[go: up one dir, main page]

EP0590381A2 - Apparatus and method for calibrating a coin tester - Google Patents

Apparatus and method for calibrating a coin tester Download PDF

Info

Publication number
EP0590381A2
EP0590381A2 EP93114537A EP93114537A EP0590381A2 EP 0590381 A2 EP0590381 A2 EP 0590381A2 EP 93114537 A EP93114537 A EP 93114537A EP 93114537 A EP93114537 A EP 93114537A EP 0590381 A2 EP0590381 A2 EP 0590381A2
Authority
EP
European Patent Office
Prior art keywords
coin
simulation
section
measuring probe
calibration module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93114537A
Other languages
German (de)
French (fr)
Other versions
EP0590381A3 (en
EP0590381B1 (en
Inventor
Klaus Meyer-Steffens
Manfred Dr. Gröhlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crane Payment Innovations GmbH
Original Assignee
National Rejectors Inc GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Rejectors Inc GmbH filed Critical National Rejectors Inc GmbH
Publication of EP0590381A2 publication Critical patent/EP0590381A2/en
Publication of EP0590381A3 publication Critical patent/EP0590381A3/en
Application granted granted Critical
Publication of EP0590381B1 publication Critical patent/EP0590381B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/08Testing the magnetic or electric properties
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/02Testing the dimensions, e.g. thickness, diameter; Testing the deformation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D2205/00Coin testing devices
    • G07D2205/001Reconfiguration of coin testing devices

Definitions

  • the invention relates to a method for calibrating a coin validator having at least one measuring probe according to the preamble of patent claim 1.
  • a coin validator has the task of examining inserted coins for properties which the coins to be accepted should have.
  • the properties include, for example, the material, the dimensions such as thickness and diameter, the transmission for light, the formation of the embossed edge and image, the weight, the hardness, etc.
  • the materials are typically tested using inductive coils, the field of which is the material of the Coin interacting occurs.
  • the coins cause a typical damping in the inductive sensors, the extent of the damping containing information about the material or the material composition of the tested coin or disc.
  • the light transmission of a coin or the embossed image are mostly checked with the help of optical sensors.
  • a light source irradiates the edge or the embossing surface of the coin, and a light-electric receiver receives the transmitted or reflected light in order to test certain geometric properties of the coin. It is also known to determine the weight or the mass of thrown-in disks, with the aid of weighing devices or also of impact measurements.
  • the momentum that a coin impacts on a baffle element is characteristic of the mass and thus the weight of the coin.
  • the hardness of the coin material can also be determined by an impact measurement. The course of impulses when a coin strikes a impact element is therefore also an indicator of the hardness of the coin.
  • the known coin validators are known to be able to check a number of different coin values. They have a microprocessor with a programmable memory for recording data to be compared with the measured values Reference values. In order to meet tolerances, it is common to provide an upper and a lower reference value per coin value, which form a so-called acceptance band. Before a coin validator reaches the user, the reference values must be saved according to the coin set that the device should be able to check. Although it is conceivable to calculate the reference values mathematically, it has been shown in practice that this method is not precise enough. The mechanical and electrical properties of a coin validator in turn are subject to more or less strong, mostly manufacturing-related fluctuations, which find their way into the measuring signals emitted by the measuring probe. So far it has been considered necessary to determine and program the reference values device-specifically.
  • test coins Selected real coins, the properties of which are to be checked in the desired distribution within the acceptance band, are thrown into the device to be verified. The reference values are determined and stored with the aid of the measurement signals obtained. Since test coins wear out over time, new ones have to be used again and again. This turns out to be cumbersome and difficult. It is also known to use so-called tokens instead of test coins, which have analog physical properties and which are produced specifically for test purposes. However, processes for producing tokens are also relatively complex.
  • the known method requires fewer test coins or -discs, however, cannot do without a minimum of coins or discs. It can also prove disadvantageous that the reference values are read into the memory during the test phase.
  • coin validators it is mostly not yet known for which currencies and accordingly for which coins they are used. It is therefore left to a later manufacturing step to calibrate the device in the manner described if the set of coins to be accepted has become known to a currency. In terms of manufacturing technology, it would therefore be much cheaper if the coin validator could already be calibrated as part of the production process.
  • the invention has for its object to provide a method for calibrating a coin validator having at least one measuring probe, which dispenses with the use of test coins and can be carried out in a simple and quick manner.
  • the invention is based on the idea that the measuring probes used in a coin validator with the interacting coin in check.
  • the material of a coin influences, for example, the electromagnetic field of a pair of coils.
  • a coin crosses one or two light barriers.
  • the diameter of a coin can be measured, for example, by crossing two spaced-apart light barriers.
  • the invention is also based on the idea that the effect that a coin passing through the coin validator has on the measuring probes can also be simulated. According to the invention, therefore, at least one measurement signal is generated with the aid of a calibration module inserted into the channel section containing the measurement probe.
  • the calibration module interacts with the measuring probe and has the physical property to which the measuring probe should respond.
  • the calibration module is "seen” by the sensor like a coin, but is not, but only has a “physical property” that is similar or similar to that of a coin. It is not necessary to produce the same effect as that of a coin, since the general "behavior" of the sensor is to be determined, which is typical of the sensor and is independent of the “disturbance variable" which triggers the measurement signal.
  • the calibration module can also be used to generate a defined sequence of operations, the one corresponding sequence of measurement signals generated.
  • a reference value characteristic of the coin validator is calculated from at least one measurement signal, for example by determining a calibration factor obtained from the measurement signal, by which a standard reference value is multiplied.
  • the simulation signal simulating the physical property corresponds in its function over time to the time course of the measurement signal generated by the accepted coin.
  • the calibration module can generate a simulation signal so that the measuring probe reacts in the same way - in absolute terms - as with an acceptable coin.
  • the simulation signal can optionally also have a different size and a modified profile.
  • the measurement signals generated by the measuring probe can be processed in a similar manner as is the case with the prior art described above, which uses disks or coins different from the real coin. In this case, the measurement signals then form calibration factors for calculating the reference values.
  • the method according to the invention has the same advantages as the previously explained prior art and has the further advantage that test disks or coins are no longer required at all. It also has the advantage that it can be carried out very quickly and easily.
  • Another advantage of the invention is that the natural uneven running of test coins or disks, which can also be polygonal, has no influence. This uneven running requires the test medium to be thrown in several times, which is associated with greater wear and expenditure of time.
  • the simulation signals can be changed in any way in order to be able to make a corresponding adjustment to the behavior of the coin validator or his measuring probes, as well as the calibration to another set of coins.
  • a particularly preferred embodiment of the method according to the invention consists in that measured values corresponding to the measurement signals are stored in the programmable memory, that corresponding correlation functions are stored in a programmable memory of an external computing device, and the computing device uses one of the correlation functions to obtain the reference value for a desired value from the measured value acceptable coin is calculated and the reference value is then stored in the programmable memory of the coin validator. All coin acceptors can use this procedure are initially programmed in production with parameter signals which are generated by the calibration module. A kind of standardized calibration therefore takes place.
  • the values stored in the programmable memory can be read into a computer which calculates the individual reference values for valid and acceptable coins with the aid of a database.
  • Correlation functions are stored in the database which are used to convert the parameter signals to the reference signals.
  • the database also receives information from outside which coins the coin acceptor should accept in which channel, whether the acceptance areas (acceptance bands) should be set wide or narrow, etc.
  • the conversion algorithms can be determined empirically. With the method described last, all coin validators are therefore programmed in an identical manner and only in the second step is an adaptation to the respective coin set or to the respective currency.
  • a coin validator usually has several measuring probes. It is therefore proposed according to the invention that at several measuring probes of the coin validator, at least one measuring signal is generated for each measuring probe.
  • a further embodiment of the invention provides that the temporal The sequence of the measurement signals approximately corresponds to the time sequence with which a coin passes the measurement probes.
  • Another object of the invention is to provide a device with which a coin validator can be calibrated without the use of test coins.
  • the dimensions of a calibration module are designed such that it can be inserted into the channel section having the measuring probes. For example, it has a width that approximately corresponds to the thickness of the maximum coin that can be accepted.
  • the calibration module according to the invention is fixed in a predetermined position in the channel section, this position must be reproducible so that the same position is achieved for all coin validators.
  • the calibration module contains at least one simulation section that is controlled by a simulation generator.
  • the simulation generator is arranged outside the channel section, preferably outside the coin validator, and is connected to the simulation section via control lines.
  • the position of the simulation section is preferably correct in the channel section corresponds to that of the measuring probe.
  • the simulation section is adjustable, for example in order to be able to calibrate coins of different sizes.
  • the simulation section has at least one magnetic coil, preferably an air coil, for generating an electromagnetic field.
  • the simulation generator can be designed such that it generates different waveforms according to time and amplitude, for example sine wave, square wave, etc.
  • the control signal can be amplitude-modulated and the modulation time in the order of the throughput time of a coin the electromagnetic field of the magnetic coil of the coin validator.
  • the simulation section can have an adjustable aperture.
  • the opening and closing of the aperture can therefore pass through a coin simulated by a light barrier.
  • the simulation section can have an adjustable reflection section. The reflection section simulates the passage of a specific embossed image of a coin to be tested to the photoelectric receiver.
  • the simulation section can have an adjustable impact element according to another embodiment of the invention.
  • the impact element is moved with a predetermined energy against an impact element in accordance with the procedure for a real coin to be tested.
  • the simulation section can have an adjustable mass element that can be weighed, for example, by a weighing device or that also interacts with an impact element for the purpose of mass determination.
  • a holding plate 10 of a coin validator not shown, is shown, which forms a coin channel 16 with a raceway support plate 12 and a raceway 14, through which inserted coins move.
  • Several measuring probes are assigned to the coin channel 16 or coin channel section, one of which is shown at 18 in FIG. 1. It consists of two coils L1 and L2, one of which is attached to the holding plate 10 and the raceway support plate 12. It goes without saying that a measuring probe arranged on one side can also be provided.
  • a flat housing 20 of a calibration module 22 is also arranged in the coin channel 16.
  • the outer dimensions are such that the housing 20 can be used with a little play, but is relatively suitable.
  • Means, not shown, serve to hold and secure the housing 20 in a predetermined position in the channel 16.
  • Air coils L3 are arranged in the housing 20. In Fig. 1 two are shown, in Fig. 3 three. Each air coil L3 is assigned to a pair of coils L1, L2. They are connected by means of lines 24 to a simulation generator, not shown.
  • the simulation generator generates a control signal for the air coils L3, which simulates the passage of a coin through the electromagnetic field of the coils L1 and L2. It is an amplitude-modulated signal, the modulation time being in the order of the transit time of the coins through the field of coils L1 and L2.
  • the time sequence of the signals applied to the individual air coils is also selected so that it corresponds to the time sequence in which the coin passes the magnetic probes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Coins (AREA)

