[go: up one dir, main page]

EP0615218A1 - Method and device for compensation of the moisture in a light scattering detector - Google Patents

Method and device for compensation of the moisture in a light scattering detector Download PDF

Info

Publication number
EP0615218A1
EP0615218A1 EP94103217A EP94103217A EP0615218A1 EP 0615218 A1 EP0615218 A1 EP 0615218A1 EP 94103217 A EP94103217 A EP 94103217A EP 94103217 A EP94103217 A EP 94103217A EP 0615218 A1 EP0615218 A1 EP 0615218A1
Authority
EP
European Patent Office
Prior art keywords
light
moisture
transmitter
receiver
smoke density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94103217A
Other languages
German (de)
French (fr)
Other versions
EP0615218B1 (en
Inventor
Otfried Post
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Publication of EP0615218A1 publication Critical patent/EP0615218A1/en
Application granted granted Critical
Publication of EP0615218B1 publication Critical patent/EP0615218B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention relates to a method for compensating the air humidity according to the preamble of claim 1 and to an apparatus for performing the method.
  • the backward-scattering optical smoke detectors used today are excellent early warning devices for fires with smoke development, for example smoldering fires. When used in rooms with high air humidity, undesirable high false alarm rates often occur due to condensation in the optical detector.
  • the backward scattering optical smoke detectors generally referred to as scattered light detectors, have very good smoke detection properties, they react disadvantageously to water vapor or small water droplets, because the scattered light detectors can detect the scattered light from water vapor that has penetrated into the measuring chamber, e.g. on the labyrinth, on ridges and lenses as condensation, do not differentiate from the scattered light caused by smoke.
  • European patent application 0 418 410-A1 describes such a method and an apparatus therefor.
  • the environmental parameter relative humidity with a in the measuring chamber Arranged moisture sensor measured and a measured moisture value determined therefrom by means of a linearizing device. Above a certain measured value for the relative air humidity, the smoke density measured value is compensated with the moisture measured value and the compensated smoke density measured value is further processed to form alarm criteria.
  • the device provided for this purpose is designed such that the scattered light detector has a transmitter circuit which controls the light transmitter, a receiver circuit which converts the receiver current of the light receiver into a frequency change, an oscillator circuit which converts the measurement signals of the moisture sensor into frequency-analog signals, and has a microcomputer, which controls the transmitter circuit.
  • the microcomputer measures the frequency change of the light receiver during a quartz-stable gate time and stores it as a smoke density measurement signal. Furthermore, he measures the frequency-analog signals of the moisture sensor and uses this to determine the value of the relative air humidity from a linearization table in the read-only memory and stores this as a moisture measurement value and compensates the smoke density measurement value with the moisture measurement value.
  • the object of the invention is to further develop and improve the known method and the known device.
  • the smoke density is measured with a scattered light detector based on the principle of optical backscattering.
  • a generally pulse powered light transmitter e.g. an infrared light emitting semiconductor diode and a light receiver, e.g. a photodiode, are arranged in a labyrinth chamber so that only the light scattered by smoke particles that have penetrated into the measuring chamber falls on the light receiver.
  • An electronic circuit amplifies the receiver current, which is further processed as a smoke density measurement.
  • the air humidity is not determined with its own moisture sensor, but with the aid of a further light transmitter and the already existing light receiver.
  • a moisture deposit on the receiving optics is detected by periodically measuring the smoke density with the first light sensor and, with a time offset, the moisture with the second light sensor and processing the two measured values in a downstream microcomputer.
  • the moisture coating on the receiver lens reflects the light from the second light transmitter, which is arranged in the immediate vicinity of the light receiver in such a way that the emitted light touches the receiving optics approximately tangentially on its surface.
  • the output signal of the light receiver for moisture detection depends on the thickness of the moisture film and is weakened accordingly if there is more moisture in the detector. This is evaluated in a manner known per se in the downstream microprocessor. It is expedient to set the received signal in the case of a dry scattered light detector via the control power of the second light transmitter so that an amplifier connected downstream of the light receiver operates in the upper modulation range.
  • Every light transmitter is one Assigned transmission circuit, which is controlled by the microcomputer, the light receiver is followed by a receiving circuit in which the output signals of the light transmitter are amplified and then fed to the microcomputer, which digitizes the received signal and then processes it.
  • a scattered light detector SM is indicated, which has an optical measuring chamber MK, a so-called labyrinth.
  • the light emitted by the first light transmitter LS1 through the transmitter lens SL radiates in this measuring chamber MK. If smoke particles RP or water droplets WT enter the measuring chamber MK, the light from the light transmitter LS1 is scattered backwards and the light receiver LE with its receiving optics EL receives the scattered light.
  • a second light transmitter LS2 is arranged in the immediate vicinity of the light receiver LE or the receiving optics EL so that the emitted radiation touches the lens surface approximately tangentially.
  • the output signals of the light receiver LE are amplified via a receiver switch S-Sch, which is fed to the microcomputer ⁇ R, in which they are digitized using an analog-digital converter ADW.
  • the microcomputer controls the two transmission circuits S-Sch1 and S-Sch2, which control the light transmitters LS1 and LS2 at different times.
  • the microcomputer ⁇ R is connected to the primary signal line ML, which in turn is connected to a central Z via the a and b wires.
  • the light receiver LE is generally a photodiode, which is once the light scattered by the smoke receives the first light-emitting diode LS and the other time receives the light from the second light-emitting diode (infrared semiconductor diode) LS2.
  • the second infrared light-emitting semiconductor diode is arranged in the immediate vicinity of the receiving lens EL in such a way that the emitted radiation touches the lens surface approximately tangentially.
  • the output voltage of the receiver circuit E-Sch is set via the drive power of the second infrared light-emitting diode LS2 with a dry surface of the receiving lens EL so that it comes into the upper modulation range of the receiving amplifier (E-Sch).
  • Condensation ie a moisture coating on the surface of the receiving lens leads to a reflection of the infrared radiation of the second light-emitting diode LS2 on the surface of the water droplets WT sitting on the receiving lens EL, which leads to a reduction in the receiver output signal.
  • the receiving lens can also be a lens-shaped surface of a light guide that directs the incident infrared radiation to the photodiode.
  • the diode current of the second light-emitting diode is only a few percent of the diode current of the first light-emitting diode.
  • the two light transmitters are operated at different times. Because of the low drive power and the special beam alignment of the second light transmitter, the resulting received signal is only dependent on the thickness of the moisture film on the surface of the receiving lens, but not on any smoke particles that may be present in the measuring chamber. In this case, the output signal of the light receiver is therefore a measured value for the air humidity.
  • the microcomputer ⁇ R uses this to determine amplified and and digitized output signal the light receiver the degree of condensation via a linearization table in the read-only memory and stores it as the condensation value or the moisture value.
  • the smoke density measurement value and the moisture measurement value can either be sent periodically to the fire control center Z via the connected primary signal line ML, so that the humidity compensation of the smoke density measurement value is carried out in the control center.
  • the moisture compensation of the smoke density measured value can also take place in the scattered light detector itself, ie in the microcomputer of the scattered light detector.
  • the microcomputer then sends the compensated smoke density measured value from the detector via the connected primary signal line to the fire alarm control panel.
  • the regulation for humidity compensation takes into account the relationship between the humidity and the condensation described above and the uncompensated smoke detector measured value in such a way that the formation of water droplets is recognized and the resulting light reflection does not lead to an increase in the smoke detector measured value.
  • the smoke density measured value is compensated and the compensated smoke density measured value is further processed for alarm generation. This ensures that the scattered light detector detects smoke particles that have penetrated even at high relative atmospheric humidity with an almost constant sensitivity and does not deliver any false alarms when condensation occurs.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

