EP0584776A2 - Information processing method and apparatus - Google Patents
Information processing method and apparatus Download PDFInfo
- Publication number
- EP0584776A2 EP0584776A2 EP93113471A EP93113471A EP0584776A2 EP 0584776 A2 EP0584776 A2 EP 0584776A2 EP 93113471 A EP93113471 A EP 93113471A EP 93113471 A EP93113471 A EP 93113471A EP 0584776 A2 EP0584776 A2 EP 0584776A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- character
- character pattern
- information
- feature
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/18—Extraction of features or characteristics of the image
- G06V30/186—Extraction of features or characteristics of the image by deriving mathematical or geometrical properties from the whole image
- G06V30/187—Frequency domain transformation; Autocorrelation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
Definitions
- the present invention relates to an information processing method and apparatus thereof which processes various processings by using an input character pattern.
- a coordinate input apparatus using various input pens, tablets, and digitizers is well known.
- Information on character patterns and drawings inputted from such coordinate input apparatus is displayed on a display apparatus such as a liquid crystal display and CRT display, or outputted to a recording apparatus such as a printer.
- the coordinate information representing the input handwritten character pattern is stored or displayed as corresponding coordinate data.
- the coordinate data representing a character pattern is all stored, a massive amount of data needs to be stored.
- the coordinate data is transformed to a character code by using a character recognition technique.
- the coordinate data representing an original handwritten character pattern cannot be reproduced from the character code transformed in the way. Therefore, if an operator tries to output a particular character pattern in its own handwriting, once the original handwritten character pattern has been transformed to the character code, it is impossible to reproduce and output it.
- Fig. 1 is a block diagram illustrating a functional construction of a character input apparatus of an embodiment.
- numeral 1 is a coordinate input unit such as a digitizer. An operator can input a handwritten character by using an input pen.
- Numeral 2 is a coordinate data processing unit which extracts coordinate information inputted in a character unit from the input unit 1 and outputs a set of the coordinate data.
- Numeral 3 is a character recognition unit which inputs the coordinate data from the coordinate data processing unit 2, compares with reference character patterns stored in a sample character registration unit 4, recognizes the input character, and outputs the corresponding character code.
- the sample character registration unit 4 includes a dictionary 40 storing the reference character patterns which are compared/referred during the character recognition by the character recognition unit 3, and a feature dictionary 41 (refer to Fig. 2) storing the feature information of handwriting from the input unit 1 which is extracted in a feature extraction unit 6 (to be described later) so as to correspond to each character pattern.
- Numeral 5 is a recognition result storage which stores code information illustrating the result of the character recognition unit 3.
- the feature extraction unit 6 extracts the feature of the coordinate information inputted from the input unit 1. For example, the input character information is subjected to spectrum analysis by using a Fast Fourier Transform (FFT), and high frequency component and low frequency components are outputted as feature data.
- FFT Fast Fourier Transform
- Numeral 7 is a transformer which refers to handwriting feature which is extracted from the feature extraction unit 6 and the feature dictionary 41 of the sample character registration unit 4, and the character pattern from the sample character registration unit 4 and the features of the operator's handwriting are corresponded.
- Numeral 8 is a feature data storage which stores the character pattern having a unique characteristic of the operator's handwriting which is determined in the transformer 7 in a form of feature data.
- the information stored in the recognition result storage 5 and feature data storage 8 is displayed on a display 10 by a data processing unit 9, and via the data processing unit 9 which processes information such as commands, the information may be transmitted to a recording apparatus (not shown) or other terminal via a network.
- the character pattern inputted by the operator from the input unit 1 is which character is determined, by referring to the feature dictionary 41 of the sample character registration unit 4, by using low frequency components obtained from the spectrum analysis in the feature extraction unit 6.
- the character information inputted by the input unit 1 is recognized by the character recognition unit 3, and the character is recognized. More detailed features on the determined character are obtained by using the high frequency components from the spectrum analysis and the features of the inputted character pattern are extracted.
- the extracted feature data f p is made to correspond to a character, and the unique character pattern for the operator is determined, and stored in the feature data storage 8.
- Fig. 2 is a block diagram illustrating a general construction of the character input apparatus of the embodiment. The portions which are identical to Fig. 1 are indicated by the same reference numerals and the descriptions are not needed.
- numeral 201 is a CPU which controls the overall apparatus
- numeral 202 is a ROM which stores a control program of the CPU 201 and various data.
- Numeral 6 is a Fast Fourier transform (FFT) unit which performs feature extraction.
- the FFT unit 6 comprises of a hardware, however, transform can be executed by software.
- Numeral 205 is an external memory such as a floppy disk or hard disk which performs input/output of data with a system bus 206 via a controller 204.
- the input unit 1 is the coordinate input apparatus such as a digitizer having a transparent coordinate input panel.
- a display 10 is provided underneath a coordinate input surface of the input panel, and displays the character pattern inputted from the coordinate input surface and sample character patterns and so on.
