[go: up one dir, main page]

EP0611211B1 - Système de contrôle et de commande de la vitesse de déplacement d'une charge pendulaire et appareil de levage comprenant un tel système - Google Patents

Système de contrôle et de commande de la vitesse de déplacement d'une charge pendulaire et appareil de levage comprenant un tel système Download PDF

Info

Publication number
EP0611211B1
EP0611211B1 EP19940400285 EP94400285A EP0611211B1 EP 0611211 B1 EP0611211 B1 EP 0611211B1 EP 19940400285 EP19940400285 EP 19940400285 EP 94400285 A EP94400285 A EP 94400285A EP 0611211 B1 EP0611211 B1 EP 0611211B1
Authority
EP
European Patent Office
Prior art keywords
speed
load
circuits
swaying
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19940400285
Other languages
German (de)
English (en)
Other versions
EP0611211A1 (fr
Inventor
Jean Yves Eudier
Stéphane Cavellier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konecranes France SA
Original Assignee
Konecranes France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konecranes France SA filed Critical Konecranes France SA
Publication of EP0611211A1 publication Critical patent/EP0611211A1/fr
Application granted granted Critical
Publication of EP0611211B1 publication Critical patent/EP0611211B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical

Definitions

  • the present invention relates to a system for control and control of the speed of movement of a pendulum load.
  • the invention also relates to apparatus for lifting comprising such a system.
  • the invention applies in particular to port cranes such as cranes, dump cranes or container.
  • an objective is to move accurately from one point to one other a load suspended by cables to a support mobile, such as a motorized trolley, and also control and control the ballad of the load during the path.
  • the precision of the displacement depends essentially the control and depreciation of oscillations of the load during the displacement.
  • the described method only meets imperfectly the needs expressed for certain applications, particularly if desires, either, to ensure a zero balloon at the end of a journey fixed term, but continued assistance to the driver, regardless of the distance to be traveled.
  • control systems of the Known Art realize a servo speed of the cable support lifting the pendulum load (or more generally the device making office).
  • DE 1274293 discloses a device of the type described in the the preamble of claim 1 of the present application.
  • DE 1274293 discloses a regulating circuit which provides that the drive of horizontal movement of the point of suspension on the cable is associated a control circuit, to control the support mobile by considerably limiting the swinging of the load.
  • this system is suitable for a simple pendulum with a cable and not for a complex motion pendulum with multiple cables.
  • the device for measuring the speed of the load with respect to trolley can not be installed on any hoist.
  • the invention proposes to overcome the disadvantages of the Known Art which have just been recalled.
  • the invention therefore proposes a control system and control of the speed of movement of the load pendulum of a hoist that frees the driver of the aforementioned constraint.
  • the transfer function associated with the feedback channel being chosen such that said determined global transfer function is stable.
  • the subject of the invention is also a device for lifting comprising such a system.
  • the invention has the advantage of driving much simpler and faster gear, especially for inexperienced drivers.
  • the device according to the invention can integrating with an automated material handling system, charge then to ensure accurate positioning of the load from a pre-established position setpoint.
  • the hoist is a harbor crane of gantry type used for loading and unloading containers as well as for their transportation along a pre-established path.
  • FIG. 1 schematically illustrates such machine.
  • the port hoist 1 comprises, following known techniques, a gantry 10 to which is connected a horizontal boom structure 11.
  • a movable carriage 21 can be moved horizontally in one direction X along the arrow 11.
  • a container 20 is suspended at mobile carriage 21 by cables 22 whose variation of length allows the displacement of the container 20 following a vertical direction Z.
  • the cable assembly 22 and load pendular 20 constitutes the pendular system 2.
  • Figure 2 illustrates the block diagram of a device 100 of control and control according to Art Known.
  • This speed control member C Vit controls a ramp generator G RAMP .
  • Figure 3 is a timing diagram illustrating what has just been explained.
  • the signal R (p) representing the calculated reference speed is transmitted to the speed control system 100 of the carrier-cable-load assembly (FIG. 1: 20 to 22). .
  • the speed control system 100 of the carrier-cable-load assembly (FIG. 1: 20 to 22).
  • the output signal V sup (p) representing the speed of the medium V Sup is fed back to the input of the circuits 120 via a feedback loop 121.
  • a comparator 110 At the input, there is a comparator 110, comparing the reference signal R ( p) to the signal V sup (p), the result of this comparison being transmitted to the member 120.
  • a (p) K 1 + ⁇ xp relation in which K is a constant, p a variable and ⁇ the associated time constant.
  • the pendular system represented by block 130 (control of the cable + load assembly) is an unstable system.
  • the speed control signal is transmitted to this system.
  • the output signal V (p) representing the speed V cha of the pendular load is also unstable. This is naturally a vector value since many components can intervene: angular oscillations, linear displacement, elongation of the cables.
  • FIG. 4 schematically illustrates this state of affairs.
  • the driver of the machine has been represented under the reference CONDUC.
  • the speed regulation system 120 (FIG. 2) applied to the carriage, that is to say the structure supporting the cables 21 (FIG. 1), receives the speed control signals from the driver CONDUC actuating the speed control.
  • C Vit (FIG. 1) via the ramp generator G RAMP (FIG. 1).
  • the regulation system 120 receives back a signal representative of the actual speed of the carriage 21, via the feedback loop 121.
  • the driver CONDUC "receives" visual information INFO on the actual position of the pendular load 20, hanging at the end of the cables 22. It is from this visual perception that it will act on the speed control C Vit to anticipate the movements of the load 20. It is therefore the driver who "develops” the regulation signals of the speed of the load.
  • the invention provides a second loop of feedback or feedback. This arrangement is illustrated in Figure 6.
  • the system 100 for regulating the speed of the support-cable-load assembly now comprises, as input, an additional comparator 140 receiving on a first input the signal R (p) representative of the reference speed V ref at the output of the generator ramp G RAMP .
  • This comparator is transmitted to one of the inputs of the comparator 110, the latter receiving on its second input the signal coming from the first feedback circuit 121, signal V sup (p) representative of the speed of the medium V sup .
  • the second input of the comparator 140 receives, via a second chain of feedback 131, according to a important feature of the invention, a signal representative of the signal V (p), the latter being for its part developed from the actual measured speed of the load pendulum.
  • the transfer function of the feedback loop 131 is conventionally called H (p).
  • the feedback chain 131 must be chosen such that the transfer function H (p) allows the aforementioned stabilization of the global function G (p).
  • This global function G (p) will be so preferential a first order mathematical function or second order.
  • the optimal answer is given by a second order function.
  • the transfer function A (p) (relation (2)) having a time constant ⁇ generally low, can to be neglected.
  • the response of the global system to a signal of command of the "step" type is constituted by an infinity curves, depending on the value of z.
  • Figure 7 illustrates these curves as a function of ⁇ 0 t, t being the time.
  • z chosen equal to 1
  • a damped response is obtained, in an optimized manner.
