[go: up one dir, main page]

EP0632864B1 - Arrangement for determining the parameters of an internal combustion engine - Google Patents

Arrangement for determining the parameters of an internal combustion engine Download PDF

Info

Publication number
EP0632864B1
EP0632864B1 EP94900001A EP94900001A EP0632864B1 EP 0632864 B1 EP0632864 B1 EP 0632864B1 EP 94900001 A EP94900001 A EP 94900001A EP 94900001 A EP94900001 A EP 94900001A EP 0632864 B1 EP0632864 B1 EP 0632864B1
Authority
EP
European Patent Office
Prior art keywords
engine
combustion
sensor
light
sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94900001A
Other languages
German (de)
French (fr)
Other versions
EP0632864A1 (en
Inventor
Ingobert Adolf
Günther HERDIN
Michael HÖTGER
Walter Picker
Franz Pockstaller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenbacher Energiesysteme AG
Original Assignee
Jenbacher Energiesysteme AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenbacher Energiesysteme AG filed Critical Jenbacher Energiesysteme AG
Publication of EP0632864A1 publication Critical patent/EP0632864A1/en
Application granted granted Critical
Publication of EP0632864B1 publication Critical patent/EP0632864B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/022Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an optical sensor, e.g. in-cylinder light probe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine

Definitions

  • the invention relates to a device for controlling engine parameters, in particular the ignition timing or the fuel-air ratio of an internal combustion engine, in particular a gasoline engine operated with gaseous fuels, with at least one optical sensor for observing the light emission caused by the combustion in a combustion chamber of the internal combustion engine and with at least one photodetector for converting the light emission into electrical signals, which are processed in an evaluation device.
  • engine parameters in particular the ignition timing or the fuel-air ratio of an internal combustion engine, in particular a gasoline engine operated with gaseous fuels
  • at least one optical sensor for observing the light emission caused by the combustion in a combustion chamber of the internal combustion engine and with at least one photodetector for converting the light emission into electrical signals, which are processed in an evaluation device.
  • the light emission caused by the combustion in a combustion chamber in order to regulate engine parameters.
  • the light is led out of the engine via an optical pickup, which is attached to the engine and generally a light-guiding element leading into the combustion chamber (in the simplest case a so-called combustion chamber window), without disturbing the other combustion processes.
  • the optical pickup can also be integrated in the spark plug.
  • a control signal for controlling the ignition timing has mainly been obtained from the position of the light emission over time.
  • a control device for a motor is known from DE-OS 35 05 063, in which the difference between the maximum value of the light intensity and an average value formed from a plurality of maximum values represents the controlled variable. When this difference is formed, the information about the absolute value of the maximum value is lost.
  • the known control device ultimately serves to control the uneven running of the engine. With which engine parameters, in particular with which fuel-air ratio (lambda) the desired smoothness is achieved, is irrelevant there. There is therefore no regulation of a specific fuel-air ratio.
  • the object of the invention is to provide a device of the type mentioned at the beginning with which it is possible to precisely control at least one engine parameter.
  • the evaluation device comprises a device for determining the absolute value of the maximum of the light emission of each combustion cycle in the corresponding electrical signal and provides an output signal reflecting the absolute value of the maximum and in that the evaluation device furthermore contains a control unit comprises, which controls at least one motor parameter as a function of the output signal reflecting the absolute value of the maximum.
  • the device for determining the intensity maximum is followed by an averager which emits a signal corresponding to the mean value from the intensity maxima of a predeterminable number of combustion cycles, and that the output of the averager with the Actual value input of the control unit is connected.
  • the maximum intensity can be averaged over 20 to 100 cycles, for example.
  • a further preferred embodiment is characterized in that the evaluation device has a device for detecting misfires, which on the one hand receives signals related to the light emission and on the other hand signals which are dependent on a sensor from the crankshaft angle or the piston position of the engine and which in the case of an electrical signal is below Threshold value delivers an output signal at its output at a point in time or time window in which ignition is normally dependent on the crankshaft angle or on the piston position.
  • the signals emitted by the device for detecting misfires can, for example, be counted and, in the case of a certain number or frequency of misfires, can cause an emergency shutdown of the engine.
  • the radicals formed during the ignition emit light in a certain frequency range, especially in the ultraviolet range (approx. 200 nm to 350 nm).
  • an optical bandpass filter which is preferably connected upstream of the photodetector, one can now specifically evaluate a specific spectral range, a so-called spectral window, and use the maximum light emission occurring in this spectral window to regulate engine parameters.
  • the intensity of the radiation in the UV region is strongly dependent on the combustion gas / air ratio, a higher intensity occurring with smaller lambda values. This can be used to achieve lambda control based on the light intensity of the UV emission.
  • a bandpass filter preferably a colored glass filter
  • the optical pickup it being possible, for example, by using specially doped types of glass, that the light from the combustion chamber, which leads to the outside, itself has bandpass filtering properties, and thus can form a bandpass filter per combustion chamber if desired.
  • Another advantageous embodiment of the invention is that in a multi-cylinder internal combustion engine for cylinder-selective control of the engine parameters, an optical pickup is arranged on the combustion chamber of each cylinder, each with its own photodetector and its own evaluation device belongs to a control unit which controls the engine parameters of the respective cylinder as a function of the electrical signals corresponding to the light emission of the respective cylinder and adjustable setpoints.
  • the cylinder-selective control of engine parameters for example the fuel-air ratio for each cylinder individually, allows more precise control and operation of the engine.
  • the optical transducer (probe), designated overall by 1, is inserted in the cylinder head 7 of a cylinder of an internal combustion engine and held by means of a union nut 3.
  • the optical pickup 1 comprises a light-conducting glass rod 2, which extends into the combustion chamber 9 above the piston 8.
  • the optical pickup comprises an optical waveguide plug adapter 4, which makes it possible to detachably connect an optical waveguide to the outer end of the glass rod 2, in particular in the form of a flexible optical fiber 6, via an optical waveguide plug 5. All that is required is to plug the optical fiber connector 5 in the direction of arrow 10 into the optical fiber connector adapter 4. It is thus possible for the light which is produced in the combustion chamber 9 during combustion to be fed first to the evaluation device via the glass rod 2 and then via the flexible optical fiber 6.
  • the flexible optical fiber allows the electronic evaluation device to be installed remotely and can be easily replaced in the event of damage.
  • the light detected by an optical pickup 1 from a combustion chamber is fed to the electronic evaluation device 11 via an optical fiber 6 (for example, which is particularly transparent to the UV range).
  • the optical fiber 6 can also be detachably connected to the evaluation device.
  • a photodetector 12 for example a UV photodiode with a spectral sensitivity range from 185 to 1150 nm
  • the electrical signals corresponding to the light emission are then passed by a device 15 for determining the intensity maximum of the light emission of each combustion cycle.
  • the output signal present on line 16 thus reflects the intensity maximum of the light emission every combustion cycle again, for example a high-pass filter or a band-pass filter can be integrated in the optical pickup in order to observe only a spectral window.
  • the filter can be formed by the glass rod 2, which consists of special glass. However, it is also possible to use a separate filter element. Measurements have shown, among other things, that the radicals formed during the ignition emit light in the ultraviolet range (approx. 200 nm to 350 nm). The intensity of this radiation is very much dependent on the lambda (high intensity with a small lambda). A relatively precise lambda control can thus be implemented on the basis of the light intensity of the UV emission. Knocking can also be detected by means of UV emission.
  • the signal present on line 16 could be fed to the control unit 17, which then controls an engine parameter (for example the fuel / air ratio) via an output amplifier 18 and an engine parameter adjustment device (for example a mixture adjustment device 19).
  • an engine parameter for example the fuel / air ratio
  • an engine parameter adjustment device for example a mixture adjustment device 19
  • the output signals on line 16 are averaged over a number of, for example, 10 to 100 cycles, for example 30 cycles, that is to say the average of the intensity maxima is determined over a predeterminable number of combustion cycles. This takes place in the mean value generator 18, the output 19 of which is connected to the actual value input 20 of the control unit 17.
  • the probe drift (e.g. due to contamination of the combustion chamber probe) can be compensated for by a self-calibration device which, for example, acts on an additional input 36 of the amplifier 14 for drift correction.
  • a self-calibration device which, for example, acts on an additional input 36 of the amplifier 14 for drift correction.
  • the contamination can be determined during engine operation and a respective correction signal can be generated (FIG. 4).
  • a light pulse is fed into the optical waveguide by the self-calibration device 37 under angle mark control. This light pulse continues via the optical waveguide 6 and the combustion chamber window 6 into the combustion chamber, from where it is reflected. The reflected pulse then returns to the self-calibration device 37. The intensity of the reflected pulse is a measure of the contamination of the combustion chamber window. With this size can then For example, the evaluation device can be tracked (input 36).
  • the self-calibration process is started by the self-calibration trigger device 38 whenever no combustion is taking place (e.g. change TDC or during compression). This is the same combustion chamber window and the same optical waveguide as in the evaluation unit described above.
  • the evaluation device and the self-calibration device are decoupled via optics.
  • a device 21 for detecting misfires is provided in FIG. 2, which receives signals related to the light emission on the one hand via line 16 and signals dependent on the crankshaft angle or the piston bearing of the engine on the other hand via a sensor 22.
  • Sensors for detecting the crankshaft angle or the piston bearings of the engine are well known to the person skilled in the art and do not need to be described here in more detail. They generally emit a certain trigger signal at a certain motor position.
  • the device 21 for detecting misfires now checks whether light emission occurs in a certain time window, which is determined by the trigger signal from the sensor 22. This should normally be the case if the ignition is successful. If this is not the case, it outputs a corresponding signal at its output 23, which indicates a misfire.
  • This signal can be supplied to a logic block "inhibit" in the averager 18, which causes those combustion cycles in which combustion misfires occur to be disregarded when averaging. This means that there is no falsification of the mean value for individual misfires.
  • Misfires can also be communicated via line 34 to the emergency shutdown device 35, which, however, switches off the engine at a certain frequency of misfires.
  • the part of the evaluation device essentially comprising parts 1, 6, 12, 13, 14, 15 (and possibly 18) represents an "optical lambda probe" which, depending on the absolute value of the fuel-air ratio, has a corresponding analog signal at the output 19 supplies.
  • a lambda probe can also be marketed and used independently of the following control unit. However, it is of course also possible to implement the electrical components of the lambda probe and the control unit 17 together.
  • the control unit 17 comprises a setpoint generator 25, via which the desired setpoint of the motor parameter can be set.
  • a control difference xd results from the comparison of the set value w with the actual value x (intensity maximum averaged over several cycles in a spectral window). This is fed to stage 26, which then emits an actuating signal for regulating an engine parameter at its output. The control loop is thus closed.
  • control differences xd of several optical pickups 1 can be connected. This level then takes, for example, the largest value of all connected control differences for the calculation of the manipulated variable y.
  • the combustion gas / air ratio can be regulated as a function of the light emission in all cylinders.
  • FIG. 3 A five-cylinder internal combustion engine 29 is shown there as an example.
  • the optical pickups 1 extend into the combustion chamber of each cylinder and are each connected to the electronic evaluation device 11 'via flexible optical fibers 6.
  • This electronic evaluation device 11 ' essentially comprises five evaluation devices 11, as shown in FIG. 2.
  • Each of these evaluation devices 11 receives, via a line 30, a signal determined by a sensor 31, which indicates the crankshaft angle.
  • a cylinder-selective control of engine parameters takes place via the evaluation devices 11, in the embodiment of the combustion gas-air ratio of each individual cylinder shown in FIG. 3.
  • a control line 32 leads from each evaluation device 11 to the individual adjusting devices 33 for the combustion gas / air ratio. With this device it is therefore possible to regulate certain engine parameters in a cylinder-selective manner as a function of the light emission of each combustion cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An arrangement for determining the parameters of an internal combustion engine, in particular an Otto engine operating with gaseous fuels, has at least one optical sensor for observing the emission of light caused by the combustion in a combustion chamber of the internal combustion engine and at least one photodetector for converting the light emitted into electric signals which are processed in an evaluation unit. In order to achieve a rapid and accurate regulation, the evaluation unit (11) has an arrangement (15) for determining the maximum or mean intensity of the light emitted during each combustion cycle on the basis of the corresponding electric signal. The evaluation unit (11) further has a regulating unit (17) which regulates at least one engine parameter depending on the intensity maxima.

