EP0580848B1 - Cooling and heating device using a solid-gas reaction - Google Patents
Cooling and heating device using a solid-gas reaction Download PDFInfo
- Publication number
- EP0580848B1 EP0580848B1 EP93905379A EP93905379A EP0580848B1 EP 0580848 B1 EP0580848 B1 EP 0580848B1 EP 93905379 A EP93905379 A EP 93905379A EP 93905379 A EP93905379 A EP 93905379A EP 0580848 B1 EP0580848 B1 EP 0580848B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactors
- gas
- heat
- reactor
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 28
- 238000010438 heat treatment Methods 0.000 title claims abstract description 6
- 238000001816 cooling Methods 0.000 title abstract description 5
- 150000003839 salts Chemical class 0.000 claims abstract description 12
- 239000012530 fluid Substances 0.000 claims abstract description 7
- 230000000712 assembly Effects 0.000 claims description 3
- 238000000429 assembly Methods 0.000 claims description 3
- 239000013529 heat transfer fluid Substances 0.000 description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B17/00—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
- F25B17/08—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
Definitions
- the present invention relates to a device for producing cold and / or heat by solid-gas reaction.
- the reaction is exothermic in direction 1, which means that in this direction, it produces heat and endothermic in direction 2, that is to say that in this direction it produces cold.
- Such a system allows energy storage in chemical form and has various fields of application.
- the system is called a "chemical heat pump”.
- Such a system also allows the production, from a heat source at temperature T's, of heat at temperature T'u such that: You> You
- the system is called "chemical thermo transformer”.
- the use of the heat or cold produced is simultaneous with the consumption of energy at high temperature (Ts, T's, T "s) or delayed over time (storage effect).
- Document EP-A-0.382.586 discloses a device for producing cold and / or heat by solid-gas reaction, comprising two reactors each containing a salt capable of reacting chemically with a gas, a condenser and an evaporator for gas.
- the elements of the device are arranged so as to allow the gas to follow a path from one reactor to another passing through the condenser and the evaporator.
- the gas-poor reactor is at a temperature higher than that of the reactor containing the gas which has just reacted with the salt, the two reactors being at different pressure levels.
- Heat is sent by a heat transfer system, from the reactor at the upper temperature to the reactor are at the lower temperature in order to increase the temperature of the latter.
- the chemical reaction then takes place in reverse, with part of the heat from one reactor serving as the heat source for desorption of the gas from the other reactor. This heat transfer between the two reactors serves to improve the efficiency of the system.
- Document US-A-5,025,635 describes a device intended to produce cold and / or heat comprising two sets of reactors, each set containing several blocks of reagent each block of which contains a different salt.
- the device further comprises a heat transfer circuit connecting the two assemblies through each block of reagent.
- the present invention therefore aims to provide a device for the production of cold and / or heat by solid-gas reaction, in which the heat transfer between the various reaction chambers of the device is optimized.
- the invention provides a device for producing cold and / or heat by chemical reaction comprising at least four reactors each containing a salt capable of reacting chemically with a gas, an enclosure intended to receive the gas from the reactors and an enclosure intended to deliver the gas to the reactors, the device being arranged so that, during the chemical reaction, two reactors are at the same higher pressure level and form a first assembly, and two reactors are at the same level of lower pressure and form a second assembly, the device further comprising a closed circuit of heat transfer fluid intended to transfer heat between the two assemblies, this circuit further comprising a cooler and a heating device for the heat transfer fluid, characterized in that the reactors at the same pressure level are arranged concentrically so that heat can pass between neighboring reactors only by conduction.
- the operation of the device according to the invention is based on the reaction between a salt and a gas.
- FIGS. 1A and 1B which include lines of equilibrium of the salts used.
- FIGS 2A and 2B a device for producing cold by solid-gas reaction.
- the device comprises four reaction chambers 10, 12, 14, 16, called reactors, formed of an enclosure containing a mixture of a salt and of expanded graphite, possibly recompressed.
- the device further comprises an evaporator 18 for the gas, as well as a condenser 20 which are arranged so as to be able to exchange heat with their environment.
- the reactors 10 and 12 are connected, in the example illustrated in FIG. 2A, to the condenser 20 by conduits 22 and 24 which are provided with a valve 26 so as to be able to allow, selectively, the passage of gas between the reactors 10 , 12 and the condenser 20.
- the reactors 14 and 16 are connected to the evaporator 18 by conduits 30 and 32 provided with a valve 34 so as to be able to allow, selectively, the passage of gas between the reactors 14 , 16 and the evaporator 18.
- the reactors 10, 12, 14, 16 are at the temperatures and pressures shown in the diagram in FIG. 1A. As can be seen from the diagram, the reactor 10 is at a temperature higher than that of the reactor 12, and the reactor 14 is at a temperature lower than that of the reactor 16.
- the reactors 10, 12, 14, 16 are each provided with an associated heat exchanger 38, 40, 42 and 44, these exchangers being connected together by a conduit 46, in order to form a heat transfer circuit 45.
- a cooler 48 is mounted in the duct 46 between the reactors 12 and 14, and a heating device, for example a burner 50, is mounted in the duct 46 between the reactors 16 and 10.
- the gas passes through the conduits 22, 24 and 30, 32 between the reactors, the condenser 20 and the evaporator 18 in accordance with the cycle shown in FIG. 1A.
- the reactors 10, 12, 14 and 16 are at the temperatures and pressures illustrated in FIG. 1, the reactors 10 and 12 being at a high pressure and the reactors 14 and 16 being at a lower pressure.
