EP0573029A2 - Use of refractory, oxide micropowder for making ceramic masses and bodies - Google Patents
Use of refractory, oxide micropowder for making ceramic masses and bodies Download PDFInfo
- Publication number
- EP0573029A2 EP0573029A2 EP93108918A EP93108918A EP0573029A2 EP 0573029 A2 EP0573029 A2 EP 0573029A2 EP 93108918 A EP93108918 A EP 93108918A EP 93108918 A EP93108918 A EP 93108918A EP 0573029 A2 EP0573029 A2 EP 0573029A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- micropowder
- proviso
- use according
- matrix material
- ceramic matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 25
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000000465 moulding Methods 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 17
- 239000006185 dispersion Substances 0.000 claims description 16
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- 229910052593 corundum Inorganic materials 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 7
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000001694 spray drying Methods 0.000 claims description 4
- 239000002270 dispersing agent Substances 0.000 claims description 3
- 150000002191 fatty alcohols Chemical class 0.000 claims description 2
- 238000004108 freeze drying Methods 0.000 claims description 2
- 229910052596 spinel Inorganic materials 0.000 claims description 2
- 239000011029 spinel Substances 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 abstract description 17
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 abstract description 7
- 238000002360 preparation method Methods 0.000 abstract description 4
- 230000036571 hydration Effects 0.000 description 7
- 238000006703 hydration reaction Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000011214 refractory ceramic Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
Definitions
- the invention relates to the use of a finely divided magnesium oxide micropowder for the production of ceramic masses and moldings.
- AT 392 464 B discloses a magnesium oxide in the form of a fine powder and its use for the production of high-density ceramics.
- the finely divided magnesium oxide has a particle size ⁇ 15 ⁇ m and a specific surface area ⁇ 20 m2 / g (determined according to BET from the nitrogen adsorption isotherm). It is further characterized by a grain shape factor of the primary particles between 1 and 1.5 and a coating of a hydrophobizing substance.
- the grain shape factor mentioned essentially describes spherical particles, the degree of dispersion of which is increased by the addition of a hydrophobizing substance.
- a finely divided magnesium oxide powder which is obtained from an aqueous suspension by spray drying, the suspension receiving a coating agent which is to be deposited in the monomolecular layer as possible on the surface of the oxide particles.
- the coating agent consists, for example, of a carboxylic acid. Due to the preparation in an aqueous suspension, however, hydration of the magnesium oxide to magnesium hydroxide cannot be avoided, although the degree of hydration can be limited to values below 10% by weight by using the coating agent and the subsequent spray drying. However, hydration results in a change (enlargement) of the particle shape that is undesirable.
- a degree of hydration of 1.0% by weight linearly increases the corresponding grain by 1.0%.
- the known fine-particle magnesium oxide powders can only be processed together with binders in a heavy ceramic matrix.
- the invention has for its object to show a way with which refractory ceramic masses and moldings can be produced, which lead to sufficient green stability and high density after the fire even without complex preparation of the starting components.
- the invention is based on the knowledge that this can be achieved by using a finely divided, refractory, oxidic micropowder in a coarse-ceramic refractory matrix, the micropowder being largely in the form of a single grain.
- the use of the finely divided oxidic micropowder with a largely uniform grain diameter leads to physical adhesion of the particles to one another even in the green state, which continues in the course of the fire in a uniform sintering.
- the finely divided component advantageously fills the gusset between the coarser particles in the form of a densest spherical packing and thus enables the finished (fired) product to have a significantly reduced porosity.
- the invention in its most general embodiment relates to the use of a finely divided, refractory, oxidic micropowder obtained after dispersion in a non-aqueous dispersion medium, largely of a uniform grain size in a coarse-ceramic, refractory matrix material for the production of ceramic masses and moldings of high green strength and high density after a fire.
- micropowder should be used in a particle size of less than 10 ⁇ m, particle sizes below 1 ⁇ m being particularly advantageous in the sense of the invention.
- single grain or “largely uniform grain size” are not to be understood in the sense that an exact single grain is used because this can only be produced with increased effort, although it would be particularly preferred; to this extent, according to one embodiment variant, the use of a finely divided micropowder is proposed, in which 90% by weight of the particles have a maximum deviation from the mean particle diameter of ⁇ 10%.
- micropowder used can vary depending on the application, but should in principle be in the order of 5 to 18% by weight, based on the total mass, a proportion of 10 to 15% by weight being likely for most applications.