Abstract

In this method, reference signals are obtained from measurement signals of the measurement probe which represent a physical characteristic of an acceptable coin, which reference signals are stored in a programmable memory of the coin tester, at least one measurement signal being generated with the aid of a calibration module introduced into the channel section containing the measurement probe and a calibration factor being calculated from the measurement signal for the purpose of determining the specific reference value for the respective coin tester. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Verfahren zum Eichen eines mindestens eine Meßsonde aufweisenden Münzprüfers nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for calibrating a coin validator having at least one measuring probe according to the preamble of patent claim 1.

Ein Münzprüfer hat die Aufgabe, eingeworfene Münzen auf Eigenschaften zu untersuchen, welche die zu akzeptierenden Münzen aufweisen sollen. Zu den Eigenschaften gehören zum Beispiel der Werkstoff, die Abmessungen wie Dicke und Durchmesser die Transmission für Licht, die Ausbildung des Prägerandes und -bildes, das Gewicht, die Härte usw. Die Werkstoffe werden typischerweise mit induktiven Spulen geprüft, deren Feld mit dem Material der Münze in Wechselwirkung tritt. Die Münzen verursachen eine typische Dämpfung in den induktiven Sensoren, wobei das Ausmaß der Dämpfung eine Aussage enthält über den Werkstoff bzw. die Werkstoffzusammensetzung der geprüften Münze oder Scheibe. Die Lichtdurchlässigkeit einer Münze oder auch das Prägebild werden zumeist mit Hilfe optischer Sensoren geprüft. Eine Lichtquelle bestrahlt den Rand oder die Prägefläche der Münze, und ein lichtelektrischer Empfänger erhält das durchstrahlte oder reflektierte Licht, um bestimmte geometrische Eigenschaften der Münze zu prüfen. Es ist ferner bekannt, das Gewicht oder die Masse eingeworfener Scheiben zu bestimmen, und zwar mit Hilfe von Wiegevorrichtungen oder auch von Prallmessungen. Der Impuls, den ein Aufprall einer Münze auf ein Prallelement erzeugt, ist charakteristisch für die Masse und damit das Gewicht der Münze. Durch eine Aufprallmessung läßt sich auch die Härte des Münzwerkstoffs ermitteln. Der Impulsverlauf beim Auftreffen einer Münze auf ein Prallelement ist mithin auch Indikator für die Härte der Münze.A coin validator has the task of examining inserted coins for properties which the coins to be accepted should have. The properties include, for example, the material, the dimensions such as thickness and diameter, the transmission for light, the formation of the embossed edge and image, the weight, the hardness, etc. The materials are typically tested using inductive coils, the field of which is the material of the Coin interacting occurs. The coins cause a typical damping in the inductive sensors, the extent of the damping containing information about the material or the material composition of the tested coin or disc. The light transmission of a coin or the embossed image are mostly checked with the help of optical sensors. A light source irradiates the edge or the embossing surface of the coin, and a light-electric receiver receives the transmitted or reflected light in order to test certain geometric properties of the coin. It is also known to determine the weight or the mass of thrown-in disks, with the aid of weighing devices or also of impact measurements. The momentum that a coin impacts on a baffle element is characteristic of the mass and thus the weight of the coin. The hardness of the coin material can also be determined by an impact measurement. The course of impulses when a coin strikes a impact element is therefore also an indicator of the hardness of the coin.