- Numerals 213 and 214 are interfaces (I/F), each of which controls an interface with the input unit 1 or the display 10.
- the RAM 203 is used as a work area of the CPU 201, and can temporary store various data.
- the recognition result 50 and the feature data 80 are stored in the RAM 203, however, the data can be stored in the external memory 205 such as a hard disk.
- the coordinate data processing unit 2, character recognition unit 3, transformer 7, and data processing unit 9 in Fig. 1 are executed by the control program stored in the ROM 202. However, they can be executed by a dedicated hardware circuit.
- Fig. 3A shows the handwritten character pattern of the character "S" which is inputted from the input unit 1 by the operator.
- Fig. 3B shows an example of the character pattern of the character "S” which is stored in the dictionary 40 of the sample character registration unit 4 as a sample character pattern.
- Fig. 3C shows the character pattern obtained in a manner such that the input handwritten character "S" pattern shown in Fig. 3A is subjected to the Fast Fourier Transform.
- Fig. 3D shows the character obtained in a manner such that the sample character "S" pattern shown in Fig. 3B is subjected to the Fast Fourier Transform.
- the feature data can be stored in the feature data 41 of the sample character registration unit 4.
- Fig. 3C which shows the result of the Fast Fourier Transform of the input character pattern is compared with Fig. 3D which is the result of the Fast Fourier Transform of the sample character (Fig. 3B). If they are similar, the input character pattern is determined as the character "S".
- the method for determining the character can be a vector recognition.
- Fig. 4A and Fig. 4B show the example where feature pattern is extracted from the high frequency component obtained when sweep and curve of the character pattern which is unique to the operator (who input the character pattern shown in Fig. 3) is subjected to the spectrum analysis.
- Fig. 4A shows the handwritten character pattern inputted by the input unit 1
- Fig. 4B shows the character pattern in which the feature is extracted in a form of the high frequency components though the spectrum analysis of the handwritten character pattern shown n Fig. 4A.
- the high frequency components representing the features are determined as feature data f p and these are stored in the feature data storage 8.
- Figs. 5A and 5B are the example where the feature data f p extracted in the feature extraction unit 6 is multiplied by the character pattern obtained in a manner such that the other sample character pattern in the dictionary 40 of the sample character registration unit 4 is subjected to the Fast Fourier Transform, and transformed to the character pattern having a unique feature of the operator's handwritten character pattern. Furthermore, when the feature data is stored in the feature data storage 8, it can be multiplied by the feature data f p directly.
- Fig. 5A shows a transformed character pattern where the sample character pattern "f" is outputted from the dictionary 40 of the sample character registration unit 4, and the Fast Fourier Transform is performed on it by using the feature extraction unit 6.
- Fig. 5B shows the character pattern obtained by multiplying the Fourier transformed character pattern by the feature data f p extracted in the feature extraction unit 6. In this way, the character pattern corresponding to the operator's handwritten character pattern can be outputted from the sample character pattern.
- the obtained character pattern can be stored in the feature data storage 8.
- Fig. 3 is the example where extraction is performed in a character unit
- Fig. 8 is an example where extraction is performed word by word.
- a word is inputted in alphabetical character patterns
- the data capacity of the dictionary increases, but features of an individual handwriting are extracted easier than the case of feature extraction a character by character.
- the feature data f p is extracted from the character pattern of the input word, spelling can be checked at the same time.
- Fig. 8A shows the character pattern of the word "patent” which is inputted from the input unit 1 by the operator.
- Fig. 8B shows an example of the character pattern of the word "patent” which is stored in the dictionary 40 of the sample character registration unit 4 as a sample character pattern.
- Fig. 8C shows the character pattern obtained in a manner such that the input word "patent” shown in Fig. 8A is subjected to the Fast Fourier Transform.
- Fig. 8D shows the character pattern obtained in a manner such that the sample character pattern "patent” shown in Fig. 8B is subjected to the Fast Fourier Transform.
- the feature data can be stored in the feature data 41 of the sample character registration unit 4.
- the character recognition processing using the feature data is described with reference to Fig. 6.
- the control program which executes the processing is stored in the ROM 202.
- step S1 when a character pattern (handwritten character) is inputted from the input unit 1, the process proceeds to step S2 where a spectrum (feature data of the input character pattern) is extracted from the input character pattern.
- the feature data is stored in the feature data storage 8 of the ROM 203.
- step S3 the feature data and the feature dictionary of the sample character registration unit 4 are compared, and it is determined whether or not a pertinent character is present. If there is the pertinent character, the process proceeds to step S4 where the determined character is outputted as a result of recognition.
- step S5 when the recognition cannot be executed at step S3, the process proceeds to step S5 where a message indicative of impossibility of character recognition or a list of candidate characters is outputted.
- Fig. 7 is a flowchart illustrating the processing to store the input character pattern in a form of feature data and display or output the character pattern showing the feature of the input character pattern.