Description

Die Erfindung betrifft eine Einrichtung zur Regelung von Motorparametern insbesondere des Zündzeitpunktes oder des Kraftstoff-Luft-Verhältnisses eines Verbrennungsmotors, insbesondere eines mit gasförmigen Kraftstoffen betriebenen Ottomotors, mit mindestens einem optischen Aufnehmer zur Beobachtung der bei der Verbrennung in einem Brennraum des Verbrennungsmotors hervorgerufenen Lichtemission und mit mindestens einem Photodetektor zur Umwandlung der Lichtemission in elektrische Signale, die in einer Auswerteinrichtung verarbeitet werden.The invention relates to a device for controlling engine parameters, in particular the ignition timing or the fuel-air ratio of an internal combustion engine, in particular a gasoline engine operated with gaseous fuels, with at least one optical sensor for observing the light emission caused by the combustion in a combustion chamber of the internal combustion engine and with at least one photodetector for converting the light emission into electrical signals, which are processed in an evaluation device.

Es wurde bereits vorgeschlagen, die bei der Verbrennung in einem Brennraum hervorgerufene Lichtemission auszunutzen, um Motorparameter zu regeln. Über einen optischen Aufnehmer, der am Motor befestigt ist und im allgemeinen ein in den Brennraum führendes lichtleitendes Element (im einfachsten Fall ein sogenanntes Brennraumfenster) wird das Licht aus dem Motor herausgeführt, ohne die sonstigen Verbrennungsabläufe zu stören. Der optische Aufnehmer kann auch in der Zündkerze integriert sein.It has already been proposed to use the light emission caused by the combustion in a combustion chamber in order to regulate engine parameters. The light is led out of the engine via an optical pickup, which is attached to the engine and generally a light-guiding element leading into the combustion chamber (in the simplest case a so-called combustion chamber window), without disturbing the other combustion processes. The optical pickup can also be integrated in the spark plug.

Bisher wurde hauptsächlich aus der Lage der Lichtemission im zeitlichen Ablauf ein Regelsignal zur Regelung des Zündzeitpunktes gewonnen.So far, a control signal for controlling the ignition timing has mainly been obtained from the position of the light emission over time.

Aus der DE-OS 35 05 063 ist eine Regeleinrichtung für einen Motor bekannt, bei der die Differenz zwischen Maximalwert der Lichtintensität und einem aus mehreren Maximalwerten gebildeten Mittelwert die Regelgröße darstellt. Bei dieser Differenzbildung geht die Information über den Absolutwert des Maximalwertes verloren. Die bekannte Regeleinrichtung dient dazu, letztlich die Laufunruhe des Motors zu regeln. Bei welchen Motorparametern, insbesondere bei welchem Kraftstoff-Luft-Verhältnis (Lambda) die gewünschte Laufruhe sich einstellt, ist dort unerheblich. Es erfolgt also keine Regelung auf ein bestimmtes Kraftstoff-Luft-Verhältnis.A control device for a motor is known from DE-OS 35 05 063, in which the difference between the maximum value of the light intensity and an average value formed from a plurality of maximum values represents the controlled variable. When this difference is formed, the information about the absolute value of the maximum value is lost. The known control device ultimately serves to control the uneven running of the engine. With which engine parameters, in particular with which fuel-air ratio (lambda) the desired smoothness is achieved, is irrelevant there. There is therefore no regulation of a specific fuel-air ratio.