- the corresponding mass fraction is previously prepared in a non-aqueous dispersing medium (which prevents hydration in the case of hydration-sensitive oxides such as MgO), whereby the dispersing medium which is inert with respect to the solid can consist, for example, of naphthenic oils or fatty alcohols and a modified alkyd resin (polyester) is used as the dispersant, for example.
- a non-aqueous dispersing medium which prevents hydration in the case of hydration-sensitive oxides such as MgO
- the dispersing medium which is inert with respect to the solid can consist, for example, of naphthenic oils or fatty alcohols and a modified alkyd resin (polyester) is used as the dispersant, for example.
- the refractory oxidic micropowder can consist of different oxides, for example MgO, Al2O3, Cr2O3 and / or TiO2.
- the oxidic micropowder can consist of only one of these oxides; however, it is also possible to use mixtures of these oxides as micropowder, in particular when spinel formation is desired. In this case, it makes sense to use a MgO / Cr2O3 dispersion, for example.
- Dispersions are understood to mean which have a solids content of over 85% by weight, based on the total dispersion. The proportion of the disperser is then up to 15% by weight.
- the coarse ceramic matrix material is selected depending on the desired material properties.
- the micropowder can also consist, for example, of a spinel-forming MgO / Cr2O3 or MgO / Al2O3 dispersion.
- Al2O3 for example alumina, tabular alumina, corundum
- the use of an Al2O3 micropowder offers itself, which, however, can be replaced in whole or in part by TiO2 or another refractory oxidic micropowder.
- this should preferably be processed in a non-aqueous dispersion medium in order to keep the water content of the processed mass as low as possible.
- the processing technology with a non-aqueous Dispersing medium has the advantage that the above-mentioned unusually high solid concentrations of the dispersion can be achieved more easily, with the result that in this way not only the green stability of the ceramic mass (after mixing with the coarse ceramic matrix material) but also the density the fire can be significantly promoted.
- micropowder can then also be used in aqueous systems.
- a further significant advantage is that the molded parts produced from the composition described are not subject to any significant shrinkage in the fire.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Products (AREA)
Abstract
Description
Die Erfindung betrifft die Verwendung eines feinteiligen Magnesiumoxid-Mikropulvers zur Herstellung von keramischen Massen und Formteilen.The invention relates to the use of a finely divided magnesium oxide micropowder for the production of ceramic masses and moldings.
Aus der AT 392 464 B ist ein Magnesiumoxid in Form eines feinen Pulvers und seine Verwendung zur Herstellung hochdichter Keramiken bekannt. Das feinteilige Magnesiumoxid weist eine Teilchengröße < 15 µm und eine spezifische Oberfläche < 20 m²/g (bestimmt nach BET aus der Stickstoffadsorptionsisotherme) auf. Es ist weiter durch einen Kornformfaktor der Primärteilchen zwischen 1 und 1,5 sowie eine Beschichtung aus einer hydrophobierenden Substanz gekennzeichnet Der genannte Kornformfaktor beschreibt im wesentlichen kugelförmige Teilchen, deren Dispergierungsgrad durch den genannten Zusatz einer hydrophobierenden Substanz erhöht wird.AT 392 464 B discloses a magnesium oxide in the form of a fine powder and its use for the production of high-density ceramics. The finely divided magnesium oxide has a particle size <15 μm and a specific surface area <20 m² / g (determined according to BET from the nitrogen adsorption isotherm). It is further characterized by a grain shape factor of the primary particles between 1 and 1.5 and a coating of a hydrophobizing substance. The grain shape factor mentioned essentially describes spherical particles, the degree of dispersion of which is increased by the addition of a hydrophobizing substance.