The compensating method involves using a second light transmitter(LS2) is provided, which with the existing light receiver(LE) detects a moisture coating on the receiver optic(EL). Whilst periodically the smoke density(MWR) is measured with t he first light transmitter(LS1), and at times alternates with the humidity(MWF) measured with the first light transmitter(LS2). The two measurement values are processed. The second light transmitter is arranged in the direct vicinity of the light receiver(LE) or its receiver optic(EL), such that the transmitted light brushes the receiver optic(EL) approximately tangentially, and the moisture coating(WT) reflects the light of the second light transmitter. So that the receiver output signal weakens, depending on the thickness of the moisture coating.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Kompensation der Luftfeuchtigkeit gemäß dem Oberbegriff des Anspruchs 1 und auf eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for compensating the air humidity according to the preamble of claim 1 and to an apparatus for performing the method.

Die heute verwendeten rückwärtsstreuenden optischen Rauchmelder sind hervorragende Frühwarnmelder bei Bränden mit Rauchentwicklung, beispielsweise Schwelbrände. Beim Einsatz in Räumen mit hoher Luftfeuchtigkeit kommt es wegen der Betauung im optischen Melder häufig zu unerwünscht hohen Fehlalarmraten. Obwohl die rückwärts streuenden optischen Rauchmelder, im allgemeinen als Streulichtmelder bezeichnet, sehr gute Rauchdetektionseigenschaften haben, reagieren sie in nachteiliger Weise auf Wasserdampf bzw. kleine Wassertröpfchen, denn die Streulichtmelder können das Streulicht von in die Meßkammer eingedrungenen Wasserdampf, der sich z.B. am Labyrinth, an Stegen und Linsen als Betauung niederschlägt, nicht vom durch Rauch verursachten Streulicht unterscheiden.The backward-scattering optical smoke detectors used today are excellent early warning devices for fires with smoke development, for example smoldering fires. When used in rooms with high air humidity, undesirable high false alarm rates often occur due to condensation in the optical detector. Although the backward scattering optical smoke detectors, generally referred to as scattered light detectors, have very good smoke detection properties, they react disadvantageously to water vapor or small water droplets, because the scattered light detectors can detect the scattered light from water vapor that has penetrated into the measuring chamber, e.g. on the labyrinth, on ridges and lenses as condensation, do not differentiate from the scattered light caused by smoke.