Die bekannten Münzprüfer sind bekanntlich in der Lage, eine Reihe unterschiedlicher Münzwerte zu prüfen. Sie weisen einen Mikroprozessor auf mit einem programmierbaren Speicher zur Aufnahme von mit den Meßwerten zu vergleichenden Referenzwerten. Um Toleranzen zu begegnen, ist es üblich, einen oberen und einen unteren Referenzwert pro Münzwert vorzusehen, welche ein sogenanntes Annahmeband bilden. Bevor ein Münzprüfer zum Anwender gelangt, sind die Referenzwerte einzuspeichern nach Maßgabe des Münzsatzes, den zu überprüfen das Gerät in der Lage sein soll. Es ist zwar denkbar, die Referenzwerte mathematisch zu errechnen, es zeigt sich indes in der Praxis, daß dieses Verfahren nicht genau genug ist. Die mechanischen und elektrischen Eigenschaften eines Münzprüfers unterliegen ihrerseits mehr oder weniger starken, zumeist herstellungsbedingten Schwankungen, welche in die von der Meßsonde abgegebenen Meßsignale Eingang finden. Es ist daher bisher als notwendig erachtet worden, die Referenzwerte gerätespezifisch zu ermitteln und zu programmieren.The known coin validators are known to be able to check a number of different coin values. They have a microprocessor with a programmable memory for recording data to be compared with the measured values Reference values. In order to meet tolerances, it is common to provide an upper and a lower reference value per coin value, which form a so-called acceptance band. Before a coin validator reaches the user, the reference values must be saved according to the coin set that the device should be able to check. Although it is conceivable to calculate the reference values mathematically, it has been shown in practice that this method is not precise enough. The mechanical and electrical properties of a coin validator in turn are subject to more or less strong, mostly manufacturing-related fluctuations, which find their way into the measuring signals emitted by the measuring probe. So far it has been considered necessary to determine and program the reference values device-specifically.

Es ist bekannt, ein derartiges Eichverfahren mit Hilfe von sogenannten Testmünzen durchzuführen. Ausgewählte echte Münzen, deren zu prüfende Eigenschaften in gewünschter Verteilung innerhalb des Annahmebandes liegen, werden in das zu eichende Gerät eingeworfen. Mit Hilfe der gewonnenen Meßsignale erfolgt die Ermittlung und Einspeicherung der Referenzwerte. Da sich Testmünzen mit der Zeit abnutzen, müssen immer wieder neue herangezogen werden. Dies erweist sich als umständlich und schwierig. Es ist auch bekannt, anstelle von Testmünzen sogenannte Token zu verwenden, die analoge physikalische Eigenschaften aufweisen und die eigens zu Testzwecken hergestellt werden. Verfahren zur Herstellung von Token sind jedoch ebenfalls verhältnismäßig aufwendig.It is known to carry out such a calibration method with the help of so-called test coins. Selected real coins, the properties of which are to be checked in the desired distribution within the acceptance band, are thrown into the device to be verified. The reference values are determined and stored with the aid of the measurement signals obtained. Since test coins wear out over time, new ones have to be used again and again. This turns out to be cumbersome and difficult. It is also known to use so-called tokens instead of test coins, which have analog physical properties and which are produced specifically for test purposes. However, processes for producing tokens are also relatively complex.

Aus der EP 0 072 189 ist ein Verfahren zum Eichen von Münzprüfern bekanntgeworden, bei dem für einen Münzsatz einer bestimmten Währung nur zwei Token verwendet werden, um daraus Parametersignale zu gewinnen. Die beiden Parametersignale charakterisieren die Koordinaten eines Meßpunktes (Winkel und Länge eines Zeiger im Zeigerdiagramm für elektromagnetisches Verhalten). Die Parametersignale sind ein Indikator für das gerätespezifische mechanische und elektrische Verhalten des Münzprüfers beim Durchlauf von Münzen, unabhängig vom Münzwert. Aus den Parametersignalen werden Eichfaktoren errechnet, die auf Standardreferenzwerte angewendet werden. Mit Hilfe eines geeigneten Algorithmus werden die Standardreferenzwerte entsprechend dem Eichfaktor umgerechnet zur Ermittlung der gerätespezifischen Referenzwerte. Diese werden dann anschließend in den programmierbaren Speicher des Münzprüfers geladen. Das bekannte Verfahren benötigt zwar weniger Testmünzen oder -scheiben, kommt jedoch nicht ohne ein Minimum von Münzen oder Scheiben aus. Als nachteilig kann sich ferner erweisen, daß die Referenzwerte während der Testphase in den Speicher eingelesen werden. Bei der Produktion von Münzprüfern ist zumeist noch nicht bekannt, für welche Währungen und dementsprechend für welche Münzen sie eingesetzt werden. Es bleibt daher einem späteren Herstellungsschritt überlassen, in der beschriebenen Art und Weise eine Eichung des Gerätes vorzunehmen, wenn der anzunehmende Münzsatz einer Währung bekanntgeworden ist. Es wäre daher herstellungstechnisch weitaus günstiger, wenn das Eichen des Münzprüfers bereits Teil des Produktionsprozesses sein könnte.From EP 0 072 189 a method for calibrating coin validators has become known, in which only two tokens are used for a coin set of a certain currency in order to obtain parameter signals therefrom. The two parameter signals characterize the coordinates of a measuring point (angle and length of a pointer in the pointer diagram for electromagnetic behavior). The parameter signals are an indicator of the device-specific mechanical and electrical behavior of the coin validator when passing coins, regardless of the coin value. Calibration factors that are applied to standard reference values are calculated from the parameter signals. Using a suitable algorithm, the standard reference values are converted according to the calibration factor to determine the device-specific reference values. These are then loaded into the programmable memory of the coin validator. The known method requires fewer test coins or -discs, however, cannot do without a minimum of coins or discs. It can also prove disadvantageous that the reference values are read into the memory during the test phase. In the production of coin validators, it is mostly not yet known for which currencies and accordingly for which coins they are used. It is therefore left to a later manufacturing step to calibrate the device in the manner described if the set of coins to be accepted has become known to a currency. In terms of manufacturing technology, it would therefore be much cheaper if the coin validator could already be calibrated as part of the production process.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Eichen eines mindestens eine Meßsonde aufweisenden Münzprüfers anzugeben, das auf die Anwendung von Testmünzen verzichtet und auf einfache und schnelle Weise durchführbar ist.The invention has for its object to provide a method for calibrating a coin validator having at least one measuring probe, which dispenses with the use of test coins and can be carried out in a simple and quick manner.