- the heat transfer circuit 45 is put into operation, the heat transfer fluid circulating, under the effect of a pump (not shown) in the direction of the arrows 52.
- Heat from reactor 10, which is at a temperature T 1 is sent to reactor 12 which is at a lower temperature T 2 .
- the heat transfer fluid cooled after its passage through the reactor 12, is then further cooled by the cooler 48 and leaves the latter at a temperature T 3 .
- the cooled heat transfer fluid then passes through the reactor 14 and then through the reactor 16, which is at a temperature T4 before passing through the burner 50 in order to return to the starting temperature level T 1 .
- the reaction between the salts used in the reactors and the gas, which is for example ammonia, is reversible, the reactions in the two directions forming together a cycle.
- the reactors 10 and 12 are connected by conduits 52 and 54 to the evaporator 18 and the reactors 14 and 16 are connected to the condenser 20 by conduits 56 and 58 as shown in FIG. 2B.
- the reactors 10 and 12 and the reactors 14 and 16 are in reversed positions with respect to those shown in FIG. 1A.
- the heat transfer circuit is then started in the opposite direction, as shown by the arrows 60 in FIG. 1B.
- the heat transfer effect caused by the passage of the heat transfer fluid is similar to that described above.
- FIGS. 4A and 4B a second type of device for producing cold or heat by solid-gas reaction.
- This device differs from that of FIG. 2 in that the condenser 20 and the evaporator 18 have been replaced by reactors.
- the device thus comprises six reactors 80, 82, 84, 86, 88 and 90, four of which 82, 84, 88 and 90 are connected to a burner 92 and to a cooler 94 by a heat transfer circuit 96.
- the reactors are at the temperatures and pressures illustrated in FIG. 3A, the reactors 80, 82 and 84 being at the same pressure level, but at different temperatures, the reactors 86, 88 and 90 being at the same lower pressure level, but also at different temperatures.
- the heat transfer circuit 96 is then put into operation, the heat transfer fluid circulating in the direction of the arrows 98. As was the case for the device in FIG. 2, the heat transfer fluid successively transfers the heat between the reactors 84 and 82 being at the higher pressure level, the reactors being at associated temperatures T 1 and T 2 .
- the heat transfer fluid then passes through the cooler 94 in order to reduce the temperature thereof to T 3 before passing successively through the reactors 88 and 90, the temperature of the fluid increasing from T 3 to T 4 during this passage. As in the example in FIG. 1, the heat transfer fluid is then reheated in the burner 92 to a temperature T 1 .
- the reaction then takes place in the opposite direction, and, at a given instant in the cycle, the reactors are at the temperatures and pressures indicated in FIG. 3B.
- the fluid coolant circulates in the opposite direction as indicated by the arrows 100.
- a heat transfer circuit ensures the transfer of heat between reactors being at the same high pressure level, the heat passing from a reactor being at a given temperature to a reactor at a lower temperature.
- the heat transfer fluid is heated during its passage through successive reactors, the heat transfer fluid passing from a reactor at a given temperature to a reactor at a higher temperature.
- FIG. 5 shows a device according to the invention, in which the heat passes from one reactor to another of the same series only by conduction, that is to say without having recourse to a heat transfer circuit between the reactors.
- a cylindrical reactor 112 is arranged inside a first annular reactor 114, itself arranged inside a second annular reactor 116, the three reactors being arranged in order to ensure good conductivity thermal between them.
- a heat exchanger 118 connected to a heat transfer circuit shown schematically at 120 is disposed inside the cylindrical reactor 112.
- This set of three reactors 112, 114 and 116 is connected, in the example illustrated, to a second similar set which is formed by three reactors 122, 124 and 126.
- the heat transfer fluid after passing through the heat exchanger 118, passes through another heat exchanger 128 which is in thermal communication with the reactor 116.
- the fluid then passes through a cooler 130, a heat exchanger 132 in thermal communication with the reactor 126, an exchanger 134 arranged inside the reactor 122, a burner 136 before passing through the exchanger 118.
- the operation of this type of device is similar to that of the device of FIGS. 3 and 4.
- the performance of a device for producing cold and / or heat by solid-gas chemical reaction can be evaluated using the economic concept of the coefficient of performance or COP.
- the COP of a device corresponding to that of FIG. 2A is calculated.
- reactors 12 and 14 each contain CaCl 2 reacting with 4 moles of ammonia, ie CaCl 2 .8NH 3 to 4NH 3
- reactors 10 and 16 each containing NiCl 2 reacting with 4 moles of ammonia, or NiCl 2 .6NH 3 to 2NH 3 .
- the temperature of the heat transfer fluid leaving the burner 50 is 285 ° C, the temperature T3 is 35 ° C, and at the outlet of the evaporator is 5 ° C.
- the COP defined by the ratio of the cold energies produced compared to the high temperature energy is equal to 1.07, since the heating or cooling of the heat transfer fluid in a reactor during absorption, or desorption of the gas corresponds to 80% of the maximum possible rise, or of the maximum possible reduction. This corresponds to the difference between the inlet temperature of the heat transfer fluid and the equilibrium temperature of the reactant at the pressure considered.
- the condenser is replaced by a reactor 80 containing BaCl 2 (8-ONH 3 ), and the evaporator is replaced by a reactor 86 containing the same salt, the COP is 1.60.
- heat is transferred between reactors located, at an instant in the cycle, at the same given pressure level.
- This heat transfer can be carried out by a heat transfer fluid or by simple conduction.
- the reactors located at the same pressure level can be connected to an associated heat transfer circuit or to a circuit which is common to all the reactors of the device.