Es wurde deshalb schon vorgeschlagen, im Streulichtmelder die Luftfeuchtigkeit zu messen und bei hoher Luftfeuchtigkeit die Meßwerte zu kompensieren. In der europäischen Patentanmeldung 0 418 410-A1 ist ein derartiges Verfahren und eine Vorrichtung dazu beschrieben. Zusätzlich zur Brandkenngröße Rauchdichte wird die Umgebungskenngröße relative Luftfeuchtigkeit mit einem in der Meßkammer angeordnetem Feuchtesensor gemessen und daraus mittels einer Meßgrößen-Linearisierungseinrichtung ein Feuchte-Meßwert ermittelt. Oberhalb eines bestimmten Meßwerts für die relative Luftfeuchtigkeit wird der Rauchdichte-Meßwert mit dem Feuchte-Meßwert kompensiert und der kompensierte Rauchdichte-Meßwert zur Bildung von Alarmkriterien weiter verarbeitet. Die dafür vorgesehene Vorrichtung ist so ausgebildet, daß der Streulichtmelder eine Sendeschaltung, die den Lichtsender ansteuert, eine Empfangsschaltung, die den Empfängerstrom des Lichtempfängers in eine Frequenzänderung umsetzt, eine Oszillatorschaltung, die die Meßsignale des Feuchtesensors in frequenzanaloge Signale umsetzt, und einen Mikrorechner aufweist, der die Senderschaltung ansteuert. Der Mikrorechner mißt während einer quarzstabilen Torzeit die Frequenzänderung des Lichtempfängers und speichert diese als Rauchdichte-Meßsignal ab. Des weiteren mißt er die frequenzanalogen Signale des Feuchtesensors und ermittelt daraus über eine Linearisierungstabelle im Festwertspeicher den Wert der relativen Luftfeuchtigkeit und speichert diesen als Feuchte-Meßwert ab und kompensiert den Rauchdichte-Meßwert mit dem Feuchte-Meßwert.It has therefore already been proposed to measure the air humidity in the scattered light detector and to compensate the measured values in the case of high air humidity. European patent application 0 418 410-A1 describes such a method and an apparatus therefor. In addition to the fire parameter smoke density, the environmental parameter relative humidity with a in the measuring chamber Arranged moisture sensor measured and a measured moisture value determined therefrom by means of a linearizing device. Above a certain measured value for the relative air humidity, the smoke density measured value is compensated with the moisture measured value and the compensated smoke density measured value is further processed to form alarm criteria. The device provided for this purpose is designed such that the scattered light detector has a transmitter circuit which controls the light transmitter, a receiver circuit which converts the receiver current of the light receiver into a frequency change, an oscillator circuit which converts the measurement signals of the moisture sensor into frequency-analog signals, and has a microcomputer, which controls the transmitter circuit. The microcomputer measures the frequency change of the light receiver during a quartz-stable gate time and stores it as a smoke density measurement signal. Furthermore, he measures the frequency-analog signals of the moisture sensor and uses this to determine the value of the relative air humidity from a linearization table in the read-only memory and stores this as a moisture measurement value and compensates the smoke density measurement value with the moisture measurement value.

Aufgabe der Erfindung ist es, das bekannte Verfahren bzw. die bekannte Vorrichtung weiterzubilden und zu verbessern.The object of the invention is to further develop and improve the known method and the known device.

Diese Aufgabe wird erfindungsgemäß mit dem Verfahren gemäß des Anspruchs 1 gelöst und bezüglich der Vorrichtung mit den Merkmalen des Anspruchs 5.This object is achieved according to the invention with the method according to claim 1 and with respect to the device with the features of claim 5.

Die Rauchdichte wird mit einem Streulichtmelder nach dem Prinzip der optischen Rückwärtsstreuung gemessen. Ein im allgemeinen impulsbetriebener Lichtsender, z.B. eine Infrarotlicht emittierende Halbleiterdiode und ein Lichtempfänger, z.B. eine Fotodiode, sind in einer Labyrinthkammer so angeordnet, daß nur das von in die Meßkammer eingedrungenen, Rauchpartikeln gestreute Licht auf den Lichtempfänger fällt. Eine elektronische Schaltung verstärkt den Empfängerstrom, der als Rauchdichte-Meßwert weiterverarbeitet wird.The smoke density is measured with a scattered light detector based on the principle of optical backscattering. A generally pulse powered light transmitter, e.g. an infrared light emitting semiconductor diode and a light receiver, e.g. a photodiode, are arranged in a labyrinth chamber so that only the light scattered by smoke particles that have penetrated into the measuring chamber falls on the light receiver. An electronic circuit amplifies the receiver current, which is further processed as a smoke density measurement.