  • z chosen less than 1 the system oscillates and for z greater than 1, the system is damped but the speed of response is degraded.
  • the first component is generally mono-directional: linear vector. This is for example the case of a carriage 21 rolling along the arrow of the machine of Lifting 1 along the X axis ( Figure 1).
  • the second component is more complex. It is necessary take into account angular oscillations around the axis Z ( Figure 1) and instantaneous variations of the cable length 22.
  • the speed of the mobile support 21 can be measured by the same sensor as that used to obtain the speed regulation of this mobile support 21.
  • This element is common to the known art.
  • a tachometer or equivalent measuring device may be used. This provides a signal representative of the amplitude of the velocity vector V sup of the mobile support 21 and its sign. In the example shown V sup is parallel to the axis X and the same orientation.
  • an optical system comprising a camera 4, and a beacon generating an optical beam 30. It may be for example a laser whose length wave is chosen to ensure eye safety.
  • the camera 4 is secured to the support mobile 21 and directed downward, in a direction parallel to the Z axis, that is to say substantially at the vertical of the beacon 3.
  • the measurement of the variations of the instant lp length of the cables 22, that is to say the linear component of the speed along an axis making a angle ⁇ with the Z axis, can be performed from different manners. Devices for obtaining this measure are well known in themselves. For example, we can generate electrical pulses by means (not shown on the 8) coupled to the winding axis of the cables 22. can still use optical telemetry means. These telemetry means are usually based on the broadcast of a laser beam reflected or backscattered by a obstacle whose distance we want to measure. To do this, the round trip time of the beam is measured.
  • V sup and V bal By combining the two speeds, V sup and V bal , the absolute speed of the charge V cha is obtained with respect to a fixed reference frame, for example linked to the ground. This is naturally a vectorial addition of different components.
  • these determinations are carried out with the aid of a computer.
  • this calculator is a programmable calculator of digital type, the signals represent the various commands and speeds it being provided in the form of binary words or trains pulse.
  • FIG. 9 is a block diagram illustrating the organization of the control device according to this variant embodiment of the invention.
  • the system of regulation 100 includes, in addition to the circuits 120 and 130 similar to the circuits of FIG. 2, a calculator 200.
  • the links are represented in the form of a data bus. It is therefore implicitly assumed that all the circuits are digitized, but this is in no way limiting to the scope of the invention.
  • Other solutions can be adopted, in particular hybrid solutions: a part the chain being analog, the other being digital. We will then use analog-to-digital converters or, conversely, digital-to-analog converters, in a classic way.
  • the computer 200 receives, on the one hand, a control signal R (p) representative of the reference speed and, on the other hand, a signal V (p) representative of the speed of the pendular load V cha . From these data, it develops a new speed reference or corrected speed control, transmitted to the circuits 120.
  • the operation of the assembly is similar to the operation of the circuits described in relation to Figure 6 and there is no need to redescribe .
  • the calculator 200 could directly receive the command signal from speed and develop, using specific circuits appropriate, or programmatically, the ramp signal as described in connection with FIG.
  • the calculator 200 itself can be realized at base of a current-type microcomputer, equipped specialized interfaces to communicate with outside, or based on signal processing circuits dedicated, that is, specific.
  • Figure 10 illustrates, as a non-standard example the architecture of a calculator 200. In this example, it is a specialized or dedicated calculator.
  • the calculator includes first circuits interface 201 receiving signals representative of the moving the support 21 ( Figure 1).
  • These interface circuits 201 The purpose of these interface circuits 201 is to make the necessary adaptations, electrical and other, between the calculator 200 and the outside, for format the received signals.
  • the output of the circuits 201 is transmitted to first acquisition circuits 203 data relating to the displacements of the mobile support 21 (figure 1).
  • These circuits 203 generally comprise storage devices and transform the data "raw” in binary words usable by first signal processing circuits 205 arranged in cascade. These circuits elaborate a binary word representative of the speed of the mobile support 21 ( Figure 1). The configuration exact of these circuits naturally depends on the nature measurement signals received at input (pulses of counting, analog signals, etc ).
  • the calculator 200 further comprises a second chain having second circuits interface 202 receiving signals representative of information or dangling data, second circuits 204 acquisition of these data and second circuits signal processing 206. The latter develop in output a binary word representative of the speed of the swinging.
  • circuits 207 that has been shown schematically in the form of a comparator whose output information is transmitted to third parties signal processing circuits 208, developing the new speed reference.
  • third interface circuits 209 ensure the necessary adaptations between the calculator 200 and outside (circuits 120: Figure 2).
  • the calculator 200 can also be used, advantageously, to develop the others control signals necessary for the proper functioning of lifting equipment: lifting orders, etc., and which are common to Known Art.
  • control and movement speed control of a pendular load 20 suspended on a mobile support of a hoist 1 includes control circuits 100 including the calculator 200 (FIG. 9) receiving, on the one hand, as input CL, a pendulum length information from a position encoder 5; at input B, information from dangling from the camera 4; and as input CD, a moving information of the mobile support or direction information, and delivering back, output SL, lifting orders transmitted to lifting means 6, 7, 8 of the hoist 1, and at exit SD, orders of direction transmitted to steering means 19a, 19b.
  • the calculator 200 FIG. 9
  • the lifting means comprise a drum of Lifting 8 around which a suspension cable is wound connected to the load 20, for example, a container, a reducer 7 and an electric motor 6, arranged according to well known techniques.
  • the hoisting motor 6, which is associated with the lifting encoder 5, is controlled via a line 12 and an amplifier 13, or from a lifting control lever 14 or by the circuits 100, through the aforementioned SL outlet.
  • the steering means comprise a roller of steering 19b rolling on a steering rail 15 connected to the hoist, a gearbox 19a and a electric motor 9 to which is fixed a direction encoder 16.
  • This steering motor 9 is controlled via a line of steering power 17 and a power amplifier 18 by the circuits 100, through the aforementioned SD output.
  • the dangle angle is measured by a camera 4 integral with the mobile support and whose objective is directed vertically downward, as indicated; the pendular load 20 being equipped with an optical beacon 3 emitting a beam directed upwards.
  • the speed control is carried out using a speed control lever C which is transmitted and transmitted to an input EC of the circuits 100.
  • a speed control lever C which is transmitted and transmitted to an input EC of the circuits 100.
  • the ramp generator G RAMP is arranged at the same time. circuit 100 or that this function is performed by the computer 200.
  • the invention therefore makes it possible to obtain assistance effective in the control of lifting devices, put at the machine operator layout.
  • a hoisting machine equipped with a control and control according to the invention does not require more than just using drivers experienced and guarantees perfect reproducibility of maneuvers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)