Aufgabe der Erfindung ist es, eine Einrichtung der eingangs genannten Gattung zu schaffen, mit der es möglich ist, zumindest einen Motorparameter präzise zu regeln.The object of the invention is to provide a device of the type mentioned at the beginning with which it is possible to precisely control at least one engine parameter.

Erfindungsgemäß wird dies bei einer Einrichtung der eingangs genannten Gattung dadurch erreicht, daß die Auswerteinrichtung eine Einrichtung zur Ermittlung des Absolutwertes des Maximums der Lichtemission jedes Verbrennungszyklus in dem entsprechenden elektrischen Signal umfaßt und ein den Absolutwert des Maximums widerspiegelndes Ausgangssignal liefert und daß die Auswerteinrichtung weiters eine Regeleinheit umfaßt, die in Abhängigkeit von dem den Absolutwert des Maximums widerspiegelnden Ausgangssignal zumindest einen Motorparameter regelt.According to the invention, this is achieved in a device of the type mentioned at the outset in that the evaluation device comprises a device for determining the absolute value of the maximum of the light emission of each combustion cycle in the corresponding electrical signal and provides an output signal reflecting the absolute value of the maximum and in that the evaluation device furthermore contains a control unit comprises, which controls at least one motor parameter as a function of the output signal reflecting the absolute value of the maximum.

Während bei den bekannten Vorschlägen (z.B. US-A-4,381,748)die Lage der Lichtemission im zeitlichen Ablauf ausgewertet wurde, wird gemäß der Erfindung vorgeschlagen, die Höhe des Intensitätsmaximums der Lichtemission zu verwenden, um einen Motorparameter zu erfassen und über eine Regeleinheit Motorparameter zu regeln. Ein solcher Motorparameter ist insbesondere das Kraftstoff-Luftverhältnis (Lambda). Aber auch andere Motorparameter wie beispielsweise der Zündzeitpunkt, der Ladedruck, die Motortemperatur etc. können grundsätzlich in Abhängigkeit vom Intensitätsmaximum der Intensität der Lichtemission jedes Verbrennungszyklus geregelt werden. Das Maximum der Lichtemission, welches sich im elektrischen Signal des Photodetektors widerspiegelt, läßt sich leicht durch eine elektronische Auswerteinrichtung ermitteln und dem Istwert-Eingang einer Regeleinrichtung zuführen, die dann in Abhängigkeit davon zumindest einen Motorparameter verstellt bzw. regelt.While the position of the light emission has been evaluated over time in the known proposals (for example US Pat. No. 4,381,748), it is proposed according to the invention to use the height of the intensity maximum of the light emission in order to detect a motor parameter and to regulate motor parameters via a control unit . Such an engine parameter is, in particular, the fuel-air ratio (lambda). However, other engine parameters such as the ignition timing, the boost pressure, the engine temperature etc. can also be regulated in principle as a function of the intensity maximum of the intensity of the light emission of each combustion cycle. The maximum of the light emission, which is reflected in the electrical signal of the photodetector, can easily be determined by an electronic evaluation device and fed to the actual value input of a control device which then adjusts or regulates at least one motor parameter as a function thereof.

Um Schwankungen der Lichtemission in einzelnen aufeinanderfolgenden Verbrennungszyklen zu glätten ist es günstig, wenn der Einrichtung zur Ermittlung des Intensitätsmaximums ein Mittelwertbildner nachgeschaltet ist, der aus den Intensitätsmaxima einer vorgebbaren Zahl von Verbrennungszyklen ein dem Mittelwert entsprechendes Signal abgibt, und daß der Ausgang des Mittelwertbildners mit dem Istwert-Eingang der Regeleinheit in Verbindung steht. Das Intensitätsmaximum kann dabei beispielsweise über 20 bis 100 Zyklen gemittelt werden.In order to smooth fluctuations in the light emission in individual successive combustion cycles, it is expedient if the device for determining the intensity maximum is followed by an averager which emits a signal corresponding to the mean value from the intensity maxima of a predeterminable number of combustion cycles, and that the output of the averager with the Actual value input of the control unit is connected. The maximum intensity can be averaged over 20 to 100 cycles, for example.

Eine weitere bevorzugte Ausführungsform ist dadurch gekennzeichnet, daß die Auswerteinrichtung eine Einrichtung zur Erfassung von Verbrennungsaussetzern aufweist, welche einerseits mit der Lichtemission zusammenhängende Signale und andererseits von einem Aufnehmer vom Kurbelwellenwinkel bzw. der Kolbenlage des Motors abhängige Signale empfängt und welche bei einem elektrischen Signal unterhalb eines Schwellwerts zu einem vom Kurbelwellenwinkel bzw. von der Kolbenstellung abhängigen Zeitpunkt bzw. Zeitfenster, in dem normalerweise die Zündung erfolgt, auf ihrem Ausgang ein Ausgangssignal liefert. Die von der Einrichtung zur Erfassung von Verbrennungsaussetzern abgegebenen Signale können beispielsweise gezählt und bei einer bestimmten Anzahl bzw. Häufigkeit von Verbrennungsaussetzern etwa eine Notabschaltung des Motors hervorrufen.A further preferred embodiment is characterized in that the evaluation device has a device for detecting misfires, which on the one hand receives signals related to the light emission and on the other hand signals which are dependent on a sensor from the crankshaft angle or the piston position of the engine and which in the case of an electrical signal is below Threshold value delivers an output signal at its output at a point in time or time window in which ignition is normally dependent on the crankshaft angle or on the piston position. The signals emitted by the device for detecting misfires can, for example, be counted and, in the case of a certain number or frequency of misfires, can cause an emergency shutdown of the engine.

Außerdem ist es möglich, die Signale der Einrichtung zur Erfassung von Verbrennungsaussetzern auch dem Mittelwertbildner zuzuführen. Dieser kann dann zur Vermeidung von verfälschten Mittelwerten Verbrennungszyklen mit Verbrennungsaussetzern bei der Mittelwertbildung einfach unberücksichtigt lassen.It is also possible to also supply the signals from the device for detecting misfires to the averager. In order to avoid falsified averages, this can simply ignore combustion cycles with misfires in the averaging.

Es hat sich insbesondere bei der Untersuchung an Gasmotoren gezeigt, daß das bei der Entflammung entstehende Radikale Licht in einem bestimmten Frequenzbereich, besonders im ultravioletten Bereich (ca. 200nm bis 350nm) emitiert. Mittels eines optischen Bandpaßfilters, der vorzugsweise dem Photodetektor vorgeschaltet ist, kann man nun gezielt einen bestimmten spektralen Bereich, ein sogenanntes spektrales Fenster, auswerten und die in diesem spektralen Fenster auftretende maximale Lichtemission zur Regelung von Motorparametern heranziehen. Bei einem Gasmotor hat sich herausgestellt, daß die Intensität der Strahlung im UV-Bereich stark vom Verbrennungsgas-Luft-Verhältnis abhängig ist, wobei bei kleineren Lambdawerten eine höhere Intensität auftritt. Dies kann genutzt werden, um auf der Basis der Lichtintensität der UV-Emission eine Lambdaregelung zu erzielen. Gleichzeitig ist es natürlich auch möglich, andere Motorparameter, beispielsweise den Zündzeitpunkt aufgrund der Lichtemission jedes Verbrennungszyklus zu regeln.It has been shown in particular in the investigation of gas engines that the radicals formed during the ignition emit light in a certain frequency range, especially in the ultraviolet range (approx. 200 nm to 350 nm). By means of an optical bandpass filter, which is preferably connected upstream of the photodetector, one can now specifically evaluate a specific spectral range, a so-called spectral window, and use the maximum light emission occurring in this spectral window to regulate engine parameters. In the case of a gas engine, it has been found that the intensity of the radiation in the UV region is strongly dependent on the combustion gas / air ratio, a higher intensity occurring with smaller lambda values. This can be used to achieve lambda control based on the light intensity of the UV emission. At the same time, it is of course also possible to regulate other engine parameters, for example the ignition timing based on the light emission of each combustion cycle.