Bei dem erfindungsgemäßen Verfahren wird die Luftfeuchte nicht mit einem eigenen Feuchtesensor ermittelt, sondern mit Hilfe eines weiteren Lichtsenders und des bereits vorhandenen Lichtempfängers. Dabei wird ein Feuchtigkeitsbelag auf der Empfangsoptik detektiert, indem periodisch die Rauchdichte mit dem ersten Lichtsensor und dazu zeitlich versetzt die Feuchtigkeit mit dem zweiten Lichtsensor gemessen wird und die beiden Meßwerte in einem nachgeschalteten Mikrorechner verarbeitet werden. Der Feuchtigkeitsbelag auf der Empfängerlinse reflektiert in Abhängigkeit seiner Stärke das Licht vom zweiten Lichtsender, der in unmittelbarer Nähe des Lichtempfängers derart angeordnet ist, daß das ausgesandte Licht die Empfangsoptik auf seiner Oberfläche annähernd tangential streift. Dabei ist das Ausgangssignal des Lichtempfängers für die Feuchtigkeitserfassung von der Dicke des Feuchtigkeitsfilm abhängig und wird entsprechend stärker geschwächt, wenn mehr Feuchtigkeit im Melder vorhanden ist. Dies wird im nachgeordneten Mikroprozessor in an sich bekannter Weise ausgewertet. Dabei ist es zweckmäßig, das Empfangs-Signal bei trockenem Streulichtmelder über die Ansteuerleistung des zweiten Lichtsenders so einzustellen, daß ein dem Lichtempfänger nachgeschalteter Verstärker im oberen Aussteuerungsbereich arbeitet.In the method according to the invention, the air humidity is not determined with its own moisture sensor, but with the aid of a further light transmitter and the already existing light receiver. A moisture deposit on the receiving optics is detected by periodically measuring the smoke density with the first light sensor and, with a time offset, the moisture with the second light sensor and processing the two measured values in a downstream microcomputer. Depending on its strength, the moisture coating on the receiver lens reflects the light from the second light transmitter, which is arranged in the immediate vicinity of the light receiver in such a way that the emitted light touches the receiving optics approximately tangentially on its surface. The output signal of the light receiver for moisture detection depends on the thickness of the moisture film and is weakened accordingly if there is more moisture in the detector. This is evaluated in a manner known per se in the downstream microprocessor. It is expedient to set the received signal in the case of a dry scattered light detector via the control power of the second light transmitter so that an amplifier connected downstream of the light receiver operates in the upper modulation range.

Jedem Lichtsender ist eine
Sendeschaltung zugeordnet, die vom Mikrorechner her angesteuert wird, dem Lichtempfänger ist eine Empfangsschaltung nachgeschaltet, in der die Ausgangssignale des Lichtsenders verstärkt werden und dann dem Mikrorechner zugeführt werden, der das Empfangssignal digitalisiert und dann weiterverarbeitet.
Every light transmitter is one
Assigned transmission circuit, which is controlled by the microcomputer, the light receiver is followed by a receiving circuit in which the output signals of the light transmitter are amplified and then fed to the microcomputer, which digitizes the received signal and then processes it.

An einem Ausführungsbeispiel wird anhand der einzigen Figur die Erfindung näher erläutert.In one embodiment, the invention is explained in more detail with reference to the single figure.

In der Zeichnung ist ein Streulichtmelder SM angedeutet, der eine optische Meßkammer MK, ein sogenanntes Labyrinth, aufweist. In dieser Meßkammer MK strahlt das Licht, das von dem ersten Lichtsender LS1 durch die Senderlinse SL abgegeben wird. Treten in die Meßkammer MK Rauchpartikeln RP oder auch Wassertröpfchen WT ein, so wird das Licht des Lichtsenders LS1 nach rückwärts gestreut und der Lichtempfänger LE mit seiner Empfangsoptik EL empfängt das gestreute Licht. Erfindungsgemäß ist in unmittelbarer Nähe des Lichtempfängers LE bzw. der Empfangsoptik EL ein zweiter Lichtsender LS2 so angeordnet, daß die ausgesendete Strahlung die Linsenoberfläche annähernd tangential streift. Die Ausgangssignale des Lichtempfängers LE werden über eine Empfängerschalter S-Sch verstärkt, dem Mikrorechner µR zugeführt, in dem sie mit Hilfe eines Analog-Digital-Wandlers ADW digitalisiert werden. Der Mikrorechner steuert die beiden Sendeschaltungen S-Sch1 und S-Sch2 an, die die Lichtsender LS1 und LS2 zeitlich versetzt ansteuern. Der Mikrorechner µR ist mit der Meldeprimärleitung ML verbunden, diese ist wiederum über die a und b - Ader an einer Zentrale Z angeschlossen. Der Lichtempfänger LE ist im allgemeinen eine Fotodiode, die einmal das bei vorhandenem Rauch gestreute Licht der ersten Lichtsendediode LS empfängt und das andere Mal das Licht von der zweiten Lichtsendediode (Infrarot-Halbleiterdiode) LS2. Wie bereits gesagt, ist die zweite Infrarotlicht emittierende Halbleiterdiode so in unmittelbarer Nähe der Empfangslinse EL angeordnet, daß die ausgesendete Strahlung die Linsenoberfläche annähernd tangential streift. Dabei wird bei gegebenem Aufbau die Ausgangsspannung der Empfängerschaltung E-Sch über die Ansteuer-Leistung der zweiten Infrarotlicht emittierenden Diode LS2 bei trockener Oberfläche der Empfangslinse EL so eingestellt, daß sie in den oberen Aussteuerungsbereich des Empfangsverstärkers (E-Sch) kommt. Eine Betauung, d.h. ein Feuchtigkeitsbelag auf der Empfangslinsenoberfläche führt zu einer Reflexion der Infrarotstrahlung der zweiten lichtemittierenden Diode LS2 an der Oberfläche der auf der Empfangslinse EL, sitzenden Wassertröpfchen WT, was zur Verringerung des Empfängerausgangssignals führt.In the drawing, a scattered light detector SM is indicated, which has an optical measuring chamber MK, a so-called labyrinth. The light emitted by the first light transmitter LS1 through the transmitter lens SL radiates in this measuring chamber MK. If smoke particles RP or water droplets WT enter the measuring chamber MK, the light from the light transmitter LS1 is scattered backwards and the light receiver LE with its receiving optics EL receives the scattered light. According to the invention, a second light transmitter LS2 is arranged in the immediate vicinity of the light receiver LE or the receiving optics EL so that the emitted radiation touches the lens surface approximately tangentially. The output signals of the light receiver LE are amplified via a receiver switch S-Sch, which is fed to the microcomputer μR, in which they are digitized using an analog-digital converter ADW. The microcomputer controls the two transmission circuits S-Sch1 and S-Sch2, which control the light transmitters LS1 and LS2 at different times. The microcomputer µR is connected to the primary signal line ML, which in turn is connected to a central Z via the a and b wires. The light receiver LE is generally a photodiode, which is once the light scattered by the smoke receives the first light-emitting diode LS and the other time receives the light from the second light-emitting diode (infrared semiconductor diode) LS2. As already said, the second infrared light-emitting semiconductor diode is arranged in the immediate vicinity of the receiving lens EL in such a way that the emitted radiation touches the lens surface approximately tangentially. With a given structure, the output voltage of the receiver circuit E-Sch is set via the drive power of the second infrared light-emitting diode LS2 with a dry surface of the receiving lens EL so that it comes into the upper modulation range of the receiving amplifier (E-Sch). Condensation, ie a moisture coating on the surface of the receiving lens leads to a reflection of the infrared radiation of the second light-emitting diode LS2 on the surface of the water droplets WT sitting on the receiving lens EL, which leads to a reduction in the receiver output signal.