Durch die Hydrophobierung werden zwar (unerwünschte) Agglomerate teilweise verhindert, letztendlich kommt es beim Brand jedoch zu einer Sammelkristallisation und damit zu einem Wachstum der feinteiligen MgO-Teilchen, das in einem unregelmäßigen Gefügeaufbau resultiert. Aus der Praxis ist weiter ein feinteiliges Magnesiumoxidpulver bekannt, das aus einer wässrigen Suspension durch Sprühtrocknen erhalten wird, wobei die Suspension ein Beschichtungsmittel erhält, das sich in möglichst monomolekularer Schicht auf der Oberfläche der Oxidteilchen niederschlagen soll. Das Beschichtungsmittel besteht dabei zum Beispiel aus einer Carbonsäure. Aufgrund der Aufbereitung in einer wässrigen Suspension läßt sich jedoch eine Hydratation des Magnesiumoxids zu Magnesiumhydroxid nicht vermeiden, wenngleich der Hydratationsgrad durch die Verwendung des Beschichtungsmittels und die anschließende Sprühtrocknung auf Werte unter 10 Gew.-% beschränkt werden kann. Die Hydratation hat jedoch eine Veränderung (Vergrößerung) der Teilchenform zur Folge, die unerwünscht ist. Als Richtwert kann angegeben werden, daß ein Hydratationsgrad von 1,0 Gew.-% das entsprechende Korn um 1,0 % linear vergrößert.Although the hydrophobization partially prevents (unwanted) agglomerates, ultimately there is a collective crystallization during the fire and thus a growth of the fine-particle MgO particles, which results in an irregular structure. In practice, a finely divided magnesium oxide powder is also known which is obtained from an aqueous suspension by spray drying, the suspension receiving a coating agent which is to be deposited in the monomolecular layer as possible on the surface of the oxide particles. The coating agent consists, for example, of a carboxylic acid. Due to the preparation in an aqueous suspension, however, hydration of the magnesium oxide to magnesium hydroxide cannot be avoided, although the degree of hydration can be limited to values below 10% by weight by using the coating agent and the subsequent spray drying. However, hydration results in a change (enlargement) of the particle shape that is undesirable. As a guideline, it can be stated that a degree of hydration of 1.0% by weight linearly increases the corresponding grain by 1.0%.
Es kommt hinzu, daß sich die bekannten feinteiligen Magnesiumoxidpulver nur zusammen mit Bindemitteln in einer grobkeramischen Matrix verarbeiten lassen.In addition, the known fine-particle magnesium oxide powders can only be processed together with binders in a heavy ceramic matrix.
Der Erfindung liegt die Aufgabe zugrunde, eine Möglichkeit aufzuzeigen, mit der sich feuerfeste keramische Massen und Formteile herstellen lassen, die auch ohne aufwendige Aufbereitung der Ausgangsbestandteile zu einer ausreichenden Grünstandsfestigkeit und hohen Dichte nach dem Brand führen.The invention has for its object to show a way with which refractory ceramic masses and moldings can be produced, which lead to sufficient green stability and high density after the fire even without complex preparation of the starting components.
Dabei liegt der Erfindung die Erkenntnis zugrunde, daß dies durch die Verwendung eines feinteiligen, feuerfesten, oxidischen Mikropulvers in einer grobkeramischen feuerfesten Matrix erreicht werden kann, wobei das Mikropulver weitestgehend in Form eines Einkorns vorliegt.The invention is based on the knowledge that this can be achieved by using a finely divided, refractory, oxidic micropowder in a coarse-ceramic refractory matrix, the micropowder being largely in the form of a single grain.
Es hat sich nämlich gezeigt, daß bei Verwendung eines derartigen Einkorns eine rein physikalische Bindung zwischen den Teilchen erreicht werden kann, die selbst im Grünzustand bereits zu einer ausreichenden und zum Teil gegenüber dem Stand der Technik erhöhten Grundfestigkeit führt. Durch die Verwendung eines Einkorns wird außerdem in vorteilhafter Weise eine Sammelkristallisation verhindert, bei der kleinere Teilchen bei der Sinterung mit größeren Teilchen koagulieren, wodurch eine unregelmäßige Sintercharakteristik entsteht.It has been shown that when such a grain is used, a purely physical bond between the particles can be achieved, which even in the green state leads to a sufficient basic strength, which is sometimes higher than in the prior art. The use of a single grain also advantageously prevents collective crystallization, in which smaller particles coagulate with larger particles during sintering, which results in an irregular sintering characteristic.
Die Verwendung des feinteiligen oxidischen Mikropulvers mit weitestgehend einheitlichem Korndurchmesser führt dagegen bereits im Grünzustand zu einer physikalischen Haftung der Teilchen untereinander, die sich beim Brand in einer gleichmäßigen Sinterung fortsetzt. Die feinteilige Komponente füllt dabei in vorteilhafter Weise die Zwickel zwischen den gröberen Teilchen in Form einer dichtesten Kugelpackung aus und ermöglicht so am fertigen (gebrannten) Produkt eine deutlich verringerte Porosität.In contrast, the use of the finely divided oxidic micropowder with a largely uniform grain diameter leads to physical adhesion of the particles to one another even in the green state, which continues in the course of the fire in a uniform sintering. The finely divided component advantageously fills the gusset between the coarser particles in the form of a densest spherical packing and thus enables the finished (fired) product to have a significantly reduced porosity.