- the control program which executes the processing is also stored in the ROM 202.
- a handwritten character pattern is inputted, and at step S12, the feature data f p of the character pattern is obtained.
- the feature data f p is stored in the feature data storage 8 of the RAM 203 (step S13).
- the process proceeds to step S14 where a pertinent sample character pattern is read out from the sample character registration unit 4 in order to output the character in a character form inputted from the input unit 1 and the Fast Fourier Transform is performed on the sample character pattern.
- the Fourier transformed data of the sample pattern is multiplied by the feature data f p . Accordingly, as shown in Fig. 5B, the character pattern obtained by transforming the sample character pattern to correspond to the operator's handwriting can be obtained, thus, an output in a desired character pattern is obtained.
- the present invention can be applied to a system constituted by a plurality of devices, or to an apparatus comprising a single device. Furthermore, it goes without saying that the invention is applicable also to a case where the object of the invention is attained by supplying a program to a system or apparatus.
- an apparatus capable of outputting the character pattern having the unique feature of the operator's handwriting can be provided without storing the coordinate data.
- An information processing apparatus and method which performs character recognition based on a character pattern inputted in a form of a handwritten character or coordinate data.
- a sample character registration unit stores feature data of a sample character pattern
- a feature extraction unit obtains feature information of the input character pattern from the input coordinate data by FFT.
- the coordinate data representing the input character pattern and the sample character pattern registered in the sample character registration unit are compared, and a sample character corresponding to the input character pattern is recognized.
- the sample character pattern is transformed and displayed in accordance with the characteristic of the input character pattern based on the feature information from the feature extraction unit.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Mathematical Analysis (AREA)
- Algebra (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Character Discrimination (AREA)
- Controls And Circuits For Display Device (AREA)
Abstract
Description
- The present invention relates to an information processing method and apparatus thereof which processes various processings by using an input character pattern.
- Conventional input apparatus for inputting handwritten character patterns and drawings to a processor such as a computer, a coordinate input apparatus using various input pens, tablets, and digitizers is well known. Information on character patterns and drawings inputted from such coordinate input apparatus is displayed on a display apparatus such as a liquid crystal display and CRT display, or outputted to a recording apparatus such as a printer. Furthermore, the coordinate information representing the input handwritten character pattern is stored or displayed as corresponding coordinate data.
- However, when the coordinate data representing a character pattern is all stored, a massive amount of data needs to be stored. In order to reduce the data amount, the coordinate data is transformed to a character code by using a character recognition technique. However, the coordinate data representing an original handwritten character pattern cannot be reproduced from the character code transformed in the way. Therefore, if an operator tries to output a particular character pattern in its own handwriting, once the original handwritten character pattern has been transformed to the character code, it is impossible to reproduce and output it.
- In order to prevent the inconvenience, if the information of the input handwritten character is all stored as coordinate data, as described earlier, it is a considerable amount of the data and a large memory capacity is required, resulting in cost increase of the apparatus.
- In light of the conventional technique, it is an object of the present invention to provide an information processing method and apparatus capable of recognizing a character from a handwritten character pattern inputted by an operator, and outputting the character pattern corresponding to the handwriting.
- It is another object of the present invention to provide an information processing method and apparatus capable of suppressing increase of a memory capacity, storing the input character pattern in a form of feature information, and outputting a character pattern corresponding to the operator's handwriting.
- It is another object of the present invention to provide an information processing method and apparatus capable of recognizing a handwritten character pattern inputted by the operator, storing the recognized character as a code, and outputting the character pattern corresponding to the operator's handwriting when the character reading out is instructed.
- Other features and advantages of the present invention will be apparent from the following description taken in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the figures thereof.
- The accompanying drawings, which are incorporated and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
- Fig. 1 is a block diagram illustrating a functional construction of a character input apparatus of an embodiment of the present invention;
- Fig. 2 is a block diagram illustrating a general construction of the character input apparatus of the embodiment;
- Figs. 3A-3D respectively show the input character pattern, sample character pattern corresponding to the input character pattern, and the examples where the Fast Fourier Transform is applied to those patterns;
- Figs. 4A-4B respectively show an example of input character pattern, and an example of the character pattern where the input character pattern is multiplied by feature data;
- Figs. 5A-5B respectively show an example where the Fast Fourier Transform is applied to another character, and an example of the character pattern where the Fourier transformed character pattern is multiplied by feature data;
- Fig. 6 is a flowchart illustrating the processing which inputs a character pattern in the character input apparatus and processes a character recognition based on the feature data;
- Fig. 7 is a flowchart illustrating an output processing of the character pattern which corresponds to the operator's handwriting from the sample character patterns in the character input apparatus; and
- Figs. 8A-8D respectively show the input character pattern, sample character pattern corresponding to the input character pattern, and the examples where the Fast Fourier Transform is applied to those patterns.
-
- Preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.
