EP0615218A1 - Method and device for compensation of the moisture in a light scattering detector - Google Patents
Method and device for compensation of the moisture in a light scattering detector Download PDFInfo
- Publication number
- EP0615218A1 EP0615218A1 EP94103217A EP94103217A EP0615218A1 EP 0615218 A1 EP0615218 A1 EP 0615218A1 EP 94103217 A EP94103217 A EP 94103217A EP 94103217 A EP94103217 A EP 94103217A EP 0615218 A1 EP0615218 A1 EP 0615218A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- moisture
- transmitter
- receiver
- smoke density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/18—Prevention or correction of operating errors
- G08B29/20—Calibration, including self-calibrating arrangements
- G08B29/24—Self-calibration, e.g. compensating for environmental drift or ageing of components
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/103—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
- G08B17/107—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/11—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
- G08B17/113—Constructional details
Definitions
- the invention relates to a method for compensating the air humidity according to the preamble of claim 1 and to an apparatus for performing the method.
- the backward-scattering optical smoke detectors used today are excellent early warning devices for fires with smoke development, for example smoldering fires. When used in rooms with high air humidity, undesirable high false alarm rates often occur due to condensation in the optical detector.
- the backward scattering optical smoke detectors generally referred to as scattered light detectors, have very good smoke detection properties, they react disadvantageously to water vapor or small water droplets, because the scattered light detectors can detect the scattered light from water vapor that has penetrated into the measuring chamber, e.g. on the labyrinth, on ridges and lenses as condensation, do not differentiate from the scattered light caused by smoke.
- European patent application 0 418 410-A1 describes such a method and an apparatus therefor.
- the environmental parameter relative humidity with a in the measuring chamber Arranged moisture sensor measured and a measured moisture value determined therefrom by means of a linearizing device. Above a certain measured value for the relative air humidity, the smoke density measured value is compensated with the moisture measured value and the compensated smoke density measured value is further processed to form alarm criteria.
- the device provided for this purpose is designed such that the scattered light detector has a transmitter circuit which controls the light transmitter, a receiver circuit which converts the receiver current of the light receiver into a frequency change, an oscillator circuit which converts the measurement signals of the moisture sensor into frequency-analog signals, and has a microcomputer, which controls the transmitter circuit.
- the microcomputer measures the frequency change of the light receiver during a quartz-stable gate time and stores it as a smoke density measurement signal. Furthermore, he measures the frequency-analog signals of the moisture sensor and uses this to determine the value of the relative air humidity from a linearization table in the read-only memory and stores this as a moisture measurement value and compensates the smoke density measurement value with the moisture measurement value.
- the object of the invention is to further develop and improve the known method and the known device.
- the smoke density is measured with a scattered light detector based on the principle of optical backscattering.
- a generally pulse powered light transmitter e.g. an infrared light emitting semiconductor diode and a light receiver, e.g. a photodiode, are arranged in a labyrinth chamber so that only the light scattered by smoke particles that have penetrated into the measuring chamber falls on the light receiver.
- An electronic circuit amplifies the receiver current, which is further processed as a smoke density measurement.
- the air humidity is not determined with its own moisture sensor, but with the aid of a further light transmitter and the already existing light receiver.
- a moisture deposit on the receiving optics is detected by periodically measuring the smoke density with the first light sensor and, with a time offset, the moisture with the second light sensor and processing the two measured values in a downstream microcomputer.
- the moisture coating on the receiver lens reflects the light from the second light transmitter, which is arranged in the immediate vicinity of the light receiver in such a way that the emitted light touches the receiving optics approximately tangentially on its surface.
- the output signal of the light receiver for moisture detection depends on the thickness of the moisture film and is weakened accordingly if there is more moisture in the detector. This is evaluated in a manner known per se in the downstream microprocessor. It is expedient to set the received signal in the case of a dry scattered light detector via the control power of the second light transmitter so that an amplifier connected downstream of the light receiver operates in the upper modulation range.
- Every light transmitter is one Assigned transmission circuit, which is controlled by the microcomputer, the light receiver is followed by a receiving circuit in which the output signals of the light transmitter are amplified and then fed to the microcomputer, which digitizes the received signal and then processes it.
- a scattered light detector SM is indicated, which has an optical measuring chamber MK, a so-called labyrinth.
- the light emitted by the first light transmitter LS1 through the transmitter lens SL radiates in this measuring chamber MK. If smoke particles RP or water droplets WT enter the measuring chamber MK, the light from the light transmitter LS1 is scattered backwards and the light receiver LE with its receiving optics EL receives the scattered light.
- a second light transmitter LS2 is arranged in the immediate vicinity of the light receiver LE or the receiving optics EL so that the emitted radiation touches the lens surface approximately tangentially.
- the output signals of the light receiver LE are amplified via a receiver switch S-Sch, which is fed to the microcomputer ⁇ R, in which they are digitized using an analog-digital converter ADW.
- the microcomputer controls the two transmission circuits S-Sch1 and S-Sch2, which control the light transmitters LS1 and LS2 at different times.
- the microcomputer ⁇ R is connected to the primary signal line ML, which in turn is connected to a central Z via the a and b wires.