Description

La présente invention concerne un système de contrôle et de commande de la vitesse de déplacement d'une charge pendulaire.
L'invention concerne également les appareils de levage comprenant un tel système.
L'invention s'applique notamment aux engins de levage portuaires tels que grues, portiques à benne ou à conteneur.
Dans le domaine industriel de la manutention et du levage de charges, notamment de conteneurs, un objectif primordial est de déplacer avec précision d'un point à un autre une charge suspendue par des câbles à un support mobile, tel qu'un chariot motorisé, et également de contrôler et commander le ballant de la charge pendant le trajet.
Or, la précision du déplacement dépend essentiellement du contrôle et de l'amortissement des oscillations de la charge au cours du déplacement.
Un certain nombre de procédés de contrôle des déplacements de charges pendulaires existent déjà, mais les temps de manoeuvre donnés par ces procédés dépendent de la période du pendule constitué par la charge suspendue.
Ces procédés présentent en particulier les inconvénients suivants:
  • les mouvements sont calculés avant le démarrage du mouvement en fonction des longueurs pendulaires qui sont elles-mêmes variables pendant le mouvement, en particulier pour les appareils de levage. Le calcul des paramètres du mouvement doit donc être effectué avant la mise en route en faisant des approximations sur la longueur du pendule et sur la variation de celle-ci;
  • dans le cas de petits mouvements, les mouvements, liés à la période du pendule, sont nécessairement lents;
  • il est difficile de tenir compte de conditions initiales non nulles.
Ces inconvénients font que la précision de déplacement, si elle reste suffisante en manutention de produits en vrac, est insuffisante en manutention de conteneurs notamment.
Dans la demande de brevet français publiée sous le n° 2 664 885, la Demanderesse s'est fixé pour but de remédier à ces inconvénients en proposant un procédé de commande des déplacements d'une charge pendulaire suspendue à un support mobile horizontalement, et déplacée d'un point de départ à un point d'arrivée pendant un trajet de durée prédéterminée, qui permette la prise en compte de perturbations et de variations de longueur pendulaire et qui utilise au maximum la puissance de l'appareil de levage afin de diminuer les temps de déplacement.
La demande de brevet précitée enseigne également un dispositif pour la mise en oeuvre de ce procédé.
Bien que satisfaisant aux objectifs fixés, le procédé décrit ne répond qu'imparfaitement aux besoins exprimés pour certaines applications, notamment si on désire, non plus assurer un ballant nul en fin d'un trajet de durée déterminée, mais une assistance continue au conducteur, quelle que soit la distance à parcourir.
En effet, les systèmes de commande de l'Art Connu réalisent un asservissement de vitesse du support du câble de levage de la charge pendulaire (ou plus généralement du dispositif en faisant office).
Il résulte de cette disposition que, lors des mouvements du support, la charge pendulaire est animée d'un ballant préjudiciable à la précision du positionnement, en particulier lorsqu'il s'agit d'un objet encombrant tel qu'un conteneur.
Cette instabilité de la charge requiert une grande habileté de la part du conducteur lorsqu'il doit assurer une manutention précise et rapide.
Le brevet DE 1274293 décrit un dispositif du type de celui décrit dans le préambule de la revendication 1 de la présente demande.
Le brevet DE 1274293 décrit un circuit de régulation qui prévoit qu'à l'entraínement du mouvement horizontal du point de suspension sur le câble soit associé un circuit de régulation, afin de piloter le support mobile en limitant considérablement le balancement de la charge.
Toutefois, ce système est adapté pour un pendule simple avec un câble et non pour un pendule à mouvement complexe ayant plusieurs câbles.
De plus, le dispositif de mesure de la vitesse de la charge par rapport au chariot ne peut être installé sur n'importe quel engin de levage.
L'invention se propose de pallier les inconvénients de l'Art Connu qui viennent d'être rappelés.
L'invention propose donc un système de contrôle et de commande de la vitesse de déplacement de la charge pendulaire d'un appareil de levage qui libère le conducteur de la contrainte précité.
Pour ce faire, on réalise un asservissement de la vitesse de la charge pendulaire au lieu de la vitesse du support. Le système gère le comportement oscillant du système support-câble-charge et le conducteur n'a plus alors à anticiper les mouvements pendulaires de la charge pour la positionner.
L'invention a donc pour objet un système de contrôle et de commande de la vitesse de déplacement d'une charge pendulaire pour un engin de levage comprenant un support mobile déplaçable horizontalement et auquel est suspendue la charge pendulaire, cet ensemble support mobile charge pendulaire étant associé à une fonction de transfert globale déterminée ; le système comprenant des circuits de commande de vitesse générant un signal de commande de vitesse demandée transmis à des circuits de contrôle et de commande de la vitesse du support mobile et une chaíne de rétroaction réinjectant, en entrée des circuits de contrôle et de commande de la vitesse du support mobile, un signal dépendant d'un signal représentatif de la vitesse réelle de la charge pendulaire ; la vitesse réelle de la charge pendulaire étant obtenue en combinant la vitesse du support vitesse absolue par rapport à un référentiel fixe, et la vitesse de la charge pendulaire, vitesse relative par rapport au support ; caractérisé en ce que le système de contrôle et de commande de la vitesse de déplacement d'une charge pendulaire comprend des moyens de mesure exacte et continue des paramètres de la vitesse réelle de la charge pendulaire permettant la détermination du signal représentatif de cette vitesse réelle mesurée ; lesdits moyens de mesure comportant des seconds moyens de mesure de la vitesse relative de la charge pendulaire par rapport au support mobile ; lesdits seconds moyens de mesure comprenant :
  • des moyens de mesure des variations de la distance séparant la charge pendulaire du support mobile ; et
  • des moyens de mesure de l'écart angulaire de la charge pendulaire par rapport à sa fonction de repos, qui comprennent un générateur de rayonnement optique lié à la charge pendulaire et une caméra liée au support mobile recevant ledit rayonnement ;
La fonction de transfert associée à la chaíne de rétroaction étant choisie telle que ladite fonction de transfert globale déterminée soit stable.
L'invention a encore pour objet un appareil de levage comprenant un tel système.
L'invention présente l'avantage d'une conduite d'engin beaucoup plus simple et rapide, en particulier pour des conducteurs non expérimentés.
En outre, le dispositif selon l'invention peut s'intégrer à un système de manutention automatisé, il se charge alors d'assurer le positionnement précis de la charge à partir d'une consigne de position pré-établie.
L'invention sera mieux comprise et d'autres caractéristiques et avantages apparaítront à la lecture de la description qui suit, en regard des figures annexées et parmi lesquelles:
  • la figure 1 est une vue générale schématique d'un engin de levage portuaire pouvant être équipé d'un système de contrôle et commande de la vitesse de déplacement d'une charge pendulaire, selon l'invention;
  • la figure 2 est un bloc-diagramme des circuits d'un système de contrôle et commande du déplacement d'une charge pendulaire selon l'Art Connu;
  • la figure 3 est un chronogramme explicitant le fonctionnement d'un des circuits d'un tel système;