Statistisch kann berechnet werden, daß beispielsweise bei einer Ausgangsporosität von 20 Vol.-% im Grobkorn-Matrixmaterial (mit einer maximalen Korngröße von 3 mm und einer minimalen Korngröße über der des Feinkornanteils) sowie Zugabe von 15 Gew.-% des feinteiligen Einkorn-Oxid-Pulvers mit einer Korngröße von etwas unter 1,0 µm eine Restporosität von 8 bis 10 Vol.-% am fertigen (gebrannten) Produkt gegeben ist.Statistically it can be calculated that, for example, with an initial porosity of 20% by volume in the coarse-grain matrix material (with a maximum grain size of 3 mm and a minimum grain size above that of the fine-grain fraction) and addition of 15% by weight of the finely divided single-grain oxide Powder with a grain size of slightly less than 1.0 µm There is a residual porosity of 8 to 10% by volume of the finished (fired) product.
Dies vorausgeschickt betrifft die Erfindung in ihrer allgemeinsten Ausführungsform die Verwendung eines nach Dispergierung in einem nicht wässrigen Dispergiermedium erhaltenen feinteiligen, feuerfesten, oxidischen Mikropulvers weitestgehend einheitlicher Korngröße in einem grobkeramischen feuerfesten Matrixmaterial zur Herstellung von keramischen Massen und Formteilen hoher Grünstandsfestigkeit und hoher Dichte nach einem Brand.That being said, the invention in its most general embodiment relates to the use of a finely divided, refractory, oxidic micropowder obtained after dispersion in a non-aqueous dispersion medium, largely of a uniform grain size in a coarse-ceramic, refractory matrix material for the production of ceramic masses and moldings of high green strength and high density after a fire.
Das Mikropulver sollte dabei in einer Teilchengröße von weniger als 10 µm eingesetzt werden, wobei Teilchengrößen unter 1 µm besonders günstig im erfindungsgemäßen Sinne wirken.The micropowder should be used in a particle size of less than 10 μm, particle sizes below 1 μm being particularly advantageous in the sense of the invention.
Die Begriffe "Einkorn" beziehungsweise "weitestgehend einheitliche Korngröße" sind aber nicht in dem Sinne zu verstehen, daß ein exaktes Einkorn eingesetzt wird, weil dieses nur mit erhöhtem Aufwand überhaupt herstellbar, wenngleich besonders bevorzugt wäre; insoweit wird nach einer Ausführungsvariante die Verwendung eines feinteiligen Mikropulvers vorgeschlagen, bei dem 90 Gew.-% der Teilchen ein maximale Abweichung vom mittleren Teilchendurchmesser von ± 10 % aufweisen.However, the terms "single grain" or "largely uniform grain size" are not to be understood in the sense that an exact single grain is used because this can only be produced with increased effort, although it would be particularly preferred; to this extent, according to one embodiment variant, the use of a finely divided micropowder is proposed, in which 90% by weight of the particles have a maximum deviation from the mean particle diameter of ± 10%.
Die verwendete Menge des Mikropulvers kann anwendungsspezifisch variieren, sollte aber grundsätzlich in der Größenordnung zwischen 5 und 18 Gew.-%, bezogen auf die Gesamtmasse, liegen, wobei ein Anteil von 10 bis 15 Gew.-% für die meisten Anwendungsbereiche infrage kommen dürfte.The amount of micropowder used can vary depending on the application, but should in principle be in the order of 5 to 18% by weight, based on the total mass, a proportion of 10 to 15% by weight being likely for most applications.
Beim grobkeramischen Matrixmaterial kann auf konventionelle Siebkennlinien zurückgegriffen werden, die im Kornbereich < 5 mm und > als das Mikropulver vorliegen.In the case of coarse ceramic matrix material, conventional sieving characteristics can be used which are in the grain area <5 mm and> as the micropowder.
Wie bereits eingangs erläutert, besteht ein wesentlicher Vorteil der beschriebenen Verwendung darin, daß aus der Kombination von grobkeramischem Matrixmaterial und dispergiertem feinteiligen Mikropulver die Möglichkeit resultiert, bindemittelfrei zu arbeiten, da die feinteilige Einkorn-Komponente quasi als "in-situ-Bindemittel" wirkt.As already explained at the beginning, there is a significant advantage of the use described that the combination of coarse ceramic matrix material and dispersed fine-particle micropowder results in the possibility of working without a binder, since the fine-particle single-grain component acts virtually as an "in-situ binder".