- Fig. 1 is a block diagram illustrating a functional construction of a character input apparatus of an embodiment.
- In Fig. 1, numeral 1 is a coordinate input unit such as a digitizer. An operator can input a handwritten character by using an input pen.
Numeral 2 is a coordinate data processing unit which extracts coordinate information inputted in a character unit from the input unit 1 and outputs a set of the coordinate data.Numeral 3 is a character recognition unit which inputs the coordinate data from the coordinatedata processing unit 2, compares with reference character patterns stored in a sample character registration unit 4, recognizes the input character, and outputs the corresponding character code. - The sample character registration unit 4 includes a
dictionary 40 storing the reference character patterns which are compared/referred during the character recognition by thecharacter recognition unit 3, and a feature dictionary 41 (refer to Fig. 2) storing the feature information of handwriting from the input unit 1 which is extracted in a feature extraction unit 6 (to be described later) so as to correspond to each character pattern. Numeral 5 is a recognition result storage which stores code information illustrating the result of thecharacter recognition unit 3. Thefeature extraction unit 6 extracts the feature of the coordinate information inputted from the input unit 1. For example, the input character information is subjected to spectrum analysis by using a Fast Fourier Transform (FFT), and high frequency component and low frequency components are outputted as feature data. Numeral 7 is a transformer which refers to handwriting feature which is extracted from thefeature extraction unit 6 and thefeature dictionary 41 of the sample character registration unit 4, and the character pattern from the sample character registration unit 4 and the features of the operator's handwriting are corresponded.Numeral 8 is a feature data storage which stores the character pattern having a unique characteristic of the operator's handwriting which is determined in the transformer 7 in a form of feature data. - The information stored in the recognition result storage 5 and
feature data storage 8 is displayed on adisplay 10 by adata processing unit 9, and via thedata processing unit 9 which processes information such as commands, the information may be transmitted to a recording apparatus (not shown) or other terminal via a network. - With the above construction, the character pattern inputted by the operator from the input unit 1 is which character is determined, by referring to the
feature dictionary 41 of the sample character registration unit 4, by using low frequency components obtained from the spectrum analysis in thefeature extraction unit 6. On the other hand, the character information inputted by the input unit 1 is recognized by thecharacter recognition unit 3, and the character is recognized. More detailed features on the determined character are obtained by using the high frequency components from the spectrum analysis and the features of the inputted character pattern are extracted. The extracted feature data fp is made to correspond to a character, and the unique character pattern for the operator is determined, and stored in thefeature data storage 8. - Fig. 2 is a block diagram illustrating a general construction of the character input apparatus of the embodiment. The portions which are identical to Fig. 1 are indicated by the same reference numerals and the descriptions are not needed.
- In Fig. 2,
numeral 201 is a CPU which controls the overall apparatus,numeral 202 is a ROM which stores a control program of theCPU 201 and various data.Numeral 6 is a Fast Fourier transform (FFT) unit which performs feature extraction. In the embodiment, theFFT unit 6 comprises of a hardware, however, transform can be executed by software. Numeral 205 is an external memory such as a floppy disk or hard disk which performs input/output of data with asystem bus 206 via acontroller 204. The input unit 1 is the coordinate input apparatus such as a digitizer having a transparent coordinate input panel. Adisplay 10 is provided underneath a coordinate input surface of the input panel, and displays the character pattern inputted from the coordinate input surface and sample character patterns and so on.Numerals 213 and 214 are interfaces (I/F), each of which controls an interface with the input unit 1 or thedisplay 10. TheRAM 203 is used as a work area of theCPU 201, and can temporary store various data. In the embodiment, the recognition result 50 and thefeature data 80 are stored in theRAM 203, however, the data can be stored in theexternal memory 205 such as a hard disk. - Furthermore, in the embodiment, the coordinate
data processing unit 2,character recognition unit 3, transformer 7, anddata processing unit 9 in Fig. 1 are executed by the control program stored in theROM 202. However, they can be executed by a dedicated hardware circuit. - The general operation of the character input apparatus of the embodiment is described with reference to Figs. 3-5.
- Fig. 3A shows the handwritten character pattern of the character "S" which is inputted from the input unit 1 by the operator. Fig. 3B shows an example of the character pattern of the character "S" which is stored in the
dictionary 40 of the sample character registration unit 4 as a sample character pattern. Fig. 3C shows the character pattern obtained in a manner such that the input handwritten character "S" pattern shown in Fig. 3A is subjected to the Fast Fourier Transform. Fig. 3D shows the character obtained in a manner such that the sample character "S" pattern shown in Fig. 3B is subjected to the Fast Fourier Transform. The feature data can be stored in thefeature data 41 of the sample character registration unit 4. - Fig. 3C which shows the result of the Fast Fourier Transform of the input character pattern is compared with Fig. 3D which is the result of the Fast Fourier Transform of the sample character (Fig. 3B). If they are similar, the input character pattern is determined as the character "S". In this case, the method for determining the character can be a vector recognition.