  • la figure 4 illustre schématiquement le fonctionnement d'un tel système;
  • la figure 5 est un chronogramme illustrant les variations de la vitesse de la charge en fonction du temps lorsqu'on excite le système à l'aide d'un signal de commande de vitesse de type "échelon";
  • la figure 6 est un bloc-diagramme des circuits d'un système de contrôle et de commande de la vitesse de déplacement d'une charge pendulaire selon l'invention;
  • la figure 7 est un chronogramme illustrant les variations de la charge en fonction du temps lorsqu'on excite le système selon l'invention par un signal de commande de type "échelon";
  • la figure 8 illustre schématiquement les différents paramètres en jeu lors du déplacement de la charge pendulaire;
  • la figure 9 est un bloc diagramme du système de l'invention selon un mode de réalisation supplémentaire comprenant un calculateur;
  • la figure 10 est un bloc diagramme d'un calculateur pouvant être mis en oeuvre dans le système selon l'invention;
  • la figure 11 illustre schématiquement un exemple de réalisation pratique d'un appareil de levage mettant en oeuvre un système selon l'invention.
Dans ce qui suit, pour fixer les idées et sans que cela soit limitatif de la portée de l'invention, on supposera que l'engin de levage est une grue portuaire de type portique utilisée pour le chargement-déchargement de conteneurs ainsi que pour leur transport le long d'un chemin pré-établi.
La figure 1 illustre schématiquement un tel engin.
L'engin de levage portuaire 1 comprend, suivant des techniques connues, un portique 10 auquel est reliée une structure de flèche horizontale 11. Un chariot mobile 21 peut être déplacé horizontalement suivant une direction X le long de la flèche 11. Un conteneur 20 est suspendu au chariot mobile 21 par des câbles 22 dont la variation de longueur permet le déplacement du conteneur 20 suivant une direction verticale Z. L'ensemble câbles 22 et charge pendulaire 20 (conteneur) constitue le système pendulaire 2.
On va maintenant décrire les dispositions habituellement retenues dans l'Art Connu pour le contrôle et la commande d'engins de levage, tels que celui qui vient d'être succinctement rappelé en référence à la figure 1.
Le mouvement de direction est commandé par une régulation continue de la vitesse de support, c'est-à-dire le chariot 21 (figure 1). Les organes principaux d'une telle régulation sont les suivants:
  • un organe de mesure de la vitesse du support mobile 21: un générateur d'impulsion ou une dynamo tachymétrique;
  • un organe de pilotage: un système électrotechnique (par exemple du type "Ward Leonard") ou un système électronique (variateur de vitesse par exemple); et
  • un organe de motorisation: un moteur asynchrone ou à courant continu.
La figure 2 illustre le bloc diagramme d'un dispositif 100 de commande et de contrôle conforme à l'Art Connu.
Il comprend un organe de commande de vitesse Cvit, actionné par le conducteur de l'engin (non représenté), fournissant un signal de vitesse demandée Vdem.
Cet organe de commande de vitesse CVit commande un générateur de rampe GRAMPE. Celui-ci permet d'écrêter les accélérations du support afin d'éviter que le moteur développe un couple trop important engendrant des chocs mécaniques. Cette fonction est traitée par un système de pilotage du mouvement ou par un calculateur (automate programmable par exemple). Connaissant la vitesse maximale Vmax du mouvement ainsi que l'accélération nominale à fournir ACC, le temps de rampe TRAMPE est calculé simplement comme suit: TRAMPE = Vmax 2xACC
La figure 3 est un diagramme de temps illustrant ce qui vient d'être explicité.
De l'instant t = 0 à t = T, la vitesse demandée est égale à Vmax (partie haute du diagramme), T étant un intervalle de temps prédéterminé. Le générateur de rampe GRAMPE délivre sur sa sortie un signal R(p) représentatif de la vitesse de référence calculée Vref telle qu'illustré par la partie basse du diagramme: une rampe de pente croissante de t = 0 à t = TRAMPE (variant de 0 à Vmax), une vitesse constante (Vmax) de t = TRAMPE à t = T, et une rampe décroissante jusqu'à zéro de t = T à t = T + TRAMPE, T étant l'intervalle de temps pendant lequel est généré le signal de commande de vitesse.
Si on se reporte à nouveau à la figure 2, le signal R(p) représentant la vitesse de référence calculée, est transmis au système de régulation de vitesse 100 de l'ensemble support-câble-charge (figure 1: 20 à 22). En réalité, dans l'Art Connu, seule la vitesse du support mobile 21 est régulée. Celui-ci comprend un actionneur plus une chaíne cinématique 120 représentant le comportement du support. Le signal de sortie Vsup(p) représentant la vitesse du support VSup est réinjecté sur l'entrée des circuits 120 via une boucle de contre-réaction 121. En entrée, on dispose un comparateur 110, comparant le signal de référence R(p) au signal Vsup(p), le résultat de cette comparaison étant transmis à l'organe 120.
La fonction de transfert A(p) associée au support mobile, c'est-à-dire aux circuits 120 obéit classiquement à la relation: A(p) = K 1 + τxp    relation dans laquelle K est une constante, p une variable et τ la constante de temps associée.
Dans les dispositifs de l'Art Connu classiques, comme illustré sur la figure 2, le système pendulaire représenté par le bloc 130 (commande de l'ensemble câbles + charge) est un système instable. Le signal de commande de vitesse est transmis à ce système. Le signal de sortie V(p) représentant la vitesse Vcha de la charge pendulaire est également instable. Il s'agit naturellement d'une valeur vectorielle puisque de nombreuses composantes peuvent intervenir: oscillations angulaires, déplacement linéaire, allongement des câbles. La fonction de transfert de l'ensemble pendulaire S(p) obéit à la relation: S(p) = V(p)Vsup(p)
La fonction de transfert globale du système est: G(p) = V(p)R(p)
Cette fonction G(p) n'est pas stable non plus du fait de l'instabilité de S(p).
A titre d'exemple, la réponse théorique d'un tel système à un signal de commande de vitesse du type "échelon" est illustrée par la figure 5.
On a représenté sur ce chronogramme les variations du signal vitesse Ssortie en fonction du temps t (échelle arbitraire) lorsque le système est excité par un signal échelon Sentrée.
La théorie montre qu'il y a une ondulation infinie autour d'une position d'équilibre. Naturellement on a négligé l'amortissement dû à divers causes: frottements, etc...
Dans le cadre du dispositif décrit, aucune régulation électrique ou mécanique n'est réalisée sur la vitesse de la charge pendulaire. C'est le conducteur de l'engin qui va refermer manuellement la boucle de régulation de vitesse de la charge pendulaire pour la positionner avec précision.
La figure 4 illustre schématiquement cet état de fait. Le conducteur de l'engin a été représenté sous la référence CONDUC. Le système 120 (figure 2) de régulation de la vitesse appliqué au chariot, c'est-à-dire la structure supportant les câbles 21 (figure 1), , reçoit les signaux de commande de vitesse du conducteur CONDUC actionnant la commande de vitesse CVit (figure 1) via le générateur de rampe GRAMPE (figure 1). Le système de régulation 120 reçoit en retour un signal représentatif de la vitesse réelle du chariot 21, via la boucle de contre-réaction 121.
Le conducteur CONDUC "reçoit" des informations visuelles INFO sur la position effective de la charge pendulaire 20, pendue au bout des câbles 22. C'est à partir de cette perception visuelle qu'il va agir sur la commande de vitesse CVit pour anticiper les mouvements de la charge 20. C'est donc la conducteur qui "élabore" les signaux de régulation de la vitesse de la charge.