Um den Dispergiereffekt der feinteiligen Komponente zu optimieren, wird der entsprechende Massenanteil zuvor in einem nicht wässrigen Dispergiermedium aufbereitet (wodurch bei hydratationsempfindlichen Oxiden wie MgO eine Hydratation verhindert wird), wobei das bezüglich des Feststoffs inerte Dispergiermedium zum Beispiel aus Naphtenbasischen Ölen oder Fettalkoholen bestehen kann und als Dispergiermittel zum Beispiel ein modifiziertes Alkydharz (Polyester) eingesetzt wird.In order to optimize the dispersing effect of the finely divided component, the corresponding mass fraction is previously prepared in a non-aqueous dispersing medium (which prevents hydration in the case of hydration-sensitive oxides such as MgO), whereby the dispersing medium which is inert with respect to the solid can consist, for example, of naphthenic oils or fatty alcohols and a modified alkyd resin (polyester) is used as the dispersant, for example.
Das feuerfeste oxidische Mikropulver kann aus unterschiedlichen Oxiden bestehen, beispielsweise MgO, Al₂O₃, Cr₂O₃ und/oder TiO₂. Dabei kann das oxidische Mikropulver lediglich aus einem dieser Oxide bestehen; es ist aber auch möglich, Mischungen dieser Oxide als Mikropulver einzusetzen, insbesondere dann, wenn eine Spinellbildung gewünscht wird. In diesem Fall bietet es sich an, zum Beispiel eine MgO/Cr₂O₃-Dispersion zu verwenden.The refractory oxidic micropowder can consist of different oxides, for example MgO, Al₂O₃, Cr₂O₃ and / or TiO₂. The oxidic micropowder can consist of only one of these oxides; however, it is also possible to use mixtures of these oxides as micropowder, in particular when spinel formation is desired. In this case, it makes sense to use a MgO / Cr₂O₃ dispersion, for example.
Die erfindungsgemäße Verwendung erreicht ihre vorteilhaftesten Eigenschaften dann, wenn eine Dispersion mit einem sehr hohen Feststoffgehalt des oxidischen Mikropulvers eingesetzt wird. Hierunter werden Dispersionen verstanden, die einen Feststoffgehalt von über 85 Gew.-%, bezogen auf die Gesamt-Dispersion, aufweisen. Entsprechend beträgt der Anteil des Dispergierers dann bis zu 15 Gew.-%.The use according to the invention achieves its most advantageous properties when a dispersion with a very high solids content of the oxidic micropowder is used. Dispersions are understood to mean which have a solids content of over 85% by weight, based on the total dispersion. The proportion of the disperser is then up to 15% by weight.
Überraschend wurde festgestellt, daß sich derartige hochkonzentrierte Dispersionen in hochenergiereichen Mischern unter Verwendung eines geeigneten Dispergiermittels (zum Beispiel Polyester) herstellen lassen, wobei der Feststoffanteil sogar auf Werte über 90 Gew.-% eingestellt werden kann.It has surprisingly been found that such highly concentrated dispersions can be prepared in high-energy mixers using a suitable dispersant (for example polyester), and the solids content can even be set to values above 90% by weight.
Das grobkeramische Matrixmaterial wird in Abhängigkeit von den gewünschten Werkstoffeigenschaften ausgewählt.The coarse ceramic matrix material is selected depending on the desired material properties.
So ist es für rein magnesitische Produkte möglich, ein magnesitisches, grobkeramisches Matrixmaterial mit einem MgO-Mikropulver aufzubereiten. Ebenso kann in diesem Fall das Mikropulver beispielsweise aber auch aus einer spinellbildenden MgO/Cr₂O₃- oder MgO/Al₂O₃-Dispersion bestehen.It is possible for purely magnesitic products to process a magnesitic, coarse ceramic matrix material with an MgO micropowder. Likewise, in this case the micropowder can also consist, for example, of a spinel-forming MgO / Cr₂O₃ or MgO / Al₂O₃ dispersion.