Aus konstruktiver Sicht ist es besonders günstig, wenn im bzw. am optischen Aufnehmer ein Bandpaßfilter, vorzugsweise ein Farbglasfilter angeordnet ist, wobei es beispielsweise durch Verwendung speziell dotierter Glassorten ermöglicht ist, daß das Licht aus dem Brennraum nach außen leitende Material selbst bandpaßfilternde Eigenschaften hat und somit pro Brennraum einen Bandpaßfilter bilden kann, wenn dies gewünscht ist.From a constructional point of view, it is particularly advantageous if a bandpass filter, preferably a colored glass filter, is arranged in or on the optical pickup, it being possible, for example, by using specially doped types of glass, that the light from the combustion chamber, which leads to the outside, itself has bandpass filtering properties, and thus can form a bandpass filter per combustion chamber if desired.

Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, daß bei einem mehrzylindrigen Verbrennungsmotor zur zylinderselektiven Regelung der Motorparameter, am Brennraum jedes Zylinders ein optischer Aufnehmer angeordnet ist, zu dem jeweils ein eigener Photodetektor und eine eigene Auswerteinrichtung mit einer Regeleinheit gehört, die in Abhängigkeit von den der Lichtemission des jeweiligen Zylinders entsprechenden elektrischen Signalen und einstellbaren Sollwerten die Motorparameter des jeweiligen Zylinders regelt. Die zylinderselektive Regelung von Motorparametern, beispielsweise des Kraftstoff-Luftverhältnisses für jeden Zylinder einzeln erlaubt eine präzisere Regelung und Betriebsweise des Motors. Grundsätzlich ist es natürlich auch denkbar und möglich, in Abhängigkeit von der Lichtemission zumindest eines Brennraums einen oder mehrere Motorparameter für mehrere Brennräume gleichzeitig zu regeln.Another advantageous embodiment of the invention is that in a multi-cylinder internal combustion engine for cylinder-selective control of the engine parameters, an optical pickup is arranged on the combustion chamber of each cylinder, each with its own photodetector and its own evaluation device belongs to a control unit which controls the engine parameters of the respective cylinder as a function of the electrical signals corresponding to the light emission of the respective cylinder and adjustable setpoints. The cylinder-selective control of engine parameters, for example the fuel-air ratio for each cylinder individually, allows more precise control and operation of the engine. In principle, it is of course also conceivable and possible to control one or more engine parameters for several combustion chambers simultaneously, depending on the light emission of at least one combustion chamber.

Weitere Vorteile und Einzelheiten der Erfindung werden in der nachfolgenden Figurenbeschreibung näher erläutert.Further advantages and details of the invention are explained in more detail in the following description of the figures.

Es zeigen:

Fig. 1
einen schematischen Querschnitt durch den Zylinderkopfbereich eines Zylinders mit eingesetztem optischem Aufnehmer,
Fig. 2
in einem Blockdiagramm die Auswerteinrichtung für ein Ausführungsbeispiel der Erfindung und
Fig. 3
schematisch einen mehrzylindrigen Verbrennungsmotor mit einer zylinderselektiven Verbrennungsgas-Luft-Gemisch-Regelung in Abhängigkeit von der Lichtemission aus den einzelnen Brennräumen.
Fig. 4
eine Selbstkalibrierungsvorrichtung in einem Blockdiagramm
Show it:
Fig. 1
2 shows a schematic cross section through the cylinder head region of a cylinder with an optical pickup inserted,
Fig. 2
in a block diagram the evaluation device for an embodiment of the invention and
Fig. 3
schematically a multi-cylinder internal combustion engine with a cylinder-selective combustion gas-air mixture control depending on the light emission from the individual combustion chambers.
Fig. 4
a self-calibration device in a block diagram

Der insgesamt mit 1 bezeichnete optische Aufnehmer (Sonde) ist in dem Zylinderkopf 7 eines Zylinders eines Verbrennungsmotors eingesetzt und mittels einer Überwurfmutter 3 gehalten. Der optische Aufnehmer 1 umfaßt einen lichtleitenden Glasstab 2, der bis in den Brennraum 9 oberhalb des Kolbens 8 reicht. Außerdem umfaßt der optische Aufnehmer einen Lichtwellenleiter-Steckeradapter 4, der es ermöglicht, an das äußere Ende des Glasstabes 2 einen Lichtwellenleiter, insbesondere in der Form einer flexiblen Lichtleitfaser 6 über einen Lichtwellenleiterstecker 5 lösbar anzuschließen. Dazu muß lediglich der Lichtwellenleiterstecker 5 in Richtung des Pfeiles 10 in den Lichtwellenleiter-Steckeradapter 4 eingesteckt werden. Damit ist es möglich, das Licht, das bei der Verbrennung im Brennraum 9 entsteht, zunächst über den Glasstab 2 und dann über die flexible Lichtleitfaser 6 einer Auswerteinrichtung zugeführt wird. Die flexible Lichtleitfaser erlaubt eine entfernte Aufstellung der elektronischen Auswerteinrichtung und kann im Falle von Beschädigungen leicht ausgetauscht werden.The optical transducer (probe), designated overall by 1, is inserted in the cylinder head 7 of a cylinder of an internal combustion engine and held by means of a union nut 3. The optical pickup 1 comprises a light-conducting glass rod 2, which extends into the combustion chamber 9 above the piston 8. In addition, the optical pickup comprises an optical waveguide plug adapter 4, which makes it possible to detachably connect an optical waveguide to the outer end of the glass rod 2, in particular in the form of a flexible optical fiber 6, via an optical waveguide plug 5. All that is required is to plug the optical fiber connector 5 in the direction of arrow 10 into the optical fiber connector adapter 4. It is thus possible for the light which is produced in the combustion chamber 9 during combustion to be fed first to the evaluation device via the glass rod 2 and then via the flexible optical fiber 6. The flexible optical fiber allows the electronic evaluation device to be installed remotely and can be easily replaced in the event of damage.