- Fig. 4A and Fig. 4B show the example where feature pattern is extracted from the high frequency component obtained when sweep and curve of the character pattern which is unique to the operator (who input the character pattern shown in Fig. 3) is subjected to the spectrum analysis.
- As similar to Fig. 3A, Fig. 4A shows the handwritten character pattern inputted by the input unit 1, and Fig. 4B shows the character pattern in which the feature is extracted in a form of the high frequency components though the spectrum analysis of the handwritten character pattern shown n Fig. 4A. The high frequency components representing the features are determined as feature data fp and these are stored in the
feature data storage 8. - Figs. 5A and 5B are the example where the feature data fp extracted in the
feature extraction unit 6 is multiplied by the character pattern obtained in a manner such that the other sample character pattern in thedictionary 40 of the sample character registration unit 4 is subjected to the Fast Fourier Transform, and transformed to the character pattern having a unique feature of the operator's handwritten character pattern. Furthermore, when the feature data is stored in thefeature data storage 8, it can be multiplied by the feature data fp directly. - Fig. 5A shows a transformed character pattern where the sample character pattern "f" is outputted from the
dictionary 40 of the sample character registration unit 4, and the Fast Fourier Transform is performed on it by using thefeature extraction unit 6. Fig. 5B shows the character pattern obtained by multiplying the Fourier transformed character pattern by the feature data fp extracted in thefeature extraction unit 6. In this way, the character pattern corresponding to the operator's handwritten character pattern can be outputted from the sample character pattern. The obtained character pattern can be stored in thefeature data storage 8. - Fig. 3 is the example where extraction is performed in a character unit, however, Fig. 8 is an example where extraction is performed word by word. When a word is inputted in alphabetical character patterns, the data capacity of the dictionary increases, but features of an individual handwriting are extracted easier than the case of feature extraction a character by character. Furthermore, when the feature data fp is extracted from the character pattern of the input word, spelling can be checked at the same time.
- Fig. 8A shows the character pattern of the word "patent" which is inputted from the input unit 1 by the operator. Fig. 8B shows an example of the character pattern of the word "patent" which is stored in the
dictionary 40 of the sample character registration unit 4 as a sample character pattern. Fig. 8C shows the character pattern obtained in a manner such that the input word "patent" shown in Fig. 8A is subjected to the Fast Fourier Transform. Fig. 8D shows the character pattern obtained in a manner such that the sample character pattern "patent" shown in Fig. 8B is subjected to the Fast Fourier Transform. The feature data can be stored in thefeature data 41 of the sample character registration unit 4. - The character recognition processing using the feature data is described with reference to Fig. 6. The control program which executes the processing is stored in the
ROM 202. - At step S1, when a character pattern (handwritten character) is inputted from the input unit 1, the process proceeds to step S2 where a spectrum (feature data of the input character pattern) is extracted from the input character pattern. The feature data is stored in the
feature data storage 8 of theROM 203. Then, the process proceeds to step S3 where the feature data and the feature dictionary of the sample character registration unit 4 are compared, and it is determined whether or not a pertinent character is present. If there is the pertinent character, the process proceeds to step S4 where the determined character is outputted as a result of recognition. On the other hand, when the recognition cannot be executed at step S3, the process proceeds to step S5 where a message indicative of impossibility of character recognition or a list of candidate characters is outputted. - Fig. 7 is a flowchart illustrating the processing to store the input character pattern in a form of feature data and display or output the character pattern showing the feature of the input character pattern. The control program which executes the processing is also stored in the
ROM 202. - At step S11, a handwritten character pattern is inputted, and at step S12, the feature data fp of the character pattern is obtained. The feature data fp is stored in the
feature data storage 8 of the RAM 203 (step S13). Then, the process proceeds to step S14 where a pertinent sample character pattern is read out from the sample character registration unit 4 in order to output the character in a character form inputted from the input unit 1 and the Fast Fourier Transform is performed on the sample character pattern. Subsequently, at step S15, the Fourier transformed data of the sample pattern is multiplied by the feature data fp. Accordingly, as shown in Fig. 5B, the character pattern obtained by transforming the sample character pattern to correspond to the operator's handwriting can be obtained, thus, an output in a desired character pattern is obtained. - As described above, according to the embodiment, storage and display/output in the character pattern having a unique feature of the operator's handwriting are possible simply by storing the code information which is obtained through the character recognition and the feature data thereof.
- It is preferable to determine the feature in the
feature extraction unit 6 using as much as data on the operator's handwriting by using a neural network and the like. - The present invention can be applied to a system constituted by a plurality of devices, or to an apparatus comprising a single device. Furthermore, it goes without saying that the invention is applicable also to a case where the object of the invention is attained by supplying a program to a system or apparatus.
- As described, according to the present embodiment, an apparatus capable of outputting the character pattern having the unique feature of the operator's handwriting can be provided without storing the coordinate data.