- the device according to the invention comprises two sets of reactors, each set being formed of several reactors and being intended to be connected to a condenser or to an evaporator.
- the condenser and evaporator can each be replaced by an associated reactor which is intended to receive or release the gas.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Glass Compositions (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
La présente invention concerne un dispositif pour produire du froid et/ou de la chaleur par réaction solide-gaz.The present invention relates to a device for producing cold and / or heat by solid-gas reaction.
Le dispositif visé par l'invention est basé sur l'utilisation du système dit "pompe thermochimique", dont les caractéristiques principales sont les suivantes :
- on utilise pour le fonctionnement du système lui-même, l'énergie thermique ; l'énergie électrique n'est éventuellement utilisée que pour la circulation des fluides caloporteurs,
- on utilise, comme "moteur chimique" une réaction renversable entre un solide et un gaz du type :
- thermal energy is used for the operation of the system itself; electrical energy is possibly only used for the circulation of heat transfer fluids,
- a reversible reaction between a solid and a gas of the type is used as "chemical motor":
La réaction est exothermique dans le sens 1, ce qui veut dire que dans ce sens, elle produit de la chaleur et endothermique dans le sens 2, c'est-à-dire que dans ce sens elle produit du froid.The reaction is exothermic in
Un tel système permet le stockage d'énergie sous forme chimique et présente des domaines d'application variés.Such a system allows energy storage in chemical form and has various fields of application.
De plus, un tel système permet la production, à partir d'une source de chaleur à la température Ts, de chaleur à la température Tu telle que :
Dans ce cas, le système est appelé "pompe à chaleur chimique".In this case, the system is called a "chemical heat pump".
Un tel système permet également la production, à partir d'une source de chaleur à la température T's, de chaleur à la température T'u telle que :
Dans ce cas, le système est appelé "thermo transformateur chimique".In this case, the system is called "chemical thermo transformer".
Grâce à ce système, il est possible de produire de l'énergie frigorifique à partir d'une source de chaleur et de produire simultanément, à partir d'une source de chaleur à la température T"s, de la chaleur à la température T"u(T"u < T"s) et de l'énergie frigorifique.Thanks to this system, it is possible to produce cooling energy from a heat source and simultaneously produce, from a heat source at temperature T "s, heat at temperature T "u (T" u <T "s) and cooling energy.
Suivant les cas, l'utilisation de la chaleur ou du froid produit est simultanée à la consommation d'énergie à haute température (Ts, T's, T"s) ou différée dans le temps (effet de stockage).Depending on the case, the use of the heat or cold produced is simultaneous with the consumption of energy at high temperature (Ts, T's, T "s) or delayed over time (storage effect).
Du document EP-A-0.382.586, on connaît un dispositif pour la production de froid et/ou de chaleur par réaction solide-gaz, comportant deux réacteurs contenant chacun un sel susceptible de réagir chimiquement avec un gaz, un condenseur et un évaporateur pour le gaz. Les éléments du dispositif sont disposés de façon à permettre au gaz de suivre un chemin d'un réacteur à l'autre en passant par le condenseur et l'évaporateur. A la fin de la réaction chimique, le réacteur pauvre en gaz se trouve à une température supérieure à celle du réacteur contenant le gaz venant de réagir avec le sel, les deux réacteurs se trouvant à des niveaux de pression différents. De la chaleur est envoyée par un système caloporteur, du réacteur se trouvant à la température supérieure au réacteur se trouvent à la température inférieur afin d'augmenter la température de ce dernier. La réaction chimique a ensuite lieu dans le sens inverse, une partie de la chaleur d'un réacteur servant comme source de chaleur de désorption du gaz de l'autre réacteur. Ce transfert de chaleur entre les deux réacteurs sert à améliorer l'efficacité du système.Document EP-A-0.382.586 discloses a device for producing cold and / or heat by solid-gas reaction, comprising two reactors each containing a salt capable of reacting chemically with a gas, a condenser and an evaporator for gas. The elements of the device are arranged so as to allow the gas to follow a path from one reactor to another passing through the condenser and the evaporator. At the end of the chemical reaction, the gas-poor reactor is at a temperature higher than that of the reactor containing the gas which has just reacted with the salt, the two reactors being at different pressure levels. Heat is sent by a heat transfer system, from the reactor at the upper temperature to the reactor are at the lower temperature in order to increase the temperature of the latter. The chemical reaction then takes place in reverse, with part of the heat from one reactor serving as the heat source for desorption of the gas from the other reactor. This heat transfer between the two reactors serves to improve the efficiency of the system.
Cependant, cette efficacité améliorée du système ne satisfait pas totalement les exigences commerciales requises pour un tel système.However, this improved system efficiency does not fully meet the business requirements for such a system.
Le document US-A-5,025,635 décrit un dispositif destiné à produire du froid et/ou de la chaleur comprenant deux ensembles de réacteur, chaque ensemble contenant plusieurs blocs de réactif dont chaque bloc contient un sel différent. Le dispositif comprend, de plus, un circuit caloporteur reliant les deux ensembles en traversant chaque bloc de réactif.Document US-A-5,025,635 describes a device intended to produce cold and / or heat comprising two sets of reactors, each set containing several blocks of reagent each block of which contains a different salt. The device further comprises a heat transfer circuit connecting the two assemblies through each block of reagent.
La présente invention a donc pour but de proposer un dispositif pour la production de froid et/ou de chaleur par réaction solide-gaz, dans lequel le transfert de chaleur entre les diverses chambres de réaction du dispositif est optimisé.The present invention therefore aims to provide a device for the production of cold and / or heat by solid-gas reaction, in which the heat transfer between the various reaction chambers of the device is optimized.