- the light receiver LE is generally a photodiode, which is once the light scattered by the smoke receives the first light-emitting diode LS and the other time receives the light from the second light-emitting diode (infrared semiconductor diode) LS2.
- the second infrared light-emitting semiconductor diode is arranged in the immediate vicinity of the receiving lens EL in such a way that the emitted radiation touches the lens surface approximately tangentially.
- the output voltage of the receiver circuit E-Sch is set via the drive power of the second infrared light-emitting diode LS2 with a dry surface of the receiving lens EL so that it comes into the upper modulation range of the receiving amplifier (E-Sch).
- Condensation ie a moisture coating on the surface of the receiving lens leads to a reflection of the infrared radiation of the second light-emitting diode LS2 on the surface of the water droplets WT sitting on the receiving lens EL, which leads to a reduction in the receiver output signal.
- the receiving lens can also be a lens-shaped surface of a light guide that directs the incident infrared radiation to the photodiode.
- the diode current of the second light-emitting diode is only a few percent of the diode current of the first light-emitting diode.
- the two light transmitters are operated at different times. Because of the low drive power and the special beam alignment of the second light transmitter, the resulting received signal is only dependent on the thickness of the moisture film on the surface of the receiving lens, but not on any smoke particles that may be present in the measuring chamber. In this case, the output signal of the light receiver is therefore a measured value for the air humidity.
- the microcomputer ⁇ R uses this to determine amplified and and digitized output signal the light receiver the degree of condensation via a linearization table in the read-only memory and stores it as the condensation value or the moisture value.
- the smoke density measurement value and the moisture measurement value can either be sent periodically to the fire control center Z via the connected primary signal line ML, so that the humidity compensation of the smoke density measurement value is carried out in the control center.
- the moisture compensation of the smoke density measured value can also take place in the scattered light detector itself, ie in the microcomputer of the scattered light detector.
- the microcomputer then sends the compensated smoke density measured value from the detector via the connected primary signal line to the fire alarm control panel.
- the regulation for humidity compensation takes into account the relationship between the humidity and the condensation described above and the uncompensated smoke detector measured value in such a way that the formation of water droplets is recognized and the resulting light reflection does not lead to an increase in the smoke detector measured value.
- the smoke density measured value is compensated and the compensated smoke density measured value is further processed for alarm generation. This ensures that the scattered light detector detects smoke particles that have penetrated even at high relative atmospheric humidity with an almost constant sensitivity and does not deliver any false alarms when condensation occurs.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Fire-Detection Mechanisms (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein Verfahren zur Kompensation der Luftfeuchtigkeit gemäß dem Oberbegriff des Anspruchs 1 und auf eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for compensating the air humidity according to the preamble of
Die heute verwendeten rückwärtsstreuenden optischen Rauchmelder sind hervorragende Frühwarnmelder bei Bränden mit Rauchentwicklung, beispielsweise Schwelbrände. Beim Einsatz in Räumen mit hoher Luftfeuchtigkeit kommt es wegen der Betauung im optischen Melder häufig zu unerwünscht hohen Fehlalarmraten. Obwohl die rückwärts streuenden optischen Rauchmelder, im allgemeinen als Streulichtmelder bezeichnet, sehr gute Rauchdetektionseigenschaften haben, reagieren sie in nachteiliger Weise auf Wasserdampf bzw. kleine Wassertröpfchen, denn die Streulichtmelder können das Streulicht von in die Meßkammer eingedrungenen Wasserdampf, der sich z.B. am Labyrinth, an Stegen und Linsen als Betauung niederschlägt, nicht vom durch Rauch verursachten Streulicht unterscheiden.The backward-scattering optical smoke detectors used today are excellent early warning devices for fires with smoke development, for example smoldering fires. When used in rooms with high air humidity, undesirable high false alarm rates often occur due to condensation in the optical detector. Although the backward scattering optical smoke detectors, generally referred to as scattered light detectors, have very good smoke detection properties, they react disadvantageously to water vapor or small water droplets, because the scattered light detectors can detect the scattered light from water vapor that has penetrated into the measuring chamber, e.g. on the labyrinth, on ridges and lenses as condensation, do not differentiate from the scattered light caused by smoke.
Es wurde deshalb schon vorgeschlagen, im Streulichtmelder die Luftfeuchtigkeit zu messen und bei hoher Luftfeuchtigkeit die Meßwerte zu kompensieren. In der europäischen Patentanmeldung 0 418 410-A1 ist ein derartiges Verfahren und eine Vorrichtung dazu beschrieben. Zusätzlich zur Brandkenngröße Rauchdichte wird die Umgebungskenngröße relative Luftfeuchtigkeit mit einem in der Meßkammer angeordnetem Feuchtesensor gemessen und daraus mittels einer Meßgrößen-Linearisierungseinrichtung ein Feuchte-Meßwert ermittelt. Oberhalb eines bestimmten Meßwerts für die relative Luftfeuchtigkeit wird der Rauchdichte-Meßwert mit dem Feuchte-Meßwert kompensiert und der kompensierte Rauchdichte-Meßwert zur Bildung von Alarmkriterien weiter verarbeitet. Die dafür vorgesehene Vorrichtung ist so ausgebildet, daß der Streulichtmelder eine Sendeschaltung, die den Lichtsender ansteuert, eine Empfangsschaltung, die den Empfängerstrom des Lichtempfängers in eine Frequenzänderung umsetzt, eine Oszillatorschaltung, die die Meßsignale des Feuchtesensors in frequenzanaloge Signale umsetzt, und einen Mikrorechner aufweist, der die Senderschaltung ansteuert. Der Mikrorechner mißt während einer quarzstabilen Torzeit die Frequenzänderung des Lichtempfängers und speichert diese als Rauchdichte-Meßsignal ab. Des weiteren mißt er die frequenzanalogen Signale des Feuchtesensors und ermittelt daraus über eine Linearisierungstabelle im Festwertspeicher den Wert der relativen Luftfeuchtigkeit und speichert diesen als Feuchte-Meßwert ab und kompensiert den Rauchdichte-Meßwert mit dem Feuchte-Meßwert.It has therefore already been proposed to measure the air humidity in the scattered light detector and to compensate the measured values in the case of high air humidity. European patent application 0 418 410-A1 describes such a method and an apparatus therefor. In addition to the fire parameter smoke density, the environmental parameter relative humidity with a in the measuring chamber Arranged moisture sensor measured and a measured moisture value determined therefrom by means of a linearizing device. Above a certain measured value for the relative air humidity, the smoke density measured value is compensated with the moisture measured value and the compensated smoke density measured value is further processed to form alarm criteria. The device provided for this purpose is designed such that the scattered light detector has a transmitter circuit which controls the light transmitter, a receiver circuit which converts the receiver current of the light receiver into a frequency change, an oscillator circuit which converts the measurement signals of the moisture sensor into frequency-analog signals, and has a microcomputer, which controls the transmitter circuit. The microcomputer measures the frequency change of the light receiver during a quartz-stable gate time and stores it as a smoke density measurement signal. Furthermore, he measures the frequency-analog signals of the moisture sensor and uses this to determine the value of the relative air humidity from a linearization table in the read-only memory and stores this as a moisture measurement value and compensates the smoke density measurement value with the moisture measurement value.
Aufgabe der Erfindung ist es, das bekannte Verfahren bzw. die bekannte Vorrichtung weiterzubilden und zu verbessern.The object of the invention is to further develop and improve the known method and the known device.
Diese Aufgabe wird erfindungsgemäß mit dem Verfahren gemäß des Anspruchs 1 gelöst und bezüglich der Vorrichtung mit den Merkmalen des Anspruchs 5.This object is achieved according to the invention with the method according to
Die Rauchdichte wird mit einem Streulichtmelder nach dem Prinzip der optischen Rückwärtsstreuung gemessen. Ein im allgemeinen impulsbetriebener Lichtsender, z.B. eine Infrarotlicht emittierende Halbleiterdiode und ein Lichtempfänger, z.B. eine Fotodiode, sind in einer Labyrinthkammer so angeordnet, daß nur das von in die Meßkammer eingedrungenen, Rauchpartikeln gestreute Licht auf den Lichtempfänger fällt. Eine elektronische Schaltung verstärkt den Empfängerstrom, der als Rauchdichte-Meßwert weiterverarbeitet wird.The smoke density is measured with a scattered light detector based on the principle of optical backscattering. A generally pulse powered light transmitter, e.g. an infrared light emitting semiconductor diode and a light receiver, e.g. a photodiode, are arranged in a labyrinth chamber so that only the light scattered by smoke particles that have penetrated into the measuring chamber falls on the light receiver. An electronic circuit amplifies the receiver current, which is further processed as a smoke density measurement.
Bei dem erfindungsgemäßen Verfahren wird die Luftfeuchte nicht mit einem eigenen Feuchtesensor ermittelt, sondern mit Hilfe eines weiteren Lichtsenders und des bereits vorhandenen Lichtempfängers. Dabei wird ein Feuchtigkeitsbelag auf der Empfangsoptik detektiert, indem periodisch die Rauchdichte mit dem ersten Lichtsensor und dazu zeitlich versetzt die Feuchtigkeit mit dem zweiten Lichtsensor gemessen wird und die beiden Meßwerte in einem nachgeschalteten Mikrorechner verarbeitet werden. Der Feuchtigkeitsbelag auf der Empfängerlinse reflektiert in Abhängigkeit seiner Stärke das Licht vom zweiten Lichtsender, der in unmittelbarer Nähe des Lichtempfängers derart angeordnet ist, daß das ausgesandte Licht die Empfangsoptik auf seiner Oberfläche annähernd tangential streift. Dabei ist das Ausgangssignal des Lichtempfängers für die Feuchtigkeitserfassung von der Dicke des Feuchtigkeitsfilm abhängig und wird entsprechend stärker geschwächt, wenn mehr Feuchtigkeit im Melder vorhanden ist. Dies wird im nachgeordneten Mikroprozessor in an sich bekannter Weise ausgewertet. Dabei ist es zweckmäßig, das Empfangs-Signal bei trockenem Streulichtmelder über die Ansteuerleistung des zweiten Lichtsenders so einzustellen, daß ein dem Lichtempfänger nachgeschalteter Verstärker im oberen Aussteuerungsbereich arbeitet.In the method according to the invention, the air humidity is not determined with its own moisture sensor, but with the aid of a further light transmitter and the already existing light receiver. A moisture deposit on the receiving optics is detected by periodically measuring the smoke density with the first light sensor and, with a time offset, the moisture with the second light sensor and processing the two measured values in a downstream microcomputer. Depending on its strength, the moisture coating on the receiver lens reflects the light from the second light transmitter, which is arranged in the immediate vicinity of the light receiver in such a way that the emitted light touches the receiving optics approximately tangentially on its surface. The output signal of the light receiver for moisture detection depends on the thickness of the moisture film and is weakened accordingly if there is more moisture in the detector. This is evaluated in a manner known per se in the downstream microprocessor. It is expedient to set the received signal in the case of a dry scattered light detector via the control power of the second light transmitter so that an amplifier connected downstream of the light receiver operates in the upper modulation range.
Jedem Lichtsender ist eine
Sendeschaltung zugeordnet, die vom Mikrorechner her angesteuert wird, dem Lichtempfänger ist eine Empfangsschaltung nachgeschaltet, in der die Ausgangssignale des Lichtsenders verstärkt werden und dann dem Mikrorechner zugeführt werden, der das Empfangssignal digitalisiert und dann weiterverarbeitet.Every light transmitter is one
Assigned transmission circuit, which is controlled by the microcomputer, the light receiver is followed by a receiving circuit in which the output signals of the light transmitter are amplified and then fed to the microcomputer, which digitizes the received signal and then processes it.
An einem Ausführungsbeispiel wird anhand der einzigen Figur die Erfindung näher erläutert.In one embodiment, the invention is explained in more detail with reference to the single figure.
In der Zeichnung ist ein Streulichtmelder SM angedeutet, der eine optische Meßkammer MK, ein sogenanntes Labyrinth, aufweist. In dieser Meßkammer MK strahlt das Licht, das von dem ersten Lichtsender LS1 durch die Senderlinse SL abgegeben wird. Treten in die Meßkammer MK Rauchpartikeln RP oder auch Wassertröpfchen WT ein, so wird das Licht des Lichtsenders LS1 nach rückwärts gestreut und der Lichtempfänger LE mit seiner Empfangsoptik EL empfängt das gestreute Licht. Erfindungsgemäß ist in unmittelbarer Nähe des Lichtempfängers LE bzw. der Empfangsoptik EL ein zweiter Lichtsender LS2 so angeordnet, daß die ausgesendete Strahlung die Linsenoberfläche annähernd tangential streift. Die Ausgangssignale des Lichtempfängers LE werden über eine Empfängerschalter S-Sch verstärkt, dem Mikrorechner µR zugeführt, in dem sie mit Hilfe eines Analog-Digital-Wandlers ADW digitalisiert werden. Der Mikrorechner steuert die beiden Sendeschaltungen S-Sch1 und S-Sch2 an, die die Lichtsender LS1 und LS2 zeitlich versetzt ansteuern. Der Mikrorechner µR ist mit der Meldeprimärleitung ML verbunden, diese ist wiederum über die a und b - Ader an einer Zentrale Z angeschlossen. Der Lichtempfänger LE ist im allgemeinen eine Fotodiode, die einmal das bei vorhandenem Rauch gestreute Licht der ersten Lichtsendediode LS empfängt und das andere Mal das Licht von der zweiten Lichtsendediode (Infrarot-Halbleiterdiode) LS2. Wie bereits gesagt, ist die zweite Infrarotlicht emittierende Halbleiterdiode so in unmittelbarer Nähe der Empfangslinse EL angeordnet, daß die ausgesendete Strahlung die Linsenoberfläche annähernd tangential streift. Dabei wird bei gegebenem Aufbau die Ausgangsspannung der Empfängerschaltung E-Sch über die Ansteuer-Leistung der zweiten Infrarotlicht emittierenden Diode LS2 bei trockener Oberfläche der Empfangslinse EL so eingestellt, daß sie in den oberen Aussteuerungsbereich des Empfangsverstärkers (E-Sch) kommt. Eine Betauung, d.h. ein Feuchtigkeitsbelag auf der Empfangslinsenoberfläche führt zu einer Reflexion der Infrarotstrahlung der zweiten lichtemittierenden Diode LS2 an der Oberfläche der auf der Empfangslinse EL, sitzenden Wassertröpfchen WT, was zur Verringerung des Empfängerausgangssignals führt.In the drawing, a scattered light detector SM is indicated, which has an optical measuring chamber MK, a so-called labyrinth. The light emitted by the first light transmitter LS1 through the transmitter lens SL radiates in this measuring chamber MK. If smoke particles RP or water droplets WT enter the measuring chamber MK, the light from the light transmitter LS1 is scattered backwards and the light receiver LE with its receiving optics EL receives the scattered light. According to the invention, a second light transmitter LS2 is arranged in the immediate vicinity of the light receiver LE or the receiving optics EL so that the emitted radiation touches the lens surface approximately tangentially. The output signals of the light receiver LE are amplified via a receiver switch S-Sch, which is fed to the microcomputer μR, in which they are digitized using an analog-digital converter ADW. The microcomputer controls the two transmission circuits S-Sch1 and S-Sch2, which control the light transmitters LS1 and LS2 at different times. The microcomputer µR is connected to the primary signal line ML, which in turn is connected to a central Z via the a and b wires. The light receiver LE is generally a photodiode, which is once the light scattered by the smoke receives the first light-emitting diode LS and the other time receives the light from the second light-emitting diode (infrared semiconductor diode) LS2. As already said, the second infrared light-emitting semiconductor diode is arranged in the immediate vicinity of the receiving lens EL in such a way that the emitted radiation touches the lens surface approximately tangentially. With a given structure, the output voltage of the receiver circuit E-Sch is set via the drive power of the second infrared light-emitting diode LS2 with a dry surface of the receiving lens EL so that it comes into the upper modulation range of the receiving amplifier (E-Sch). Condensation, ie a moisture coating on the surface of the receiving lens leads to a reflection of the infrared radiation of the second light-emitting diode LS2 on the surface of the water droplets WT sitting on the receiving lens EL, which leads to a reduction in the receiver output signal.
Die Empfangslinse kann auch eine linsenförmig ausgebildete Oberfläche eines Lichtleiters sein, der die auftreffende Infrarotstrahlung zur Fotodiode leitet.The receiving lens can also be a lens-shaped surface of a light guide that directs the incident infrared radiation to the photodiode.
Der Diodenstrom der zweiten lichtemittierenden Diode beträgt nur wenige Prozent des Diodenstroms der ersten lichtemittierenden Diode. Die beiden Lichtsender werden zeitlich versetzt betrieben. Wegen der geringen Ansteuerungsleistung und der speziellen Strahlausrichtung des zweiten Lichtsenders ist das resultierende Empfangssignal nur abhängig von der Stärke des Feuchtigkeitsfilms auf der Oberfläche der Empfangslinse, nicht aber von evtl. vorhandenen Rauchpartikeln in der Meßkammer. Das Ausgangssignal des Lichtempfängers ist in diesem Fall somit ein Meßwert für die Luftfeuchtigkeit. Der Mikrorechner µR ermittelt aus diesem verstärkten und
und digitalisierten Ausgangssignal
des Lichtempfängers über eine Linearisierungstabelle im Festwertspeicher den Grad der Betauung und speichert ihn als Betauungswert bzw. den Feuchtigkeitswert ab. Der Rauchdichte-Meßwert und der Feuchtigkeitsmeßwert können entweder über die angeschlossene Meldeprimärleitung ML periodisch zur Brandmeldezentrale Z gesendet werden, so daß die Luftfeuchtigkeitskompensation des Rauchdichte-Meßwerts in der Zentrale durchgeführt wird. Es kann aber auch die Feuchtekompensation des Rauchdichte-Meßwerts im Streulichtmelder selbst, d.h. im Mikrorechner des Streulichtmelders erfolgen. Der Mikrorechner gibt dann vom Melder über die angeschlossene Meldeprimärleitung als Meldesignal den kompensierten Rauchdichte-Meßwert an die Brandmeldezentrale.The diode current of the second light-emitting diode is only a few percent of the diode current of the first light-emitting diode. The two light transmitters are operated at different times. Because of the low drive power and the special beam alignment of the second light transmitter, the resulting received signal is only dependent on the thickness of the moisture film on the surface of the receiving lens, but not on any smoke particles that may be present in the measuring chamber. In this case, the output signal of the light receiver is therefore a measured value for the air humidity. The microcomputer µR uses this to determine amplified and
and digitized output signal
the light receiver the degree of condensation via a linearization table in the read-only memory and stores it as the condensation value or the moisture value. The smoke density measurement value and the moisture measurement value can either be sent periodically to the fire control center Z via the connected primary signal line ML, so that the humidity compensation of the smoke density measurement value is carried out in the control center. However, the moisture compensation of the smoke density measured value can also take place in the scattered light detector itself, ie in the microcomputer of the scattered light detector. The microcomputer then sends the compensated smoke density measured value from the detector via the connected primary signal line to the fire alarm control panel.
Aufgrund von durchgeführten Messungen an erfindungsgemäßen Streulichtmeldern in der Klimakammer hat sich ergeben, daß im Feuchtebereich von 0 bis etwa 85 % relative Luftfeuchte ein sehr kleiner und annähernd linearer Zusammenhang zwischen der relativen Luftfeuchtigkeit und dem Meßwert des Rauchmelders besteht. Der Rauchmeldermeßwert steigt in diesem Feuchtebereich um etwa 0,16 %o pro Feuchteprozent an. Oberhalb etwa 85 % relativer Luftfeuchte erhöht eine beginnende Betauung bzw. eine einsetzende Luftfeuchtigkeit im Melder speziell auf der Empfangslinse den Rauchmeldermeßwert exponentiell. Mit weiter steigender Betauung bzw. Luftfeuchtigkeit kommt es an den Wassertröpfchen zu vermehrter Reflexion des Infrarotlichtes, die den Meldermeßwert weiter erhöhen bis in den Alarmbereich. Mit dem erfindungsgemäßen Verfahren und der entsprechenden Vorrichtung hierfür wird dies in vorteilhafter Weise verhindert. Dabei berücksichtigt die Vorschrift zur Luftfeuchtigkeitskompensation den oben geschilderten Zusammenhang zwischen der Luftfeuchtigkeit bzw. der Betauung und dem unkompensierten Rauchmeldermeßwert in der Weise, daß die Bildung von Wassertröpfchen erkannt und die daraus resultierende Lichtreflexion nicht zur Erhöhung des Rauchmeldermeßwertes führt. Mit dem erfindungsgemäßen Verfahren wird der Rauchdichte-Meßwert kompensiert und der kompensierte Rauchdichte-Meßwert für die Alarmbildung weiter verarbeitet. Dadurch ist gewährleistet, daß der Streulichtmelder eingedrungene Rauchpartikel auch bei hoher relativer Luftfeuchtigkeit mit annähernd gleichbleibender Empfindlichkeit detektiert und bei Betauung keine Fehlalarme liefert.Based on measurements carried out on scattered light detectors according to the invention in the climatic chamber, it has been found that in the humidity range from 0 to about 85% relative humidity there is a very small and almost linear relationship between the relative humidity and the measured value of the smoke detector. The smoke detector measured value increases in this humidity range by about 0.16% per moisture percentage. Above about 85% relative air humidity, an onset of condensation or an onset of air humidity in the detector increases the measured value of the smoke detector exponentially, especially on the receiving lens. With further increasing condensation or air humidity, the water droplets cause increased reflection of the infrared light, which further increases the measured value of the detector up to the alarm range. With the method according to the invention and the corresponding device for this, this is advantageously prevented. The regulation for humidity compensation takes into account the relationship between the humidity and the condensation described above and the uncompensated smoke detector measured value in such a way that the formation of water droplets is recognized and the resulting light reflection does not lead to an increase in the smoke detector measured value. With the method according to the invention, the smoke density measured value is compensated and the compensated smoke density measured value is further processed for alarm generation. This ensures that the scattered light detector detects smoke particles that have penetrated even at high relative atmospheric humidity with an almost constant sensitivity and does not deliver any false alarms when condensation occurs.
Claims (5)
dadurch gekennzeichnet, daß mit einem weiteren Lichtsender (LS2) und dem bereits vorhandenen Lichtempfänger (LE) ein Feuchtigkeitsbelag (WT) auf der Empfangsoptik (EL) detektiert wird, indem periodisch die Rauchdichte (MWR) mit dem ersten Lichtsender (LS1) und dazu zeitlich versetzt die Feuchtigkeit (MWF) mit dem zweiten Lichtsender (LS2) gemessen wird und die beiden Meßwerte verarbeitet werden, wobei der zweite Lichtsender (LS2) in unmittelbarer Nähe des Lichtempfängers (LE) bzw. dessen Empfangsoptik (EL) derart angeordnet ist, daß das ausgesendete Licht die Empfangsoptik (Empfangslinsenoberfläche EL) annähernd tangential streift und der Feuchtigkeitsbelag (WT) das Licht des zweiten Lichtsenders (LS2) reflektiert und damit das Empfänger-Ausgangssignal in Abhängigkeit von der Stärke des Feuchtigkeitsbelags schwächt.Method for compensating the air humidity in a scattered light detector (SM) with a measuring chamber (MK), a light transmitter (LS1) with associated optics (SL) and a light receiver (LE) with associated optics (EL), whose output signal represents a measured value for the smoke density and for alarm generation in a fire alarm system with a control center (Z) and primary reporting lines (ML) to which the scattered light detectors (SM) are connected, the air humidity in the measuring chamber (MK) being measured and a moisture measurement value (MWF) using a measurement linearization device determined and above a certain limit the smoke density measurement value (MWR) is compensated with the moisture measurement value (MWF) and the compensated smoke density measurement value (KMWR) is further processed to form alarm criteria,
characterized in that with a further light transmitter (LS2) and the already existing light receiver (LE) a moisture coating (WT) on the receiving optics (EL) is detected by periodically the smoke density (MWR) with the first light transmitter (LS1) and temporally offset the humidity (MWF) with the second light transmitter (LS2) is measured and the two measured values are processed, the second light transmitter (LS2) being arranged in the immediate vicinity of the light receiver (LE) or its receiving optics (EL) such that the emitted light touches the receiving optics (receiving lens surface EL) approximately tangentially and the moisture coating (WT) reflects the light from the second light transmitter (LS2) and thus weakens the receiver output signal depending on the thickness of the moisture coating.
dadurch gekennzeichnet, daß das Empfangsausgangssignal bei fehlendem Feuchtigkeitsbelag über die Ansteuerleistung des zweiten Lichtsenders (LS2) eine Grundeinstellung erhält.Method according to claim 1,
characterized in that the receive output signal in the absence of moisture receives a basic setting via the control power of the second light transmitter (LS2).
dadurch gekennzeichnet, daß die Grundeinstellung so gewählt ist, daß ein dem Lichtempfänger (LE) nachgeschalteter Verstärker (E-Sch) im oberen Aussteuerungsbereich betrieben wird.Method according to claim 2,
characterized in that the basic setting is selected such that an amplifier (E-Sch) connected downstream of the light receiver (LE) is operated in the upper modulation range.
dadurch gekennzeichnet, daß die Kompensation entweder im Streulichtmelder (SM; µR) erfolgt und der kompensierte Rauchdichte-Meßwert (KMWR) zur Zentrale (Z) übertragen wird, oder daß abwechselnd der Rauchdichte-Meßwert (MWR) und der Luftfeuchtigkeitsmeßwert (MWF) zur Zentrale (Z) übertragen wird.Method according to one of the preceding claims,
characterized in that the compensation takes place either in the scattered light detector (SM; µR) and the compensated smoke density measurement value (KMWR) is transmitted to the control center (Z), or in that the smoke density measurement value (MWR) and the humidity measurement value (MWF) alternately to the control center (Z) is transmitted.
eine erste Senderschaltung (S-Sch1), die den ersten Lichtsender (LS1) ansteuert,
eine zweite Senderschaltung (S-Sch2), die den zweiten Lichtsender (LS2) ansteuert, der in unmittelbarer Nähe des Lichtempfängers (LE) bzw. dessen Empfangsoptik (EL) derart angeordnet ist, daß das ausgesendete Licht die Empfangsoptik annähernd tangential streift,
eine Empfangsschaltung (E-Sch), die das Ausgangssignal des Lichtempfängers (LE) verstärkt und einem Mikrorechner (µR) zuführt, der die beiden Lichtsender (LS1, LS2) alternierend ansteuert und das Empfangssignal zur Weiterverarbeitung digitalisiert (ADW), wobei der Mikrorechner (µR) die gemessenen Rauchdichtewerte (MWR) speichert und aus den gemessenen Signalen für die Luftfeuchtigkeit (MWF) mittels einer Linearisierungstabelle im Festwertspeicher (EPROM) den Wert der Luftfeuchtigkeit ermittelt und als Feuchtemeßwert (MWF) speichert.Device for carrying out the method according to one of claims 1 to 4, wherein the scattered light detector (SM) has the following features:
a first transmitter circuit (S-Sch1) which controls the first light transmitter (LS1),
a second transmitter circuit (S-Sch2) which controls the second light transmitter (LS2), which is arranged in the immediate vicinity of the light receiver (LE) or its receiving optics (EL) such that the emitted light touches the receiving optics approximately tangentially,
a receiving circuit (E-Sch), which amplifies the output signal of the light receiver (LE) and feeds it to a microcomputer (µR), which drives the two light transmitters (LS1, LS2) alternately and digitizes the received signal for further processing (ADC), whereby the microcomputer ( µR) stores the measured smoke density values (MWR) and determines the value of the air humidity from the measured signals for the air humidity (MWF) using a linearization table in the read-only memory (EPROM) and stores it as a moisture measurement value (MWF).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4307585A DE4307585C1 (en) | 1993-03-10 | 1993-03-10 | Compensating for air humidity in stray light signal unit for fire alarm system - contg. first light transmitter with associated optic and light receiver with associated optic with its output signal representing measured value of smoke density |
DE4307585 | 1993-03-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0615218A1 true EP0615218A1 (en) | 1994-09-14 |
EP0615218B1 EP0615218B1 (en) | 1996-09-11 |
Family
ID=6482440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94103217A Expired - Lifetime EP0615218B1 (en) | 1993-03-10 | 1994-03-03 | Method and device for compensation of the moisture in a light scattering detector |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0615218B1 (en) |
AT (1) | ATE142807T1 (en) |
DE (2) | DE4307585C1 (en) |
DK (1) | DK0615218T3 (en) |
ES (1) | ES2091645T3 (en) |
GR (1) | GR3021486T3 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1596349A1 (en) * | 2004-05-13 | 2005-11-16 | Job Lizenz GmbH & Co. KG | Method for sensing and reporting of condensation in smoke detectors |
WO2021155920A1 (en) | 2020-02-05 | 2021-08-12 | Durag Gmbh | Device for the scattered light measurement of particles in a gas |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5781291A (en) * | 1996-10-22 | 1998-07-14 | Pittway Corporation | Smoke detectors utilizing a hydrophilic substance |
DE19912911C2 (en) * | 1999-03-22 | 2001-07-19 | Schako Metallwarenfabrik | Device for detecting smoke |
DE102004020489B4 (en) * | 2004-04-26 | 2007-06-28 | Minimax Gmbh & Co. Kg | Fire detector for use in outdoor atmosphere |
DE102004032294B4 (en) * | 2004-07-03 | 2012-02-09 | Minimax Gmbh & Co. Kg | Heated fire alarm |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH571750A5 (en) * | 1974-09-10 | 1976-01-15 | Nohmi Bosai Kogyo Co Ltd | Photoelectricccc aerosol or smoke detector - second photo cell receives reflected light from prism surface to compensate for contamination |
EP0418410A1 (en) * | 1989-09-19 | 1991-03-27 | Siemens Aktiengesellschaft | Method and device for compensating the air humidity in an optical smoke alarm |
-
1993
- 1993-03-10 DE DE4307585A patent/DE4307585C1/en not_active Expired - Fee Related
-
1994
- 1994-03-03 ES ES94103217T patent/ES2091645T3/en not_active Expired - Lifetime
- 1994-03-03 DE DE59400613T patent/DE59400613D1/en not_active Expired - Fee Related
- 1994-03-03 AT AT94103217T patent/ATE142807T1/en not_active IP Right Cessation
- 1994-03-03 DK DK94103217.9T patent/DK0615218T3/en active
- 1994-03-03 EP EP94103217A patent/EP0615218B1/en not_active Expired - Lifetime
-
1996