Fig. 2 ist nun ein Ausführungsbeispiel einer solchen Auswerteinrichtung 11. Das von einem optischen Aufnehmer 1 aus einem Brennraum erfaßte Licht wird über eine (beispielsweise speziell für den UV-Bereich durchlässige) Lichtleitfaser 6 der elektronischen Auswerteinrichtung 11 zugeführt. Die Lichtleitfaser 6 kann auch an der Auswerteinrichtung lösbar mit dieser verbunden sein. Am Eingang der Auswerteinrichtung wandelt ein Photodetektor 12 (beispielsweise eine UV-Photodiode mit einem spektralen Empfindlichkeitsbereich von 185 bis 1150 nm) das Licht in elektrische Signale um, welche dann in einem Verstärker 13 verstärkt und in einem Hochpaß oder Bandpaßfilter 14 gefiltert werden. Hierauf gelangen die der Lichtemission entsprechenden elektrischen Signale einer Einrichtung 15 zur Ermittlung des Intensitätsmaximums der Lichtemission jedes Verbrennungszyklus. Das auf Leitung 16 anstehende Ausgangssignal spiegelt also das Intensitätsmaximum der Lichtemission jedes Verbrennungszyklus wieder, wobei beispielsweise im optischen Aufnehmer selbst ein Hochpaß oder Bandpaßfilter integriert sein kann, um lediglich ein spektrales Fenster zu beobachten. Der Filter kann durch den Glasstab 2 gebildet sein, welcher aus speziellem Glas besteht. Es ist aber auch möglich, ein gesondertes Filterelement einzusetzen. Bei Messungen hat sich u. a. gezeigt, daß die bei der Entflammung entstehenden Radikale Licht im ultravioletten Bereich (ca. 200 nm bis 350 nm) emittieren. Die Intensität dieser Strahlung ist sehr stark vom Lambda abhängig (hohe Intensität bei kleinem Lambda). Somit kann eine relativ genaue Lambdaregelung auf der Basis der Lichtintensität der UV-Emission realisiert werden. Weiters kann mittels Uv-Emission Klopfen detektiert werden.2 is an exemplary embodiment of such an evaluation device 11. The light detected by an optical pickup 1 from a combustion chamber is fed to the electronic evaluation device 11 via an optical fiber 6 (for example, which is particularly transparent to the UV range). The optical fiber 6 can also be detachably connected to the evaluation device. At the input of the evaluation device, a photodetector 12 (for example a UV photodiode with a spectral sensitivity range from 185 to 1150 nm) converts the light into electrical signals, which are then amplified in an amplifier 13 and filtered in a high-pass or band-pass filter 14. The electrical signals corresponding to the light emission are then passed by a device 15 for determining the intensity maximum of the light emission of each combustion cycle. The output signal present on line 16 thus reflects the intensity maximum of the light emission every combustion cycle again, for example a high-pass filter or a band-pass filter can be integrated in the optical pickup in order to observe only a spectral window. The filter can be formed by the glass rod 2, which consists of special glass. However, it is also possible to use a separate filter element. Measurements have shown, among other things, that the radicals formed during the ignition emit light in the ultraviolet range (approx. 200 nm to 350 nm). The intensity of this radiation is very much dependent on the lambda (high intensity with a small lambda). A relatively precise lambda control can thus be implemented on the basis of the light intensity of the UV emission. Knocking can also be detected by means of UV emission.

Ebenso verhält es sich bei den Wellenlängen um 600 nm (Festkörperstrahler), wobei sich diese Wellenlängen erheblich leichter übertragen und detektieren lassen. Klopferkennung ist jedoch bei diesen Wellenlängen schwerer möglich, da die Festkörper bei Klopfen nachleuchten und die höherfrequente Klopfinformation somit teilweise verlorengeht. Als Kompromiß ist es günstig, effektiv ein Wellenlängenfenster von etwa 185 bis 600 nm zu beobachten. Da die UV-Photodiode unterhalb von 185 nm ohnehin unempfindlich ist, reicht dazu ein optischer Hochpaßfilter aus, der nur für Wellenlängen kleiner 600 nm durchlässig ist.The same applies to the wavelengths around 600 nm (solid-state emitters), whereby these wavelengths are much easier to transmit and detect. Knock detection is, however, more difficult at these wavelengths, since the solids remain after knocking and the higher-frequency knock information is therefore partially lost. As a compromise, it is beneficial to effectively observe a wavelength window of approximately 185 to 600 nm. Since the UV photodiode is already insensitive below 185 nm, an optical high-pass filter is sufficient, which is only permeable for wavelengths below 600 nm.

Grundsätzlich könnte das auf Leitung 16 anstehende Signal gleich der Regeleinheit 17 zugeführt werden, die dann über einen Ausgangsverstärker 18 und eine Motorparameter-Verstellvorrichtung (beispielsweise eine Gemischverstellvorrichtung 19) einen Motorparameter (beispielsweise das Kraftstoff-Luftverhältnis) regelt. Um Schwankungen der einzelnen Verbrennungszyklen zu glätten, ist es aber günstiger, wenn man die Ausgangssignale auf der Leitung 16 über mehrere beispielsweise 10 bis 100 Zyklen, beispielsweise 30 Zyklen, mittelt, also über eine vorgebbare Zahl von Verbrennungszyklen den Mittelwert der Intensitätsmaxima ermittelt. Dies erfolgt im Mittelwertbildner 18, dessen Ausgang 19 mit dem Istwert-Eingang 20 der Regeleinheit 17 verbunden ist.In principle, the signal present on line 16 could be fed to the control unit 17, which then controls an engine parameter (for example the fuel / air ratio) via an output amplifier 18 and an engine parameter adjustment device (for example a mixture adjustment device 19). To avoid fluctuations in the individual combustion cycles smoothing, it is more favorable if the output signals on line 16 are averaged over a number of, for example, 10 to 100 cycles, for example 30 cycles, that is to say the average of the intensity maxima is determined over a predeterminable number of combustion cycles. This takes place in the mean value generator 18, the output 19 of which is connected to the actual value input 20 of the control unit 17.

Der Sondendrift (z. B. durch Verschmutzung der Brennraumsonde) kann durch eine Selbstkalibrierungsvorrichtung ausgeglichen werden, die beispielsweise auf einen zusätzlichen Eingang 36 des Verstärkers 14 zur Driftkorrektur einwirkt. Mit dieser Vorrichtung kann während des Motorbetriebs die Verschmutzung ermittelt und ein jeweiliges Korrektursignal erzeugt werden (Fig. 4).The probe drift (e.g. due to contamination of the combustion chamber probe) can be compensated for by a self-calibration device which, for example, acts on an additional input 36 of the amplifier 14 for drift correction. With this device, the contamination can be determined during engine operation and a respective correction signal can be generated (FIG. 4).

Es wird von der Selbstkalibrierungsvorrichtung 37 winkelmarkengesteuert ein Lichtimpuls in den Lichtwellenleiter eingespeist. Dieser Lichtimpuls setzt sich über den Lichtwellenleiter 6 und das Brennraumfenster 6 in den Brennraum fort, von wo er reflektiert wird. Der reflektierte Impuls gelangt anschließend wieder zur Selbstkalibrierungsvorrichtung 37. Die Intensität des reflektierten Impulses ist ein Maß für die Verschmutzung des Brennraumfensters. Mit dieser Größe kann dann beispielsweise die Auswerteinrichtung nachgeführt werden (Eingang 36). Der Selbstkalibrierprozeß wird von der Selbstkalibrierauslösevorrichtung 38 immer dann gestartet, wenn gerade keine Verbrennung stattfindet (z. B. Wechsel O.T. oder während der Verdichtung). Es handelt sich hierbei um dasselbe Brennraumfenster und denselben Lichtwellenleiter, wie bei der oben beschriebenen Auswerteeinheit. Die Auswerteinrichtung und die Selbstkalibrierungsvorrichtung sind über eine Optik entkoppelt.A light pulse is fed into the optical waveguide by the self-calibration device 37 under angle mark control. This light pulse continues via the optical waveguide 6 and the combustion chamber window 6 into the combustion chamber, from where it is reflected. The reflected pulse then returns to the self-calibration device 37. The intensity of the reflected pulse is a measure of the contamination of the combustion chamber window. With this size can then For example, the evaluation device can be tracked (input 36). The self-calibration process is started by the self-calibration trigger device 38 whenever no combustion is taking place (e.g. change TDC or during compression). This is the same combustion chamber window and the same optical waveguide as in the evaluation unit described above. The evaluation device and the self-calibration device are decoupled via optics.