On conçoit aisément les difficultés inhérentes à ce procédé:
  • apprentissage long: exigence de conducteurs expérimentés;
  • différence de précision et de rapidité selon les conducteurs;
  • influence de la fatigue (dégradation des performances) et d'autres facteurs, par exemple météorologiques : vent, etc.
  • etc...
Pour pallier ces difficultés, l'invention prévoit une seconde boucle de contre-réaction ou rétro-action. Cette disposition est illustrée par la figure 6.
Les éléments communs à la figure 2 portent les mêmes références et ne seront redécrits qu'en tant que de besoin.
Le système 100 de régulation de la vitesse de l'ensemble support-câble-charge comprend désormais, en entrée, un comparateur supplémentaire 140 recevant sur une première entrée le signal R(p) représentatif de la vitesse de référence Vref en sortie du générateur de rampe GRAMPE.
La sortie de ce comparateur est transmise à une des entrées du comparateur 110, celui-ci recevant sur sa seconde entrée le signal issu de la première chaíne de rétro-action 121, signal Vsup(p) représentatif de la vitesse du support Vsup.
La seconde entrée du comparateur 140 reçoit, via une seconde chaíne de rétro-action 131, selon une caractéristique importante de l'invention, un signal représentatif du signal V(p), celui-ci étant pour sa part élaboré à partir de la vitesse réelle mesurée de la charge pendulaire.
La fonction de transfert de la boucle de rétroaction 131 est par convention appelée H(p).
Selon la caractéristique principale de l'invention, on désire stabiliser la fonction de transfert globale G(p) (relation (4)), de manière à obtenir une régulation de la vitesse de la charge pendulaire. Par ce biais, on offre au conducteur une assistance à la conduite de l'engin de levage.
Pour un système pendulaire non amorti, S(p) est de la forme: S(p) = 0)2 0)2 + p2    relation dans laquelle ω0 est la pulsation du système pendulaire.
La chaíne de contre-réaction 131 doit être choisie telle que la fonction de transfert H(p) permette la stabilisation précitée de la fonction globale G(p).
Cette fonction globale G(p) sera de façon préférentielle une fonction mathématique du premier ordre ou du deuxième ordre. La réponse optimale est donnée par une fonction du deuxième ordre.
La fonction de transfert A(p) (relation (2)) ayant une constante de temps τ généralement faible, peut être négligée.
Dans ces conditions, soit G(p) une fonction de transfert du deuxième ordre, on peut la représenter par la relation: G(p) = 0)2 p2 + 2zω0p + (ω0 )2    relation dans laquelle ω0 est la pulsation du système pendulaire, z le coefficient d'amortissement et p la variable.
Par ailleurs G(p) est de la forme générale: G(p) = S(p) 1 + S(p) H(p)    puisque A(p) peut être négligé.
Le calcul montre alors que H(p) répond à la relation: H(p) = 2 zp ω0
La réponse du système global à un signal de commande du type "échelon" est constituée par une infinité de courbes, fonction de la valeur de z.
La figure 7 illustre ces courbes en fonction de ω0t, t étant le temps. Pour z choisi égal à 1, on obtient une réponse amortie, ce de façon optimisée. Pour z choisi inférieur à 1, le système oscille et pour z supérieur à 1, le système est amorti mais la rapidité de réponse est dégradée.
Pour calculer la vitesse de la charge, on doit tenir compte de deux composantes:
  • la vitesse du support: vitesse absolue par rapport à un référentiel fixe (par exemple le sol);
  • la vitesse du ballant, c'est-à-dire une vitesse relative par rapport au support.
La première composante, est généralement mono-directionnelle: vecteur linéaire. C'est par exemple le cas d'un chariot 21 roulant le long de la flèche de l'engin de levage 1, suivant l'axe X (figure 1).
La seconde composante est plus complexe. Il faut tenir compte des oscillations angulaires autour de l'axe vertical Z (figure 1) et des variations instantanées de la longueur des câbles 22.
On a illustré schématiquement ces différents paramètres sur la figure 8.
La vitesse du support mobile 21 (chariot) peut être mesurée par le même capteur que celui utilisé pour obtenir la régulation de vitesse de ce support mobile 21. Cet élément est commun à l'Art Connu. On peut utiliser un tachymètre ou un dispositif de mesure équivalent. Celui-ci fournit un signal représentatif de l'amplitude du vecteur vitesse Vsup du support mobile 21 et de son signe. Dans l'exemple illustré Vsup est parallèle à l'axe X et de même orientation.
Pour mesurer l'angle α du ballant par rapport à l'axe Z représentant la verticale, c'est-à-dire la position de repos des câbles 22, on utilise un système optique comprenant une caméra 4, et une balise génératrice d'un faisceau optique 30. Il peut s'agir par exemple d'un laser dont la longueur d'onde est choisie pour assurer une sécurité oculaire.
La caméra 4 est solidaire du support mobile 21 et dirigée vers le bas, suivant une direction parallèle à l'axe Z, c'est-à-dire sensiblement à la verticale de la balise 3. La mesure des variations de la longueur lp instantanée des câbles 22, c'est-à-dire de la composante linéaire de la vitesse suivant un axe faisant un angle α avec l'axe Z, peut être effectuée de différentes façons. Des dispositifs permettant d'obtenir cette mesure sont bien connus en soi. On peut, par exemple, générer des impulsions électriques par un moyen (non illustré sur la figure 8) couplés à l'axe d'enroulement des câbles 22. On peut encore utiliser des moyens optiques de télémétrie. Ces moyens de télémétrie sont en général basés sur l'émission d'un faisceau laser réfléchi ou rétro-diffusé par un obstacle dont on veut mesurer l'éloignement. Pour ce faire, on mesure le temps aller-retour du faisceau.
Les mesures ainsi effectuées permettent donc de connaítre à tout moment les variations de l'angle α du ballant et de la longueur du pendule "câbles 22-charge 20". On peut donc en déduire la vitesse relative Vbal du ballant, par rapport au chariot 21, de façon classique.
En combinant les deux vitesses, Vsup et Vbal, on obtient la vitesse absolue de la charge Vcha par rapport à un référentiel fixe, par exemple lié au sol. Il s'agit naturellement d'une addition vectorielle de différentes composantes.
Dans une variante préférée de réalisation de l'invention, ces déterminations s'effectuent à l'aide d'un calculateur.
De façon préférentielle, ce calculateur est un calculateur programmable de type numérique, les signaux représentent les diverses commandes et vitesses lui étant fournis sous forme de mots binaires ou de trains d'impulsions.
La figure 9 est un bloc-diagramme illustrant l'organisation du dispositif de contrôle-commande selon cette variante de réalisation de l'invention. Le système de régulation 100 comprend, outre les circuits 120 et 130 similaires aux circuits de la figure 2, un calculateur 200. On a représenté les liaisons sous forme de bus de données. On admet donc implicitement que l'ensemble des circuits est numérisé, mais cela n'est en aucun cas limitatif de la portée de l'invention. D'autres solutions peuvent être adoptées, en particulier des solutions hybrides: une partie de la chaíne étant analogique, l'autre étant numérique. On fera alors usage de convertisseurs analogiques-numériques ou, inversement, de convertisseurs numériques-analogiques, de façon classique.
Le calculateur 200 reçoit, d'une part, un signal de commande R(p) représentatif de la vitesse de référence et, d'autre part, un signal V(p) représentatif de la vitesse de la charge pendulaire Vcha. A partir de ces données, il élabore une nouvelle référence de vitesse ou commande de vitesse corrigée, transmise aux circuits 120. Le fonctionnement de l'ensemble est analogue au fonctionnement des circuits décrits en relation avec la figure 6 et il est inutile de le redécrire.