Im Fall der Verwendung eines grobkeramischen Matrixmaterials auf Basis Al₂O₃ (zum Beispiel Tonerde, Tabulartonerde, Korund), bietet sich die Verwendung eines Al₂O₃-Mikropulvers an, das beispielsweise aber wieder ganz oder teilweise durch TiO₂ oder ein anderes feuerfestes oxidisches Mikropulver ersetzt werden kann.In the case of the use of a coarse ceramic matrix material based on Al₂O₃ (for example alumina, tabular alumina, corundum), the use of an Al₂O₃ micropowder offers itself, which, however, can be replaced in whole or in part by TiO₂ or another refractory oxidic micropowder.
Auch bei Verwendung von nicht hydratationsempfindlichen Oxiden wie Al₂O₃ sollte dieses vorzugsweise in einem nicht wässrigen Dispergiermedium aufbereitet werden, um den Wassergehalt der aufbereiteten Masse so gering wie möglich zu halten. Die Aufbereitungstechnik mit einem nicht wässrigen Dispergiermedium hat den Vorteil, daß sich die vorstehend genannten ungewöhnlich hohen Feststoff-Konzentrationen der Dispersion leichter erreichen lassen, mit der Folge, daß auf diese Weise nicht nur die Grünstandsfestigkeit der keramischen Masse (nach Vermischen mit dem grobkeramischen Matrixmaterial), sondern auch die Dichte nach dem Brand wesentlich gefördert werden kann.Even when using non-hydration-sensitive oxides such as Al₂O₃, this should preferably be processed in a non-aqueous dispersion medium in order to keep the water content of the processed mass as low as possible. The processing technology with a non-aqueous Dispersing medium has the advantage that the above-mentioned unusually high solid concentrations of the dispersion can be achieved more easily, with the result that in this way not only the green stability of the ceramic mass (after mixing with the coarse ceramic matrix material) but also the density the fire can be significantly promoted.
So können unter Verwendung eines MgO-Mikropulvers in reinmagnesitischen Steinen nach dem Brand Dichten von 3,25 g/cm³ erreicht werden.Using an MgO micropowder in pure magnesite stones, densities of 3.25 g / cm³ can be achieved after firing.
Es ist aber auch möglich, die feuerfeste oxidische Mikropulver-Dispersion vor der Vermischung mit dem grobkeramischen Matrixmaterial wieder von dem zur Aufbereitung verwendeten Dispergiermedium zu trennen, beispielsweise durch Sprühtrocknen oder Gefriertrocknen der Dispersion. Dabei wird das Dispergiermedium entfernt, beispielsweise abgesaugt, so daß sehr feines, reines und oberflächenmodifiziertes Mikropulver hergestellt wird. Dieses Mikropulver kann dann auch in wässrigen Systemen eingesetzt werden.However, it is also possible to separate the refractory oxidic micropowder dispersion again from the dispersion medium used for the preparation, for example by spray drying or freeze-drying the dispersion, before it is mixed with the heavy ceramic matrix material. The dispersing medium is removed, for example suctioned off, so that very fine, pure and surface-modified micropowder is produced. This micropowder can then also be used in aqueous systems.
Versuche haben gezeigt, daß sich aus einer Masse, die 85 Gew.-% grobkeramisches MgO-Matrixmaterial in der Kornfraktion > 1,0 µm und < 3 mm sowie 15 Gew.-% eines zuvor dispergierten, feinteiligen MgO-Mikropulvers mit einer Korngröße von 0,9 µm enthält, Formkörper mit einer Kaltdruckfestigkeit des gepreßten Grünlings von 50 bis 60 N/mm² herstellen lassen, wobei dieser Wert um ein Vielfaches über den Werten der Kaltdruckfestigkeit liegt, die aus dem Stand der Technik bekannt sind.Experiments have shown that a mass consisting of 85% by weight of heavy ceramic MgO matrix material in the grain fraction> 1.0 µm and <3 mm and 15% by weight of a previously dispersed, finely divided MgO micropowder with a grain size of Contains 0.9 µm, moldings with a cold compressive strength of the pressed green body of 50 to 60 N / mm² can be produced, this value being many times higher than the values of the cold compressive strength, which are known from the prior art.
Gleichzeitig werden Dichten erzielt, die oberhalb von 3,15 g/cm³ liegen (wobei diese Werte sowohl für die Grünlinge wie auch für den gebrannten Körper gelten).At the same time, densities are achieved which are above 3.15 g / cm³ (these values apply to both the green compacts and the fired body).
Ein wesentlicher weiterer Vorteil besteht darin, daß die aus der beschriebenen Masse hergestellten Formteile im Brand keiner nennenswerten Schwindung unterliegen.A further significant advantage is that the molded parts produced from the composition described are not subject to any significant shrinkage in the fire.