Diese Aufgabe wird erfindungsgemäß gelöst durch die Merkmale des Patentanspruchs 1.This object is achieved according to the invention by the features of patent claim 1.

Die Erfindung geht von dem Gedanken aus, daß die bei einem Münzprüfer zum Einsatz gelangenden Meßsonden mit der zu prüfenden durchlaufenden Münze in Wechselwirkung treten. Der Werkstoff einer Münze beeinflußt zum Beispiel das elektromagnetische Feld eines Spulenpaares. Eine Münze durchquert zum Beispiel ein oder zwei Lichtschranken. Mit Hilfe der Durchquerung von zwei beabstandeten Lichtschranken läßt sich zum Beispiel der Durchmesser einer Münze messen. Die Erfindung beruht ferner auf dem Gedanken, daß die Wirkung, die eine durch den Münzprüfer laufende Münze auf die Meßsonden ausübt, auch simuliert werden kann. Erfindungsgemäß wird daher mit Hilfe eines in den die Meßsonde enthaltenden Kanalabschnitt eingeführten Eichmoduls mindestens ein Meßsignal erzeugt. Das Eichmodul steht mit der Meßsonde in Wechselwirkung und hat diejenige physikalische Eigenschaft, auf die die Meßsonde ansprechen soll. Mit anderen Worten, das Eichmodul wird von dem Sensor wie eine Münze "gesehen", ist aber keine, sondern hat nur eine "physikalische Eigenschaft", welche der einer Münze gleicht oder ähnelt. Es ist nicht notwendig, die gleiche Wirkung wie die einer Münze zu erzeugen, denn es soll das generelle "Verhalten" des Sensors ermittelt werden, das sensortypisch und unabhängig von der das Meßsignal auslösenden "Störgröße" ist.The invention is based on the idea that the measuring probes used in a coin validator with the interacting coin in check. The material of a coin influences, for example, the electromagnetic field of a pair of coils. For example, a coin crosses one or two light barriers. The diameter of a coin can be measured, for example, by crossing two spaced-apart light barriers. The invention is also based on the idea that the effect that a coin passing through the coin validator has on the measuring probes can also be simulated. According to the invention, therefore, at least one measurement signal is generated with the aid of a calibration module inserted into the channel section containing the measurement probe. The calibration module interacts with the measuring probe and has the physical property to which the measuring probe should respond. In other words, the calibration module is "seen" by the sensor like a coin, but is not, but only has a "physical property" that is similar or similar to that of a coin. It is not necessary to produce the same effect as that of a coin, since the general "behavior" of the sensor is to be determined, which is typical of the sensor and is independent of the "disturbance variable" which triggers the measurement signal.

Es versteht sich, daß mit dem Eichmodul auch eine festgelegte Folge von Operationen erzeugt werden kann, die eine entsprechende Folge von Meußsignalen erzeugt. In jedem Fall wird aus mindestens einem Meßsignal ein für den Münzprüfer charakteristischer Bezugswert errechnet, indem z.B. ein aus dem Meßsignal gewonnener Eichfaktor ermittelt wird, mit dem ein Standard-Bezugswert multipliziert wird.It goes without saying that the calibration module can also be used to generate a defined sequence of operations, the one corresponding sequence of measurement signals generated. In any case, a reference value characteristic of the coin validator is calculated from at least one measurement signal, for example by determining a calibration factor obtained from the measurement signal, by which a standard reference value is multiplied.

Nach einer Ausgestaltung der Erfindung entspricht das die physikalische Eigenschaft simulierende Simulationssignal in seiner Funktion von der Zeit dem zeitlichen Verlauf des von der akzeptierten Münze erzeugen Meßsignals. Das Eichmodul kann ein Simulationssignal so erzeugen, daß die Meßsonde in gleicher Weise - absolut gesehen - reagiert wie bei einer akzeptierbaren Münze. Wahlweise kann das Simulationssignal auch eine andere Größe und einen abgewandelten Verlauf aufweisen. In diesem Fall können die von der Meßsonde erzeugten Meßsignale in ähnlicher Weise verarbeitet werden, wie dies bei dem weiter oben beschriebenen Stand der Technik der Fall ist, der von der echten Münze unterschiedliche Scheiben oder Münzen verwendet. In diesem Fall bilden dann die Meßsignale Eichfaktoren zur Errechnung der Referenzwerte.According to one embodiment of the invention, the simulation signal simulating the physical property corresponds in its function over time to the time course of the measurement signal generated by the accepted coin. The calibration module can generate a simulation signal so that the measuring probe reacts in the same way - in absolute terms - as with an acceptable coin. The simulation signal can optionally also have a different size and a modified profile. In this case, the measurement signals generated by the measuring probe can be processed in a similar manner as is the case with the prior art described above, which uses disks or coins different from the real coin. In this case, the measurement signals then form calibration factors for calculating the reference values.

Das erfindungsgemäße Verfahren weist die gleichen Vorteile auf, wie der zuletzt erläuterte Stand der Technik und hat den weiteren Vorzug, daß Testscheiben oder -münzen überhaupt nicht mehr erforderlich sind. Es hat ferner den Vorteil, daß es sehr schnell und einfach durchführbar ist. Ein weiterer Vorzug der Erfindung besteht darin, daß die naturgegebene Laufunruhe von Testmünzen oder -scheiben, die auch mehreckig sein können, keinen Einfluß hat. Diese Laufunruhe erfordert den mehrfachen Einwurf des Testmittels, was mit einem höheren Verschleiß und Zeitaufwand verbunden ist. Ferner können mit Hilfe des Eichmoduls die Simulationssignale in beliebiger Weise verändert werden, um eine entsprechende Anpassung an das Verhalten des Münzprüfers bzw. seiner Meßsonden vornehmen zu können sowie die Eichung auf einen anderen Münzsatz.The method according to the invention has the same advantages as the previously explained prior art and has the further advantage that test disks or coins are no longer required at all. It also has the advantage that it can be carried out very quickly and easily. Another advantage of the invention is that the natural uneven running of test coins or disks, which can also be polygonal, has no influence. This uneven running requires the test medium to be thrown in several times, which is associated with greater wear and expenditure of time. Furthermore, with the help of the calibration module, the simulation signals can be changed in any way in order to be able to make a corresponding adjustment to the behavior of the coin validator or his measuring probes, as well as the calibration to another set of coins.