Dans une variante non représentée, le calculateur 200 pourrait recevoir directement le signal de commande de vitesse et élaborer, à l'aide de circuits spécifiques appropriés, ou par programme, le signal de rampe tel que décrit en relation avec la figure 3.
Le calculateur 200 lui-même peut être réalisé à base d'un micro-ordinateur de type courant, muni d'interfaces spécialisées pour communiquer avec l'extérieur, ou à base de circuits de traitement de signaux dédiés, c'est-à-dire spécifiques.
La figure 10 illustre, à titre d'exemple non limitatif, l'architecture d'un calculateur 200. Dans cet exemple, il s'agit d'un calculateur spécialisé ou dédié.
On a représenté plus particulièrement les circuits nécessaires à l'acquisition des signaux utiles au calcul de la vitesse de la charge pendulaire.
Le calculateur comprend des premiers circuits d'interface 201 recevant des signaux représentatifs du déplacement du support 21 (figure 1).
Le but de ces circuits d'interface 201 est d'effectuer les adaptations nécessaires, électriques et autres, entre le calculateur 200 et l'extérieur, pour mettre en forme les signaux reçus. La sortie des circuits 201 est transmise à des premiers circuits 203 d'acquisition des données relatives aux déplacements du support mobile 21 (figure 1). Ces circuits 203 comprennent en général des organes de mémorisation et transforment les données "brutes" en mots binaires utilisables par des premiers circuits de traitement de signal 205 disposés en cascade. Ces circuits élaborent un mot binaire représentatif de la vitesse du support mobile 21 (figure 1). La configuration exacte de ces circuits dépend naturellement de la nature des signaux de mesure reçus en entrée (impulsions de comptage, signaux analogiques, etc...).
Le calculateur 200 comprend par ailleurs une deuxième chaíne comportant des deuxièmes circuits d'interface 202 recevant des signaux représentatifs de l'information ou données de ballant, des seconds circuits 204 d'acquisition de ces données et des deuxièmes circuits de traitement de signal 206. Ces derniers élaborent en sortie un mot binaire représentatif de la vitesse du ballant.
Le résultat de ces deux chaínes de calcul est combiné par des circuits 207 que l'on a représenté schématiquement sous la forme d'un comparateur dont les informations en sortie sont transmises à des troisièmes circuits de traitement de signal 208, élaborant la nouvelle référence de vitesse.
Enfin, des troisièmes circuits d'interface 209 assurent les adaptations nécessaires entre le calculateur 200 et l'extérieur (circuits 120: figure 2).
On n'a pas représenté sur cette figure les circuits généraux, tels qu'alimentation, générateurs de signaux de cadencement (horloges), etc., nécessaires au bon fonctionnement du calculateur 200. Tous ces circuits sont bien connus de l'Homme de Métier et il est inutile de les détailler.
De la même manière, on n'a pas représenté la chaíne de circuits nécessaires à l'élaboration d'un mot binaire représentatif de la commande de vitesse de référence, mot binaire élaboré à partir des informations générées, en premier lieu, par la commande de vitesse Cvit (figure 6). Cette chaíne est analogue aux deux chaínes de calcul illustrées et comprend substantiellement les mêmes éléments. Le signal résultant de cette élaboration est combiné aux autres signaux par les circuits 207 ou transmis directement aux circuits 208 selon la configuration adoptée.
Il va de soi également que les méthodes, les circuits et/ou les programmes nécessaires aux divers calculs: calcul de vitesse à partir de variations de positions, d'angles, etc., sont bien connus en soi.
Enfin le calculateur 200 peut également être utilisé, de façon avantageuse, pour élaborer les autres signaux de commande nécessaires à la bonne marche de l'appareil de levage: ordres de levage, etc., et qui sont communs à l'Art Connu.
Pour illustrer de façon plus précise l'invention, on va maintenant décrire un exemple de réalisation concrète d'un dispositif de contrôle et de commande de vitesse de déplacement de la charge pendulaire d'un appareil de levage, en se référant à la figure 11.
Dans une forme de réalisation particulière d'un dispositif de contrôle et de commande selon l'invention, illustrée par cette figure, le dispositif de contrôle et de commande de vitesse de déplacement d'une charge pendulaire 20 suspendue à un support mobile d'un engin de levage 1 comprend les circuits de régulation 100 incluant le calculateur 200 (figure 9) recevant d'une part, en entrée CL, une information de longueur du pendule issue d'un codeur de position 5 ; en entrée B, une information de ballant issue de la caméra 4; et en entrée CD, une information de déplacement du support mobile ou information de direction, et délivrant en retour, en sortie SL, des ordres de levage transmis à des moyens de levage 6, 7, 8 de l'engin de levage 1, et en sortie SD, des ordres de direction transmis à des moyens de direction 19a, 19b.
Les moyens de levage comprennent un tambour de levage 8 autour duquel s'enroule un câble de suspension 22 relié à la charge 20, par exemple, un conteneur, un réducteur 7 et un moteur électrique 6, agencés suivant des techniques bien connues. Le moteur de levage 6, auquel est associé le codeur de levage 5, est commandé, via une ligne de commande 12 et un amplificateur 13, soit à partir d'un levier de commande de levage 14 soit par les circuits 100, à travers la sortie SL précitée.
Les moyens de direction comprennent un galet de direction 19b roulant sur un rail de direction 15 horizontal lié à l'engin de levage, un réducteur 19a et un moteur électrique 9 auquel est fixé un codeur de direction 16. Ce moteur de direction 9 est commandé via une ligne de puissance de direction 17 et un amplificateur de puissance 18 par les circuits 100, à travers la sortie SD précitée.
L'angle de ballant est mesuré grâce à une caméra 4 solidaire du support mobile et dont l'objectif est dirigé verticalement vers le bas, comme il a été indiqué ; la charge pendulaire 20 étant équipée d'une balise optique 3 émettant un faisceau 30 dirigé vers le haut.
La commande de vitesse est réalisée à l'aide d'un levier de commande de vitesse Cvit et transmise sur une entrée EC des circuits 100. On suppose, dans l'exemple illustré, que le générateur de rampe GRAMPE est disposé à l'intérieur des circuits 100 ou que cette fonction est réalisée par le calculateur 200.
L'invention permet donc d'obtenir une assistance efficace au pilotage des appareils de levage, mise à la disposition du conducteur d'engin.
Le ballant, par les dispositions prises est maítrisé à tout instant du déplacement du chariot mobile 21 (figure 1) et quelles que soient les conditions du déplacement et les facteurs influant sur le comportement de l'ensemble pendulaire chariot-charge (vent, etc.).
Elle permet donc un positionnement précis de la charge quelle que soit la distance parcourue par le chariot mobile.
Un appareil de levage équipé d'un dispositif de contrôle et de commande conforme à l'invention ne nécessite plus d'avoir recours uniquement à des conducteurs expérimentés et garantit une parfaite reproductibilité des manoeuvres.
L'invention n'est naturellement pas limitée aux seuls exemples de réalisation précisément décrits par référence aux figures.
Dans le domaine du levage, l'invention s'applique à tout appareil de levage à câbles avec une charge en son extrémité et en particulier, sans que cela soit limitatif de la portée de l'invention, aux appareils suivants:
  • portiques à conteneurs
  • portiques à benne
  • grue de chantier (bâtiment)
  • grue à benne ou à crochet
  • grue ferroviaire
  • bigue flottante