Außerdem ist in Fig. 2 eine Einrichtung 21 zur Erfassung von Verbrennungsaussetzern vorgesehen, welche einerseits über die Leitung 16 mit der Lichtemission zusammenhängende Signale und andererseits über einen Aufnehmer 22 vom Kurbelwellenwinkel bzw. der Kolbenlager des Motors abhängige Signale empfängt. Aufnehmer zur Erkennung des Kurbelwellenwinkels bzw. der Kolbenlager des Motors sind dem Fachmann bestens bekannt und brauchen hier nicht näher beschrieben werden. Sie geben im allgemeinen bei einer bestimmten motorstellung ein bestimmtes Triggersignal ab. Die Einrichtung 21 zur Erkennung von Verbrennungsaussetzern überprüft nun, ob in einem bestimmten Zeitfenster das vom Triggersignal aus dem Aufnehmer 22 festgelegt wird, eine Lichtemission auftritt. Dies müßte bei erfolgter Zündigung normalerweise der Fall sein. Ist dies einmal nicht der Fall, so gibt sie an ihrem Ausgang 23 ein entsprechendes Signal ab, das einen Verbrennungsaussetzer anzeigt. Dieses Signal kann einem Logikbaustein "Inhibit" im Mittelwertbildner 18 zugeführt werden, welcher bewirkt, daß bei der Mittelwertbildung jene Verbrennungszyklen außer acht gelassen werden, bei denen Verbrennungsaussetzer auftreten. Damit kommt es zu keiner Verfälschung des Mittelwertes bei einzelnen Verbrennungsaussetzern.In addition, a device 21 for detecting misfires is provided in FIG. 2, which receives signals related to the light emission on the one hand via line 16 and signals dependent on the crankshaft angle or the piston bearing of the engine on the other hand via a sensor 22. Sensors for detecting the crankshaft angle or the piston bearings of the engine are well known to the person skilled in the art and do not need to be described here in more detail. They generally emit a certain trigger signal at a certain motor position. The device 21 for detecting misfires now checks whether light emission occurs in a certain time window, which is determined by the trigger signal from the sensor 22. This should normally be the case if the ignition is successful. If this is not the case, it outputs a corresponding signal at its output 23, which indicates a misfire. This signal can be supplied to a logic block "inhibit" in the averager 18, which causes those combustion cycles in which combustion misfires occur to be disregarded when averaging. This means that there is no falsification of the mean value for individual misfires.

Verbrennungsaussetzer können auch über die Leitung 34 der Notabschalteinrichtung 35 mitgeteilt werden, die aber bestimmten Häufigkeit von Verbrennungsaussetzern den Motor abstellt.Misfires can also be communicated via line 34 to the emergency shutdown device 35, which, however, switches off the engine at a certain frequency of misfires.

Der im wesentlichen die Teile 1, 6, 12, 13, 14, 15 (und gegebenenfalls 18) umfassende Teil der Auswerteinrichtung stellt eine "optische Lambdasonde" dar, die in Abhängigkeit vom Absolutwert des Kraftstoff-Luft-Verhältnisses ein entsprechendes analoges Signal am Ausgang 19 liefert. Eine solche Lambdasonde kann auch unabhängig von der folgenden Regeleinheit vermarktet und eingesetzt werden. Es ist natürlich aber auch möglich, die elektrischen Komponenten der Lambdasonde und die Regeleinheit 17 zusammen zu implementieren.The part of the evaluation device essentially comprising parts 1, 6, 12, 13, 14, 15 (and possibly 18) represents an "optical lambda probe" which, depending on the absolute value of the fuel-air ratio, has a corresponding analog signal at the output 19 supplies. Such a lambda probe can also be marketed and used independently of the following control unit. However, it is of course also possible to implement the electrical components of the lambda probe and the control unit 17 together.

Die Regeleinheit 17 umfaßt einen Sollwertgeber 25 über den der gewünschte Sollwert des Motorparameters einstellbar ist. Aus dem Vergleich des eingestellten Sollwertes w mit dem Istwert x (über mehrere Zyklen gemitteltes Intensitätsmaximum in einem spektralen Fenster) ergibt sich eine Regeldifferenz xd. Dieses wird der Stufe 26 zugeführt, welche dann an ihrem Ausgang ein Stellsignal für die Regelung eines Motorparameters abgibt. Somit ist der Regelkreis geschlossen.The control unit 17 comprises a setpoint generator 25, via which the desired setpoint of the motor parameter can be set. A control difference xd results from the comparison of the set value w with the actual value x (intensity maximum averaged over several cycles in a spectral window). This is fed to stage 26, which then emits an actuating signal for regulating an engine parameter at its output. The control loop is thus closed.

In der Stufe 14 können, wie dies durch strichlierte Linien 28 angedeutet ist, Regeldifferenzen xd mehrerer optischer Aufnehmer 1 angeschlossen werden. Diese Stufe nimmt dann beispielsweise den größten Wert aller angeschlossenen Regeldifferenzen für die Berechnung der Stellgröße y. Beispielsweise kann damit bei einer mehrzylindrigen Verbrennungskraftmaschine die nur mit einem einzigen Gas-Liftmischer ausgestattet ist, das Verbrennungsgas-Luftverhältnis in Abhängigkeit von der Lichtemission in allen Zylindern geregelt werden.In stage 14, as indicated by broken lines 28, control differences xd of several optical pickups 1 can be connected. This level then takes, for example, the largest value of all connected control differences for the calculation of the manipulated variable y. For example, in a multi-cylinder internal combustion engine that is only equipped with a single gas lift mixer, the combustion gas / air ratio can be regulated as a function of the light emission in all cylinders.

Es ist jedoch auch eine zylinderselektive Regelung denkbar und günstig, wie dies beispielsweise in Fig. 3 gezeigt ist. Dort ist als Beispiel ein fünfzylindriger Verbrennungsmotor 29 dargestellt. In den Brennraum jedes Zylinders reichen die optischen Aufnehmer 1, die jeweils über flexible Lichtleitfasern 6 mit der elektronischen Auswerteinrichtung 11' verbunden sind. Diese elektronische Auswerteinrichtung 11' umfaßt im wesentlichen fünf Auswerteinrichtungen 11, wie sie in Fig. 2 gezeigt sind. Jede dieser Auswerteinrichtungen 11 empfängt über eine Leitung 30 ein von einem Aufnehmer 31 ermitteltes Signal, das den Kurbelwellenwinkel angibt. Über die Auswerteinrichtungen 11 erfolgt eine zylinderselektive Regelung von Motorparametern, bei dem in Fig. 3 dargestellten Ausführungsbeispiel des Verbrennungsgas-Luftverhältnisses jedes einzelnen Zylinders. Dazu führt von jeder Auswerteinrichtung 11 eine Steuerleitung 32 zu den einzelnen Verstelleinrichtungen 33 für das Verbrennungsgas-Luftverhältnis. Mit dieser Einrichtung ist es also möglich, zylinderselektiv bestimmte Motorparameter in Abhängigkeit von der Lichtemission jedes Verbrennungszyklus zu regeln.However, cylinder-selective control is also conceivable and inexpensive, as is shown, for example, in FIG. 3. A five-cylinder internal combustion engine 29 is shown there as an example. The optical pickups 1 extend into the combustion chamber of each cylinder and are each connected to the electronic evaluation device 11 'via flexible optical fibers 6. This electronic evaluation device 11 'essentially comprises five evaluation devices 11, as shown in FIG. 2. Each of these evaluation devices 11 receives, via a line 30, a signal determined by a sensor 31, which indicates the crankshaft angle. A cylinder-selective control of engine parameters takes place via the evaluation devices 11, in the embodiment of the combustion gas-air ratio of each individual cylinder shown in FIG. 3. For this purpose, a control line 32 leads from each evaluation device 11 to the individual adjusting devices 33 for the combustion gas / air ratio. With this device it is therefore possible to regulate certain engine parameters in a cylinder-selective manner as a function of the light emission of each combustion cycle.