Eine besonders bevorzugte Ausgestaltung des erfindungsgemäßen Verfahrens besteht darin, daß den Meßsignalen entsprechende Meßwerte im programmierbaren Speicher gespeichert werden, daß in einem programmierbaren Speicher einer externen Rechenvorrichtung akzeptierbaren Münzen entsprechende Korrelationsfunktionen gespeichert werden und die Rechenvorrichtung mittels einer der Korrelationsfunktionen aus dem Meßwert den Referenzwert für eine gewünschte akzeptierbare Münze errechnet und der Referenzwert anschließend in den programmierbaren Speicher des Münzprüfers eingespeichert wird. Bei diesem Verfahren können alle Münzprüfer in der Produktion zunächst mit Parametersignalen programmiert werden, welche vom Eichmodul erzeugt werden. Es findet mithin eine Art normierter Eichung statt. In einem zweiten Arbeitsschritt, der räumlich und zeitlich vom ersten getrennt sein kann, können die im programmierbaren Speicher gespeicherten Werte in einen Computer eingelesen werden, der die individuellen Referenzwerte für gültige und akzeptierbare Münzen mit Hilfe einer Datenbank berechnet. In der Datenbank sind Korrelationsfunktionen gespeichert, welche zu Umrechnung der Parametersignale auf die Referenzsignale dienen. Die Datenbank erhält außerdem von außen die Information, welche Münzen der Münzprüfer in welchen Kanal annehmen soll, ob die Annahmebereiche (Annahmebänder) weit oder eng eingestellt werden sollen usw. Die Umrechnungsalgorithmen können empirisch ermittelt werden. Bei dem zuletzt beschriebenen Verfahren werden mithin alle Münzprüfer auf identische Weise programmiert und erst im zweiten Schritt erfolgt eine Anpassung auf den jeweiligen Münzsatz bzw. an die jeweilige Währung.A particularly preferred embodiment of the method according to the invention consists in that measured values corresponding to the measurement signals are stored in the programmable memory, that corresponding correlation functions are stored in a programmable memory of an external computing device, and the computing device uses one of the correlation functions to obtain the reference value for a desired value from the measured value acceptable coin is calculated and the reference value is then stored in the programmable memory of the coin validator. All coin acceptors can use this procedure are initially programmed in production with parameter signals which are generated by the calibration module. A kind of standardized calibration therefore takes place. In a second step, which can be spatially and temporally separate from the first, the values stored in the programmable memory can be read into a computer which calculates the individual reference values for valid and acceptable coins with the aid of a database. Correlation functions are stored in the database which are used to convert the parameter signals to the reference signals. The database also receives information from outside which coins the coin acceptor should accept in which channel, whether the acceptance areas (acceptance bands) should be set wide or narrow, etc. The conversion algorithms can be determined empirically. With the method described last, all coin validators are therefore programmed in an identical manner and only in the second step is an adaptation to the respective coin set or to the respective currency.

Üblicherweise weist ein Münzprüfer mehrere Meßsonden auf. Es wird daher erfindungsgemäß vorgeschlagen, daß bei mehreren Meßsonden des Münzprüfers jeweils für jede Meßsonde mindestens ein Meßsignal erzeugt wird. Eine weitere Ausgestaltung der Erfindung sieht hierzu vor, daß die zeitliche Abfolge der Meßsignale annähernd der Zeitfolge entspricht, mit der eine Münze die Meßsonden passiert.A coin validator usually has several measuring probes. It is therefore proposed according to the invention that at several measuring probes of the coin validator, at least one measuring signal is generated for each measuring probe. A further embodiment of the invention provides that the temporal The sequence of the measurement signals approximately corresponds to the time sequence with which a coin passes the measurement probes.

Der Erfindung liegt ferner die Aufgabe zugrunde, eine Vorrichtung zu schaffen, mit welcher ein Münzprüfer ohne die Verwendung von Testmünzen geeicht werden kann.Another object of the invention is to provide a device with which a coin validator can be calibrated without the use of test coins.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 8 gelöst.This object is solved by the features of claim 8.

Bei der erfindungsgemäßen Vorrichtung ist ein Eichmodul in seinen Abmessungen so ausgelegt, daß es in den die Meßsonden aufweisenden Kanalabschnitt einführbar ist. Es hat zum Beispiel eine Breite, die annähernd der Dicke der maximal anzunehmenden Münze entspricht. Das erfindungsgemäße Eichmodul wird in einer vorgegebenen Position im Kanalabschnitt festgelegt, wobei diese Position reproduzierbar sein muß, damit für alle Münzprüfer die gleiche Lage erreicht wird. Das Eichmodul enthält mindestens einen Simulationsabschnitt, der von einem Simulationsgenerator gesteuert wird. Nach einer Ausgestaltung der Erfindung ist der Simulationsgenerator außerhalb des Kanalabschnitts, vorzugsweise außerhalb des Münzprüfers angeordnet und mit dem Simulationsabschnitt über Steuerleitungen verbunden. Vorzugsweise stimmt die Position des Simulationsabschnitts im Kanalabschnitt mit der der Meßsonde überein. Es kann jedoch nach einer Ausgestaltung der Erfindung vorteilhaft sein, wenn der Simulationsabschnitt verstellbar ist, beispielsweise um eine Eichung für Münzen mit verschieden großem Durchmesser vornehmen zu können.In the device according to the invention, the dimensions of a calibration module are designed such that it can be inserted into the channel section having the measuring probes. For example, it has a width that approximately corresponds to the thickness of the maximum coin that can be accepted. The calibration module according to the invention is fixed in a predetermined position in the channel section, this position must be reproducible so that the same position is achieved for all coin validators. The calibration module contains at least one simulation section that is controlled by a simulation generator. According to one embodiment of the invention, the simulation generator is arranged outside the channel section, preferably outside the coin validator, and is connected to the simulation section via control lines. The position of the simulation section is preferably correct in the channel section corresponds to that of the measuring probe. However, according to one embodiment of the invention, it can be advantageous if the simulation section is adjustable, for example in order to be able to calibrate coins of different sizes.

Soll das elektromagnetische Verhalten einer Münze simuliert werden, sieht eine Ausgestaltung der Erfindung vor, daß der Simulationsabschnitt mindestens eine Magnetspule, vorzugsweise Luftspule, zur Erzeugung eines elektromagnetischen Feldes aufweist. Der Simulationsgenerator kann für einen derartigen Simulationsfall so ausgebildet sein, daß er nach Zeit und Amplitude unterschiedliche Signalverläufe erzeugt, zum Beispiel Sinuswelle, Rechteckwelle usw. Nach einer anderen Ausgestaltung der Erfindung kann das Steuersignal amplitudenmoduliert sein und die Modulationszeit in der Größenordnung der Durchlaufzeit einer Münze durch das elektromagnetische Feld der Magnetspule des Münzprüfers liegen.If the electromagnetic behavior of a coin is to be simulated, one embodiment of the invention provides that the simulation section has at least one magnetic coil, preferably an air coil, for generating an electromagnetic field. For such a simulation case, the simulation generator can be designed such that it generates different waveforms according to time and amplitude, for example sine wave, square wave, etc. According to another embodiment of the invention, the control signal can be amplitude-modulated and the modulation time in the order of the throughput time of a coin the electromagnetic field of the magnetic coil of the coin validator.