Pour ce faire, l'invention propose un dispositif pour produire du froid et/ou de la chaleur par réaction chimique comprenant au moins quatre réacteurs contenant chacun un sel susceptible de réagir chimiquement avec un gaz, une enceinte destinée à recevoir le gaz des réacteurs et une enceinte destinée à délivrer le gaz aux réacteurs, le dispositif étant agencé de façon que, lors de la réaction chimique, deux réacteurs se trouvent à un même niveau de pression supérieur et forment un premier ensemble, et deux réacteurs se trouvent à un même niveau de pression inférieur et forment un deuxième ensemble, le dispositif comprenant de plus un circuit fermé de fluide caloporteur destiné à transférer de la chaleur entre les deux ensembles, ce circuit comprenant, de plus, un refroidisseur et un dispositif de chauffage pour le fluide caloporteur, caractérisé en ce que les réacteurs se trouvant à un même niveau de pression sont disposés de manière concentrique afin que la chaleur puisse passer entre les réacteurs avoisinants uniquement par conduction.To do this, the invention provides a device for producing cold and / or heat by chemical reaction comprising at least four reactors each containing a salt capable of reacting chemically with a gas, an enclosure intended to receive the gas from the reactors and an enclosure intended to deliver the gas to the reactors, the device being arranged so that, during the chemical reaction, two reactors are at the same higher pressure level and form a first assembly, and two reactors are at the same level of lower pressure and form a second assembly, the device further comprising a closed circuit of heat transfer fluid intended to transfer heat between the two assemblies, this circuit further comprising a cooler and a heating device for the heat transfer fluid, characterized in that the reactors at the same pressure level are arranged concentrically so that heat can pass between neighboring reactors only by conduction.
Les avantages, ainsi que le fonctionnement de la présente invention apparaîtront plus clairement à la lecture de la description suivante faite d'une manière non limitative en référence aux dessins annexés sur lesquels :
- les figures 1A et 1B sont chacune un diagramme de Clapeyron pour un premier type de dispositif,
- les figures 2A et 2B sont chacune une vue schématique du premier type de dispositif ,
- les figures 3A et 3B sont chacune un diagramme de Clapeyron pour un deuxième type de dispositif ,
- les figures 4A et 4B sont chacune une vue schématique du deuxième type de dispositif, ces deux types de dispositif étant décrits pour la bonne compréhension de l'invention, et
- la figure 5 est une vue schématique d'un dispositif selon l'invention.
- FIGS. 1A and 1B are each a Clapeyron diagram for a first type of device,
- FIGS. 2A and 2B are each a schematic view of the first type of device,
- FIGS. 3A and 3B are each a Clapeyron diagram for a second type of device,
- FIGS. 4A and 4B are each a schematic view of the second type of device, these two types of device being described for a good understanding of the invention, and
- Figure 5 is a schematic view of a device according to the invention.
Le fonctionnement du dispositif selon l'invention est fondé sur la réaction entre un sel et un gaz. Comme il s'agit d'une véritable réaction chimique, on a un système monovariant à l'équilibre, c'est-à-dire qu'il existe une relation univoque entre la température et la pression de la forme log P = A - B/T, expression dans laquelle P est la pression, T la température en °K et A et B sont des constantes caractéristiques du couple sel/gaz utilisé.The operation of the device according to the invention is based on the reaction between a salt and a gas. As this is a real chemical reaction, we have a monovariant system at equilibrium, that is to say that there is a unique relationship between temperature and pressure in the form log P = A - B / T, expression in which P is the pressure, T the temperature in ° K and A and B are constants characteristic of the salt / gas couple used.
Dans la description suivante, les phases de fonctionnement seront représentées dans un diagramme de Clapeyron tel qu'indiqué sur les figures 1A et 1B qui comportent des droites d'équilibre des sels utilisés.In the following description, the operating phases will be represented in a Clapeyron diagram as indicated in FIGS. 1A and 1B which include lines of equilibrium of the salts used.
Sur les figures 2A et 2B est représenté un dispositif pour produire du froid par réaction solide-gaz. Le dispositif comprend quatre chambres de réaction 10, 12, 14,16, appelées réacteurs, formées d'une enceinte contenant un mélange d'un sel et de graphite expansé, éventuellement recomprimé. Le dispositif comprend de plus un évaporateur 18 pour le gaz, ainsi qu'un condenseur 20 qui sont agencés de façon à pouvoir échanger de la chaleur avec leur environnement.In Figures 2A and 2B is shown a device for producing cold by solid-gas reaction. The device comprises four
Les réacteurs 10 et 12 sont reliés, dans l'exemple illustré sur la figure 2A, au condenseur 20 par des conduits 22 et 24 qui sont munis d'une vanne 26 afin de pouvoir permettre, sélectivement, le passage de gaz entre les réacteurs 10, 12 et le condenseur 20. De manière analogue, les réacteurs 14 et 16 sont reliés à l'évaporateur 18 par des conduits 30 et 32 munis d'une vanne 34 afin de pouvoir permettre, sélectivement, le passage de gaz entre les réacteurs 14, 16 et l'évaporateur 18.The
A un moment donné du cycle de réaction, les réacteurs 10, 12, 14, 16 se trouvent aux températures et aux pressions représentées sur le diagramme de la figure 1A. Comme il ressort du diagramme, le réacteur 10 se trouve à une température supérieure à celle du réacteur 12, et le réacteur 14 se trouve à une température inférieure à celle du réacteur 16.At a given point in the reaction cycle, the
Au lieu de transférer de la chaleur d'un premier réacteur, à une température élevée et un niveau de pression bas, à un deuxième réacteur à une température inférieure et un niveau de pression supérieur, le transfert de chaleur s'effectue entre deux réacteurs situés au même niveau de pression.Instead of transferring heat from a first reactor, at a high temperature and a low pressure level, to a second reactor at a lower temperature and a higher pressure level, heat transfer takes place between two reactors located at the same pressure level.