Die Empfangslinse kann auch eine linsenförmig ausgebildete Oberfläche eines Lichtleiters sein, der die auftreffende Infrarotstrahlung zur Fotodiode leitet.The receiving lens can also be a lens-shaped surface of a light guide that directs the incident infrared radiation to the photodiode.

Der Diodenstrom der zweiten lichtemittierenden Diode beträgt nur wenige Prozent des Diodenstroms der ersten lichtemittierenden Diode. Die beiden Lichtsender werden zeitlich versetzt betrieben. Wegen der geringen Ansteuerungsleistung und der speziellen Strahlausrichtung des zweiten Lichtsenders ist das resultierende Empfangssignal nur abhängig von der Stärke des Feuchtigkeitsfilms auf der Oberfläche der Empfangslinse, nicht aber von evtl. vorhandenen Rauchpartikeln in der Meßkammer. Das Ausgangssignal des Lichtempfängers ist in diesem Fall somit ein Meßwert für die Luftfeuchtigkeit. Der Mikrorechner µR ermittelt aus diesem verstärkten und
und digitalisierten Ausgangssignal
des Lichtempfängers über eine Linearisierungstabelle im Festwertspeicher den Grad der Betauung und speichert ihn als Betauungswert bzw. den Feuchtigkeitswert ab. Der Rauchdichte-Meßwert und der Feuchtigkeitsmeßwert können entweder über die angeschlossene Meldeprimärleitung ML periodisch zur Brandmeldezentrale Z gesendet werden, so daß die Luftfeuchtigkeitskompensation des Rauchdichte-Meßwerts in der Zentrale durchgeführt wird. Es kann aber auch die Feuchtekompensation des Rauchdichte-Meßwerts im Streulichtmelder selbst, d.h. im Mikrorechner des Streulichtmelders erfolgen. Der Mikrorechner gibt dann vom Melder über die angeschlossene Meldeprimärleitung als Meldesignal den kompensierten Rauchdichte-Meßwert an die Brandmeldezentrale.
The diode current of the second light-emitting diode is only a few percent of the diode current of the first light-emitting diode. The two light transmitters are operated at different times. Because of the low drive power and the special beam alignment of the second light transmitter, the resulting received signal is only dependent on the thickness of the moisture film on the surface of the receiving lens, but not on any smoke particles that may be present in the measuring chamber. In this case, the output signal of the light receiver is therefore a measured value for the air humidity. The microcomputer µR uses this to determine amplified and
and digitized output signal
the light receiver the degree of condensation via a linearization table in the read-only memory and stores it as the condensation value or the moisture value. The smoke density measurement value and the moisture measurement value can either be sent periodically to the fire control center Z via the connected primary signal line ML, so that the humidity compensation of the smoke density measurement value is carried out in the control center. However, the moisture compensation of the smoke density measured value can also take place in the scattered light detector itself, ie in the microcomputer of the scattered light detector. The microcomputer then sends the compensated smoke density measured value from the detector via the connected primary signal line to the fire alarm control panel.