Claims (14)

  1. Système de contrôle et de commande de la vitesse de déplacement d'une charge pendulaire (20) pour un engin de levage (1) comprenant un support mobile (21) déplaçable horizontalement et auquel est suspendue la charge pendulaire (20), cet ensemble support mobile (21) - charge pendulaire (20) étant associé à une fonction de transfert globale déterminée (G(p)) ; le système comprenant des circuits de commande de vitesse (Cvit) générant un signal de commande de vitesse demandée (Vdem) transmis à des circuits de contrôle et de commande (120) de la vitesse du support mobile (21) et une chaíne de rétroaction réinjectant, en entrée (140) des circuits de contrôle et de commande (120) de la vitesse du support mobile (21), un signal dépendant d'un signal (V(p)) représentatif de la vitesse réelle (Vcha) de la charge pendulaire (20) ; la vitesse réelle (Vcha) de la charge pendulaire (20) étant obtenue en combinant la vitesse du support (21), vitesse absolue par rapport à un référentiel fixe, et la vitesse de la charge pendulaire (20), vitesse relative (Vbal) par rapport au support (21) ; caractérisé en ce que le système de contrôle et de commande de la vitesse de déplacement d'une charge pendulaire (20) comprend des moyens de mesure (5, 16, 3, 4) exacte et continue des paramètres de la vitesse réelle (Vcha) de la charge pendulaire permettant la détermination du signal (V(p)) représentatif de cette vitesse réelle mesurée ; lesdits moyens de mesure (5, 16, 3, 4) comportant des seconds moyens de mesure de la vitesse relative (Vbal) de la charge pendulaire (20) par rapport au support mobile (21) ; lesdits seconds moyens de mesure comprenant :
    des moyens de mesure des variations de la distance (lp) séparant la charge pendulaire (20) du support mobile (21) ; et
    des moyens de mesure de l'écart angulaire (α) de la charge pendulaire (20) par rapport à sa fonction de repos , qui comprennent un générateur de rayonnement optique (30) lié à la charge pendulaire (20) et une caméra (4) liée au support mobile recevant ledit rayonnement (30) ;
    la fonction de transfert (H(p)) associée à la chaíne de rétroaction (131) étant choisie telle que ladite fonction de transfert globale déterminée (G(p)) soit stable.
  2. Système selon la revendication 1, caractérisé en ce qu'il comprend en entrée desdits circuits de contrôle et de commande (120) de la vitesse du support mobile (21) un comparateur (140), recevant sur une première entrée un signal de commande de vitesse (R(p)) et sur une seconde entrée le signal de sortie de ladite chaíne de rétro-action (131) et générant en sortie un signal de correction de vitesse transmis auxdits circuits de contrôle et de commande (120).
  3. Système selon la revendication 1, caractérisé en ce que ladite chaíne de rétroaction est réalisée à l'aide d'un calculateur programmable (200) recevant sur une première entrée des signaux (V(p)) représentatifs de la vitesse de la charge pendulaire (20) et sur une seconde entrée un signal de commande de vitesse (R(p)).
  4. Système selon la revendication 3, caractérisé en ce que ledit calculateur (200) comprend une première chaíne de calcul (201, 203, 205) destinée à l'acquisition des données de déplacement du support (21), une seconde chaíne de calcul (202, 204, 206) destinée à l'acquisition des données de ballant (α, lp) de la charge pendulaire (20), des moyens de combinaisons (207) des calculs réalisés par ces deux chaínes et une chaíne de traitement de signal (208, 209) générant un signal de commande de vitesse corrigée à partir desdits calculs et dudit signal de commande de vitesse de référence (R(p)).
  5. Système selon la revendication 4, caractérisé en ce que chacune desdites chaínes de calcul comprend des circuits d'interface (201, 202) avec l'extérieur du calculateur, des circuits d'acquisition de données (203, 204) et des circuits de traitement de signal (205, 206) et en ce que ladite chaíne de traitement de signal comprend des circuits de traitement de signal (208) et des circuits d'interface (209) avec l'extérieur du calculateur (200).
  6. Système selon l'une quelconque des revendications 3 à 5, caractérisé en ce que ledit calculateur (200) est du type numérique.
  7. Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ladite fonction de transfert globale déterminée (G(p)) est une fonction mathématique du second ordre.
  8. Système selon l'une quelconque des revendications 1 à 6, dans lequel la fonction de transfert (S(p)) associée au système pendulaire (20) suspendue par au moins un câble (20) audit support mobile (21) obéissant à la relation : S(p)= (W0)2 (W0)2+p2 dans laquelle: W0 est la pulsation du système pendulaire (20, 22) : p une variable ; le système étant caractérisé en ce que la fonction de transfert (H(p)) associée à ladite chaíne de rétro-action (131) est choisie telle que: H(p) = 2zpW0 ; relation dans laquelle z est un paramètre choisi supérieur ou égal à l'unité.
  9. Système selon la revendication 8, caractérisé en ce que ledit paramètre z est choisi égal à l'unité.
  10. Système selon l'une quelconque des revendications 1 à 9, caractérisé en ce que lesdits moyens de mesure de la vitesse réelle (Vcha) de la charge pendulaire (20) comprennent en outre des premiers moyens (5, 16) de mesure de la vitesse absolue (Vsup) du support mobile (21), par rapport à un référentiel fixe, et des moyens de détermination de la vitesse réelle (Vcha) de la charge pendulaire (20) à partir des mesures de la vitesse absolue (Vsup) et de la vitesse relative (Vbal).
  11. Système selon la revendication 10, caractérisé en ce que lesdits premiers moyens de mesure comprennent un tachymètre.
  12. Système selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il comprend en outre un générateur de rampe (GRAMPE) recevant en entrée le signal de commande de vitesse demandée (Vdem) délivré par lesdits circuits de commande de vitesse (Cvit) et générant en sortie un signal de commande de vitesse de référence (Vref) dont les flancs de montée et de descente ont une pente maximale déterminée représentative d'une accélération prédéterminée (ACC).
  13. Appareil de levage (1), caractérisé en ce qu'il comprend un système de contrôle et de commande de la vitesse de déplacement d'une charge pendulaire (20) qui lui est associée, selon l'une quelconque des revendications 1 à 12, de manière à obtenir une conduite assistée de l'appareil.
  14. Appareil selon la revendication 13, caractérisé en ce qu'il est constitué par un engin de levage portuaire (1) et en ce que la charge pendulaire (20) est un conteneur.
EP19940400285 1993-02-12 1994-02-09 Système de contrôle et de commande de la vitesse de déplacement d'une charge pendulaire et appareil de levage comprenant un tel système Expired - Lifetime EP0611211B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9301598 1993-02-12
FR9301598A FR2701467B1 (fr) 1993-02-12 1993-02-12 Système de contrôle de commande de la vitesse de déplacement d'une charge pendulaire et appareil de levage comprenant un tel système.