Comme représentés sur la figure 2, les réacteurs 10, 12, 14, 16 sont munis chacun d'un échangeur de chaleur associé 38, 40, 42 et 44, ces échangeurs étant reliés ensemble par un conduit 46, afin de former un circuit caloporteur 45. Un refroidisseur 48 est monté dans le conduit 46 entre les réacteurs 12 et 14, et un dispositif de chauffage, par exemple un brûleur 50, est monté dans le conduit 46 entre les réacteurs 16 et 10.As shown in FIG. 2, the
Lors de la mise en oeuvre du dispositif, le gaz passe par les conduits 22, 24 et 30, 32 entre les réacteurs, le condenseur 20 et l'évaporateur 18 conformément au cycle représenté sur la figure 1A. A un instant donné du cycle, les réacteurs 10, 12, 14 et 16 se trouvent aux températures et aux pressions illustrées sur la figure 1, les réacteurs 10 et 12 se trouvant à une pression élevée et les réacteurs 14 et 16 se trouvant à une pression inférieure. Le circuit caloporteur 45 est mis en fonctionnement, le fluide caloporteur circulant, sous l'effet d'une pompe (non représentée) dans le sens des flèches 52.During the implementation of the device, the gas passes through the
De la chaleur provenant du réacteur 10, qui se trouve à une température T1 est envoyée au réacteur 12 se trouvant à une température inférieure T2. Le fluide caloporteur, refroidi après son passage à travers le réacteur 12, est ensuite refroidi davantage par le refroidisseur 48 et sort de ce dernier à une température T3. Le fluide caloporteur refroidi passe alors par le réacteur 14 puis par le réacteur 16, qui se trouve à une température T4 avant de passer par le brûleur 50 afin de retrouver le niveau de température de départ T1.Heat from
La réaction entre les sels utilisés dans les réacteurs et le gaz, qui est par exemple de l'ammoniac, est reversible, les réactions dans les deux sens formant ensemble un cycle. Afin de terminer un cycle, les réacteurs 10 et 12 sont reliés par des conduits 52 et 54 à l'évaporateur 18 et les réacteurs 14 et 16 sont reliés au condenseur 20 par des conduits 56 et 58 comme représenté sur la figure 2B. A la fin de la réaction, les réacteurs 10 et 12 et les réacteurs 14 et 16 se trouvent dans des positions inversées par rapport à celles représentées sur la figure 1A. Le circuit caloporteur est ensuite mis en route dans le sens inverse, tel que représenté par les flèches 60 sur la figure 1B. L'effet de transfert de chaleur provoqué par le passage du fluide caloporteur est analogue à celui décrit ci-avant.The reaction between the salts used in the reactors and the gas, which is for example ammonia, is reversible, the reactions in the two directions forming together a cycle. In order to complete a cycle, the
Sur les figures 4A et 4B est représenté un deuxième type de dispositif pour produire du froid ou de la chaleur par réaction solide-gaz. Ce dispositif diffère de celui de la figure 2 en ce que le condenseur 20 et l'évaporateur 18 ont été remplacés par des réacteurs. Le dispositif comprend ainsi six réacteurs 80, 82, 84, 86, 88 et 90, dont quatre 82, 84, 88 et 90 sont reliés à un brûleur 92 et à un refroidisseur 94 par un circuit caloporteur 96.In FIGS. 4A and 4B is shown a second type of device for producing cold or heat by solid-gas reaction. This device differs from that of FIG. 2 in that the
A un instant donné du cycle de réaction, les réacteurs se trouvent aux températures et aux pressions illustrées sur la figure 3A, les réacteurs 80, 82 et 84 se trouvant au même niveau de pression, mais à des températures différentes, les réacteurs 86, 88 et 90 se trouvant à un même niveau de pression inférieur, mais également à des températures différentes. Le circuit caloporteur 96 est ensuite mis en opération, le fluide caloporteur circulant dans le sens des flèches 98. Comme c'était le cas pour le dispositif de la figure 2, le fluide caloporteur transfère la chaleur successivement entre les réacteurs 84 et 82 se trouvant au niveau de pression supérieur, les réacteurs se trouvant à des températures associées T1 et T2. Le fluide caloporteur passe ensuite par le refroidisseur 94 afin d'en réduire la température à T3 avant de passer successivement par les réacteurs 88 et 90, la température du fluide croissant de T3 à T4 lors de ce passage. Comme dans l'exemple de la figure 1, le fluide caloporteur est ensuite réchauffé dans le brûleur 92 à une température T1.At a given instant in the reaction cycle, the reactors are at the temperatures and pressures illustrated in FIG. 3A, the
De manière analogue à celle du dispositif de la figure 1B, la réaction a ensuite lieu dans le sens inverse, et, à un instant donné du cycle les réacteurs se trouvent aux températures et aux pressions indiquées sur la figure 3B. Comme représenté sur les figures 3B et 4B, le fluide caloporteur circule en sens inverse tel qu'indiqué par les flèches 100.Analogously to that of the device in FIG. 1B, the reaction then takes place in the opposite direction, and, at a given instant in the cycle, the reactors are at the temperatures and pressures indicated in FIG. 3B. As shown in Figures 3B and 4B, the fluid coolant circulates in the opposite direction as indicated by the
Ainsi, lors de chaque étape du cycle de réaction, un circuit caloporteur assure le transfert de chaleur entre des réacteurs se trouvant à un même niveau de pression élevé, la chaleur passant d'un réacteur se trouvant à une température donnée à un réacteur à une température inférieure. Quant aux réacteurs se trouvant à un même niveau de pression inférieur, le fluide caloporteur est réchauffé lors de son passage par les réacteurs successifs, le fluide caloporteur passant d'un réacteur à une température donnée à un réacteur à une température supérieure.Thus, during each stage of the reaction cycle, a heat transfer circuit ensures the transfer of heat between reactors being at the same high pressure level, the heat passing from a reactor being at a given temperature to a reactor at a lower temperature. As for reactors located at the same lower pressure level, the heat transfer fluid is heated during its passage through successive reactors, the heat transfer fluid passing from a reactor at a given temperature to a reactor at a higher temperature.