Aufgrund von durchgeführten Messungen an erfindungsgemäßen Streulichtmeldern in der Klimakammer hat sich ergeben, daß im Feuchtebereich von 0 bis etwa 85 % relative Luftfeuchte ein sehr kleiner und annähernd linearer Zusammenhang zwischen der relativen Luftfeuchtigkeit und dem Meßwert des Rauchmelders besteht. Der Rauchmeldermeßwert steigt in diesem Feuchtebereich um etwa 0,16 %o pro Feuchteprozent an. Oberhalb etwa 85 % relativer Luftfeuchte erhöht eine beginnende Betauung bzw. eine einsetzende Luftfeuchtigkeit im Melder speziell auf der Empfangslinse den Rauchmeldermeßwert exponentiell. Mit weiter steigender Betauung bzw. Luftfeuchtigkeit kommt es an den Wassertröpfchen zu vermehrter Reflexion des Infrarotlichtes, die den Meldermeßwert weiter erhöhen bis in den Alarmbereich. Mit dem erfindungsgemäßen Verfahren und der entsprechenden Vorrichtung hierfür wird dies in vorteilhafter Weise verhindert. Dabei berücksichtigt die Vorschrift zur Luftfeuchtigkeitskompensation den oben geschilderten Zusammenhang zwischen der Luftfeuchtigkeit bzw. der Betauung und dem unkompensierten Rauchmeldermeßwert in der Weise, daß die Bildung von Wassertröpfchen erkannt und die daraus resultierende Lichtreflexion nicht zur Erhöhung des Rauchmeldermeßwertes führt. Mit dem erfindungsgemäßen Verfahren wird der Rauchdichte-Meßwert kompensiert und der kompensierte Rauchdichte-Meßwert für die Alarmbildung weiter verarbeitet. Dadurch ist gewährleistet, daß der Streulichtmelder eingedrungene Rauchpartikel auch bei hoher relativer Luftfeuchtigkeit mit annähernd gleichbleibender Empfindlichkeit detektiert und bei Betauung keine Fehlalarme liefert.Based on measurements carried out on scattered light detectors according to the invention in the climatic chamber, it has been found that in the humidity range from 0 to about 85% relative humidity there is a very small and almost linear relationship between the relative humidity and the measured value of the smoke detector. The smoke detector measured value increases in this humidity range by about 0.16% per moisture percentage. Above about 85% relative air humidity, an onset of condensation or an onset of air humidity in the detector increases the measured value of the smoke detector exponentially, especially on the receiving lens. With further increasing condensation or air humidity, the water droplets cause increased reflection of the infrared light, which further increases the measured value of the detector up to the alarm range. With the method according to the invention and the corresponding device for this, this is advantageously prevented. The regulation for humidity compensation takes into account the relationship between the humidity and the condensation described above and the uncompensated smoke detector measured value in such a way that the formation of water droplets is recognized and the resulting light reflection does not lead to an increase in the smoke detector measured value. With the method according to the invention, the smoke density measured value is compensated and the compensated smoke density measured value is further processed for alarm generation. This ensures that the scattered light detector detects smoke particles that have penetrated even at high relative atmospheric humidity with an almost constant sensitivity and does not deliver any false alarms when condensation occurs.

Claims (5)