- As many apparently widely different embodiments of the present invention can be made without departing from the spirit and scope thereof, it is to be understood that the invention is not limited to the specific embodiments thereof except as defined in the appended claims.
- An information processing apparatus and method which performs character recognition based on a character pattern inputted in a form of a handwritten character or coordinate data. A sample character registration unit stores feature data of a sample character pattern, and a feature extraction unit obtains feature information of the input character pattern from the input coordinate data by FFT. The coordinate data representing the input character pattern and the sample character pattern registered in the sample character registration unit are compared, and a sample character corresponding to the input character pattern is recognized. The sample character pattern is transformed and displayed in accordance with the characteristic of the input character pattern based on the feature information from the feature extraction unit.
Claims (17)
- An information processing apparatus which inputs a character pattern and performs character recognition, comprising:
feature extraction means for extracting feature information from the input character pattern;
storage means for storing the sample character information and the feature information of the sample character information so as to correspond to each other;
character recognition means for recognizing a sample character corresponding to the input character pattern from the information of the input character pattern and the sample character information of said storage means; and
transform means for transforming the character pattern of the sample character recognized by said character recognition means in accordance with said feature information. - The information processing apparatus according to claim 1, wherein said feature extraction means performs spectrum analysis on the input character pattern and extracts a first and second feature information.
- The information processing apparatus according to claim 2, wherein said first feature information is formed by using low frequency components of the spectrum analysis.
- The information processing apparatus according to claim 2, wherein said second feature information is formed by using high frequency components of the spectrum analysis.
- The information processing apparatus according to claim 2, wherein said spectrum analysis is performed by a Fast Fourier Transform.
- The information processing apparatus according to claim 2, wherein said character recognition means compares said first and second feature information of said sample character information stored in said storage means, and performs a character recognition.
- The information processing apparatus according to claim 2, wherein said transform means transforms the sample character pattern recognized by said character recognition means in accordance with said second feature information.
- An information processing apparatus which inputs a character pattern and performs character recognition, comprising:
feature extraction means for extracting first feature information from an input character pattern;
storage means for storing the sample character information and feature information of said sample character information so as to correspond to each other;
character determination means for determining a sample character corresponding to the input character pattern by comparing said first feature information and the feature information stored in said storage means;
means for extracting second feature information obtained from high frequency components of the input character pattern to which the spectrum analysis is applied; and
transform means for transforming the character pattern of the sample character determined by said character determination means by said second feature information, and for converting said character pattern of sample character to a character pattern corresponding to the feature of the input character pattern. - The information processing apparatus according to claim 8, wherein said first feature information is extracted based on low frequency components obtained by performing the Fast Fourier Transform on the input character pattern.
- The information processing apparatus according to claim 8, wherein said second feature information is extracted based on high frequency components obtained by performing the Fast Fourier Transform on the input character pattern.
- An information processing apparatus which performs character recognition based on a handwritten character pattern, comprising:
feature extraction means for obtaining feature information from the handwritten character pattern;
storage means for storing reference character patterns and the feature information of the reference character patterns;
character recognition means for performing character recognition by comparing a reference character pattern and the handwritten character pattern; and
transform means for transforming the reference character pattern corresponding to the character recognized by said character recognition means to the reference character pattern having a unique feature of the handwritten character pattern with said character information. - The information processing apparatus according to claim 11, wherein said feature information is high frequency components obtained from the handwritten character pattern to which the spectrum analysis is applied.
- An information processing method comprising the steps of:
inputting a character pattern as coordinate data and obtaining feature information of the input character pattern from the coordinate data;
recognizing a corresponding sample character from input coordinate data;
transforming a character pattern of the sample character pattern based on said feature information; and
displaying/outputting the transformed information. - The information processing method according to claim 13, wherein said feature information is high frequency components of the input character pattern to which the spectrum analysis is applied.
- The information processing method comprising the steps of:
inputting a character pattern as coordinate data, and obtaining a first and second feature information of the input character pattern from the coordinate data;
recognizing a pertinent sample character corresponding to said coordinate data from said first feature information and the feature information of a character pattern of the sample character;
transforming the character pattern of said sample character based on said second feature information; and
displaying/outputting the transformed information. - The information processing method according to claim 15, wherein said first feature information is low frequency components of the input character pattern to which the spectrum analysis is applied.