Claims (20)

  1. Apparatus for controlling engine parameters, in particular the ignition timing or the fuel-air ratio of an internal combustion engine, in particular of a four stroke engine driven by gaseous fuels, with at least one optical sensor (1) for observing the light emission caused by combustion in a combustion chamber of an internal combustion engine, and with at least one photo-sensor (12) for converting the light emission into electrical signals, which are processed in an evaluation apparatus (11), characterised in that the evaluation apparatus (11) includes an apparatus (15) for determining the absolute value of the maximum of the light emission of each combustion cycle from the corresponding electrical signal and delivering an output signal reflecting the absolute value of the maximum, and that the evaluation apparatus (11) further includes a control unit which controls at least one engine parameter dependent upon the output signal reflecting the absolute value of the maximum.
  2. Apparatus according to claim 1, characterised in that the apparatus (15) for sensing the maximum is connected on the output side to an averaging device (18) which supplies a signal corresponding to the average value of the maxima of intensity of a predeterminable number of combustion cycles, wherein the output (19) of the averaging device (18) is connected to the actual value input (20) of the control unit (17).
  3. Apparatus according to claim 1 or 2, characterised in that the evaluation apparatus is provided with an apparatus (21) for sensing combustion misfires, which receives on the one hand signals connected with the light emission and on the other hand signals from a sensor (22) dependent upon the crankshaft angle and the position of the pistons in the engine, and which, when there is an electrical signal below a threshold at a point in time or in a time window dependent upon the crankshaft angle or the position of the pistons, during which ignition normally takes place, delivers an output signal at its output (23).
  4. Apparatus according to claim 2 and 3, characterised in that the output (23) of the apparatus (21) for sensing combustion misfires is connected to the averaging device (18), and the averaging device (18) is configured so that it does not take into account combustion cycles with combustion misfires in the averaging process.
  5. Apparatus according to claim 3 or 4, characterised in that the output (23) of the apparatus (21) for sensing combustion misfires is connected to an emergency shut-off system (35) which acts to stop the internal combustion engine after a specified number or a specified frequency of misfires.
  6. Apparatus according to one of claims 1 to 5, characterised in that an optical filter (2), preferably a high-pass filter, is connected on the input side to the photo-sensor (1).
  7. Apparatus according to claim 6, characterised in that the filtering characteristic of the filter and the sensitivity range of the photo-sensor are selected so that there is an observation window with a suitable wave-length, also in the UV region.
  8. Apparatus according to claim 6 or 7, characterised in that the wave length range sensed is between 150 and 650 nm.
  9. Apparatus according to one of claims 1 to 8, characterised in that between the optical sensor (1) on the engine (29) and the evaluation apparatus (11), at least one flexible optical fibre (6) is arranged.
  10. Apparatus according to one of claims 6 to 9, characterised in that in or on the optical sensor (1) an optical filter, preferably a coloured glass filter (2) is arranged.
  11. Apparatus according to claim 10, characterised in that the material conducting the light from the combustion chamber, preferably glass, itself has band pass filtering properties and preferably forms the only optical band pass filter per combustion chamber.
  12. Apparatus according to one of claims 1 to 11, characterised in that in the case of a multi-cylinder internal combustion engine (29), on the combustion chamber (9) of each cylinder an optical sensor (1) is arranged for cylinder-selective control of the engine parameters, to each of which a separate photo-sensor and evaluation apparatus (11) belongs, with a control unit, which controls the engine parameters of respective cylinder depending on the electrical signals corresponding to the light emission of the respective cylinder, and adjustable set-values.
  13. Apparatus according to claim 12, characterised in that a common apparatus (31) for sensing the crankshaft angle or position of the pistons is provided for all the evaluation apparatus (11).
  14. Apparatus according to one of claims 1 to 13, characterised in that a mixture adjusting device (19, 33) is provided, by means of which the composition of the fuel-air mixture supplied to the internal combustion engine is controllable, dependent upon the light emission in the combustion chamber.
  15. Apparatus according to one of claims 1 to 14, characterised in that, for calibration of the optical sensor in an internal combustion engine, a light source which transmits light to the sensor, and further a sensing apparatus for sensing the portion of light returning from the sensor are provided.
  16. Apparatus according to claim 15, characterised in that the light is transmitted to the sensor when it receives no measured light, for example arising from combustion in the combustion chamber.
  17. Apparatus according to claim 15 or 16, characterised in that the light source (37) is arranged outside the combustion chamber (9).
  18. Apparatus according to claim 17, characterised in that the light source (37) is connected to the optical sensor (1) by means of an optical fibre (6).
  19. Device according to one of claims 15 to 18, characterised in that the sensing apparatus sensing the reflected light of the light source supplies a correction signal to the processing apparatus (11) dependent upon the reflected light intensity sensed.
  20. Apparatus according to one of claims 1 to 19, characterised in that the optical sensor (1) extends into the main combustion chamber (9) of the internal combustion engine lying directly above the piston (8).
EP94900001A 1993-01-28 1993-10-27 Arrangement for determining the parameters of an internal combustion engine Expired - Lifetime EP0632864B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT141/93 1993-01-28
AT14193 1993-01-28
PCT/AT1993/000164 WO1994017297A1 (en) 1993-01-28 1993-10-27 Arrangement for determining the parameters of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP0632864A1 EP0632864A1 (en) 1995-01-11
EP0632864B1 true EP0632864B1 (en) 1997-07-23

Family

ID=3482617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94900001A Expired - Lifetime EP0632864B1 (en) 1993-01-28 1993-10-27 Arrangement for determining the parameters of an internal combustion engine

Country Status (8)

Country Link
US (2) US5505177A (en)
EP (1) EP0632864B1 (en)
JP (1) JPH07505694A (en)
AT (2) ATE155850T1 (en)
DE (1) DE59306980D1 (en)
DK (1) DK0632864T3 (en)
ES (1) ES2105595T3 (en)
WO (1) WO1994017297A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060893B4 (en) * 2004-12-17 2006-07-27 Mde Dezentrale Energiesysteme Gmbh Method and device for controlling an ignition point in an Otto gas engine

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE155850T1 (en) * 1993-01-28 1997-08-15 Jenbacher Energiesysteme Ag DEVICE FOR DETECTING ENGINE PARAMETERS OF A COMBUSTION ENGINE
AT403323B (en) * 1995-08-24 1998-01-26 Jenbacher Energiesysteme Ag METHOD AND DEVICE FOR DETERMINING A KNOCKING INTENSITY SIGNAL OF AN INTERNAL COMBUSTION ENGINE
US5904131A (en) 1995-12-28 1999-05-18 Cummins Engine Company, Inc. Internal combustion engine with air/fuel ratio control
US5949146A (en) * 1997-07-02 1999-09-07 Cummins Engine Company, Inc. Control technique for a lean burning engine system
US5923809A (en) * 1998-02-02 1999-07-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical power source derived from engine combustion chambers
DE10066074B4 (en) * 2000-09-04 2006-09-07 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for evaluating stratified charge combustion for direct injection gasoline engines
US6732709B1 (en) 2002-12-06 2004-05-11 Caterpillar Inc Dynamic engine timing control
US8006677B2 (en) * 2006-02-02 2011-08-30 Immixt, LLC Fuel control system and associated method
US7721720B2 (en) * 2006-04-10 2010-05-25 Payne Edward A Fuel control system and associated method
US8256401B2 (en) 2006-05-21 2012-09-04 Immixt, LLC Alternate fuel storage system and method
US7841317B2 (en) * 2007-04-18 2010-11-30 Williams Rodger K Alternate fuel blending system and associated method
WO2013032083A1 (en) * 2011-08-30 2013-03-07 한국에너지기술연구원 Parallel structured integrated linear engine generator
US9527498B2 (en) 2012-08-29 2016-12-27 Ford Global Technologies, Llc Method to limit temperature increase in a catalyst and detect a restricted exhaust path in a vehicle
KR20150034035A (en) * 2013-09-25 2015-04-02 한국생산기술연구원 An air fuel ratio instrumentation system including optical sensor
US9964054B2 (en) 2014-10-08 2018-05-08 Immixt, LLC Alternate fuel blending systems and associated methods
US11204271B2 (en) 2015-12-08 2021-12-21 Gilbarco Inc. Systems and methods for alternative fuel life-cycle tracking and validation