Publications (2)

Publication Number Publication Date
EP0611211A1 EP0611211A1 (fr) 1994-08-17
EP0611211B1 true EP0611211B1 (fr) 2003-05-14

Family

ID=9444002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940400285 Expired - Lifetime EP0611211B1 (fr) 1993-02-12 1994-02-09 Système de contrôle et de commande de la vitesse de déplacement d'une charge pendulaire et appareil de levage comprenant un tel système

Country Status (5)

Country Link
EP (1) EP0611211B1 (fr)
DE (1) DE69432653T2 (fr)
DK (1) DK0611211T3 (fr)
ES (1) ES2198412T3 (fr)
FR (1) FR2701467B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG115447A1 (en) * 2001-02-13 2005-10-28 Mitsubishi Heavy Ind Ltd Method of and apparatus for controlling stacking of a load by a crane
US8200401B2 (en) 2008-05-19 2012-06-12 Manitowoc Crane Group France Sas Determining and reconstructing changes in load on lifting gear
WO2025046171A1 (fr) * 2023-08-29 2025-03-06 Konecranes Global Corporation Système de grue

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2743058B1 (fr) * 1995-12-27 1998-01-30 Schneider Electric Sa Dispositif d'antipatinage pour un chariot d'engin de levage
JPH10139369A (ja) * 1996-11-08 1998-05-26 Mitsubishi Heavy Ind Ltd 吊荷の振れ止め制御装置
DE10245970B4 (de) * 2002-09-30 2008-08-21 Siemens Ag Verfahren bzw. Vorrichtung zur Erkennung einer Last eines Hebezeuges
CN106371467A (zh) * 2016-10-31 2017-02-01 榆林学院 一种可垂直升降的多角度摆动实验平台
DE202016008626U1 (de) * 2016-11-15 2018-09-14 Josef Morosin Anordnung mit einem Kran
CN109669488B (zh) * 2018-12-21 2022-01-28 中广核达胜加速器技术有限公司 一种用于辐照小车大链传动的控制方法及相关产品
DE102019109448B4 (de) 2019-04-10 2022-09-08 Josef Morosin Anordnung mit einem Kran

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1274293B (de) * 1964-10-26 1968-08-01 Licentia Gmbh Anordnung zur selbsttaetigen Unterdrueckung der Pendelungen einer waagerecht bewegten, an einem Seil haengenden Last
US3850308A (en) * 1970-05-09 1974-11-26 Siemens Ag Apparatus for accommodating the pendulum action of a load carried by a rope from a traveller
SE361869B (fr) * 1972-04-14 1973-11-19 Asea Ab
DE3513007A1 (de) * 1984-04-11 1985-12-19 Hitachi, Ltd., Tokio/Tokyo Verfahren und anordnung zur automatischen steuerung eines krans
FR2645846B1 (fr) * 1989-04-14 1991-10-04 Reel Sa Dispositif de controle de la position et des oscillations d'une charge suspendue durant son transfert au moyen d'un appareil de levage
DE3924256C2 (de) * 1989-07-19 1995-01-19 Mannesmann Ag Verfahren zur Unterdrückung von Pendelschwingungen
DE4238795A1 (en) * 1992-11-17 1993-07-01 Edgar Von Dipl Ing Hinueber Damping pendulum movement of hanging loads on crane - using microprocessor to control crane movement and load cable length using sensor input of cable angular velocity and acceleration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG115447A1 (en) * 2001-02-13 2005-10-28 Mitsubishi Heavy Ind Ltd Method of and apparatus for controlling stacking of a load by a crane
US8200401B2 (en) 2008-05-19 2012-06-12 Manitowoc Crane Group France Sas Determining and reconstructing changes in load on lifting gear
WO2025046171A1 (fr) * 2023-08-29 2025-03-06 Konecranes Global Corporation Système de grue

Also Published As

Publication number Publication date
DK0611211T3 (da) 2003-09-15
DE69432653D1 (de) 2003-06-18
FR2701467A1 (fr) 1994-08-19
DE69432653T2 (de) 2003-11-27
ES2198412T3 (es) 2004-02-01
FR2701467B1 (fr) 1995-05-12
EP0611211A1 (fr) 1994-08-17

Similar Documents

Publication Publication Date Title
EP2361216B1 (fr) Dispositif de regulation du deplacement d'une charge suspendue a une grue
EP0611211B1 (fr) Système de contrôle et de commande de la vitesse de déplacement d'une charge pendulaire et appareil de levage comprenant un tel système
EP2219988B1 (fr) Dispositif et procede de regulation du deplacement d'une charge suspendue
EP0578280B1 (fr) Procédé de contrÔle de déplacement d'une charge pendulaire et dispositif pour sa mise en oeuvre
EP3459899B1 (fr) Optimisation dynamique d'une courbe de charge de grue
FR2686743A1 (fr) Dispositif d'enroulement et de deroulement d'un cable de transport d'energie, ou analogue.
EP1153877A1 (fr) Procédé et dispositif pour la simulation de charges sur des appareils de levage
FR2698344A1 (fr) Dispositif de régulation du transfert d'une charge suspendue.
EP0713474B1 (fr) Procede de controle de balancement d'une charge pendulaire et dispositif de mise en oeuvre du procede
EP0394147B1 (fr) Dispositif de contrôle automatique de la position et des oscillations d'une charge suspendue durant son transfert au moyen d'un appareil de levage
FR2598141A1 (fr) Dispositif de commande de suppression des oscillations dans une grue du type a suspension.
EP0197989A1 (fr) Procede et dispositif pour limiter le ballant d'une charge librement suspendue sous un support mobile
FR2704847A1 (fr) Procédé et dispositif de limitation du ballant d'une charge suspendue à un support motorisé.
CA2407166C (fr) Procede et dispositif pour afficher un vecteur vitesse d'un aeronef
EP4056515A1 (fr) Procédé d assistance de maintenance d'un câble métallique d'un appareil de levage ou de transport
FR2775678A1 (fr) Procede de regulation de deplacement d'une charge suspendue
EP4366915A1 (fr) Robot parallele a cables muni de cables doublés et installation comprenant un tel robot parallele à cables
EP4480778A1 (fr) Procédé de contrôle des oscillations de ligne d'une installation de transport de véhicules par câbles et dispositif configuré pour mettre en oeuvre le procédé
WO2023280943A1 (fr) Robot parallèle à câbles muni de moyens de détection de rupture de câble, installation comprenant un tel robot parallèle et procédé de sécurisation en case de rupture
EP0699614B1 (fr) Procédé et dispositif de contrÔle du déroulement d'une bobine
WO2025026890A1 (fr) Système de levage d'un colis, en particulier pour le levage d'un colis en présence d'un mouvement relatif dû à la houle
FR3117098A1 (fr) Procédé et système de régulation de tension d’une bande de matériau caoutchoutique
FR2703347A1 (fr) Dispositif de transfert d'une charge suspendue.
CH694502A5 (fr) Dispositif de commande d'un variateur de vitesse de moteur d'engin de levage ayant une fonction anti-ballant.
FR2743058A1 (fr) Dispositif d'antipatinage pour un chariot d'engin de levage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES FR GB NL

17Q First examination report despatched

Effective date: 19960819

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAD Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFNE

APCB Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPE

APCB Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPE

APCB Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPE

APCB Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPE

APCB Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KCI KONECRANES INTERNATIONAL PLC

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONECRANES (FRANCE) SA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE DK ES FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69432653

Country of ref document: DE

Date of ref document: 20030618

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2198412

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040217

BERE Be: lapsed

Owner name: S.A. *KONECRANES (FRANCE)

Effective date: 20040228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040210

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO