[go: up one dir, main page]

EP0603352A1 - Kunststoff-verbundprofil, insbesondere flügelholm für den flugzeugbau und windkraftrotoren - Google Patents

Kunststoff-verbundprofil, insbesondere flügelholm für den flugzeugbau und windkraftrotoren

Info

Publication number
EP0603352A1
EP0603352A1 EP93912400A EP93912400A EP0603352A1 EP 0603352 A1 EP0603352 A1 EP 0603352A1 EP 93912400 A EP93912400 A EP 93912400A EP 93912400 A EP93912400 A EP 93912400A EP 0603352 A1 EP0603352 A1 EP 0603352A1
Authority
EP
European Patent Office
Prior art keywords
web
plastic composite
composite profile
belts
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93912400A
Other languages
English (en)
French (fr)
Inventor
Dieter Köhler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoac - Austria Flugzeugwerk Wr Neustadt GmbH
Hoac-Austria Flugzeugwerk Wr Neustadt GmbH
Original Assignee
Hoac - Austria Flugzeugwerk Wr Neustadt GmbH
Hoac-Austria Flugzeugwerk Wr Neustadt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoac - Austria Flugzeugwerk Wr Neustadt GmbH, Hoac-Austria Flugzeugwerk Wr Neustadt GmbH filed Critical Hoac - Austria Flugzeugwerk Wr Neustadt GmbH
Publication of EP0603352A1 publication Critical patent/EP0603352A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/18Spars; Ribs; Stringers
    • B64C3/185Spars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • B29C65/54Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive between pre-assembled parts
    • B29C65/544Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive between pre-assembled parts by suction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1244Tongue and groove joints characterised by the male part, i.e. the part comprising the tongue
    • B29C66/12441Tongue and groove joints characterised by the male part, i.e. the part comprising the tongue being a single wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/434Joining substantially flat articles for forming corner connections, fork connections or cross connections
    • B29C66/4342Joining substantially flat articles for forming corner connections, e.g. for making V-shaped pieces
    • B29C66/43421Joining substantially flat articles for forming corner connections, e.g. for making V-shaped pieces with a right angle, e.g. for making L-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/434Joining substantially flat articles for forming corner connections, fork connections or cross connections
    • B29C66/4344Joining substantially flat articles for forming fork connections, e.g. for making Y-shaped pieces
    • B29C66/43441Joining substantially flat articles for forming fork connections, e.g. for making Y-shaped pieces with two right angles, e.g. for making T-shaped pieces, H-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7375General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured
    • B29C66/73755General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured the to-be-joined area of at least one of the parts to be joined being fully cured, i.e. fully cross-linked, fully vulcanized
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0003Producing profiled members, e.g. beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/28Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of materials not covered by groups E04C3/04 - E04C3/20
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4855Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by their physical properties, e.g. being electrically-conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/725General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being hollow-walled or honeycombs
    • B29C66/7252General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being hollow-walled or honeycombs hollow-walled
    • B29C66/72525General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being hollow-walled or honeycombs hollow-walled comprising honeycomb cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/727General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being porous, e.g. foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24174Structurally defined web or sheet [e.g., overall dimension, etc.] including sheet or component perpendicular to plane of web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24174Structurally defined web or sheet [e.g., overall dimension, etc.] including sheet or component perpendicular to plane of web or sheet
    • Y10T428/24182Inward from edge of web or sheet

Definitions

  • Plastic composite profile especially Flögelholxn for aircraft construction and wind power rotors
  • the invention relates to a plastic composite profile, in particular wing spar for aircraft construction and wind power rotors according to the preamble of patent claim 1.
  • Aircraft construction increasingly uses plastic components. Small aircraft, such as gliders, motor gliders or light motor planes, are currently almost exclusively made of fiber-reinforced plastic. This also applies to all load-bearing structures, in particular to the wings.
  • the wing is made up of one
  • Wing shell that gives the contour, i.e. the wing profile generating the buoyancy, and which above all absorbs the torsional load, and at least one wing spar.
  • the spar absorbs the bending moment generated by the buoyancy.
  • the spars are also designed as fiber composite components and usually in the form of box spars or I-spars.
  • the parts of the bars which absorb the tensile and compressive forces are referred to as belts and lie essentially horizontally.
  • the essentially perpendicular connection of at least two belts lying one above the other is referred to as a web.
  • the belts are currently made from so-called rovings, which are non-woven, resin-impregnated mineral fibers and threads, while the webs consist of resin-impregnated fibers connected to fabrics or scrims. For stiffening against dents, the webs are usually designed as a sandwich component.
  • the second method provides that the straps are also built into molds using the hand laying process. Then they and the web base plates are joined together, preferably around molds, and the connection of the individual components is produced by application or wrapping with diagonally laid fabric.
  • the object of the present invention was to provide a plastic composite profile which avoids the disadvantages of conventional composite profiles and also allows the construction of profiles which taper in cross-section and overall height, in particular wing spars.
  • an improved production of profiles with an essentially constant overall height is also to be specified.
  • Another object was to provide improved constructions for plastic composite profiles, in particular wing holes for aircraft construction, which, with at least the same stability and strength, have a higher fatigue strength and can be produced more easily, more quickly and with better quality.
  • the resin-impregnated rovings are then drawn through a heated mold in which the component is given the desired cross-sectional configuration and which it leaves hardened.
  • the adhesive flanges are also formed during the pultrusion, which is a kind of extrusion.
  • the belts are then cut to the desired length, with the cutting devices, such as conventional saws or water jet or laser cutting devices, being carried along in the sense of continuous production.
  • the belt can therefore be produced mechanically in one work step, which results in better quality of the belts due to the machine-related, exactly parallel fiber alignment and the continuous transition to the adhesive flange.
  • the transitions to the adhesive flange are also easier to control. It is possible to produce many belts of constant quality continuously and quickly, without having to rely on wing shells as shapes or the need for molds to create prefabricated individual parts.
  • the structural height that changes from one end of the profile to the other can be achieved by using a web with a continuously decreasing width.
  • a wing spar to an overall height of the wing that changes over the wing span.
  • An adaptation of the profile to a bending load which changes along its length for example in the case of aircraft spars which are used for
  • the bending load which decreases towards the wing tip, is achieved by reducing the belt cross-section according to the load. This reduction is achieved in that the belts are machined after pultrusion, preferably by sawing, water jet or laser cutting, so that
  • the quality, in particular highly stressed components, can be increased in the area of the transitions to the adhesive flange of the belt with a consistently simple and rapid method of manufacture in that additional diagonal fabric or
  • Scrim strips are worked into the belt. These then ensure the necessary shear strength of the adhesive flanges.
  • a prefabricated web is inserted and the arrangement is cured.
  • the working time required for production is further reduced considerably, since the belt and the web are prefabricated and only have to be joined together using the thixotropic adhesive.
  • the web can be prefabricated as a flat plate, which further contributes to a reduction in working time, since the load-bearing web occupancy no longer has to be applied to the web and belt contour during assembly.
  • profiles with a constant overall height is carried out in such a way that the at least one belt and the web as a one-piece profile are produced mechanically by pultrusion with the desired cross-section and by cutting by means of preferably carried-out cutting devices in the desired length in one operation.
  • Such profiles have no connection points between individual components that could diverge under load.
  • a wing spar of continuous height can be adapted to the bending load decreasing towards the wing tip.
  • the pultrusion of the belts results in better quality, especially in the transition to the adhesive flange.
  • the latter allows the insertion of a prefabricated web, so that the working time required for assembly is largely reduced and the work steps are simplified. Ultimately, however, this also affects the price of the finished component.
  • the measure according to claim 2 improves the shear strength of the adhesive flanges, particularly in the case of highly stressed components. A version without these reinforcements is unable to withstand the thrust forces that occur.
  • the measure according to claim 3 influences the weight distribution and the bending behavior along the length of the web and thus the finished profile.
  • the best strength values are achieved by the measure according to claim 4.
  • the epoxy resin is currently the only material approved for aircraft construction, although the measures according to claim 4 can be used for other areas of application.
  • Glass or carbon fibers are preferably used as fibers for the production of the rovings, fabrics and scrims, if appropriate also aramid fibers.
  • Glass fibers have the advantage of being cheap, while the lighter carbon fibers have a higher price.
  • the likewise expensive aramid fibers are very high tensile strength, but currently still have poor values for the compressive strength.
  • the web can be reinforced by an additional stiffening, preferably a glued-on sandwich panel.
  • the bridge is thus secured against dents.
  • Both embodiments of the plastic profiles can have continuously decreasing cross-sections of the belt to adapt to a different bending load along their length from one end of the profile to the other.
  • FIG. 4 shows the upper half of a composite profile made and constructed in accordance with the invention in the form of an I-bar.
  • Fig. 1 the constructions customary for wing spars for small aircraft are shown, the belts, i.e. the parts carrying the tensile and compressive forces are designated by 1.
  • the webs 1 connecting webs are designated by 2.
  • two belts 1 lying one above the other are connected to one another by a web 2 aligned essentially in the middle of the belts 1 and perpendicular to them.
  • two webs 2 are provided in the region of the lateral edges of the belts 1, which again run one above the other.
  • REPLACEMENT LEAF Fig. 2 shows an I-beam in the currently usual design.
  • the web 2 is designed as a sandwich component and consists of a web plate 21 made of foam or honeycomb building material and cover layers 22 on both sides made of fibers woven into fabrics or scrims. As shown in the upper area of the spar shown, these cover layers can simultaneously serve to connect the web 2 to the adjacent belt 1.
  • the cover layers 21 are extended and have edge regions 23 which run parallel to the belt 1 and are bonded to it.
  • the belt 1 is made by means of pultrusion from rovings with about 100 to over 1000 individual threads, preferably glass fibers. Epoxy resin is used as the resin and during pultrusion, after deformation and hardening by means of a drawing tool, the belt 1 in the embodiment shown is produced as a basic structure 11 with molded-on adhesive flanges 12. In order to improve the shear strength of the adhesive flange 12, the belt 1 additionally contains diagonal woven or scrim strips which extend with sections 61 into the side parts of the adhesive flange 12.
  • SPARE BLADE Laid interwoven fibers in the diagonal direction is inserted with its edge area between the adhesive flanges 12 and fixed therein by means of a thixotropic adhesive.
  • This adhesive is preferably thixotropic epoxy resin.
  • a cutting device which is preferably moved along and which cuts the belts 1 or the profiles to the desired length is provided after the extraction system which is arranged behind the drawing tool.
  • the mechanical post-processing for changing the cross-sections of the belts or the profiles can be carried out simultaneously by also moving cutting devices or in a separate process step.
  • Gluing pultrated belts and prefabricated webs or gluing sandwich panels to one-piece pultrated profiles for buckling stiffening is also carried out separately in a conventional manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Description

Kunststoff-Verbun rofil, insbesondere Flögelholxn für den Flugzeugbau und Windkraftrotoren
Die Erfindung betrifft ein Kunststoff-Verbundprofil, insbesondere Flügelholm für den Flugzeugbau und Windkraftrotore nach dem Oberbegriff des Patentanspruches 1.
Wie auf vielen anderen Gebieten der Technik werden auch im
Flugzeugbau vermehrt Kunststoffbauteile verwendet. Kleinflugzeuge, wie etwa Segelflugzeuge, Motorsegler oder leichte Motorflugzeuge, werden derzeit fast ausschließlich aus faserverstärktem Kunststoff gebaut. Dies gilt ebenso für alle tragenden Strukturen dabei, wie insbesondere für die Flügel. Der Flügel ist aufgebaut aus einer
Flügelschale, die die Kontur gibt, d.h. das den Auftrieb erzeugende Flügelprofil, und die vor allem die Torsionsbelastung aufnimmt, sowie zumindest einem Flügelholm. Der Holm nirrnnt das durch den Auftrieb erzeugte Biegemoment auf. Auch die Holme werden als Faserverbundbauteile und gsbräuchlicherweise in der Form als Kastenholme oder I-Holme ausgeführt.
Die die Zug- ind Druckkräfte aufnehmenden Teile der Holme werden als Gurte bezeichnet und liegen im wesentlichen waagrecht. Die im wesentlichen senkrecht stehende Verbindung zumindest zweier übereinander liegender Gurte wird als Steg bezeichnet. Hergestellt werden die Gurte derzeit aus sogenannten Rovings, das sind unverwobene, harzgetränkte Mineralfasern und -f den, während die Stege aus zu Geweben oder Gelegen verbundenen harzgetränkten Fasern bestehen. Zur Aussteifung gegen Beulen werden die Stege üblicherweise als Sandwichbauteil ausgeführt.
Zur Herstellung speziell von als Flügelholme verwendeten Kunststoffprofilen sind derzeit zwei Bauweisen üblich, von welchen die erste darin besteht, daß die Gurte per Handauflegeverfahren in Formen oder direkt in der Flügelschale durch Aufeinanderlegen von harzgetränkten Rovings aufgebaut werden. Danach wird mittels einer zusätzlichen Form zumindest ein Steg sowie ein Verklebeflansch
ERSATZBLATT zwischen Steg und Gurt aufgebaut. Beim Verkleben von Flügelober- und -Unterschale miteinander wird auch der Holmober- ind -untergurt durch Verklebung im Steg bzw. Stegverklebeflansch miteinander verbunden.
Die zweite Methode sieht vor, daß die Gurte ebenfalls im Handauflegeverfahren in Formen aufgebaut werden. Anschließend werden sie und die Steg-Grundplatten, vorzugsweise um Formen herum, zusammengefügt und die Verbindung der einzelnen Bauteile wird durch Auftragen oder Umwickeln mit diagonal gelegtem Gewebe hergestellt.
Beide üblichen Bauweisen sind sehr arbeitsintensiv und langwierig sowie wesentlichen Qualitätsschwankungen unterworfen. Daher bestand die Aufgabe der vorliegenden Erfindung darin, ein Kunststoff- Verbundprofil zu schaffen, welches die Nachteile der herkömmlichen Verbundprofile vermeidet und dabei auch den Bau von sich in Querschnitt und Bauhöhe verjüngenden Profilen, insbesondere Flügelholmen erlaubt. Es soll darüberhinaus auch eine verbesserte Herstellung von Profilen mit im wesentlichen konstanter Bauhöhe angegeben werden.
Eine weitere Aufgabe bestand darin, verbesserte Konstruktionen für Kunststoff-Verbund-Profile, insbesondere Flügelhol e für den Flugzeugbau, anzugeben, die bei zumindest gleicher Stabilität und Festigkeit eine höhere Dauerfestigkeit aufweist und einfacher, schneller und mit besserer Qualität herstellbar sind.
Diese Aufgaben werden durch die Maßnahme nach dem kennzeichnenden Teil des Patentanspruches 1 gelöst. Diese Bauweise garantiert, daß auch bei sich ändernder Bauteilhöhe volle Flanschverklebebreite erhalten bleibt. Bei diesem Verbundprofil wird aus harzgetränkten Geweben oder Gelegen ein Steg hergestellt, der mit dem Gurt verklebt wird, wobei der Gurt maschinell durch Pultrusion mit dem gewünschten Querschnitt, vorzugsweise mit angeformtem Verklebeflansch, und durch Zuschneiden mittels mitgeführter Schneideeinrichtungen in der gewünschten Länge in einem Arbeitsgang hergestellt wird. Zur Herstellung des Gurtes werden also viele Fasern oder Fäden mittels herkömmlicher Führungseinrichtungen durch ein Bad mit Kunstharz geführt und anschließend auf die gewünschte Querschnittskonfiguration für den Gurt gebracht. Anschließend werden die harzgetränkten Rovings durch eine beheizte Form gezogen, in welcher dem Bauteil die gewünschte Querschnittsausbildung gegeben wird und die er gehärtet verläßt. Vorzugsweise werden während der Pultrusion, welche eine Art Strangziehen darstellt, auch bereits die Verklebeflansche mitangeformt. Anschließend werden die Gurte auf die gewünschte Länge zugeschnitten, wobei im Sinne der kontinuierlichen Produktion die Schneideeinrichtungen, wie etwa herkömmliche Sägen oder Wasserstrahl- bzw. Laserschneideinrichtungen, mitgeführt werden. Der Gurt ist also maschinell in einem Arbeitsgang herstellbar, was durch die maschinell bedingte exakt parallele Faserausrichtung und den kontinuierlichen Übergang zum Verklebeflansch eine bessere Qualität der Gurte ergibt. Ebenso sind die Übergänge zum Verklebeflansch besser kontrollierbar. Es ist möglich, viele Gurte in gleichbleibender Qualität kontinuierlich und rasch herzustellen, ohne auf Flügelschalen als Formen oder das Freiwerden von Formen zum Anlegen von vorgefertigten Einzelteilen angewiesen zu sein.
Die sich von einem Ende des Profiles zum anderen verändernde Bauhöhe kann durch die Verwendung eines Steges mit sich kontinuierlich verringender Breite erzielt werden. So ist beispielsweise die Anpassung eines Flügelholmes an eine sich über die Flügelspannweite verändernde Bauhöhe des Flügels möglich. Eine Anpassung des Profiles an eine sich entlang seiner Länge ändernde Biegebelastung, beispielsweise bei Flugzeugholmen, die zur
Flügelspitze hin abnehmende Biegebelastung, wird durch entsprechend auf die Belastung hin abgestimmte Verringerung des Gurtquerschnittes erreicht. Diese Verringerung erfolgt dadurch, daß die Gurte nach der Pultrusion maschinell bearbeitet werden, vorzugsweise durch Sägen, Wasserstrahl-oder Lasersclmeiden, sodaß
KSATZBL TT der Querschnitt kontinuierlich von einem Ende zum anderen abnimmt. Die Verklebeflansche werden dabei im allgemeinen nicht gekürzt. Verglichen mit den traditionellen Methoden bringt die erfindungsgemäße Bauweise keinerlei Mehrgewicht der Profile mit sich.
Die Qualität, insbesondere hochbelasteter Bauteile kann im Bereich der Übergänge zum Verklebeflansch des Gurtes bei gleichbleibend einfacher und rascher Herstellungsweise dadurch erhöht werden, daß während der Pultrusion zusätzlich diagonale Gewebe- oder
Gelegestreifen in den Gurt eingearbeitet werden. Diese sorgen dann für die notwendige Schubfestigkeit der Verklebeflansche.
Nachdem zwischen die Verklebeflansche ein thixotroper Klebstoff eingebracht wurde, wird ein vorgefertigter Steg eingesetzt und die Anordnung ausgehärtet. Die zur Herstellung benötigte Arbeitszeit wird weiter wesentlich verringert, da der Gurt und der Steg vorgefertigt sind und lediglich mittels des thixotropen Klebstoffes zusammengefügt werden müssen. Der Steg kann als ebene Platte vorgefertigt werden, was weiter zur Reduktion der Arbeitszeit beiträgt, da die lasttragende Stegbelegung nicht mehr beim Zusammenbau auf die Steg- und Gurtkontur aufgebracht werden miß.
Die Herstellung von Profilen mit gleichbleibender Bauhöhe wird in der Weise durchgeführt, daß der zumindest eine Gurt und der Steg als einstückiges Profil maschinell durch Pultrusion mit dem gewünschten Querschnitt und durch Zuschneiden mittels vorzugsweise mitgeführter Schneideeinrichtungen in der gewünschten Länge in einem Arbeitsgang hergestellt wird. Derartige Profile weisen keinerlei Verbindungsstellen zwischen einzelnen Bauelementen auf, die unter Belastung auseinandergehen könnten.
Auch ist die maschinelle Bearbeitung der Gurte nach der Pultrusion möglich, z.B. durch Sägen, Wasserstrahl- oder Laserschneiden, sodaß der Querschnitt kontinuierlich von einem Ende zum anderen abnimmt.
ERSÄTZBLATT Damit kann beispielsweise ein Flügelholm kontinuierlicher Bauhöhe an die zur Flügelspitze hin abnehmende Biegebelastung angepaßt werden.
Die Pultrusion der Gurte ergibt die bessere Qualität, insbesondere bei den Übergängen zum Verklebeflansch. Letzterer gestattet das Einsetzen eines vorgefertigten Steges, sodaß auch die zum Zusammenbau benötigte Arbeitszeit weitgehend vermindert und die Arbeitsschritte vereinfacht sind. Dies wirkt sich aber letztlich auch auf den Preis des fertigen Bauteiles aus.
Durch die Maßnahme nach Anspruch 2 wird eine verbesserte Schubfestigkeit der Verklebeflansche, insbesondere bei hochbelasteten Bauteilen, erzielt. Eine Ausführung ohne diese Verstärkungen ist nicht in der Lage, die auftretenden Schubkräfte zu ertragen.
Durch die Maßnahme nach Anspruch 3 ist einerseits die Gewichtsverteilung und das Biegeverhalten entlang der Länge des Steges und damit des fertigen Profiles beeinflußbar.
Die besten Festigkeitswerte werden durch die Maßnahme nach Anspruch 4 erreicht. Das Epoxidharz ist momentan das einzige für den Flugzeugbau zugelassene Material, wobei jedoch für andere Anwendungsgebiete die Maßnahmen nach Anspruch 4 verwendet werden können.
Als Fasern zur Herstellung für die Rovings, Gewebe und Gelege werden vorzugsweise Glas- oder Carbonfasern verwendet, allenfalls auch Aramidfasern. Glasfasern haben den Vorteil, daß sie billig sind, während die leichteren Carbonfasern einen höheren Preis aufweisen. Die ebenfalls teuren Aramidfasern sind zwar sehr zugfest, weisen aber derzeit noch schlechte Werte für die Druckfestigkeit auf.
ERSATZB ATT Bei Profilen, bei denen nicht gefordert ist, daß sich ihre Bauhöhe verändert, können die Gurte und der Steg einstückig ausgeführt und gemeinsam pultriert werden. Dadurch sind besonders stabile Profile gegeben, die insbesondere nicht gegen Lösen von Verbindungen zwischen einzelnen Bauteilen anfällig und besonders einfach herzustellen sind.
Bei derartigen Profilen kann der Steg durch eine zusätzliche Aussteifung, vorzugsweise eine aufgeklebte Sandwichplatte, verstärkt sein. Damit ist der Steg gegen Beulen gesichert.
Beide Ausführungsformen der Kunststoffprofile können zur Anpassung an eine unterschiedliche Biegebelastung entlang ihrer Länge von einem Ende des Profiles zun anderen kontinuierlich abnehmende Querschnitte des Gurtes aufweisen.
Bevorzugte Ausführungsformen der gegenständlichen Erfindung werden in der nachfolgenden Beschreibung unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert. Dabei zeigen die Fig. 1 übliche Ausführungen für Flügelholme,
Fig.2 und 3 Flügelholme gemäß den derzeit üblichen Bauweisen und
Fig.4 die obere Hälfte eines gemäß der Erfindung hergestellten und aufgebauten Verbund-Profiles in Form eines I-Holmes.
In Fig. 1 sind die für Flügelholme für Kleinflugzeuge üblichen Konstruktionen dargestellt, wobei die Gurte, d.h. die die Zug- und Druckkräfte tragenden Teile mit 1 bezeichnet sind. Die Gurte 1 verbindenden Stege sind mit 2 bezeichnet. Beim links dargestellten I-Holm sind zwei übereinanderliegende Gurte 1 durch einen im wesentlichen in der Mitte der Gurte 1 und senkrecht zu diesen ausgerichteten Steg 2 miteinander verbunden. Beim rechts dargestellten Kastenholm sind zwei Stege 2 im Bereich der seitlichen Ränder der wieder übereinander verlaufenden Gurte 1 vorgesehen.
ERSATZBLATT Fig. 2 zeigt einen I-Holm in der derzeit üblichen Bauweise. Dabei ist der Steg 2 als Sandwichbauteil ausgeführt und besteht aus einer Stegplatte 21 aus Schaumstoff oder Wabenbaustoff und beiderseitigen Deckschichten 22 aus zu Geweben oder Gelegen verwobenen Fasern. Wie im oberen Bereich des dargestellten Holmes gezeigt, können diese Decklagen gleichzeitig dazu dienen, den Steg 2 mit dem angrenzenden Gurt 1 zu verbinden. Zu diesem Zweck sind die Decklagen 21 verlängert und weisen parallel zum Gurt 1 verlaufende und mit diesem verklebte Randbereiche 23 auf.
Im unteren Teil ist eine andere Verbindungsart zwischen Steg 2 und Gurt 1 dargestellt, wobei auf den unteren Gurt 1 eigene Bauteile 3 als Verklebeflansch aufgebracht sind, in welche der untere Randbereich des Steges 2 sowie ein Klebstoff 4 eingebracht wird, wobei letzterer die Verbindung der Bauteile miteinander bewirkt.
Fig. 3 zeigt schließlich einen herkömmlich aufgebauten Kastenholm, wobei die Gurte 1 und Stegplatten 21 zusammengesetzt und durch Auftragen oder Umwickeln mit diagonal gelegtem Gewebe 5 miteinander verbunden werden.
Eine bevorzugte Ausführungsform eines erfindungsgemäßen I-Holmes ist in Fig.4 dargestellt. Der Gurt 1 ist mittels Pultrusion aus Rovings mit etwa 100 bis über 1000 Einzelfäden, vorzugsweise Glasfasern, hergestellt. Als Harz wird Epoxidharz verwendet und während der Pultrusion wird nach einer Verformung und Verhärtung durch ein Ziehwerkzeug der Gurt 1 in der dargestellten Ausführung als Grundstruktur 11 mit angeformten Verklebeflanschen 12 hergestellt. Zur Verbesserung der Schubfestigkeit des Verklebeflansches 12 enthält der Gurt 1 zusätzlich miteingefügte diagonale Gewebe- oder Gelegestreifen, welche sich mit Abschnitten 61 bis in die Seitenteile des Verklebeflansches 12 erstrecken. Der Steg 2, bestehend aus Waben-oder Schaumstoffplatte 21 und vorzugsweise abgestuften Deckschichten 22 aus zu Geweben oder
ERSATZBLÄT- Gelegen verwobenen Fasern in Diagonalrichtung, wird mit seinem Randbereich zwischen die Verklebeflansche 12 eingesetzt und darin mittels eines thixotropen Klebstoffes fixiert. Dieser Klebstoff ist vorzugsweise thixotropiertes Epoxidharz.
Die gleichen Schritte des Pultrusionsprozesses erfolgen auch für die Herstellung eines einstückigen Profiles, welches vorteilhafterweise ebenfalls meist als I-Holm aufgebaut ist. Auch hierbei werden etwa 100 bis über 1000 Einzelfäden mit Kunstharz imprägniert und über eine Vorformstation bzw. eine
Vorhärtungsanlage dem Ziehwerkzeug zugeführt, wo dem Holm der gewünschte Querschnitt gegeben wird.
Sowohl bei der Herstellung der Gurte als auch des gesamten Profiles ist nach dem Abzugssystem, das hinter dem Ziehwerkzeug angeordnet ist, eine vorzugsweise mitbewegte Schneideeinrichtung vorgesehen, die die Gurte 1 bzw. die Profile auf die gewünschte Länge zuschneidet. Die maschinelle Nachbearbeitung zur Veränderung der Querschnitte der Gurte bzw. der Profile kann gleichzeitig durch ebenfalls mitbewegte Sc neideeinrichtungen oder in einem getrennten Verfahrensschritt erfolgen.
Auch das Verkleben pultrierter Gurte und vorgefertigter Stege bzw. das Aufkleben von Sandwichplatten auf einstückig pultrierte Profile zur Beulaussteifung erfolgt separat auf herkömmliche Weise.
ERSATZBLATT

Claims

Patentansprüche:
1. Kunststoff-Verbundprofil, insbesondere Flügelholm für den Flugzeugbau und Windkraftrotoren, bestehend aus zunindest einem mit Verklebeflanschen versehenen Gurt, einem zweiten Gurt und zumindest einem die Gurte verbindenden und in die Verklebeflansche eingesetzten Steg, wobei die Gurte aus harzgetränkten Rovings und der Steg aus harzgetränkten Geweben oder Gelegen aufgebaut und Gurte und Steg durch Verklebung miteinander verbunden sind, dadurch gekennzeichnet, daß die Gurte (1) pultriert sind, daß auch der zweite Gurt (1) mit Verklebeflanschen (12) versehen ist, wobei der Steg (2) in die Verklebeflansche beider Gurte (1) eingesetzt und mittels eines thixotropen Klebstoffes (4) darin fixiert ist.
2.Kunststoff-Verbundprofil nach Anspruch 1, dadurch gekennzeichnet, daß sich in den Gurten (1) eingearbeitete diagonale Gewebe- oder Gelegestreifen (6) bis in die Seitenteile der Verklebeflansche (12) erstrecken.
3. Kunststoff-Verbundprofil nach einem der Ansprüche 1 oder 2, dadurch gekenzeichnet, daß der zumindest eine Steg (2) aus einer Grundplatte (21), vorzugsweise aus Schaumstoff oder Wabenplatten, und beiderseits angeordneten Decklagen (22) aus Geweben oder Gewirken besteht, und daß deren übereinanderliegende Anzahl in Abhängigkeit von der Längsposition auf den Steg (2) unterschiedlich ist, vorzugsweise von einer der Schmalseiten zur anderen hin stetig abnimmt.
4. Kunststoff-Verbundprofil nach einem der vorangeheneden Ansprüche, dadurch gekennzeichnet, daß als Klebstoff (4) sowie auch als Kunstharz zur Herstellung der Gurte (1) und Stege (2) Epoxidharz verwendet ist.
5. Kunststoff-Verbundprofil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Harze zur Herstellung der Gurte (1) und Stege (2) Thermoplaste oder Duroplaste, vorzugsweise Epoxi-, Polyester-, Vinyl- oder Acrylharze verwendet sind.
6. Kunststoff-Verbundprofil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß als Fasern für die Rovings, Gewebe und
Gelege, Glas-, Carbon- oder Aramidfasern verwendet sind.
7. Kunststoff-Verbundprofil, insbesondere Flügelholm für den Flugzeugbau, bestehend aus zumindest zwei Gurten und zumindest einem die Gurte verbindenden Steg, wobei die Gurte aus harzgetränkten Rovings aufgebaut sind, dadurch gekennzeichnet, daß die Gurte und der Steg einstückig ausgeführt und gemeinsam pultriert sind, wobei je nach Belastung allenfalls auch noch Gewebe oder Gelege eingezogen sind.
8. Kunststoff-Verbundprofil nach Anspruch 7, dadurch ekennzeichnet, daß der Steg durch eine zusätzliche Aussteifung, vorzugsweise eine aufgeklebte Sandwichplatte, verstärkt ist.
9. Kunststoff-Verbundprofil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Querschnitt des Gurtes von einem Ende des Profils zum anderen Ende hin kontinuierlich abnimmt.
10. Kunststoff-Verbundprofil nach einem der vorangeheneden Ansprüche, dadurch gekennzeichnet, daß die Höhe des Steges und damit die Höhe des Bauteils von einem Ende des Holms zum anderen Ende hin kontinuierlich abnimmt, wobei überall die volle Verklebebreite zwischen Flansch und Steg erhalten bleibt.
ERSATZBLATT
EP93912400A 1992-07-01 1993-06-30 Kunststoff-verbundprofil, insbesondere flügelholm für den flugzeugbau und windkraftrotoren Withdrawn EP0603352A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT1344/92 1992-07-01
AT0134492A AT398064B (de) 1992-07-01 1992-07-01 Kunststoff-verbundprofil, insbesondere flügelholm für den flugzeugbau
PCT/AT1993/000108 WO1994001271A1 (de) 1992-07-01 1993-06-30 Kunststoff-verbundprofil, insbesondere flügelholm für den flugzeugbau und windkraftrotoren

Publications (1)

Publication Number Publication Date
EP0603352A1 true EP0603352A1 (de) 1994-06-29

Family

ID=3511876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93912400A Withdrawn EP0603352A1 (de) 1992-07-01 1993-06-30 Kunststoff-verbundprofil, insbesondere flügelholm für den flugzeugbau und windkraftrotoren

Country Status (5)

Country Link
US (1) US5476704A (de)
EP (1) EP0603352A1 (de)
AT (1) AT398064B (de)
CA (1) CA2115350A1 (de)
WO (1) WO1994001271A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778538A (en) * 1992-12-24 1998-07-14 Scintilla Ag Hand power tool with adjustable foot plate
CN108638541A (zh) * 2018-05-02 2018-10-12 江苏金风科技有限公司 叶片壳体和腹板一体成型以及叶片成型的方法

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19624267A1 (de) * 1995-06-21 1997-01-02 Dana Corp Verfahren und Vorrichtung zur Herstellung von Fahrzeugrahmenkomponenten unter Einsatz der Pultrusionstechnik
BE1010366A6 (nl) * 1996-06-14 1998-07-07 Groep Stevens Int Nv Onderstel voor een voertuig.
US6173925B1 (en) * 1998-04-16 2001-01-16 Daimlerchrysler Ag Skin-rib structure
US6094881A (en) * 1998-04-30 2000-08-01 Con/Span Bridge Systems Inc. Box shaped structural member with pultruded flanges and connecting webs
JP2000043796A (ja) * 1998-07-30 2000-02-15 Japan Aircraft Development Corp 複合材の翼形構造およびその成形方法
US6212849B1 (en) * 1999-01-04 2001-04-10 Mitek Holdings, Inc. Pultruded fiberglass reinforced shear panel
US6513757B1 (en) * 1999-07-19 2003-02-04 Fuji Jukogyo Kabushiki Kaisha Wing of composite material and method of fabricating the same
US6290183B1 (en) * 1999-10-19 2001-09-18 Csa Engineering, Inc. Three-axis, six degree-of-freedom, whole-spacecraft passive vibration isolation system
US6457292B1 (en) * 2000-05-01 2002-10-01 Jan Vrana Composite structural member
US6505449B1 (en) * 2000-07-27 2003-01-14 Composit Wood Specialties Ltd. Structural element
ES2197727B1 (es) * 2000-07-27 2005-04-01 Construcciones Aeronauticas, S.A. Borde de ataque de superficies sustentadoras de aeronaves.
US6374570B1 (en) * 2000-08-25 2002-04-23 Lockheed Martin Corporation Apparatus and method for joining dissimilar materials to form a structural support member
US6520706B1 (en) 2000-08-25 2003-02-18 Lockheed Martin Corporation Composite material support structures with sinusoidal webs and method of fabricating same
US6712315B2 (en) * 2000-11-30 2004-03-30 Airbus Deutschland Gmbh Metal structural component for an aircraft, with resistance to crack propagation
US6464170B2 (en) * 2001-03-07 2002-10-15 Lockheed Martin Corporation Aircraft and aircraft manufacturing method
US6835261B2 (en) * 2001-07-02 2004-12-28 Lockheed Martin Corporation Adhesive-infused 3-D woven textile preforms for structural joints
DE60203804T3 (de) 2001-07-19 2017-08-31 Vestas Wind Systems A/S Windturbinenblatt
US6863767B2 (en) * 2001-08-23 2005-03-08 Lockheed Martin Corporation Paste-bond clevis joint
US20030041948A1 (en) * 2001-08-31 2003-03-06 Bersuch Larry R. Co-cured joint with Z-pins
US20030116267A1 (en) * 2001-12-21 2003-06-26 Sheahen Patrick D. Low-cost method of assembling structures with 3-D woven connectors
FR2835854B1 (fr) * 2002-02-14 2005-12-30 Jean Dessinges Preformes fibreuses et leur procede de fabrication
US7238409B1 (en) 2002-05-23 2007-07-03 Rohr, Inc. Structural element with rib-receiving member
US7205066B1 (en) * 2002-05-23 2007-04-17 Rohr, Inc. Structural element with rib-receiving member
US6945727B2 (en) * 2002-07-19 2005-09-20 The Boeing Company Apparatuses and methods for joining structural members, such as composite structural members
US20040023581A1 (en) * 2002-08-05 2004-02-05 Bersuch Larry R. Z-pin closeout joint and method of assembly
DE10392333T5 (de) * 2002-09-03 2005-06-09 Corus Bausysteme Gmbh Längliches Halteelement
DE502004007968D1 (de) * 2003-07-08 2008-10-16 Airbus Gmbh Leichtbaustruktur
US8407966B2 (en) 2003-10-28 2013-04-02 Ispan Systems Lp Cold-formed steel joist
US7587877B2 (en) * 2003-10-28 2009-09-15 Best Joist Inc Cold-formed steel joists
US7555873B2 (en) * 2004-11-30 2009-07-07 The Boeing Company Self-locating feature for a pi-joint assembly
US20060115320A1 (en) * 2004-11-30 2006-06-01 The Boeing Company Determinant assembly features for vehicle structures
US8272618B2 (en) * 2004-11-30 2012-09-25 The Boeing Company Minimum bond thickness assembly feature assurance
EP1666354B1 (de) * 2004-12-01 2010-09-29 Airbus Operations GmbH Strukturbauteil, Verfahren zum Herstellen eines Strukturbauteils und Verwendung eines Strukturbauteils für eine Flugzeugschale
US7434366B2 (en) * 2005-01-11 2008-10-14 A. Zahner Company I-beam with curved flanges
US20060222837A1 (en) * 2005-03-31 2006-10-05 The Boeing Company Multi-axial laminate composite structures and methods of forming the same
US7740932B2 (en) * 2005-03-31 2010-06-22 The Boeing Company Hybrid fiberglass composite structures and methods of forming the same
US7467763B2 (en) * 2005-06-03 2008-12-23 Kismarton Max U Composite landing gear apparatus and methods
US8444087B2 (en) * 2005-04-28 2013-05-21 The Boeing Company Composite skin and stringer structure and method for forming the same
US7574835B2 (en) * 2005-04-07 2009-08-18 The Boeing Company Composite-to-metal joint
US7748119B2 (en) * 2005-06-03 2010-07-06 The Boeing Company Method for manufacturing composite components
US20060283133A1 (en) * 2005-06-17 2006-12-21 The Boeing Company Composite reinforcement of metallic structural elements
DE102005034621B3 (de) * 2005-07-19 2007-01-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verbundstruktur und Verfahren zur Herstellung einer Verbundstruktur
DE102005038856A1 (de) * 2005-08-17 2007-02-22 Airbus Deutschland Gmbh Kontinuierlicher Rumpfanschluss
US7398586B2 (en) 2005-11-01 2008-07-15 The Boeing Company Methods and systems for manufacturing a family of aircraft wings and other composite structures
US7611595B2 (en) * 2006-02-01 2009-11-03 Lockheed Martin Corporation System, method, and apparatus for metallic-composite joint with compliant, non-corrosive interface
US7427189B2 (en) * 2006-02-13 2008-09-23 General Electric Company Wind turbine rotor blade
US8726606B2 (en) * 2006-05-18 2014-05-20 Paradigm Focus Product Development Inc. Light steel trusses and truss systems
US8011165B2 (en) * 2006-06-07 2011-09-06 Integritect Consulting, Inc. Composite assembly with saturated bonding mass and process of reinforced attachment
GB0712552D0 (en) * 2007-06-29 2007-08-08 Airbus Uk Ltd Elongate composite structural members and improvements therein
GB0712553D0 (en) * 2007-06-29 2007-08-08 Airbus Uk Ltd Composite panel stiffener
GB0712549D0 (en) * 2007-06-29 2007-08-08 Airbus Uk Ltd Improvements in elongate composite structural members
GB0717690D0 (en) * 2007-09-11 2007-10-17 Blade Dynamics Ltd Wind turbine blade
US8075275B2 (en) * 2007-09-27 2011-12-13 General Electric Company Wind turbine spars with jointed shear webs
US7712993B2 (en) * 2007-11-30 2010-05-11 The Boeing Company Double shear joint for bonding in structural applications
US7866951B2 (en) 2008-08-29 2011-01-11 General Electric Company Wind turbine blades with cross webs
WO2010025569A1 (en) 2008-09-08 2010-03-11 Best Joist Inc. Adjustable floor to wall connectors for use with bottom chord and web bearing joists
DE102008047793B4 (de) * 2008-09-17 2017-03-30 Airbus Defence and Space GmbH Lasteinleitungselement
DK2358998T3 (en) * 2008-12-05 2017-10-30 Vestas Wind Sys As EFFICIENT WINDOWS, WINDOWS, AND ASSOCIATED SYSTEMS AND PROCEDURES FOR MANUFACTURING, INSTALLING AND USING
US20100143142A1 (en) * 2008-12-11 2010-06-10 Afroz Akhtar Sparcap system for wind turbine rotor blade and method of fabricating wind turbine rotor blade
US7942637B2 (en) * 2008-12-11 2011-05-17 General Electric Company Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade
GB0906157D0 (en) 2009-04-09 2009-05-20 Airbus Uk Ltd Improved wing structure
US8753091B1 (en) * 2009-05-20 2014-06-17 A&P Technology, Inc. Composite wind turbine blade and method for manufacturing same
DE102009031947A1 (de) * 2009-07-07 2011-01-13 Nordex Energy Gmbh Rotorblatt für eine Windenergieanlage und Verfahren zu dessen Herstellung
CA2778223C (en) 2009-07-22 2017-08-15 Ispan Systems Lp Roll formed steel beam
NL2003586C2 (nl) * 2009-10-01 2011-04-04 W B Bijl Beheer B V Werkwijze voor het vervaardigen van een kunststoffen draagprofiel, kunststof draagprofiel en constructie voorzien van dergelijk draagprofiel.
IT1396362B1 (it) * 2009-10-30 2012-11-19 Nuovo Pignone Spa Macchina con righe in rilievo che possono essere abrase e metodo.
US8858183B2 (en) * 2010-02-26 2014-10-14 Sikorsky Aircraft Corporation Rotor blade for a rotary-wing aircraft
GB201020152D0 (en) * 2010-11-29 2011-01-12 Airbus Uk Ltd Aircraft panel structure and aircraft panel structure manufacturing method for alleviation of stress
CA2820004C (en) 2010-12-28 2016-02-16 Bell Helicopter Textron Inc. Multi-directional load joint system
DK2497941T3 (da) * 2011-03-08 2019-10-21 Lm Wp Patent Holding As Vindmøllevinge omfattende et rodendeskot
FR2973773B1 (fr) * 2011-04-05 2013-11-29 Airbus Operations Sas Procede de ralentissement de propagation de fissures dans une structure securisee et cadre fort securise, en particulier de fuselage
US8262362B2 (en) * 2011-06-08 2012-09-11 General Electric Company Wind turbine blade shear web with spring flanges
US8235671B2 (en) * 2011-07-19 2012-08-07 General Electric Company Wind turbine blade shear web connection assembly
US8257048B2 (en) * 2011-07-19 2012-09-04 General Electric Company Wind turbine blade multi-component shear web with intermediate connection assembly
US8393871B2 (en) 2011-07-19 2013-03-12 General Electric Company Wind turbine blade shear web connection assembly
DE102011113742B4 (de) * 2011-09-09 2013-10-31 TGM GmbH Software und Dienstleistungen Träger
DK2587050T3 (da) * 2011-10-27 2019-09-16 Siemens Gamesa Renewable Energy As Rotorvinge
WO2013086667A1 (en) * 2011-12-12 2013-06-20 General Electric Company Wind turbine blade shear web connection assembly
US20130216388A1 (en) * 2012-02-20 2013-08-22 General Electric Company Box-shaped shear web for wind turbine blades and method of making
US8943776B2 (en) 2012-09-28 2015-02-03 Ispan Systems Lp Composite steel joist
US9878773B2 (en) 2012-12-03 2018-01-30 The Boeing Company Split resistant composite laminate
US20160311188A1 (en) * 2013-10-08 2016-10-27 Johann Schwöller Lightweight structure and method for producing a lightweight structure
DK3071404T3 (da) * 2013-11-19 2024-04-02 Lm Wind Power As System og fremgangsmåde til fremstilling af en vindmøllevingekomponent
US20150152838A1 (en) * 2013-12-02 2015-06-04 General Electric Company Spar caps-shear web assembly configuration for wind turbine blades, and methods thereof
EP2926983A1 (de) * 2014-04-02 2015-10-07 LM WP Patent Holding A/S Verfahren und Vorrichtung zur Herstellung eines Teils einer Windturbinenschaufel
US9745954B2 (en) 2014-04-30 2017-08-29 General Electric Company Rotor blade joint assembly with multi-component shear web
JP6501511B2 (ja) * 2014-12-15 2019-04-17 三菱重工業株式会社 コーナーフィレット部の設計方法及び航空機
US9897065B2 (en) 2015-06-29 2018-02-20 General Electric Company Modular wind turbine rotor blades and methods of assembling same
US10337490B2 (en) 2015-06-29 2019-07-02 General Electric Company Structural component for a modular rotor blade
EP3325269A4 (de) * 2015-07-23 2019-03-13 Sikorsky Aircraft Corporation Strukturverstärkung mit polymermatrixverbund
US20170058866A1 (en) * 2015-08-27 2017-03-02 General Electric Company Thermoplastic pultruded stiffeners for locally reinforcing a wind turbine rotor blade
US10422315B2 (en) * 2015-09-01 2019-09-24 General Electric Company Pultruded components for a shear web of a wind turbine rotor blade
KR101846648B1 (ko) * 2016-03-15 2018-04-09 현대자동차주식회사 접합구조를 갖는 복합재 부품
US10207788B2 (en) 2016-04-12 2019-02-19 The Boeing Company Structure having joined unitary structures
WO2018001425A1 (en) * 2016-06-28 2018-01-04 Vestas Wind Systems A/S Manufacture of a wind turbine blade
US10527023B2 (en) 2017-02-09 2020-01-07 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades
US10738759B2 (en) 2017-02-09 2020-08-11 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades
US10519927B2 (en) 2017-02-20 2019-12-31 General Electric Company Shear web for a wind turbine rotor blade
US10570879B2 (en) 2017-05-23 2020-02-25 General Electric Company Joint assembly for a wind turbine rotor blade with flanged bushings
US11123973B2 (en) * 2017-06-07 2021-09-21 Divergent Technologies, Inc. Interconnected deflectable panel and node
EP3428056B1 (de) * 2017-07-13 2020-03-25 Airbus Operations, S.L. Kastenstrukturanordnung für ein flugzeug und herstellungsverfahren dafür
US10563636B2 (en) 2017-08-07 2020-02-18 General Electric Company Joint assembly for a wind turbine rotor blade
US10677216B2 (en) 2017-10-24 2020-06-09 General Electric Company Wind turbine rotor blade components formed using pultruded rods
DE102017126273A1 (de) 2017-11-09 2019-05-09 Nordex Energy Gmbh Windenergieanlagenrotorblatt mit Steg-Gurt-Verbindung
DK3482918T3 (da) 2017-11-09 2023-03-13 Nordex Energy Se & Co Kg Fremgangsmåde til fremstilling af en traversstiver til et vindmøllerotorblad
DE102017126276A1 (de) 2017-11-09 2019-05-09 Nordex Energy Gmbh Verfahren zur Herstellung einer Steg-Gurt-Baugruppe für ein Windenergieanlagenrotorblatt und Steg-Gurt-Baugruppe
US11738530B2 (en) 2018-03-22 2023-08-29 General Electric Company Methods for manufacturing wind turbine rotor blade components
DE102018005030A1 (de) * 2018-06-26 2020-01-02 Senvion Gmbh Rotorblatt mit Steg in Wabensandwichbauweise
US20210237846A1 (en) * 2018-07-16 2021-08-05 Bae Systems Plc Wing structure
EP3597529A1 (de) * 2018-07-16 2020-01-22 BAE SYSTEMS plc Flügelstruktur
US11192623B2 (en) * 2018-09-14 2021-12-07 The Boeing Company Monolithic spar for a wing
US10895244B2 (en) * 2018-09-25 2021-01-19 General Electric Company Joint interface for wind turbine rotor blade components
US11459085B2 (en) * 2019-04-30 2022-10-04 Textron Innovations Inc. Energy attenuation stabilizers and methods
CA3050000A1 (en) 2019-07-16 2021-01-16 Invent To Build Inc. Concrete fillable steel joist
CN110774617B (zh) * 2019-12-03 2024-11-22 东方电气(天津)风电叶片工程有限公司 一种复合材料风电叶片腹板粘接角一体式成型装置
FR3112507B1 (fr) * 2020-07-17 2023-01-06 Arianegroup Sas Structure de raidissage amelioree destinee a raidir une piece en materiau composite thermodurcissable et procede de raidissage associe
CN114211797B (zh) * 2021-11-24 2024-01-23 东方电气风电股份有限公司 风电叶片腹板快速粘接结构及其快速成型方法
US20240401559A1 (en) * 2023-06-05 2024-12-05 Wind Harvest International Inc Fairing System for a Vertical Axis Wind Turbine
CN119329087A (zh) * 2024-12-18 2025-01-21 北京航空航天大学 使用三维机织复合材料制造翼肋的方法及翼肋

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB592275A (en) * 1945-04-04 1947-09-12 Cellactite & British Uralite L Improvements connected with the manufacture of ribbed, flanged and the like sheets orother products of laminated character
US2779388A (en) * 1954-08-02 1957-01-29 Henry N Quoss Apparatus and method of forming elongate articles from fiberglas
BE568982A (de) * 1957-06-28
GB1029129A (en) * 1963-11-26 1966-05-11 Universal Moulded Fiber Glass Apparatus for making fiber reinforced resin articles
DE1504717B2 (de) * 1964-09-29 1972-07-06 Mancar-Trust, Vaduz Vorrichtung zur herstellung von sich verjuengenden kunststoffprofilen
US3374132A (en) * 1965-01-22 1968-03-19 Koppers Co Inc Method and apparatus for making fiber reinforced articles of cross sectional shape other than cylindrical
GB1176794A (en) * 1966-02-18 1970-01-07 English Electric Co Ltd Method and Apparatus for Forming Fibre-Reinforced Resin Articles.
DE2138427A1 (de) * 1970-08-07 1972-02-17 Knez M Verfahren zur Herstellung von armierten Plastmassen Gegenstanden, ins besondere fur hohe Beanspruchungen und Einrichtung zur Ausübung desselben
DE2622163C3 (de) * 1976-05-19 1983-05-26 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Profilträger aus faserverstärktem Werkstoff
US4198013A (en) * 1977-04-14 1980-04-15 Verbatim Corporation Tensioning means for belt driven tape cassette
DE2718002C3 (de) * 1977-04-22 1981-11-05 Roland 6231 Schwalbach Sommer Mehrschichtiger plattenförmiger Verbundwerkstoff
GB2027104B (en) * 1978-06-05 1983-03-23 Valtion Teknillinen Compound elongate structural element
US4662587A (en) * 1981-09-30 1987-05-05 The Boeing Company Composite for aircraft wing and method of making
DE3574948D1 (de) * 1984-05-09 1990-02-01 Michael John Hewitt Verfahren zur herstellung eines leichten strukturprofils.
US4640065A (en) * 1985-10-07 1987-02-03 Owens-Corning Fiberglas Corporation Structural member
DE3614618A1 (de) * 1986-04-30 1987-11-05 Messerschmitt Boelkow Blohm Schalenstruktur aus faserverstaerktem kunststoff
DE3639743A1 (de) * 1986-11-21 1988-05-26 Stefan Biffar Geruestbrett und verfahren zu dessen herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9401271A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778538A (en) * 1992-12-24 1998-07-14 Scintilla Ag Hand power tool with adjustable foot plate
CN108638541A (zh) * 2018-05-02 2018-10-12 江苏金风科技有限公司 叶片壳体和腹板一体成型以及叶片成型的方法
CN108638541B (zh) * 2018-05-02 2020-09-01 江苏金风科技有限公司 叶片壳体和腹板一体成型以及叶片成型的方法

Also Published As

Publication number Publication date
ATA134492A (de) 1994-01-15
US5476704A (en) 1995-12-19
WO1994001271A1 (de) 1994-01-20
CA2115350A1 (en) 1994-01-20
AT398064B (de) 1994-09-26

Similar Documents

Publication Publication Date Title
AT398064B (de) Kunststoff-verbundprofil, insbesondere flügelholm für den flugzeugbau
DE69911507T2 (de) Flügelstruktur aus Faserverbundstoff
EP0906480B1 (de) Bauelement
DE4423642C1 (de) Tragrahmen, insbesondere für ein Kraftfahrzeug
DE60223222T2 (de) 3D gewebte Vorformlinge mit minimalem Verzug
DE60114430T2 (de) Trägerstrukturen aus verbundwerkstoffen mit sinusförmigen stegen und herstellungsverfahren solcher strukturen
EP3496936B1 (de) Gurt aus vorgefertigten elementen mit gelege und ein verfahren zu seiner fertigung
DE102006035939B4 (de) Verfahren zur Herstellung von Faserverbundbauteilen und Faserverbundbauteil
DE8623542U1 (de) Flugzeug mit langgestreckten Teilen, insbesondere Flügeln, Leitwerk und dgl.
EP1745914A2 (de) Verbundstruktur und Verfahren zur Herstellung einer Verbundstruktur
DE102013220209B4 (de) Verfahren zur Herstellung einer Knotenstruktur sowie Knotenstruktur
WO2009149778A1 (de) Rohbaustruktur für einen kraftwagen und verfahren zu deren herstellung
DE2721651B2 (de) Tragflügelhauptanschluß fur Luft- und Raumfahrzeuge
DE10326422A1 (de) Verfahren zur Herstellung von sich in einer Längsrichtung erstreckenden FVK-Hohlprofilen
AT517198B1 (de) Steuerflächenelement für ein Flugzeug
EP3360667A1 (de) Rotorblatthinterkanten-verklebewinkel
EP3551438B1 (de) Hinterkantengurt eines rotorblatts einer windenergieanlage, rotorblatt und verfahren zum herstellen eines hinterkantengurts
DE102016124966B4 (de) Bauteilstruktur und Verfahren zur Herstellung derselben
DE2657542C2 (de) Bauteilecke von hoher Steifigkeit, ihre Verwendung und Verfahren zu ihrer Herstellung
DE102019111836B4 (de) Profilbauteil zur Verstärkung von Bauteilstrukturen, Bauteilstruktur sowie Herstellungsverfahren hierzu
DE102005030939A1 (de) Verfahren zur Herstellung eines im Wesentlichen schalenförmigen Bauteils
EP0951414B1 (de) Wandmodul und verfahren zur herstellung desselben
DE2856661A1 (de) Verfahren und vorrichtung zur herstellung von kunststoff-fluegeln, insbesondere fuer wind-kraftanlagen in einer form
DE2718002A1 (de) Mehrschichtiger, plattenfoermiger verbundwerkstoff und dessen verwendung fuer flugkoerper
DE3630593C1 (de) Eckverbindung zwischen zwei Faserverbund-Traegern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 19951128

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RHK1 Main classification (correction)

Ipc: B29C 70/02

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19970917