- The information processing method according to claim 15, wherein said second feature information is high frequency components of the input character pattern to which the spectrum analysis is applied.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP225956/92 | 1992-08-25 | ||
JP22595692A JPH0676117A (en) | 1992-08-25 | 1992-08-25 | Method and device for processing information |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0584776A2 true EP0584776A2 (en) | 1994-03-02 |
EP0584776A3 EP0584776A3 (en) | 1994-12-14 |
Family
ID=16837527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93113471A Ceased EP0584776A3 (en) | 1992-08-25 | 1993-08-24 | Information processing method and apparatus. |
Country Status (3)
Country | Link |
---|---|
US (1) | US5911013A (en) |
EP (1) | EP0584776A3 (en) |
JP (1) | JPH0676117A (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7158678B2 (en) * | 2001-07-19 | 2007-01-02 | Motorola, Inc. | Text input method for personal digital assistants and the like |
CA2375355A1 (en) * | 2002-03-11 | 2003-09-11 | Neo Systems Inc. | Character recognition system and method |
US7567239B2 (en) * | 2003-06-26 | 2009-07-28 | Motorola, Inc. | Method and system for message and note composition on small screen devices |
KR100989011B1 (en) * | 2003-08-21 | 2010-10-20 | 마이크로소프트 코포레이션 | A computer readable recording medium comprising an application programming interface for analyzing electronic ink, an electronic ink analysis method and an analysis context object generation method |
US7616333B2 (en) * | 2003-08-21 | 2009-11-10 | Microsoft Corporation | Electronic ink processing and application programming interfaces |
CN100559364C (en) * | 2003-08-21 | 2009-11-11 | 微软公司 | Be used for method that first data structure and second data structure are coordinated mutually |
WO2005029393A1 (en) | 2003-08-21 | 2005-03-31 | Microsoft Corporation | Electronic ink processing |
WO2005029391A1 (en) * | 2003-08-21 | 2005-03-31 | Microsoft Corporation | Electronic ink processing |
US7502812B2 (en) * | 2003-08-21 | 2009-03-10 | Microsoft Corporation | Electronic ink processing |
US7958132B2 (en) * | 2004-02-10 | 2011-06-07 | Microsoft Corporation | Voting based scheme for electronic document node reuse |
CN100369051C (en) * | 2005-01-11 | 2008-02-13 | 富士通株式会社 | Device for generating grayscale character dictionary |
US8214754B2 (en) | 2005-04-15 | 2012-07-03 | Microsoft Corporation | Registration of applications and complimentary features for interactive user interfaces |
US7796798B2 (en) * | 2006-05-17 | 2010-09-14 | International Business Machines Corporation | Frequency domain based MICR reader |
WO2009052577A1 (en) * | 2007-10-24 | 2009-04-30 | Sensen Networks Pty Ltd | Locating a character region in an image |
US20110060985A1 (en) * | 2009-09-08 | 2011-03-10 | ABJK Newco, Inc. | System and Method for Collecting a Signature Using a Smart Device |
RU2665261C1 (en) * | 2017-08-25 | 2018-08-28 | Общество с ограниченной ответственностью "Аби Продакшн" | Recovery of text annotations related to information objects |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3846752A (en) * | 1972-10-02 | 1974-11-05 | Hitachi Ltd | Character recognition apparatus |
GB2187873A (en) * | 1986-02-14 | 1987-09-16 | William W Marshall | Pattern recognition |
JPS62247485A (en) * | 1986-04-21 | 1987-10-28 | Ricoh Co Ltd | Adding method for information of object character |
US5108206A (en) * | 1986-05-27 | 1992-04-28 | Canon Kabushiki Kaisha | Document outputting apparatus including means to randomly alter fonts |
US5111514A (en) * | 1989-10-05 | 1992-05-05 | Ricoh Company, Ltd. | Apparatus for converting handwritten characters onto finely shaped characters of common size and pitch, aligned in an inferred direction |
JPH04274550A (en) * | 1991-02-28 | 1992-09-30 | Mitsubishi Electric Corp | Method for preparing handwritten character data |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3909785A (en) * | 1973-11-12 | 1975-09-30 | Amperex Electronic Corp | Apparatus for recognizing hand printed characters |
US4344135A (en) * | 1975-11-18 | 1982-08-10 | Stanford Research Institute | Dynamic creation of signatures |
US4817034A (en) * | 1986-02-11 | 1989-03-28 | E.S.P. Systems, Inc. | Computerized handwriting duplication system |
US5208869A (en) * | 1986-09-19 | 1993-05-04 | Holt Arthur W | Character and pattern recognition machine and method |
JP2720590B2 (en) * | 1989-09-20 | 1998-03-04 | 日本電気株式会社 | Pattern recognition device |
US5173788A (en) * | 1990-02-07 | 1992-12-22 | Brother Kogyo Kabushiki Kaisha | Image reading device having moire depressing unit |
ES2051132T3 (en) * | 1990-09-27 | 1994-06-01 | Computer Ges Konstanz | PROCEDURE FOR THE EXTRACTION OF INDIVIDUAL CHARACTERS FROM RETICULATED IMAGES, FOR THE READING OF A PRINTED OR HAND-WRITTEN CHARACTER SEQUENCE WITH FREE DIVISION. |
US5046116A (en) * | 1990-12-14 | 1991-09-03 | Canon Research Center America, Inc. | Symbol analyzing system and method with data exclusion and confidence factors |