- 1996-10-25 GR GR960402845T patent/GR3021486T3/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH571750A5 (en) * | 1974-09-10 | 1976-01-15 | Nohmi Bosai Kogyo Co Ltd | Photoelectricccc aerosol or smoke detector - second photo cell receives reflected light from prism surface to compensate for contamination |
EP0418410A1 (en) * | 1989-09-19 | 1991-03-27 | Siemens Aktiengesellschaft | Method and device for compensating the air humidity in an optical smoke alarm |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1596349A1 (en) * | 2004-05-13 | 2005-11-16 | Job Lizenz GmbH & Co. KG | Method for sensing and reporting of condensation in smoke detectors |
WO2021155920A1 (en) | 2020-02-05 | 2021-08-12 | Durag Gmbh | Device for the scattered light measurement of particles in a gas |
Also Published As
Publication number | Publication date |
---|---|
EP0615218B1 (en) | 1996-09-11 |
DE4307585C1 (en) | 1994-03-10 |
DK0615218T3 (en) | 1996-11-04 |
DE59400613D1 (en) | 1996-10-17 |
GR3021486T3 (en) | 1997-01-31 |
ATE142807T1 (en) | 1996-09-15 |
ES2091645T3 (en) | 1996-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0360126B1 (en) | Operation method for an optical smoke detector and smoke detector for carrying out the method | |
EP2093734B1 (en) | Smoke alarm with timed evaluation of a backscattering signal, test method for functionality of a smoke alarm | |
DE3614140C2 (en) | ||
EP1979764B1 (en) | Method for measuring the transit time of light | |
DE2032438B2 (en) | DEVICE FOR REGULATING THE PRELOAD CURRENT FOR A PHOTODETECTOR | |
EP0530723A1 (en) | Optical smoke detector with active monitoring | |
DE4400363A1 (en) | Smoke detectors with the ability to detect both smoke and fine particles | |
EP2541273A1 (en) | Detection and measuring of distance between objects | |
WO2009103777A1 (en) | Evaluation of a difference signal between output signals of two receiving devices in a sensor apparatus | |
EP0418410B1 (en) | Method and device for compensating the air humidity in an optical smoke alarm | |
EP0615218B1 (en) | Method and device for compensation of the moisture in a light scattering detector | |
DE19951403B4 (en) | Method for detecting smoke | |
EP1783712B1 (en) | Combined scattered light and extinction fire alarm | |
EP0418409B1 (en) | Method and device to avoid prevailing weather effects on automatic fire alarms | |
DE19951557A1 (en) | Optoelectronic arrangement for detecting objects in monitored region has light transmitter and receiver with near and far elements for light from near and far objects | |
CH656242A5 (en) | Device for optical monitoring and securing of premises against intruders | |
DE2340041C2 (en) | Fire alarm device | |
DE3231025C2 (en) | Device for the identification of pulsed laser radiation | |
DE102016107851B4 (en) | Optoelectronic time-of-flight measuring device | |
DE3904914A1 (en) | Method and device for error reduction in the measurement of three-dimensional movement of measurement points, by means of ultrasound signals | |
DE102006023971B4 (en) | Optical sensor and method for detecting persons, animals or objects | |
EP0596231B1 (en) | Method and device for turbidity measurement in aqueous media | |
EP1596349B1 (en) | Method for sensing and reporting of condensation in smoke detectors | |
DE102010025929B4 (en) | Method for pulsed operation of a light barrier and light barrier | |
DE29923142U1 (en) | Sensitivity control for light sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT |
|
17P | Request for examination filed |
Effective date: 19950207 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19960214 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT |
|
REF | Corresponds to: |
Ref document number: 142807 Country of ref document: AT Date of ref document: 19960915 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG |
|
REF | Corresponds to: |
Ref document number: 59400613 Country of ref document: DE Date of ref document: 19961017 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: 69809 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2091645 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19961114 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3021486 |
|
SC4A | Pt: translation is available |
Free format text: 960923 AVAILABILITY OF NATIONAL TRANSLATION |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 19980212 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 19980218 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19980227 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19980312 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 19980330 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990303 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990331 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990930 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 19990930 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20010221 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010309 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20010319 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20010320 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010326 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010327 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010530 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20010614 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020303 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020331 |
|
BERE | Be: lapsed |
Owner name: *SIEMENS A.G. Effective date: 20020331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021001 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020303 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021129 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20021001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050303 |