Soll hingegen das optische Verhalten einer Münze im Hinblick auf eine optische Meßsonde simuliert werden, kann nach einer Ausgestaltung der Erfindung der Simulationsabschnitt eine verstellbare Blende aufweisen. Das Öffnen und Schließen der Blende kann mithin den Durchlauf einer Münze durch eine Lichtschranke simulieren. Des weiteren kann der Simulationsabschnitt einen verstellbaren Reflexionsabschnitt aufweisen. Der Reflexionsabschnitt simuliert dem lichtelektrischen Empfänger den Durchlauf eines bestimmten Prägebildes einer zu prüfenden Münze.If, on the other hand, the optical behavior of a coin is to be simulated with regard to an optical measuring probe, according to one embodiment of the invention the simulation section can have an adjustable aperture. The opening and closing of the aperture can therefore pass through a coin simulated by a light barrier. Furthermore, the simulation section can have an adjustable reflection section. The reflection section simulates the passage of a specific embossed image of a coin to be tested to the photoelectric receiver.

Soll die Härteprüfung einer Münze simuliert werden, kann nach einer anderen Ausgestaltung der Erfindung der Simulationsabschnitt ein verstellbares Prallelement aufweisen. Das Prallelement wird mit vorgegebener Energie gegen ein Aufprallelement bewegt entsprechend dem Vorgang bei einer echten zu prüfenden Münze. In ähnlicher Weise kann der Simulationsabschnitt ein verstellbares Masseelement aufweisen, das zum Beispiel von einer Wiegevorrichtung gewogen werden kann oder das ebenfalls mit einem Aufprallelement zusammenwirkt zwecks Massebestimmung.If the hardness test of a coin is to be simulated, the simulation section can have an adjustable impact element according to another embodiment of the invention. The impact element is moved with a predetermined energy against an impact element in accordance with the procedure for a real coin to be tested. Similarly, the simulation section can have an adjustable mass element that can be weighed, for example, by a weighing device or that also interacts with an impact element for the purpose of mass determination.

Die Erfindung wird nachfolgend anhand eines in Zeichnungen dargestellten Ausführungsbeispiels näher erläutert.

Fig. 1
zeigt schematisch im Schnitt die Anordnung eines Eichmoduls nach der Erfindung in einem Münzkanalabschnitt.
Fig. 2
zeigt das Zusammenwirken von Spulen des Eichmoduls mit denen einer elektromagnetischen Prüfsonde.
Fig. 3
zeigt perspektivisch das Eichmodul nach Fig. 1.
The invention is explained in more detail below with reference to an embodiment shown in the drawings.
Fig. 1
shows schematically in section the arrangement of a calibration module according to the invention in a coin channel section.
Fig. 2
shows the interaction of coils of the calibration module with those of an electromagnetic test probe.
Fig. 3
shows the calibration module according to FIG. 1 in perspective.

In Fig. 1 ist eine Halteplatte 10 eines nicht weiter dargestellten Münzprüfers gezeigt, die mit einer Laufbahnträgerplatte 12 und einer Laufbahn 14 einen Münzkanal 16 bildet, durch den sich eingeworfene Münzen hindurchbewegen. Dem Münzkanal 16 oder Münzkanalabschnitt sind mehrere Meßsonden zugeordnet, von denen in Fig. 1 eine bei 18 dargestellt ist. Sie besteht aus zwei Spulen L1 und L2, von denen jeweils eine an der Halteplatte 10 und der Laufbahnträgerplatte 12 angebracht ist. Es versteht sich, daß auch eine einseitig angeordnete Meßsonde vorgesehen sein kann.In Fig. 1, a holding plate 10 of a coin validator, not shown, is shown, which forms a coin channel 16 with a raceway support plate 12 and a raceway 14, through which inserted coins move. Several measuring probes are assigned to the coin channel 16 or coin channel section, one of which is shown at 18 in FIG. 1. It consists of two coils L1 and L2, one of which is attached to the holding plate 10 and the raceway support plate 12. It goes without saying that a measuring probe arranged on one side can also be provided.

In Fig. 1 ist ferner ein flaches Gehäuse 20 eines Eichmoduls 22 im Münzkanal 16 angeordnet. Die äußeren Abmessungen sind derart, daß das Gehäuse 20 mit ein wenig Spiel, jedoch relativ passend einsetzbar ist. Nicht gezeigte Mittel dienen dazu, das Gehäuse 20 in einer vorgegebenen Position im Kanal 16 zu halten und zu sichern. Im Gehäuse 20 sind Luftspulen L3 angeordnet. In Fig. 1 sind zwei dargestellt, in Fig. 3 drei. Jede Luftspule L3 ist einem Spulenpaar L1, L2 zugeordnet. Sie sind mittels Leitungen 24 mit einem nicht gezeigten Simulationsgenerator verbunden.In Fig. 1, a flat housing 20 of a calibration module 22 is also arranged in the coin channel 16. The outer dimensions are such that the housing 20 can be used with a little play, but is relatively suitable. Means, not shown, serve to hold and secure the housing 20 in a predetermined position in the channel 16. Air coils L3 are arranged in the housing 20. In Fig. 1 two are shown, in Fig. 3 three. Each air coil L3 is assigned to a pair of coils L1, L2. They are connected by means of lines 24 to a simulation generator, not shown.

Fig. 2 gibt das Ersatzschaltbild zweier Spulenpaare L1, L2 mit einer Luftspule L3 wieder. Der Simulationsgenerator erzeugt ein Steuersignal für die Luftspulen L3, das den Hindurchlauf einer Münze durch das elektromagnetische Feld der Spulen L1 und L2 simuliert. Es handelt sich dabei um ein amplitudenmoduliertes Signal, wobei die Modulationszeit in der Größenordnung der Durchlaufzeit der Münzen durch das Feld der Spulen L1 und L2 liegt. Bei den drei Spulen L3 ist außerdem die zeitliche Abfolge der an die einzelnen Luftspulen gelegten Signale so gewählt, daß sie der Zeitfolge entspricht, in der die Münze die magnetischen Sonden passiert.2 shows the equivalent circuit diagram of two coil pairs L1, L2 with an air coil L3. The simulation generator generates a control signal for the air coils L3, which simulates the passage of a coin through the electromagnetic field of the coils L1 and L2. It is an amplitude-modulated signal, the modulation time being in the order of the transit time of the coins through the field of coils L1 and L2. In the case of the three coils L3, the time sequence of the signals applied to the individual air coils is also selected so that it corresponds to the time sequence in which the coin passes the magnetic probes.