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2905506A1 (en) * 1979-02-14 1980-09-04 Bosch Gmbh Robert IGNITION SENSOR, ESPECIALLY IN COMBUSTION ENGINES
US4358952A (en) * 1980-03-26 1982-11-16 Robert Bosch Gmbh Optical engine knock sensor
DE3111135A1 (en) * 1980-06-20 1982-03-11 Robert Bosch Gmbh, 7000 Stuttgart METHOD FOR CONTROLLING THE COMBUSTION IN THE COMBUSTION ROOMS OF AN INTERNAL COMBUSTION ENGINE
JPS5773646A (en) * 1980-10-27 1982-05-08 Nippon Soken Inc Knocking detector for internal combustion engine
DE3108460A1 (en) * 1981-02-13 1982-11-04 Pischinger, Franz, Prof. Dipl.-Ing. Dr.Techn., 5100 Aachen METHOD FOR DETECTING KNOCKING COMBUSTION AND DEVICE FOR IMPLEMENTING THE METHOD
US4425788A (en) * 1981-02-25 1984-01-17 Robert Bosch Gmbh Combustion monitoring system for multi-cylinder internal combustion engine
US4446723A (en) * 1981-03-20 1984-05-08 Robert Bosch Gmbh Optical combustion event sensor structure particularly knock sensor for an internal combustion engine
JPS57186040A (en) * 1981-05-13 1982-11-16 Hitachi Ltd Air-fuel ratio feedback controller
JPS5882039A (en) * 1981-11-11 1983-05-17 Hitachi Ltd Air-fuel ratio control device for internal combustion engines
JPS59215952A (en) * 1983-05-23 1984-12-05 Toyota Motor Corp Exhaust recirculation controlling method in diesel engine
JPS59215928A (en) * 1983-05-24 1984-12-05 Toyota Motor Corp Diesel engine fuel injection amount control method
DE3410067C2 (en) * 1984-03-20 1996-07-18 Bosch Gmbh Robert Method for controlling an internal combustion engine with detection of the course of the light intensity
DE3505063A1 (en) * 1985-02-14 1986-08-14 Bosch Gmbh Robert METHOD AND DEVICE FOR CONTROLLING THE BURNS IN THE COMBUSTION ROOMS OF AN INTERNAL COMBUSTION ENGINE
US4887574A (en) * 1987-04-21 1989-12-19 Hitachi, Ltd. Control apparatus for internal combustion engines
US4940033A (en) * 1988-05-13 1990-07-10 Barrack Technology Limited Method of operating an engine and measuring certain operating parameters
US5052214A (en) * 1989-01-03 1991-10-01 Luxtron Corporation Knock detector using optical fiber thermometer
GB9002935D0 (en) * 1990-02-09 1990-04-04 Lucas Ind Plc Misfire detection
US5113828A (en) * 1990-02-26 1992-05-19 Barrack Technology Limited Method and apparatus for determining combustion conditions and for operating an engine
US5103789A (en) * 1990-04-11 1992-04-14 Barrack Technology Limited Method and apparatus for measuring and controlling combustion phasing in an internal combustion engine
JPH04224260A (en) * 1990-12-26 1992-08-13 Nippondenso Co Ltd Combustion condition detecting device for internal combustion engine
ATE155850T1 (en) * 1993-01-28 1997-08-15 Jenbacher Energiesysteme Ag DEVICE FOR DETECTING ENGINE PARAMETERS OF A COMBUSTION ENGINE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060893B4 (en) * 2004-12-17 2006-07-27 Mde Dezentrale Energiesysteme Gmbh Method and device for controlling an ignition point in an Otto gas engine

Also Published As

Publication number Publication date
AT301U1 (en) 1995-07-25
WO1994017297A1 (en) 1994-08-04
DE59306980D1 (en) 1997-09-04
JPH07505694A (en) 1995-06-22
DK0632864T3 (en) 1998-02-16
EP0632864A1 (en) 1995-01-11
ES2105595T3 (en) 1997-10-16
ATE155850T1 (en) 1997-08-15
US5560338A (en) 1996-10-01
US5505177A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
EP0632864B1 (en) Arrangement for determining the parameters of an internal combustion engine
DE4036080C2 (en) Device for setting the fuel injection quantity of an internal combustion engine
EP1119696B1 (en) Device for monitoring the combustion process in internal combustion engines
DE10225934B4 (en) Fiber optic pressure sensor
DE102013015692B4 (en) laser spark plug
AT3845U1 (en) OPTOELECTRONIC MEASURING DEVICE
EP2066891A1 (en) Method and apparatus for generating injection signals for an injection system of an internal combustion engine
EP0058390A1 (en) Method and device for recognising a knocking combustion
DE19749817A1 (en) Device and method for determining the start of injection or the combustion position
EP0076265B1 (en) Method and device for detecting irregular combustion phenomena in an engine
DE69013090T2 (en) Device for determining the operating condition of an internal combustion engine.
DE19749814B4 (en) Method for determining a combustion chamber pressure profile
DE102018211783B4 (en) Method and device for controlling an internal combustion engine
EP0306905A2 (en) Misfire detecting device
DE4042025C2 (en) Device and method for evaluating the combustion state in an internal combustion engine
AT403323B (en) METHOD AND DEVICE FOR DETERMINING A KNOCKING INTENSITY SIGNAL OF AN INTERNAL COMBUSTION ENGINE
DE3627074A1 (en) Device for observing and evaluating combustion processes in internal combustion engines
EP0313884B1 (en) Procedure for detecting and processing a knocking signal during operation of a externally ignited engine with internal combustion
EP1132596B1 (en) Method for monitoring combustion in an internal combustion engine
DE3042454C2 (en)
WO2001040753A1 (en) Device for monitoring the combustion processes occurring in the combustion chamber of an internal combustion engine
DE69005256T2 (en) Method and device for determining knock.
DE4001475A1 (en) Pressure measurer for IC engine combustion chamber - has measurement chamber in gap between cylinder head and block for measurement free of influence from vibrating parts
DE3106993A1 (en) Sensor arrangement
DE19616744A1 (en) Optical probe knocking identification method for combustion chambers of IC engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940908

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19960205

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 155850

Country of ref document: AT

Date of ref document: 19970815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59306980

Country of ref document: DE

Date of ref document: 19970904

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19971009

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19971014

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2105595

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971027

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19971029

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971030

Year of fee payment: 5

Ref country code: ES

Payment date: 19971030

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19971031

Year of fee payment: 5

Ref country code: DK

Payment date: 19971031

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971211

Year of fee payment: 5

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981027

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981027

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981028

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19981028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981027

EUG Se: european patent has lapsed

Ref document number: 94900001.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990803

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051027