Verfahren zur Kompensation der Luftfeuchtigkeit in einem Streulichtmelder (SM) mit einer Meßkammer (MK), einem Lichtsender (LS1) mit zugehöriger Optik (SL) und einem Lichtempfänger (LE) mit zugehöriger Optik (EL), dessen Ausgangssignal einen Meßwert für die Rauchdichte darstellt und zur Alarmbildung in einer Brandmeldeanlage mit einer Zentrale (Z) und Meldeprimärleitungen (ML) dient, an die die Streulichtmelder (SM) angeschlossen sind, wobei die Luftfeuchtigkeit in der Meßkammer (MK) gemessen und mittels einer Meßgrößen-Linearisierungseinrichtung ein Feuchtemeßwert (MWF) ermittelt und oberhalb eines bestimmten Grenzwertes der Rauchdichte-Meßwert (MWR) mit dem Feuchtemeßwert (MWF) kompensiert und der kompensierte Rauchdichte-Meßwert (KMWR) zur Bildung von Alarmkriterien weiter verarbeitet wird,
dadurch gekennzeichnet, daß mit einem weiteren Lichtsender (LS2) und dem bereits vorhandenen Lichtempfänger (LE) ein Feuchtigkeitsbelag (WT) auf der Empfangsoptik (EL) detektiert wird, indem periodisch die Rauchdichte (MWR) mit dem ersten Lichtsender (LS1) und dazu zeitlich versetzt die Feuchtigkeit (MWF) mit dem zweiten Lichtsender (LS2) gemessen wird und die beiden Meßwerte verarbeitet werden, wobei der zweite Lichtsender (LS2) in unmittelbarer Nähe des Lichtempfängers (LE) bzw. dessen Empfangsoptik (EL) derart angeordnet ist, daß das ausgesendete Licht die Empfangsoptik (Empfangslinsenoberfläche EL) annähernd tangential streift und der Feuchtigkeitsbelag (WT) das Licht des zweiten Lichtsenders (LS2) reflektiert und damit das Empfänger-Ausgangssignal in Abhängigkeit von der Stärke des Feuchtigkeitsbelags schwächt.
Method for compensating the air humidity in a scattered light detector (SM) with a measuring chamber (MK), a light transmitter (LS1) with associated optics (SL) and a light receiver (LE) with associated optics (EL), whose output signal represents a measured value for the smoke density and for alarm generation in a fire alarm system with a control center (Z) and primary reporting lines (ML) to which the scattered light detectors (SM) are connected, the air humidity in the measuring chamber (MK) being measured and a moisture measurement value (MWF) using a measurement linearization device determined and above a certain limit the smoke density measurement value (MWR) is compensated with the moisture measurement value (MWF) and the compensated smoke density measurement value (KMWR) is further processed to form alarm criteria,
characterized in that with a further light transmitter (LS2) and the already existing light receiver (LE) a moisture coating (WT) on the receiving optics (EL) is detected by periodically the smoke density (MWR) with the first light transmitter (LS1) and temporally offset the humidity (MWF) with the second light transmitter (LS2) is measured and the two measured values are processed, the second light transmitter (LS2) being arranged in the immediate vicinity of the light receiver (LE) or its receiving optics (EL) such that the emitted light touches the receiving optics (receiving lens surface EL) approximately tangentially and the moisture coating (WT) reflects the light from the second light transmitter (LS2) and thus weakens the receiver output signal depending on the thickness of the moisture coating.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß das Empfangsausgangssignal bei fehlendem Feuchtigkeitsbelag über die Ansteuerleistung des zweiten Lichtsenders (LS2) eine Grundeinstellung erhält.
Method according to claim 1,
characterized in that the receive output signal in the absence of moisture receives a basic setting via the control power of the second light transmitter (LS2).
Verfahren nach Anspruch 2,
dadurch gekennzeichnet, daß die Grundeinstellung so gewählt ist, daß ein dem Lichtempfänger (LE) nachgeschalteter Verstärker (E-Sch) im oberen Aussteuerungsbereich betrieben wird.
Method according to claim 2,
characterized in that the basic setting is selected such that an amplifier (E-Sch) connected downstream of the light receiver (LE) is operated in the upper modulation range.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß die Kompensation entweder im Streulichtmelder (SM; µR) erfolgt und der kompensierte Rauchdichte-Meßwert (KMWR) zur Zentrale (Z) übertragen wird, oder daß abwechselnd der Rauchdichte-Meßwert (MWR) und der Luftfeuchtigkeitsmeßwert (MWF) zur Zentrale (Z) übertragen wird.
Method according to one of the preceding claims,
characterized in that the compensation takes place either in the scattered light detector (SM; µR) and the compensated smoke density measurement value (KMWR) is transmitted to the control center (Z), or in that the smoke density measurement value (MWR) and the humidity measurement value (MWF) alternately to the control center (Z) is transmitted.
Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4, wobei der Streulichtmelder (SM) folgende Merkmale aufweist:
eine erste Senderschaltung (S-Sch1), die den ersten Lichtsender (LS1) ansteuert,
eine zweite Senderschaltung (S-Sch2), die den zweiten Lichtsender (LS2) ansteuert, der in unmittelbarer Nähe des Lichtempfängers (LE) bzw. dessen Empfangsoptik (EL) derart angeordnet ist, daß das ausgesendete Licht die Empfangsoptik annähernd tangential streift,
eine Empfangsschaltung (E-Sch), die das Ausgangssignal des Lichtempfängers (LE) verstärkt und einem Mikrorechner (µR) zuführt, der die beiden Lichtsender (LS1, LS2) alternierend ansteuert und das Empfangssignal zur Weiterverarbeitung digitalisiert (ADW), wobei der Mikrorechner (µR) die gemessenen Rauchdichtewerte (MWR) speichert und aus den gemessenen Signalen für die Luftfeuchtigkeit (MWF) mittels einer Linearisierungstabelle im Festwertspeicher (EPROM) den Wert der Luftfeuchtigkeit ermittelt und als Feuchtemeßwert (MWF) speichert.
Device for carrying out the method according to one of claims 1 to 4, wherein the scattered light detector (SM) has the following features:
a first transmitter circuit (S-Sch1) which controls the first light transmitter (LS1),
a second transmitter circuit (S-Sch2) which controls the second light transmitter (LS2), which is arranged in the immediate vicinity of the light receiver (LE) or its receiving optics (EL) such that the emitted light touches the receiving optics approximately tangentially,
a receiving circuit (E-Sch), which amplifies the output signal of the light receiver (LE) and feeds it to a microcomputer (µR), which drives the two light transmitters (LS1, LS2) alternately and digitizes the received signal for further processing (ADC), whereby the microcomputer ( µR) stores the measured smoke density values (MWR) and determines the value of the air humidity from the measured signals for the air humidity (MWF) using a linearization table in the read-only memory (EPROM) and stores it as a moisture measurement value (MWF).
EP94103217A 1993-03-10 1994-03-03 Method and device for compensation of the moisture in a light scattering detector Expired - Lifetime EP0615218B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4307585A DE4307585C1 (en) 1993-03-10 1993-03-10 Compensating for air humidity in stray light signal unit for fire alarm system - contg. first light transmitter with associated optic and light receiver with associated optic with its output signal representing measured value of smoke density
DE4307585 1993-03-10

Publications (2)

Publication Number Publication Date
EP0615218A1 true EP0615218A1 (en) 1994-09-14
EP0615218B1 EP0615218B1 (en) 1996-09-11

Family

ID=6482440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103217A Expired - Lifetime EP0615218B1 (en) 1993-03-10 1994-03-03 Method and device for compensation of the moisture in a light scattering detector

Country Status (6)