Claims (17)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4218565 | 1992-06-05 | ||
DE4218565 | 1992-06-05 | ||
DE4237317 | 1992-11-05 | ||
DE4237317 | 1992-11-05 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0573029A2 true EP0573029A2 (en) | 1993-12-08 |
EP0573029A3 EP0573029A3 (en) | 1994-09-07 |
EP0573029B1 EP0573029B1 (en) | 1996-05-15 |
Family
ID=25915444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93108918A Expired - Lifetime EP0573029B1 (en) | 1992-06-05 | 1993-06-03 | Use of refractory, oxide micropowder for making ceramic masses and bodies |
Country Status (6)
Country | Link |
---|---|
US (1) | US5426078A (en) |
EP (1) | EP0573029B1 (en) |
JP (1) | JPH0656506A (en) |
AT (1) | ATE138055T1 (en) |
CA (1) | CA2097755C (en) |
DE (1) | DE59302569D1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2696444A1 (en) * | 1992-10-01 | 1994-04-08 | Veitsch Radex Ag | Binder for ceramic masses. |
WO2014048586A1 (en) * | 2012-09-28 | 2014-04-03 | Refractory Intellectual Property Gmbh & Co. Kg | Mix for producing a fire-resistant material, a fire-resistant material, a method for producing a fire-resistant material and use of a material as a sintering aid |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6013309A (en) * | 1997-02-13 | 2000-01-11 | Lg Electronics Inc. | Protection layer of plasma display panel and method of forming the same |
CN102084137B (en) | 2009-04-23 | 2013-10-16 | 萱场工业株式会社 | Pipe securing structure for cylinder tube |
CN110981502A (en) * | 2020-01-16 | 2020-04-10 | 宜兴必方陶瓷科技有限公司 | Production method of ceramic bonding agent used in unburned carbon-containing brick process formula |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4126479A (en) * | 1977-09-15 | 1978-11-21 | Kaiser Aluminum & Chemical Corporation | Magnesium aluminate spinel bond for refractory brick |
FR2571043A1 (en) * | 1984-10-02 | 1986-04-04 | Toshiba Ceramics Co | ALUMINA-MAGNESIA REFRACTORY COMPOSITION |
EP0354896A2 (en) * | 1988-08-10 | 1990-02-14 | Veitscher Magnesitwerke-Actien-Gesellschaft | Magnesium oxide micropowder and its use |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1992482A (en) * | 1934-01-09 | 1935-02-26 | Gen Refractories Co | High-pressure brick containing magnesia, and process of making the same |
US2030200A (en) * | 1934-03-30 | 1936-02-11 | Rca Corp | Ceramic object and method of making the same |
US3432313A (en) * | 1964-10-22 | 1969-03-11 | Aluminum Co Of America | Production of ceramic bodies |
US3874234A (en) * | 1973-06-27 | 1975-04-01 | Fischer & Porter Co | Vortex shedding flowmeter |
FR2335469A1 (en) * | 1975-12-15 | 1977-07-15 | Gen Refractories Co | Refractory articles with high mechanical strength - prepd. by impregnating periclase with an alkyd resin binder, pressing, drying and calcining |
SE398498B (en) * | 1976-05-03 | 1977-12-27 | Strabruken Ab | REFRACTORY PULP INTENDED FOR USE IN METALLURGIC OVENS AS STAMP OR PREPARATION MASS OR AFTER PRESSING AND / OR VIBRATION AS A BRICK, WHICH MASS CONSISTS OF A MIXTURE INCLUDING FIREFIGHTED FOOD ... |
JPS5524813A (en) * | 1978-08-03 | 1980-02-22 | Showa Denko Kk | Alumina grinding grain |
US4324862A (en) * | 1981-02-13 | 1982-04-13 | Nalco Chemical Company | Basic (MgO) non-aqueous plastic refractory mixture |
US4544643A (en) * | 1984-06-11 | 1985-10-01 | Dresser Industries, Inc. | Refractory fused chrome-alumina bricks and compositions made from a granular fused material and processes for their production |
US5252526A (en) * | 1988-03-30 | 1993-10-12 | Indresco Inc. | Insulating refractory |
US5283215A (en) * | 1991-11-26 | 1994-02-01 | Ceramic Co., Ltd. Harima | Refractories for casting process |
-
1993