Claims (19)

Verfahren zum Eichen eines mindestens eine Meßsonde aufweisenden Münzprüfers, bei dem aus eine physikalische Eigenschaft einer akzeptierbaren Münze repräsentierenden Meßsignalen der Meßsonde Referenzsignale gewonnen werden, die in einem programmierbaren Speicher des Münzprüfers eingespeichert werden, dadurch gekennzeichnet, daß mit Hilfe eines in den die Meßsonde enthaltenden Kanalabschnitts eingeführten Eichmoduls mindestens ein Meßsignal erzeugt wird und aus dem Meßsignal ein Eichfaktor errechnet wird zwecks Ermittlung des spezifischen Referenzwertes für den jeweiligen Münzprüfer.Method for calibrating a coin validator having at least one measuring probe, in which reference signals are obtained from measuring signals of the measuring probe representing a physical property of an acceptable coin, which are stored in a programmable memory of the coin validator, characterized in that with the aid of a channel section containing the measuring probe introduced calibration module at least one measurement signal is generated and a calibration factor is calculated from the measurement signal for the purpose of determining the specific reference value for the respective coin validator. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das vom eichmodul erzeugte Meßsignal in seiner Funktion von der Zeit dem zeitlichen Verlauf des von der akzeptierbaren Münze erzeugten Meßsignals entspricht.A method according to claim 1, characterized in that the function of the measurement signal generated by the calibration module corresponds in time to the time course of the measurement signal generated by the acceptable coin. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Eichmodul die physikalische Eigenschaft einer akzeptierbaren Münze der Größe nach simuliert.Method according to claim 1 or 2, characterized in that the calibration module simulates the physical property of an acceptable coin in size. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Eichmodul die physikalische Eigenschaft einer akzeptierbaren Münze unabhängig von ihrer Größe simuliert.Method according to claim 1 or 2, characterized in that the calibration module has the physical property simulated an acceptable coin regardless of its size. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der dem Meßsignal entsprechende Meßwert im programmierbaren Speicher gespeichert wird, daß in einem programmierbaren Speicher einer externen Rechenvorrichtung akzeptierbaren Münzen entsprechende Korrelationsfunktionen gespeichert werden und die Rechenvorrichtung mittels einer der Korrelationsfunktionen aus dem Meßwert den Referenzwert für eine gewünschte akzeptierbare Münze errechnet und der Referenzwert anschließend in den programmierbaren Speicher des Münzprüfers eingespeichert wird.Method according to Claim 4, characterized in that the measured value corresponding to the measurement signal is stored in the programmable memory, that corresponding correlation functions are stored in a programmable memory of an external computing device, and the computing device uses one of the correlation functions to calculate the reference value for a desired acceptable value from the measured value The coin is calculated and the reference value is then stored in the programmable memory of the coin validator. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß bei mehreren Meßsonden des Münzprüfers jeweils für jede Meßsonde mindestens ein Meßsignal erzeugt wird.Method according to one of claims 1 to 5, characterized in that in the case of several measuring probes of the coin validator, at least one measuring signal is generated for each measuring probe. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die zeitliche Abfolge der Meßsignale annähernd der Zeitfolge entspricht, mit der eine Münze die Meßsonden passiert.Method according to claim 6, characterized in that the chronological sequence of the measurement signals approximately corresponds to the chronological sequence with which a coin passes the measuring probes. Vorrichtung zum Eichen eines mindestens eine Münze akzeptierenden Münzprüfers, der mindestens eine einem Münzkanalabschnitt zugeordnete Meßsonde aufweist, die bei einer den Kanalabschnitt entlanglaufenden Münze ein einer physikalischen Eigenschaft der Münze repräsentierendes Meßsignal erzeugt, und einem programmierbaren Speicher, in dem mindestens ein Referenzwert gespeichert ist zwecks Vergleich mit einem dem Meßsignal entsprechenden Meßwert, insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß ein in den Kanalabschnitt (16) einführbarer und darin in einer vorgegebenen Position fixierbares Eichmodul (22) vorgesehen ist, das mindestens einen die physikalischen Eigenschaft simulierenden Simulationsabschnitt (L3) aufweist, das mit der Meßsonde (L1, L2) in Wechselwirkung tritt und der Simulationsabschnitt (L3) mit einem Simulationsgenerator verbunden ist, der ein Steuersignal auf den Simulationsabschnitt gibt.Device for calibrating a coin acceptor accepting at least one coin, which has at least one measuring probe assigned to a coin channel section, which generates a measurement signal representing a physical property of the coin when a coin runs along the channel section, and a programmable memory in which at least one reference value is stored for comparison with a measurement value corresponding to the measurement signal, in particular for carrying out the method according to one of claims 1 to 7, characterized in that a calibration module (22) which can be inserted into the channel section (16) and is fixed therein in a predetermined position is provided, which has at least one of the Has physical property simulating simulation section (L3) which interacts with the measuring probe (L1, L2) and the simulation section (L3) is connected to a simulation generator which gives a control signal to the simulation section. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Simulationsgenerator außerhalb des Kanalabschnitts (16) angeordnet und mit dem Simulationsmodul über elektrische Leitungen (24) verbunden ist.Apparatus according to claim 8, characterized in that the simulation generator is arranged outside the channel section (16) and is connected to the simulation module via electrical lines (24). Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß die Konfiguration des Simulationsabschnitts (L3) im Kanalabschnitt (16) mit der der Meßsonde (L1, L2) übereinstimmt.Device according to claim 8 or 9, characterized in that the configuration of the simulation section (L3) in the channel section (16) corresponds to that of the measuring probe (L1, L2). Vorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß der Simulationsabschnitt verstellbar ist.Device according to one of claims 8 to 10, characterized in that the simulation section is adjustable. Vorrichtung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß das Eichmodul (22) derartige Außenabmessungen aufweist, daß es passend im Kanalabschnitt (16) einsitzt.Device according to one of claims 8 to 11, characterized in that the calibration module (22) has such external dimensions that it fits in the channel section (16). Vorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß der Simulationsabschnitt mindestens eine Magnetspule, vorzugsweise Luftspule (L3), zur Erzeugung eines elektromagnetischen Feldes aufweist.Device according to one of claims 8 to 12, characterized in that the simulation section has at least one magnetic coil, preferably air coil (L3), for generating an electromagnetic field. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß der Signalgenerator so ausgebildet ist, daß er nach Zeit und Amplitude unterschiedliche Signalverläufe wie Sinusform, Rechteckform usw. erzeugt.Apparatus according to claim 13, characterized in that the signal generator is designed such that it generates different signal profiles such as sinusoidal shape, rectangular shape, etc., according to time and amplitude. Vorrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß das Steuersignal amplitudenmoduliert ist und die Modulationszeit in der Größenordnung der Durchlaufzeit der Münze durch das Feld der Magnetspule des Münzprüfers liegt.Apparatus according to claim 13 or 14, characterized in that the control signal is amplitude modulated and the modulation time is in the order of the transit time of the coin through the field of the magnetic coil of the coin validator. Vorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß der Simulationsabschnitt eine verstellbare Blende aufweist.Device according to one of claims 8 to 12, characterized in that the simulation section has an adjustable diaphragm. Vorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß der Simulationsabschnitt einen verstellbaren Reflexionsabschnitt aufweist.Device according to one of claims 8 to 12, characterized in that the simulation section has an adjustable reflection section. Vorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß der Simulationsabschnitt ein verstellbares Prallelement aufweist.Device according to one of claims 8 to 12, characterized in that the simulation section has an adjustable impact element. Vorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß der Simulationsabschnitt ein verstellbares Masseelement aufweist.Device according to one of claims 8 to 12, characterized in that the simulation section has an adjustable mass element.
EP93114537A 1992-10-02 1993-09-10 Apparatus and method for calibrating a coin tester Expired - Lifetime EP0590381B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4233194 1992-10-02
DE4233194A DE4233194C2 (en) 1992-10-02 1992-10-02 Method for calibrating a coin acceptor accepting at least one coin and calibration module

Publications (3)

Publication Number Publication Date
EP0590381A2 true EP0590381A2 (en) 1994-04-06
EP0590381A3 EP0590381A3 (en) 1995-11-02
EP0590381B1 EP0590381B1 (en) 1999-04-07

Family

ID=6469507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93114537A Expired - Lifetime EP0590381B1 (en) 1992-10-02 1993-09-10 Apparatus and method for calibrating a coin tester

Country Status (4)

Country Link
US (1) US5495931A (en)
EP (1) EP0590381B1 (en)
DE (2) DE4233194C2 (en)
ES (1) ES2131547T3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9611659D0 (en) * 1996-06-05 1996-08-07 Coin Controls Coin validator calibration
US6298973B1 (en) 1999-11-10 2001-10-09 Parker Engineering & Manufacturing Co., Inc. Multiple coin analyzer system
JP2001175912A (en) * 1999-12-21 2001-06-29 Laurel Bank Mach Co Ltd Coin discriminating device
US7635059B1 (en) 2000-02-02 2009-12-22 Imonex Services, Inc. Apparatus and method for rejecting jammed coins

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918565A (en) * 1972-10-12 1975-11-11 Mars Inc Method and apparatus for coin selection utilizing a programmable memory
DE2452710A1 (en) * 1974-11-06 1976-05-13 Siemens Ag Coin simulating device testing - comprises coil with variable electrical elements controlled by oscillator
EP0072189A2 (en) * 1981-08-10 1983-02-16 LANDIS &amp; GYR COMMUNICATIONS (U.K.) LTD. A method and apparatus for calibrating a coin validation apparatus
EP0101276A2 (en) * 1982-08-06 1984-02-22 Kabushiki Kaisha Universal Method of and apparatus for discriminating coins or bank notes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8400046D0 (en) * 1984-01-03 1984-02-08 Starpoint Electrics Ltd Coin checking
ES8607594A1 (en) * 1983-12-06 1986-05-16 Mars Inc Tokens and token handling devices.
JPH0654509B2 (en) * 1988-08-11 1994-07-20 株式会社日本コンラックス Coin sorting accuracy setting device
US5056644A (en) * 1988-08-12 1991-10-15 Parker Donald O Coin analyzer system and apparatus
US5067604A (en) * 1988-11-14 1991-11-26 Bally Manufacturing Corporation Self teaching coin discriminator
JP2936752B2 (en) * 1991-03-04 1999-08-23 富士電機株式会社 Coin sorting equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918565A (en) * 1972-10-12 1975-11-11 Mars Inc Method and apparatus for coin selection utilizing a programmable memory
US3918565B1 (en) * 1972-10-12 1993-10-19 Mars, Incorporated Method and apparatus for coin selection utilizing a programmable memory
DE2452710A1 (en) * 1974-11-06 1976-05-13 Siemens Ag Coin simulating device testing - comprises coil with variable electrical elements controlled by oscillator
EP0072189A2 (en) * 1981-08-10 1983-02-16 LANDIS &amp; GYR COMMUNICATIONS (U.K.) LTD. A method and apparatus for calibrating a coin validation apparatus
EP0101276A2 (en) * 1982-08-06 1984-02-22 Kabushiki Kaisha Universal Method of and apparatus for discriminating coins or bank notes

Also Published As

Publication number Publication date
DE4233194A1 (en) 1994-04-07
DE4233194C2 (en) 1995-09-21
DE59309498D1 (en) 1999-05-12
ES2131547T3 (en) 1999-08-01
EP0590381A3 (en) 1995-11-02
US5495931A (en) 1996-03-05
EP0590381B1 (en) 1999-04-07

Similar Documents

Publication Publication Date Title
DE69028209T2 (en) METHOD AND DEVICE FOR CHECKING MONEY FOR MONEY
DE2612613C3 (en) Method and circuit arrangement for identifying objects, in particular coins or securities
DE2350989C2 (en)
DE69025373T2 (en) Calibration procedure for an optical attenuator
DE3345252C2 (en)
WO1991006392A1 (en) Process and device for automatic determination of parameters for process control systems with unknown transfer behaviour, in particular for process control systems for resistance spot welding
DE69819532T2 (en) METHOD AND DEVICE FOR CHECKING COINS
CH655810A5 (en) Coin validator that test a variety coin thicknesses AND / OR coin diameters and / OR coin alloys.
EP0590381B1 (en) Apparatus and method for calibrating a coin tester
DE2716740A1 (en) Automatic coin checking system - uses capacitive and/or inductive sensors generating signals compared with reference values relating to size, denomination and material
EP0704825B1 (en) Device for authenticating coins, tokens or other flat metal objects
EP0520230B1 (en) Method for operating an electronic coin discriminator
DE69620700T2 (en) Method and device for identifying coins
DE69115246T2 (en) DEVICE AND METHOD FOR OBTAINING THE MECHANICAL PROPERTIES OF COINS.
EP0602474B1 (en) Method for calibration of a coin validation apparatus
DE10336493A1 (en) Apparatus and method for determining surface properties
DE4138018C1 (en)
DE4339543C2 (en) Procedure for checking coins
DE69503383T3 (en) DEVICE FOR CHECKING VALUE OBJECTS AND METHOD FOR CALIBRATING SUCH A DEVICE
DE3439578A1 (en) Device for measuring the MTF
DE3033204A1 (en) METHOD AND DEVICE FOR IDENTIFYING COINS OR THE LIKE
DE4025073C2 (en) Procedure for checking two or more coins of different values
DE3436117C2 (en)
DE69821083T2 (en) Device and method for checking the validity of means of payment
DE10248972B4 (en) A method of inspecting coins and coin-like items and a coin validator therefor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19960226

17Q First examination report despatched

Effective date: 19970109

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990407

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990407

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19990407

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990408

REF Corresponds to:

Ref document number: 59309498

Country of ref document: DE

Date of ref document: 19990512

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2131547

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050628

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050705

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050907

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051111

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060910

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060910

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061002