Country Link
EP (1) EP0615218B1 (en)
AT (1) ATE142807T1 (en)
DE (2) DE4307585C1 (en)
DK (1) DK0615218T3 (en)
ES (1) ES2091645T3 (en)
GR (1) GR3021486T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1596349A1 (en) * 2004-05-13 2005-11-16 Job Lizenz GmbH & Co. KG Method for sensing and reporting of condensation in smoke detectors
WO2021155920A1 (en) 2020-02-05 2021-08-12 Durag Gmbh Device for the scattered light measurement of particles in a gas

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781291A (en) * 1996-10-22 1998-07-14 Pittway Corporation Smoke detectors utilizing a hydrophilic substance
DE19912911C2 (en) * 1999-03-22 2001-07-19 Schako Metallwarenfabrik Device for detecting smoke
DE102004020489B4 (en) * 2004-04-26 2007-06-28 Minimax Gmbh & Co. Kg Fire detector for use in outdoor atmosphere
DE102004032294B4 (en) * 2004-07-03 2012-02-09 Minimax Gmbh & Co. Kg Heated fire alarm

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH571750A5 (en) * 1974-09-10 1976-01-15 Nohmi Bosai Kogyo Co Ltd Photoelectricccc aerosol or smoke detector - second photo cell receives reflected light from prism surface to compensate for contamination
EP0418410A1 (en) * 1989-09-19 1991-03-27 Siemens Aktiengesellschaft Method and device for compensating the air humidity in an optical smoke alarm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH571750A5 (en) * 1974-09-10 1976-01-15 Nohmi Bosai Kogyo Co Ltd Photoelectricccc aerosol or smoke detector - second photo cell receives reflected light from prism surface to compensate for contamination
EP0418410A1 (en) * 1989-09-19 1991-03-27 Siemens Aktiengesellschaft Method and device for compensating the air humidity in an optical smoke alarm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1596349A1 (en) * 2004-05-13 2005-11-16 Job Lizenz GmbH & Co. KG Method for sensing and reporting of condensation in smoke detectors
WO2021155920A1 (en) 2020-02-05 2021-08-12 Durag Gmbh Device for the scattered light measurement of particles in a gas

Also Published As

Publication number Publication date
EP0615218B1 (en) 1996-09-11
DE4307585C1 (en) 1994-03-10
DK0615218T3 (en) 1996-11-04
DE59400613D1 (en) 1996-10-17
GR3021486T3 (en) 1997-01-31
ATE142807T1 (en) 1996-09-15
ES2091645T3 (en) 1996-11-01

Similar Documents

Publication Publication Date Title
EP0360126B1 (en) Operation method for an optical smoke detector and smoke detector for carrying out the method
EP2093734B1 (en) Smoke alarm with timed evaluation of a backscattering signal, test method for functionality of a smoke alarm
DE3614140C2 (en)
EP1979764B1 (en) Method for measuring the transit time of light
DE2032438B2 (en) DEVICE FOR REGULATING THE PRELOAD CURRENT FOR A PHOTODETECTOR
EP0530723A1 (en) Optical smoke detector with active monitoring
DE4400363A1 (en) Smoke detectors with the ability to detect both smoke and fine particles
EP2541273A1 (en) Detection and measuring of distance between objects
WO2009103777A1 (en) Evaluation of a difference signal between output signals of two receiving devices in a sensor apparatus
EP0418410B1 (en) Method and device for compensating the air humidity in an optical smoke alarm
EP0615218B1 (en) Method and device for compensation of the moisture in a light scattering detector
DE19951403B4 (en) Method for detecting smoke
EP1783712B1 (en) Combined scattered light and extinction fire alarm
EP0418409B1 (en) Method and device to avoid prevailing weather effects on automatic fire alarms
DE19951557A1 (en) Optoelectronic arrangement for detecting objects in monitored region has light transmitter and receiver with near and far elements for light from near and far objects
CH656242A5 (en) Device for optical monitoring and securing of premises against intruders
DE2340041C2 (en) Fire alarm device
DE3231025C2 (en) Device for the identification of pulsed laser radiation
DE102016107851B4 (en) Optoelectronic time-of-flight measuring device
DE3904914A1 (en) Method and device for error reduction in the measurement of three-dimensional movement of measurement points, by means of ultrasound signals
DE102006023971B4 (en) Optical sensor and method for detecting persons, animals or objects
EP0596231B1 (en) Method and device for turbidity measurement in aqueous media
EP1596349B1 (en) Method for sensing and reporting of condensation in smoke detectors
DE102010025929B4 (en) Method for pulsed operation of a light barrier and light barrier
DE29923142U1 (en) Sensitivity control for light sensors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT

17P Request for examination filed

Effective date: 19950207

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960214

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT

REF Corresponds to:

Ref document number: 142807

Country of ref document: AT

Date of ref document: 19960915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59400613

Country of ref document: DE

Date of ref document: 19961017

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 69809

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2091645

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961114

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3021486

SC4A Pt: translation is available

Free format text: 960923 AVAILABILITY OF NATIONAL TRANSLATION

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 19980212

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 19980218

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19980227

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980312

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19980330

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990303

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 19990930

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010309

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010319

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010320

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010326

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010327

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010530

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010614

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020303

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20020331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020303

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050303