US5101437A (en) * | 1991-02-11 | 1992-03-31 | Ecole Polytechnique | Method and apparatus for comparing a test handwritten signature with a reference signature by using information relative to curvilinear and angular velocities of the signature |
US5327342A (en) * | 1991-03-31 | 1994-07-05 | Roy Prannoy L | Method and apparatus for generating personalized handwriting |
JPH05189617A (en) * | 1991-04-15 | 1993-07-30 | Microsoft Corp | Method and apparatus for arc segmentation in handwritten-character recognition |
US5315668A (en) * | 1991-11-27 | 1994-05-24 | The United States Of America As Represented By The Secretary Of The Air Force | Offline text recognition without intraword character segmentation based on two-dimensional low frequency discrete Fourier transforms |
US5463696A (en) * | 1992-05-27 | 1995-10-31 | Apple Computer, Inc. | Recognition system and method for user inputs to a computer system |
US5546538A (en) * | 1993-12-14 | 1996-08-13 | Intel Corporation | System for processing handwriting written by user of portable computer by server or processing by the computer when the computer no longer communicate with server |
US5699456A (en) * | 1994-01-21 | 1997-12-16 | Lucent Technologies Inc. | Large vocabulary connected speech recognition system and method of language representation using evolutional grammar to represent context free grammars |
US5577135A (en) * | 1994-03-01 | 1996-11-19 | Apple Computer, Inc. | Handwriting signal processing front-end for handwriting recognizers |
-
1992
- 1992-08-25 JP JP22595692A patent/JPH0676117A/en active Pending
-
1993
- 1993-08-24 EP EP93113471A patent/EP0584776A3/en not_active Ceased
-
1997
- 1997-06-04 US US08/868,809 patent/US5911013A/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3846752A (en) * | 1972-10-02 | 1974-11-05 | Hitachi Ltd | Character recognition apparatus |
GB2187873A (en) * | 1986-02-14 | 1987-09-16 | William W Marshall | Pattern recognition |
JPS62247485A (en) * | 1986-04-21 | 1987-10-28 | Ricoh Co Ltd | Adding method for information of object character |
US5108206A (en) * | 1986-05-27 | 1992-04-28 | Canon Kabushiki Kaisha | Document outputting apparatus including means to randomly alter fonts |
US5111514A (en) * | 1989-10-05 | 1992-05-05 | Ricoh Company, Ltd. | Apparatus for converting handwritten characters onto finely shaped characters of common size and pitch, aligned in an inferred direction |
JPH04274550A (en) * | 1991-02-28 | 1992-09-30 | Mitsubishi Electric Corp | Method for preparing handwritten character data |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 12, no. 123 (P-690) 16 April 1988 & JP-A-62 247 485 (RICOH CO LTD) * |
PATENT ABSTRACTS OF JAPAN vol. 17, no. 66 (P-1484) 9 February 1993 & JP-A-04 274 550 (MITSUBISHI ELECTRIC CORP.) 30 September 1992 * |
Also Published As
Publication number | Publication date |
---|---|
US5911013A (en) | 1999-06-08 |
JPH0676117A (en) | 1994-03-18 |
EP0584776A3 (en) | 1994-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5513278A (en) | Handwritten character size determination apparatus based on character entry area | |
EP0584776A2 (en) | Information processing method and apparatus | |
US6107994A (en) | Character input method and apparatus arrangement | |
KR100197037B1 (en) | Information processing device and information processing method | |
JP3155577B2 (en) | Character recognition method and device | |
JP3105967B2 (en) | Character recognition method and device | |
US5410612A (en) | Apparatus and method for recognizing characters | |
EP0740245B1 (en) | Handwritten data and command gesture input method and apparatus | |
US6282316B1 (en) | Image processing method and apparatus that use handwritten gestures for editing | |
EP0687991A2 (en) | Information processing method and apparatus | |
US6208756B1 (en) | Hand-written character recognition device with noise removal | |
JP3217084B2 (en) | Handwritten character recognition device | |
KR19980058361A (en) | Korean Character Recognition Method and System | |
JP3977473B2 (en) | Handwritten character recognition method and handwritten character recognition apparatus | |
JP3242224B2 (en) | Handwritten character recognition device | |
JPH10302025A (en) | Handwritten character recognition device and program recording medium thereof | |
JPH03111926A (en) | Data processor | |
JPH0935000A (en) | Method and device for recognizing handwritten character | |
JP3056950B2 (en) | Character recognition apparatus and method | |
JP2829002B2 (en) | Character recognition device | |
KR100204618B1 (en) | Method and system for recognition of character or graphic | |
JPH07141468A (en) | Handwriting character recognition processing method in handwriting input character device | |
JPS62281082A (en) | Character recognizing device | |
JP3190776B2 (en) | Online handwritten character recognition device | |
JPH1166232A (en) | Document-defining method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19950131 |
|
17Q | First examination report despatched |
Effective date: 19990706 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20011222 |