001). Diese Hilfsphase dient insbesondere zur Übertragung der Wärme auf die Einsatzstoffe im Spaltreaktor. Darüber hinaus fördert sie den thermischen Abbau dadurch, daß sie die Einsatzstoffe in vielen Fällen gelartig aufquellen läßt. Als Hilfsphase werden mit Erfolg solche Stoffe angewandt, die die eingesetzten Abfallprodukte und die Spaltprodukte bei der gegebenen Reaktionstemperatur zumindest teilweise lösen. Bewährt haben sich natürliche oder künstliche wachsartige Kohlenwasserstoffe, ferner Polyglykole und insbesondere die flüssigen Abbauprodukte der Kunststoffabfälle selbst.Thermal processing of the plastic waste at temperatures between 250 and 450 ° C. using an auxiliary phase which is liquid at the reaction temperature has proven to be particularly suitable (cf. DE-C-2 205 001). This auxiliary phase is used in particular to transfer the heat to the feed materials in the cracking reactor. In addition, it promotes thermal degradation by allowing the starting materials to swell in a gel-like manner in many cases. As an auxiliary phase, such substances are used with success that the waste products used and the Dissolve cleavage products at least partially at the given reaction temperature. Natural or artificial waxy hydrocarbons, polyglycols and in particular the liquid degradation products of the plastic waste itself have proven successful.
Der Abbau der aufzubereitenden Abfälle wird dadurch gefördert, daß man sie vor der thermischen Spaltung mechanisch zerkleinert. Überdies kann er durch Zusatz geeigneter Katalysatoren beschleunigt werden. So lassen sich Abfälle, die vorwiegend Polyolefine enthalten, in Gegenwart von Mangan-, Vanadin-, Kupfer-, Chrom-, Molybdän- oder Wolframverbindungen bei erhöhter Temperatur leicht in niedermolekulare Bruchstücke aufspalten. Die katalytisch wirksamen Metalle können in den Kunststoffen bereits in Form der Zuschlagstoffe vorliegen, so daß sich ihr Zusatz erübrigt.The breakdown of the waste to be processed is promoted by mechanically crushing it before thermal decomposition. In addition, it can be accelerated by adding suitable catalysts. In this way, waste containing predominantly polyolefins can easily be broken down into low-molecular fragments in the presence of manganese, vanadium, copper, chromium, molybdenum or tungsten compounds at elevated temperatures. The catalytically active metals can already be present in the plastics in the form of the additives, so that their addition is unnecessary.
Die Umwandlung der hochmolekularen Einsatzstoffe erfolgt in herkömmlichen Reaktoren, z.B. in geschlossenen, mit einer Heizvorrichtung versehenen Rührkesseln. Üblicherweise arbeitet man in einer Stufe. Insbesondere wenn sich bei der Aufarbeitung von Abfällen aggressive Gase entwickeln, empfiehlt es sich, den Spaltprozeß zwei- oder mehrstufig durchzuführen, wobei die Spaltung in den einzelnen Stufen im allgemeinen nicht bei gleicher Temperatur, sondern mit von Stufe zu Stufe ansteigenden Temperaturen betrieben wird. So hat es sich bei Einsatz Chlor enthaltender Polymerer als zweckmäßig erwiesen, wasserfeuchte Kunststoffe zunächst bei mäßiger Temperatur, die noch nicht zur HCl-Abspaltung führt, zu trocknen, um eine korrosive Beanspruchung der Reaktorwerkstoffe durch wäßrigen Chlorwasserstoff zu vermeiden. Erst nach der Trocknung wird die Temperatur soweit gesteigert, daß sich als Folge der Spaltung der Polymerisate Chlorwasserstoff bildet. Die Entchlorierung kann in einer zusätzlichen Stufe durch weitere Erhöhung der Temperatur und der Verweilzeit vervollständigt werden. Der stufenweise thermische Abbau Chlor enthaltender polymerer Substanzen ermöglicht es, durch Wahl der Reaktionstemperatur, die aggressive Gase entwickelnden Spaltprodukte bevorzugt in der ersten Spaltstufe anzureichern, so daß bei der nachfolgenden Abtrennung der für die Umwelt schädlichen Gase nur ein Teil der Spaltprodukte einer Reinigungsvorrichtung zugeführt werden müssen. Hervorzuheben ist jedoch, daß selbst Kunststoffabfälle, die Chlor in einer Größenordnung von etwa 5 Gew.-% enthalten, nach dem erfindungsgemäßen Verfahren in flüssige Spaltprodukte umgewandelt werden können, deren Chlorgehalt nur wenige 100 ppm beträgt.The conversion of the high molecular weight feedstocks takes place in conventional reactors, for example in closed stirred tanks equipped with a heating device. Usually you work in one stage. In particular if aggressive gases develop during the processing of waste, it is advisable to carry out the splitting process in two or more stages, the splitting in the individual stages generally not being carried out at the same temperature, but rather with temperatures increasing from stage to stage. Thus, when using chlorine-containing polymers, it has proven to be expedient to first dry water-moist plastics at a moderate temperature which does not yet lead to the elimination of HCl in order to avoid corrosive stress on the reactor materials by aqueous hydrogen chloride. Only after drying does the temperature increase to such an extent that hydrogen chloride is formed as a result of the cleavage of the polymers forms. The dechlorination can be completed in an additional step by further increasing the temperature and the residence time. The gradual thermal degradation of chlorine-containing polymeric substances makes it possible, through the choice of the reaction temperature, to enrich the fission products which develop aggressive gases, preferably in the first fission stage, so that during the subsequent separation of the gases which are harmful to the environment, only some of the fission products have to be fed to a cleaning device . It should be emphasized, however, that even plastic wastes containing chlorine in the order of about 5% by weight can be converted into liquid fission products with a chlorine content of only a few 100 ppm by the process according to the invention.
Die Spaltprodukte sieden im Bereich des Rohbenzins (Naphtha) und der Mitteldestillate und besitzen auch die Viskosität dieser Erdölfraktionen. Sie lassen sich daher mit üblichen Vorrichtungen pumpen.The fission products boil in the area of crude gasoline (naphtha) and middle distillates and also have the viscosity of these petroleum fractions. They can therefore be pumped using conventional devices.
Bei der Spaltung entstandene Kohlenwasserstoffe verlassen den Reaktor zum Teil als Dämpfe in Mischung mit Chlorwasserstoff und geringen Mengen anderer Spaltgase wie Kohlenmonoxid, Wasserstoff, Stickstoff und Ammoniak. Sie werden aus dem gasförmigen Gemisch durch partielle Kondensation als aschefreies Kondensat gewonnen. Es ist ein für die weitere Aufarbeitung, z.B. auf Naphtha, geeigneter Rohstoff. Die chlorwasserstoffhaltige Gasphase kann z.B. in etwa 30 %ige Salzsäure überführt werden.Hydrocarbons generated during the splitting partly leave the reactor as vapors in a mixture with hydrogen chloride and small amounts of other fission gases such as carbon monoxide, hydrogen, nitrogen and ammonia. They are obtained from the gaseous mixture by partial condensation as an ash-free condensate. It is a for further processing, e.g. on naphtha, suitable raw material. The gas phase containing hydrogen chloride can e.g. be converted into about 30% hydrochloric acid.
Der restliche Anteil des Spaltproduktes, der die gesamte Asche enthält, wird flüssig ausgetragen und allein oder in Mischung mit anderen Rohstoffen, z.B. Naphtha, mit Wasserdampf und Sauerstoff zu Synthesegas umgesetzt.The remaining part of the fission product, which contains all of the ash, is discharged in liquid form and converted into synthesis gas either alone or in a mixture with other raw materials, eg naphtha, with steam and oxygen.
Diese Reaktion kann ebenfalls nach bekannten Verfahren erfolgen. Geeignet sind insbesondere Prozesse, die eine problemblose Abtrennung der Asche und ihre Gewinnung ohne fremde Beimischungen erlaubt. Die Lösung dieser Aufgabe erfordert einen möglichst hohen Kohlenstoffumsatz im Reaktor, um den Austrag von Ruß zusammen mit der Asche zu vermeiden. Ferner sind für das Rohgas, das flüssige Asche mitführt, besondere Kühlvorrichtungen vorzusehen. Bewährt hat sich die unmittelbare Kühlung mit Wasser in einem Quenchkühler oder einem aus Strahlungskühler und Konvektionskühler bestehenden System. Der Kühlstufe schließen sich Wasserwäschen an, in der letzte Aschereste entfernt werden. Die Asche kann in Deponien gelagert oder zu Metallen aufgearbeitet werden.This reaction can also be carried out by known methods. Processes that allow problem-free separation of the ashes and their extraction without external admixtures are particularly suitable. The solution to this problem requires the highest possible carbon conversion in the reactor in order to avoid the discharge of soot together with the ash. Furthermore, special cooling devices must be provided for the raw gas that carries liquid ash. Direct cooling with water in a quench cooler or a system consisting of a radiation cooler and a convection cooler has proven its worth. The cooling stage is followed by water washes, in which the last ash residues are removed. The ashes can be stored in landfills or processed into metals.
Ein Verfahren, das insbesondere hinsichtlich der Schadstoffvermeidung den vorstehend skizzierten Ansprüchen genügt, ist z.B. in der EP-A-0 515 950 beschrieben. Es ist dadurch charakterisiert, daß man das Einsatzmaterial unter Bedingungen oxidiert, die zur Bildung von etwa 0,1 bis etwa 0,3 Gew.-% Ruß, bezogen auf den in Form von Kohlenwasserstoffen eingesetzten Kohlenstoff, führen. Diese Arbeitsweise läßt sich mit Erfolg auch auf die Umwandlung der Spaltprodukte von Kunststoffabfällen in Kohlenmonoxid-Wasserstoff-Gemische anwenden. In diesem Fall ist der Kohlenstoffgehalt der depolymerisierten Kunststoffe Bezugsgröße für den Rußanteil. Seine Höhe wird dabei in bekannter Weise über die zugeführte Sauerstoffmenge eingestellt, überdies kann sich der Einsatz eines speziell gestalteten Brenners empfehlen (vgl. z.B. EP-B-0 095 103). Die Vergasung selbst erfolgt bei Temperaturen zwischen 1100 und 1500°C und einem Druck von 1 bis 10 MPa. Das den Vergasungsreaktor mit einer Temperatur von 1300 bis 1500°C verlassende Rohgas enthält neben Ruß in der angegebenen Menge Metalle und/oder Metallverbindungen in flüssiger Form. Es wird zunächst in einem Strahlungskühler auf 500 bis 1000°C vorgekühlt, ein Temperaturbereich, in dem die metallischen Verunreinigungen ohne wesentlichen Kontakt mit der Kühlerwandung erstarren. Die festen Partikel setzen sich zum Teil im Wassersumpf des Strahlungskühlers ab und werden von dort ausgetragen. Zur weiteren Abkühlung auf 150 bis 300°C, vorzugsweise 260 bis 280°C, leitet man das noch restliche Anteile feiner Metallpartikel und Rußteilchen enthaltende Rohgas in einen Konvektionskühler. Weil die vom Gas mitgeführten Verunreinigungen bereits im Strahlungskühler erstarrt sind, beeinträchtigen sie die Wirksamkeit des Konvektionskühlers durch Verlegung der Strömungswege und Ablagerungen auf den Austauschflächen nicht. Die nahezu restlose Abscheidung der Feststoffe erfolgt durch Waschen des Gases mit Wasser. Dieser Teilschritt des Verfahrens wird zweckmäßigerweise mit Hilfe von Naßabscheidern des Standes der Technik z.B. mit Wasser berieselte Füllkörpertürmen, die gegebenenfalls auch in Verbindung mit Venturiwäschern angewandt werden können, durchgeführt. Aus dem Waschwasser wird die Asche durch mechanische Abtrennung, z.B. Filtration, gewonnen.A method which, in particular with regard to the avoidance of pollutants, meets the claims outlined above is described, for example, in EP-A-0 515 950. It is characterized in that the feed is oxidized under conditions which lead to the formation of about 0.1 to about 0.3% by weight of carbon black, based on the carbon used in the form of hydrocarbons. This procedure can also be successfully applied to the conversion of the fission products of plastic waste into carbon monoxide-hydrogen mixtures. In this case, the carbon content of the depolymerized plastics is the reference value for the soot content. Its height is adjusted in a known manner via the amount of oxygen supplied, moreover the use of a specially designed burner can be recommended (cf. for example EP-B-0 095 103). The gasification itself takes place at temperatures between 1100 and 1500 ° C and a pressure of 1 to 10 MPa. The raw gas leaving the gasification reactor at a temperature of 1300 to 1500 ° C. contains, in addition to soot, metals and / or metal compounds in the stated amount in liquid form. It is first pre-cooled in a radiation cooler to 500 to 1000 ° C, a temperature range in which the metallic contaminants solidify without substantial contact with the cooler wall. Some of the solid particles settle in the water sump of the radiation cooler and are discharged from there. For further cooling to 150 to 300 ° C, preferably 260 to 280 ° C, the remaining portion of fine metal particles and soot particles containing raw gas is passed into a convection cooler. Because the contaminants carried by the gas have already solidified in the radiation cooler, they do not impair the effectiveness of the convection cooler by laying the flow paths and deposits on the exchange surfaces. The almost complete separation of the solids takes place by washing the gas with water. This sub-step of the method is expediently carried out with the aid of wet separators of the prior art, for example packed towers sprinkled with water, which can optionally also be used in connection with venturi scrubbers. The ashes are extracted from the washing water by mechanical separation, eg filtration.
Das durch Vergasung der depolymerisierten Kunststoffabfälle erhaltene Kohlenmonoxid-/Wasserstoffgemisch kann unmittelbar als Ausgangsstoff für chemische Reaktionen, z.B. für die Oxosynthese, eingesetzt werden. Entsprechend der Zusammensetzung von Kunststoffabfällen ist das C/H-Verhältnis ihrer Spaltprodukte niedriger als das schwerer Heizöle, dem üblichen Rohstoff für die Synthesegasgewinnung. Das für bestimmte Anwendungen (z.B. im Oxoprozeß) benötigte CO/H₂-Verhältnis von 1 : 1 wird daher nicht immer erreicht. Um den Wasserstoffanteil zu vermindern, kann aus dem feststofffreien Rohgas in einer Membrananlage eine wasserstoffreiche Fraktion abgetrennt werden, die verbrannt oder durch Konvertierung zu reinem Wasserstoff aufgearbeitet wird. Selbstverständlich läßt sich aber auch das Gasgemisch insgesamt durch Konvertierung in Wasserstoff überführen.The carbon monoxide / hydrogen mixture obtained by gasification of the depolymerized plastic waste can be used directly as a starting material for chemical reactions, for example for oxosynthesis. Depending on the composition of plastic waste, the C / H ratio of their fission products is lower than that of heavy fuel oils, the common raw material for synthesis gas production. The CO / H₂ ratio of 1: 1 required for certain applications (eg in the oxo process) is therefore not always achieved. In order to reduce the hydrogen content, a hydrogen-rich fraction can be separated from the solid-free raw gas in a membrane system, which is burned or worked up by conversion to pure hydrogen. Of course, the gas mixture as a whole can also be converted into hydrogen by conversion.
In der Abbildung ist das neue Verfahren in Form eines Blockschemas dargestellt. Kunststoffabfälle werden in der Depolymerisationsstufe thermisch bei Temperaturen, die, abhängig vom Verfahren, im Bereich von 200 bis 500°C liegen, zu flüssigen Produkten abgebaut, deren Fließfähigkeit etwa der schwerer Heizöle bei gleicher Temperatur entsprechen. Die Depolymerisation wird von der Abspaltung von Chlorwasserstoff aus chlorhaltigen Kunststoffen begleitet, der Chlorwasserstoff wird mit Wasser aus dem Reaktionsprodukt ausgewaschen und in bekannter Weise, z.B. zu 30 %iger Rohsäure, aufgearbeitet. In Sonderfällen kann der Chlorwasserstoff auch in einer alkalischen Wäsche neutralisiert werden. Der Spaltung schließt sich die Vergasung, d.h. die partielle Oxidation der depolymerisierten Abfälle mit Sauerstoff in Gegenwart von Wasserdampf, an. Im Spaltprodukt in geringer Konzentration verbleibende Chlor-Kohlenstoff-Verbindungen beeinträchtigen diesen Verfahrensschritt nicht. Das bei der Vergasung resultierende CO/H₂-Gemisch wird zur Entfernung von Feststoffen und HCl mit Wasser, dem gegebenenfalls alkalische Reagenzien, wie Alkalicarbonat oder -hydroxid, zugesetzt wurde, gewaschen. Zur Herstellung von Synthesegas mit einem bestimmten, von der Zusammensetzung des Rohgases abweichenden CO/H₂-Verhältnisses wird das Rohgas über ein Membranfilter geführt.The figure shows the new process in the form of a block diagram. Plastic waste is broken down thermally in the depolymerization stage at temperatures which, depending on the process, are in the range of 200 to 500 ° C to liquid products, the flowability of which corresponds roughly to that of heavy heating oils at the same temperature. The depolymerization is accompanied by the elimination of hydrogen chloride from chlorine-containing plastics, the hydrogen chloride is washed out with water from the reaction product and in a known manner, e.g. to 30% crude acid, worked up. In special cases, the hydrogen chloride can also be neutralized in an alkaline wash. The splitting is followed by gasification, i.e. the partial oxidation of the depolymerized waste with oxygen in the presence of water vapor. Chlorine-carbon compounds remaining in a low concentration in the cleavage product do not impair this process step. The resulting CO / H₂ mixture in the gasification is washed to remove solids and HCl with water, optionally with alkaline reagents, such as alkali carbonate or hydroxide, added. To produce synthesis gas with a certain CO / H₂ ratio which differs from the composition of the raw gas, the raw gas is passed through a membrane filter.
Statt Synthesegas kann aus dem Rohgas auch Wasserstoff gewonnen werden. Hierzu wird es konvertiert, das resultierende CO₂/H₂-Gemisch einer chemischen Wäsche zugeführt und in einer Druckwechsel-Absorptionsstufe in CO₂ und H₂ aufgetrennt.Instead of synthesis gas, hydrogen can also be obtained from the raw gas. For this purpose, it is converted, the resulting CO₂ / H₂ mixture is fed into a chemical wash and separated into CO₂ and H₂ in a pressure swing absorption stage.
Zurückgeführtes Verpackungsmaterial aus Kunststoff mit einem Gehalt von 2,5 Gew.-% Wasser und 3,3 Gew.-% Chlor wird in einer flüssigen Hilfsphase, die durch thermische Spaltung von Kunststoffabfällen erhalten wurde, suspendiert und zur Abtrennung des Wassers auf etwa 130°C erhitzt. Darauf überführt man die Kunststoffsuspension in den Spaltreaktor, in dem die Depolymerisation des Einsatzmaterials bei etwa 350°C und einer Verweilzeit von etwa 4 h erfolgt. Gasförmige Spaltprodukte werden auf etwa 30°C abgekühlt und zur Abtrennung von Chlorwasserstoff einer entsprechenden Absorptionanlage zugeführt. Das flüssige Depolymerisat hat folgende Zusammensetzung.
Es enthält 300 mg Cl/l, hat eine Dichte von 920 kg/m³ und eine Viskosität von 404 mPa . s (bei 90°C).It contains 300 mg Cl / l, has a density of 920 kg / m³ and a viscosity of 404 mPa. s (at 90 ° C).
Ein Teil des flüssigen Spaltproduktes wird als Hilfsphase (Suspensionsmittel) für die thermische Spaltung weiterer Kunststoffabfälle verwendet, der Rest partiell zu Wassergas oxidiert. Hierzu setzt man das Depolymerisat bei etwa 1400°C und einem Druck von 4 MPa in bekannter Weise mit Sauerstoff und Wasserdampf um. Zur Erzeugung von 1000 Nm² CO/H₂-Gemisch benötigt man 400 kg Depolymerisat, 325 Nm³ Sauerstoff und 110 kg Dampf. Das Rohgas enthält 43,8 Vol.-% CO, 48,6 Vol.-% H₂ und 6,6 Vol.-% CO₂; das CO/H₂-Verhältnis ist etwa 0,9.Part of the liquid fission product is used as an auxiliary phase (suspension medium) for the thermal fission of further plastic waste, the rest is partially oxidized to water gas. For this purpose, the depolymerizate is reacted with oxygen and water vapor in a known manner at about 1400 ° C. and a pressure of 4 MPa. To generate 1000 Nm² of CO / H₂ mixture, 400 kg of depolymerized material, 325 Nm³ of oxygen and 110 kg of steam are required. The raw gas contains 43.8 vol .-% CO, 48.6 vol .-% H₂ and 6.6 vol .-% CO₂; the CO / H₂ ratio is about 0.9.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4328188 | 1993-08-21 | ||
DE4328188A DE4328188C2 (en) | 1993-08-21 | 1993-08-21 | Process for the production of synthesis gas |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0639631A1 true EP0639631A1 (en) | 1995-02-22 |
EP0639631B1 EP0639631B1 (en) | 1999-11-24 |
Family
ID=6495729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94112796A Expired - Lifetime EP0639631B1 (en) | 1993-08-21 | 1994-08-17 | Process for preparing syngas |
Country Status (10)
Country | Link |
---|---|
US (1) | US5457250A (en) |
EP (1) | EP0639631B1 (en) |
JP (1) | JP2534461B2 (en) |
KR (1) | KR100308464B1 (en) |
AT (1) | ATE186940T1 (en) |
BR (1) | BR9403282A (en) |
CA (1) | CA2130019C (en) |
DE (2) | DE4328188C2 (en) |
ES (1) | ES2141788T3 (en) |
TW (1) | TW310333B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19534448A1 (en) * | 1995-09-16 | 1997-03-20 | Buna Sow Leuna Olefinverb Gmbh | Recovery of high purity hydrogen chloride from PVC waste |
WO2023115083A1 (en) * | 2021-12-20 | 2023-06-29 | Walter Kanzler | Reactor apparatus |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001520684A (en) * | 1996-07-17 | 2001-10-30 | テキサコ・デベロップメント・コーポレーション | Partial oxidation of waste plastic material |
WO2000059825A1 (en) * | 1999-04-02 | 2000-10-12 | Ebara Corporation | Method and apparatus for production of hydrogen by gasification of combusible material |
DE19952755B4 (en) * | 1999-11-02 | 2006-11-23 | Future Energy Gmbh | Process and entrained flow gasifier for the conversion of flowable halogen and carbonaceous residues and waste |
DE10065921A1 (en) | 1999-11-06 | 2001-07-26 | Krc Umwelttechnik Gmbh | Utilizing fuel, residual material and waste material comprises completely vaporizing material with direct or indirect introduction of heat and adding as vapor to gasification reactor |
DE19954188A1 (en) | 1999-11-11 | 2001-05-31 | Krc Umwelttechnik Gmbh | Process and device for recycling organic nitrogen compounds by gasification |
DE19957696C1 (en) | 1999-11-30 | 2001-05-03 | Krc Umwelttechnik Gmbh | Apparatus for gasifying carbon-containing fuels, residual materials and waste comprises a fly stream reactor with cooling channels formed by bars which are in contact with a refractory protective layer and a pressure shell |
US20030192251A1 (en) * | 2002-04-12 | 2003-10-16 | Edlund David J. | Steam reforming fuel processor |
CN1304355C (en) * | 2004-04-08 | 2007-03-14 | 浙江大学 | Method for producing benzoic acid by degrading waste plastic of polystyrene through catalysis in liquid phase |
DE102009007880A1 (en) | 2009-02-06 | 2010-08-12 | Eta Ag Engineering | Method for treating chlorinated raw gas from gasification plant i.e. fixed-bed reactor, involves proportionately guiding back accumulated carbon hydride containing condensate from condensate separation unit |
WO2010118022A2 (en) * | 2009-04-06 | 2010-10-14 | Rentech, Inc. | System and method for conditioning biomass-derived synthesis gas |
WO2014196924A1 (en) * | 2013-06-04 | 2014-12-11 | Enviro-Power Pte Ltd | System and method for converting plastic/rubber to hydrocarbon fuel by thermo-catalytic process |
US11286436B2 (en) | 2019-02-04 | 2022-03-29 | Eastman Chemical Company | Feed location for gasification of plastics and solid fossil fuels |
US11447576B2 (en) | 2019-02-04 | 2022-09-20 | Eastman Chemical Company | Cellulose ester compositions derived from recycled plastic content syngas |
WO2021163088A1 (en) | 2020-02-10 | 2021-08-19 | Eastman Chemical Company | Waste plastic density separation |
US20230212469A1 (en) * | 2020-04-13 | 2023-07-06 | Eastman Chemical Company | Partial oxidation gasification of wet waste plastic |
CA3174911A1 (en) * | 2020-04-13 | 2021-10-21 | Bruce Roger Debruin | Chemical recycling of plastic dry fines |
EP4136161A1 (en) * | 2020-04-13 | 2023-02-22 | Eastman Chemical Company | Chemical recycling of plastic purge materials |
CA3174721A1 (en) * | 2020-04-13 | 2021-10-21 | Bruce Roger Debruin | Chemical recycling of metal-containing plastics mixtures |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2205001B1 (en) * | 1972-02-03 | 1973-07-26 | Ruhrchemie Ag, 4200 Oberhausen-Holten | PROCESS FOR THE THERMAL PROCESSING OF WASTE MADE FROM PLASTIC AND RUBBER |
FR2357630A1 (en) * | 1976-07-05 | 1978-02-03 | Erap | Catalytic cracking in presence of rubber pyrolysis oil - from waste tyre material, giving improved yield of gasoline |
US4108730A (en) * | 1977-03-14 | 1978-08-22 | Mobil Oil Corporation | Method for treatment of rubber and plastic wastes |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2840987A1 (en) * | 1978-09-21 | 1980-04-03 | Linde Ag | METHOD FOR CLEAVING HYDROCARBONS |
JPS60219292A (en) * | 1984-04-13 | 1985-11-01 | Mitsubishi Heavy Ind Ltd | Selective production of petrochemicals |
JPS63260981A (en) * | 1987-04-17 | 1988-10-27 | Mamoru Sano | Apparatus for producing pylorytic gas from combustible waste |
DE4107046A1 (en) * | 1991-03-06 | 1992-09-10 | Menges Georg | Method for using organic wastes contg. macromolecules |
DE4029880A1 (en) * | 1990-09-21 | 1992-03-26 | Menges Georg | Method for using organic wastes contg. macromolecules |
DE4017089C3 (en) * | 1990-05-26 | 1996-10-17 | Menges Georg | Method and device for vegasing plastics for the production of synthesis gas |
US5061363A (en) * | 1990-10-09 | 1991-10-29 | The United States Of America As Represented By The United States Department Of Energy | Method for co-processing waste rubber and carbonaceous material |
DE4117266A1 (en) * | 1991-05-27 | 1992-12-03 | Hoechst Ag | MANUFACTURE OF SYNTHESIS GAS FROM ASH-RICH HYDROCARBONS |
US5158982A (en) * | 1991-10-04 | 1992-10-27 | Iit Research Institute | Conversion of municipal waste to useful oils |
DE4311034A1 (en) * | 1993-04-03 | 1994-10-06 | Veba Oel Ag | Process for the extraction of chemical raw materials and fuel components from old or waste plastic |
-
1993
- 1993-08-21 DE DE4328188A patent/DE4328188C2/en not_active Expired - Fee Related
-
1994
- 1994-06-02 TW TW083105032A patent/TW310333B/zh active
- 1994-08-12 CA CA002130019A patent/CA2130019C/en not_active Expired - Fee Related
- 1994-08-15 JP JP6191648A patent/JP2534461B2/en not_active Expired - Fee Related
- 1994-08-16 US US08/291,272 patent/US5457250A/en not_active Expired - Fee Related
- 1994-08-17 AT AT94112796T patent/ATE186940T1/en not_active IP Right Cessation
- 1994-08-17 DE DE59408948T patent/DE59408948D1/en not_active Expired - Fee Related
- 1994-08-17 EP EP94112796A patent/EP0639631B1/en not_active Expired - Lifetime
- 1994-08-17 ES ES94112796T patent/ES2141788T3/en not_active Expired - Lifetime
- 1994-08-19 BR BR9403282A patent/BR9403282A/en not_active Application Discontinuation
- 1994-08-20 KR KR1019940020552A patent/KR100308464B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2205001B1 (en) * | 1972-02-03 | 1973-07-26 | Ruhrchemie Ag, 4200 Oberhausen-Holten | PROCESS FOR THE THERMAL PROCESSING OF WASTE MADE FROM PLASTIC AND RUBBER |
FR2169965A1 (en) * | 1972-02-03 | 1973-09-14 | Ruhrchemie Ag | |
FR2357630A1 (en) * | 1976-07-05 | 1978-02-03 | Erap | Catalytic cracking in presence of rubber pyrolysis oil - from waste tyre material, giving improved yield of gasoline |
US4108730A (en) * | 1977-03-14 | 1978-08-22 | Mobil Oil Corporation | Method for treatment of rubber and plastic wastes |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19534448A1 (en) * | 1995-09-16 | 1997-03-20 | Buna Sow Leuna Olefinverb Gmbh | Recovery of high purity hydrogen chloride from PVC waste |
WO2023115083A1 (en) * | 2021-12-20 | 2023-06-29 | Walter Kanzler | Reactor apparatus |
Also Published As
Publication number | Publication date |
---|---|
CA2130019A1 (en) | 1995-02-22 |
JP2534461B2 (en) | 1996-09-18 |
KR950005959A (en) | 1995-03-20 |
CA2130019C (en) | 1999-10-19 |
ES2141788T3 (en) | 2000-04-01 |
TW310333B (en) | 1997-07-11 |
US5457250A (en) | 1995-10-10 |
EP0639631B1 (en) | 1999-11-24 |
DE59408948D1 (en) | 1999-12-30 |
JPH07197041A (en) | 1995-08-01 |
KR100308464B1 (en) | 2001-12-01 |
DE4328188C2 (en) | 1996-04-18 |
DE4328188A1 (en) | 1995-02-23 |
BR9403282A (en) | 1995-04-11 |
ATE186940T1 (en) | 1999-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0639631B1 (en) | Process for preparing syngas | |
EP0182309B1 (en) | Process for the hydrotreatment of carbon-containing wastes of primarily synthetic origin | |
EP0692009B1 (en) | Process for processing used or waste plastic material | |
EP0236701B1 (en) | Process for the recovery of carbon-containing wastes | |
DE69212667T2 (en) | Cracking of polymers | |
DE4444209C1 (en) | Process for obtaining hard paraffins from highly contaminated polyolefin waste | |
EP0330757B1 (en) | Process for reprocessing waste materials or the like by pyrolysis, and subsequent further processing of the pyrolysis oil | |
EP0468073B1 (en) | Process for the complete valorisation of high molecular weight polymer waste | |
DE69721302T2 (en) | PARTIAL OXIDATION OF WASTE PLASTIC MATERIAL | |
DE69326527T2 (en) | Process for the conversion of polymers | |
EP0249748B1 (en) | Process for the destructive hydrogenation of carbon-containing wastes in a fluidized bed | |
DE10037229B4 (en) | Process for the production of high molecular waxes from polyolefins | |
DE19750327C1 (en) | Process for the production of synthesis gas from renewable cellulose-containing raw or waste materials | |
DE69504707T2 (en) | METHOD FOR REUSE OF COMPOSITES | |
EP0291698B1 (en) | Improved process for the hydrocracking of carbon containing synthetic wastes | |
DD214749A3 (en) | METHOD FOR THE HYDRAULIC CLEARING OF OLD RUBBER AND RUBBER DEVICES | |
DE3807272A1 (en) | Process for the hydrocracking of carbon-containing wastes and biomass at high pressures | |
DE19707302B4 (en) | Process for the production of microwaxes, paraffins and oils from waste plastics or waste plastics mixtures | |
DE4320440A1 (en) | Process for the thermal recycling of waste materials of low dimensional stability at elevated temperatures | |
DD254207A1 (en) | METHOD FOR HYDROPREATING CARBON-CONTAINING MATERIAL | |
DD254112A3 (en) | METHOD FOR HYDROPREATING CARBON-CONTAINING MATERIAL | |
DD249036A5 (en) | Process for the treatment of waste containing carbon | |
DE2255484A1 (en) | Pyrolysis of carbon-contg materials esp waste products - in a turbulent carrier gas stream, to yield gaseous hydrocarbons, esp ethylene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE DE ES FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19950822 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CELANESE GMBH |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19990121 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 186940 Country of ref document: AT Date of ref document: 19991215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59408948 Country of ref document: DE Date of ref document: 19991230 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: CELANESE CHEMICALS EUROPE GMBH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000203 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2141788 Country of ref document: ES Kind code of ref document: T3 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: CELANESE CHEMICALS EUROPE GMBH |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010713 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010724 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010725 Year of fee payment: 8 Ref country code: AT Payment date: 20010725 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010801 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20010802 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20010803 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20010810 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020817 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020818 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020831 |
|
BERE | Be: lapsed |
Owner name: *CELANESE G.M.B.H. Effective date: 20020831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030301 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030301 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030430 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20030301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050817 |