Les dispositifs des figures 1 à 4 comprennent chacun un circuit caloporteur destiné à transférer de la chaleur d'un premier réacteur à un deuxième. Sur la figure 5 est représenté un dispositif selon l'invention, dans lequel la chaleur passe d'un réacteur à un autre d'une même série uniquement par conduction, c'est-à-dire sans avoir recours à un circuit caloporteur entre les réacteurs.The devices of Figures 1 to 4 each include a heat transfer circuit for transferring heat from a first reactor to a second. FIG. 5 shows a device according to the invention, in which the heat passes from one reactor to another of the same series only by conduction, that is to say without having recourse to a heat transfer circuit between the reactors.
Dans cet exemple, un réacteur cylindrique 112 est disposé à l'intérieur d'un premier réacteur annulaire 114, disposé lui-même à l'intérieur d'un deuxième réacteur annulaire 116, les trois réacteurs étant agencés afin d'assurer une bonne conductivité thermique entre eux. Un échangeur de chaleur 118, relié à un circuit caloporteur représenté schématiquement en 120 est disposé à l'intérieur du réacteur cylindrique 112. Cet ensemble des trois réacteurs 112, 114 et 116 est relié, dans l'exemple illustré, à un deuxième ensemble analogue qui est formé de trois réacteurs 122, 124 et 126. Le fluide caloporteur, après son passage par l'échangeur de chaleur 118, passe par un autre échangeur de chaleur 128 qui est en communication thermique avec le réacteur 116. Le fluide passe ensuite par un refroidisseur 130, un échangeur de chaleur 132 en communication thermique avec le réacteur 126, un échangeur 134 disposé à l'intérieur du réacteur 122, un brûleur 136 avant de repasser par l'échangeur 118. Le fonctionnement de ce type de dispositif est analogue à celui du dispositif des figures 3 et 4.In this example, a
La performance d'un dispositif pour produire du froid et/ou de la chaleur par réaction chimique solide-gaz peut être évaluée en utilisant la notion économique du coefficient de performance ou COP.The performance of a device for producing cold and / or heat by solid-gas chemical reaction can be evaluated using the economic concept of the coefficient of performance or COP.
A titre d'exemple, on calcule le COP d'un dispositif correspondant à celui de la figure 2A.By way of example, the COP of a device corresponding to that of FIG. 2A is calculated.
Dans cet exemple, les réacteurs 12 et 14 contiennent chacun du CaCl2 réagissant avec 4 moles d'ammoniac, soit CaCl2.8NH3 à 4NH3, les réacteurs 10 et 16 contenant chacun du NiCl2 réagissant avec 4 moles d'ammoniac, soit NiCl2.6NH3 à 2NH3.In this example,
La température du fluide caloporteur sortant du brûleur 50 est de 285°C, la température T3 est de 35°C, et à la sortie de l'évaporateur est de 5°C.The temperature of the heat transfer fluid leaving the
Le COP défini par le rapport des énergies froides produites par rapport à l'énergie haute température est égal à 1,07, étant donné que l'échauffement ou le refroidissement du fluide caloporteur dans un réacteur en cours d'absorption, ou de désorption du gaz correspond à 80 % de l'élévation maximale possible, ou de la diminution maximale possible. Ceci correspond à l'écart entre la température d'entrée du fluide caloporteur et la température d'équilibre du réactif à la pression considérée.The COP defined by the ratio of the cold energies produced compared to the high temperature energy is equal to 1.07, since the heating or cooling of the heat transfer fluid in a reactor during absorption, or desorption of the gas corresponds to 80% of the maximum possible rise, or of the maximum possible reduction. This corresponds to the difference between the inlet temperature of the heat transfer fluid and the equilibrium temperature of the reactant at the pressure considered.
Si, pour le même dispositif, le condenseur est remplacé par un réacteur 80 contenant du BaCl2 (8-ONH3), et l'évaporateur est remplacé par un réacteur 86 contenant le même sel, le COP est de 1,60.If, for the same device, the condenser is replaced by a
Dans chaque mode de réalisation, de la chaleur est transférée entre des réacteurs se trouvant, à un instant du cycle, à un même niveau de pression donné. Ce transfert de chaleur peut s'effectuer par un fluide caloporteur ou par simple conduction. Les réacteurs se trouvant au même niveau de pression peuvent être reliés à un circuit caloporteur associé ou à un circuit qui est commun à tous les réacteurs du dispositif.In each embodiment, heat is transferred between reactors located, at an instant in the cycle, at the same given pressure level. This heat transfer can be carried out by a heat transfer fluid or by simple conduction. The reactors located at the same pressure level can be connected to an associated heat transfer circuit or to a circuit which is common to all the reactors of the device.
Le dispositif selon l'invention comprend deux ensembles de réacteurs, chaque ensemble étant formé de plusieurs réacteurs et étant destinée à être reliée à un condenseur ou à un évaporateur. Alternativement, le condenseur et l'évaporateur peuvent être remplacés chacun par un réacteur associé qui est destiné à recevoir ou à libérer le gaz.The device according to the invention comprises two sets of reactors, each set being formed of several reactors and being intended to be connected to a condenser or to an evaporator. Alternatively, the condenser and evaporator can each be replaced by an associated reactor which is intended to receive or release the gas.
Claims (4)
- Device for producing cold and/or heat by chemical reaction comprising at least four reactors each containing a salt which is capable of reacting chemically with a gas, a vessel intended to receive the gas from the reactors and a vessel intended to supply the gas to the reactors, the device being designed in such a manner that, during the chemical reaction, two reactors are at a higher pressure, and form a first assembly, and two reactors are at a lower pressure, and form a second assembly, the device furthermore comprising a closed circuit of heat-exchanging fluid intended to transfer heat between the two assemblies, this circuit furthermore comprising a cooler and a heating device for the heat-exchanging fluid, characterised in that the reactors having the same pressure are arranged in a concentric manner, in order that the heat may pass between the adjacent reactors purely by conduction.
- Device according to Claim 1, characterised in that the vessel intended to receive the gas comprises a condenser, the vessel being intended to supply the gas comprising an evaporator.
- Device according to Claim 1, characterised in that the vessel intended to receive the gas and the vessel intended to supply the gas each comprise a reactor.
- Device according to one of CLaims 1 to 3 characterised in that each assembly comprises three reactors.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9201680 | 1992-02-14 | ||
FR9201680A FR2687462A1 (en) | 1992-02-14 | 1992-02-14 | DEVICE FOR THE PRODUCTION OF COLD AND / OR HEAT BY SOLID-GAS REACTION. |
PCT/FR1993/000135 WO1993016339A1 (en) | 1992-02-14 | 1993-02-10 | Cooling and heating device using a solid-gas reaction |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0580848A1 EP0580848A1 (en) | 1994-02-02 |
EP0580848B1 true EP0580848B1 (en) | 1996-09-18 |
Family
ID=9426648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93905379A Expired - Lifetime EP0580848B1 (en) | 1992-02-14 | 1993-02-10 | Cooling and heating device using a solid-gas reaction |
Country Status (11)
Country | Link |
---|---|
US (1) | US5445217A (en) |
EP (1) | EP0580848B1 (en) |
JP (1) | JP3114154B2 (en) |
AT (1) | ATE143125T1 (en) |
CA (1) | CA2107215C (en) |
DE (1) | DE69304833T2 (en) |
DK (1) | DK0580848T3 (en) |
ES (1) | ES2094530T3 (en) |
FR (1) | FR2687462A1 (en) |
GR (1) | GR3021689T3 (en) |
WO (1) | WO1993016339A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3341516B2 (en) * | 1994-09-19 | 2002-11-05 | 株式会社デンソー | Adsorption refrigerator |
FR2726282B1 (en) | 1994-10-28 | 1999-02-19 | Elf Aquitaine | REAGENT FOR THERMOCHEMICAL SYSTEMS AND THERMOCHEMICAL SYSTEM FOR USE WITH SUCH A REAGENT |
US5768906A (en) * | 1996-01-16 | 1998-06-23 | Borst, Inc. | Electrochemical heat exchanger |
FR2748093B1 (en) * | 1996-04-25 | 1998-06-12 | Elf Aquitaine | THERMOCHEMICAL DEVICE TO PRODUCE COLD AND / OR HEAT |
FR2852676B1 (en) * | 2003-03-18 | 2017-10-06 | Centre Nat De La Rech Scient (C N R S ) | METHOD AND DEVICE FOR THE PRODUCTION OF RAPID COLD AND HIGH POWER |
US9914337B2 (en) * | 2015-03-05 | 2018-03-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Vehicle with adsorption-based thermal battery |
FR3037072A1 (en) * | 2015-06-04 | 2016-12-09 | Jean Louis Juillard | THERMOCHEMICAL REACTOR PRODUCT |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR641486A (en) * | 1927-06-27 | 1928-08-04 | Silica Gel Corp | Recovery refrigeration method and apparatus |
US2087939A (en) * | 1933-08-28 | 1937-07-27 | Sarnmark Axel Uno | Process for producing cold and continuously operating absorption cold apparatus |
GB1572737A (en) * | 1977-01-17 | 1980-08-06 | Exxon France | Heat pump |
US4439994A (en) * | 1982-07-06 | 1984-04-03 | Hybrid Energy Systems, Inc. | Three phase absorption systems and methods for refrigeration and heat pump cycles |
US4694659A (en) * | 1985-05-03 | 1987-09-22 | Shelton Samuel V | Dual bed heat pump |
US4610148A (en) * | 1985-05-03 | 1986-09-09 | Shelton Samuel V | Solid adsorbent heat pump system |
FR2590356B1 (en) * | 1985-11-19 | 1989-06-02 | Jeumont Schneider | DEVICE FOR THE CONTINUOUS PRODUCTION OF HOT AND COLD |
FR2615601B1 (en) * | 1987-05-22 | 1989-11-10 | Faiveley Ets | DEVICE AND METHOD FOR PRODUCING COLD AND / OR HEAT BY SOLID-GAS REACTION |
FR2642509B1 (en) * | 1989-01-11 | 1995-01-27 | Elf Aquitaine | DEVICE FOR PRODUCING COLD AND / OR HEAT BY SOLID-GAS REACTION |
US5079928A (en) * | 1989-07-07 | 1992-01-14 | Rocky Research | Discrete constant pressure staging of solid-vapor compound reactors |
US5025635A (en) * | 1989-11-14 | 1991-06-25 | Rocky Research | Continuous constant pressure staging of solid-vapor compound reactors |
-
1992
- 1992-02-14 FR FR9201680A patent/FR2687462A1/en not_active Withdrawn
-
1993
- 1993-02-10 ES ES93905379T patent/ES2094530T3/en not_active Expired - Lifetime
- 1993-02-10 JP JP05513843A patent/JP3114154B2/en not_active Expired - Fee Related
- 1993-02-10 EP EP93905379A patent/EP0580848B1/en not_active Expired - Lifetime
- 1993-02-10 DE DE69304833T patent/DE69304833T2/en not_active Expired - Fee Related
- 1993-02-10 DK DK93905379.9T patent/DK0580848T3/da active
- 1993-02-10 CA CA002107215A patent/CA2107215C/en not_active Expired - Fee Related
- 1993-02-10 AT AT93905379T patent/ATE143125T1/en not_active IP Right Cessation
- 1993-02-10 WO PCT/FR1993/000135 patent/WO1993016339A1/en active IP Right Grant
- 1993-02-10 US US08/129,074 patent/US5445217A/en not_active Expired - Fee Related
-
1996
- 1996-11-18 GR GR960403074T patent/GR3021689T3/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE69304833D1 (en) | 1996-10-24 |
US5445217A (en) | 1995-08-29 |
WO1993016339A1 (en) | 1993-08-19 |
FR2687462A1 (en) | 1993-08-20 |
CA2107215C (en) | 2001-04-17 |
DK0580848T3 (en) | 1997-03-10 |
ATE143125T1 (en) | 1996-10-15 |
ES2094530T3 (en) | 1997-01-16 |
EP0580848A1 (en) | 1994-02-02 |
GR3021689T3 (en) | 1997-02-28 |
JPH06507008A (en) | 1994-08-04 |
JP3114154B2 (en) | 2000-12-04 |
CA2107215A1 (en) | 1993-08-15 |
DE69304833T2 (en) | 1997-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0382586B1 (en) | Device for producing cold and/or heat by solid-gas reaction | |
EP0071271B1 (en) | Metal hydride heat pump system | |
EP0580848B1 (en) | Cooling and heating device using a solid-gas reaction | |
CA2028327C (en) | Apparatus and process for producing refrigeration and/or heat by solid-gas reaction managed by gravitational heat pipes | |
FR2538884A1 (en) | SOLAR ENERGY REFRIGERATING DEVICE | |
US6520249B2 (en) | Low-temperature waste-heat-gas driven refrigeration system | |
EP0709628A1 (en) | Reagent for thermochemical systems and thermochemical system for using such a reagent | |
EP0835414A1 (en) | Thermochemical device for producing cold and/or heat | |
EP2984434B1 (en) | Thermochemical storage system with improved storage efficiency | |
EP1809955B1 (en) | Production of very low-temperature refrigeration in a thermochemical device. | |
EP3919836B1 (en) | Thermal system comprising at least one circuit of an absorption machine having improved performance | |
JPH03247968A (en) | Heat pump | |
EP1809956B1 (en) | Production of very low-temperature refrigeration in a thermochemical device | |
JPS6329182B2 (en) | ||
CH619029A5 (en) | Method for conversion of heat energy, installation for implementing the method and application of the method | |
CN100453952C (en) | Separated heat pipe | |
JPS6240621B2 (en) | ||
JPH0477222B2 (en) | ||
FR2483017A1 (en) | METHOD FOR GENERATING ELECTRICAL, COLD AND WATER ENERGY FROM SOLAR ENERGY AND ATMOSPHERIC AIR AND CORRESPONDING DEVICES | |
JPH02242054A (en) | Hydrogen occluded alloy-based heat application system | |
JPH0481710B2 (en) | ||
JPH0784966B2 (en) | Heat pump using metal hydride and control method thereof | |
JPS63113265A (en) | Heat pump device utilizing metallic hydride | |
JPS6329181B2 (en) | ||
JPS6096869A (en) | Method of obtaining cold heat or hot heat output |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19931012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ELF AQUITAINE |
|
17Q | First examination report despatched |
Effective date: 19940808 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE |
|
REF | Corresponds to: |
Ref document number: 143125 Country of ref document: AT Date of ref document: 19961015 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 69304833 Country of ref document: DE Date of ref document: 19961024 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KIRKER & CIE SA |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: 69901 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19961223 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2094530 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19961028 Ref country code: GR Ref legal event code: FG4A Free format text: 3021689 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19980115 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 19980122 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19980126 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 19980128 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 19980206 Year of fee payment: 6 Ref country code: GR Payment date: 19980206 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19980227 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990210 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990228 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990228 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990301 |
|
BERE | Be: lapsed |
Owner name: ELF AQUITAINE Effective date: 19990228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 19990831 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20010130 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010201 Year of fee payment: 9 Ref country code: DE Payment date: 20010201 Year of fee payment: 9 Ref country code: AT Payment date: 20010201 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010208 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20010219 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010227 Year of fee payment: 9 |
|
NLS | Nl: assignments of ep-patents |
Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020210 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020211 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020211 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020903 |
|
EUG | Se: european patent has lapsed |
Ref document number: 93905379.9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021031 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050210 |