- 1993-06-01 JP JP5167247A patent/JPH0656506A/en active Pending
- 1993-06-03 AT AT93108918T patent/ATE138055T1/en not_active IP Right Cessation
- 1993-06-03 DE DE59302569T patent/DE59302569D1/en not_active Expired - Fee Related
- 1993-06-03 EP EP93108918A patent/EP0573029B1/en not_active Expired - Lifetime
- 1993-06-04 US US08/072,983 patent/US5426078A/en not_active Expired - Fee Related
- 1993-06-04 CA CA002097755A patent/CA2097755C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4126479A (en) * | 1977-09-15 | 1978-11-21 | Kaiser Aluminum & Chemical Corporation | Magnesium aluminate spinel bond for refractory brick |
FR2571043A1 (en) * | 1984-10-02 | 1986-04-04 | Toshiba Ceramics Co | ALUMINA-MAGNESIA REFRACTORY COMPOSITION |
EP0354896A2 (en) * | 1988-08-10 | 1990-02-14 | Veitscher Magnesitwerke-Actien-Gesellschaft | Magnesium oxide micropowder and its use |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2696444A1 (en) * | 1992-10-01 | 1994-04-08 | Veitsch Radex Ag | Binder for ceramic masses. |
WO2014048586A1 (en) * | 2012-09-28 | 2014-04-03 | Refractory Intellectual Property Gmbh & Co. Kg | Mix for producing a fire-resistant material, a fire-resistant material, a method for producing a fire-resistant material and use of a material as a sintering aid |
US9212098B2 (en) | 2012-09-28 | 2015-12-15 | Refractory Intellectual Property Gmbh & Co. | Blend for the production of a refractory material, a refractory material, a method for the manufacture of a refractory material, and use of a substance as a sintering aid |
EA027483B1 (en) * | 2012-09-28 | 2017-07-31 | Рифрэктори Интеллектчуал Проперти Гмбх Унд Ко. Кг | Mix for producing a fire-resistant material, a fire-resistant material, a method for producing a fire-resistant material and use of a substance as a sintering aid |
Also Published As
Publication number | Publication date |
---|---|
CA2097755A1 (en) | 1993-12-06 |
ATE138055T1 (en) | 1996-06-15 |
EP0573029A3 (en) | 1994-09-07 |
EP0573029B1 (en) | 1996-05-15 |
JPH0656506A (en) | 1994-03-01 |
US5426078A (en) | 1995-06-20 |
DE59302569D1 (en) | 1996-06-20 |
CA2097755C (en) | 1997-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0102590B1 (en) | Shaped ceramic body, process for its manufacture and its application | |
DE3881011T2 (en) | STARTING MATERIAL FOR THE SLICK ENERGY METHOD FOR METAL POWDER AND METHOD FOR THE PRODUCTION OF SINTERED MOLDED BODIES. | |
DE3428252C3 (en) | Process for making a refractory zirconia body | |
EP0248788A2 (en) | Microcrystalline abrasive agent and process for its preparation | |
EP0406847A1 (en) | Sintered material on basis of aluminium oxide, process for its production and its utilisation | |
EP0876309B1 (en) | Moulded spherical ceramic body, production process and use | |
DE3586807T2 (en) | METHOD FOR PRODUCING TONER DECODES. | |
DE3132277A1 (en) | BINDERS FOR POWDER SINTERING INORGANIC MATERIALS | |
EP0601453A2 (en) | Process for the preparation of aluminium oxide particles, aluminium oxide powder obtained according to this process and the use of this powder | |
DE69631093T2 (en) | INORGANIC, POROUS SUPPORT FOR A FILTRATION MEMBRANE AND PRODUCTION METHOD | |
EP0573029B1 (en) | Use of refractory, oxide micropowder for making ceramic masses and bodies | |
DE4113476A1 (en) | POLYCRYSTALLINE, SINED GRINDING CORES BASED ON ALPHA-AL (DOWN ARROW) 2 (DOWN ARROW) O (DOWN ARROW) 3 (DOWN ARROW), METHOD FOR THEIR PRODUCTION AND THEIR USE | |
DE10207860B4 (en) | Porous silicon carbide ceramic and process for its preparation | |
EP0354896A2 (en) | Magnesium oxide micropowder and its use | |
DE3604848A1 (en) | ABRASIVE GRAIN AND METHOD FOR THE PRODUCTION THEREOF | |
DE2329739A1 (en) | METHOD OF MANUFACTURING METAL-CERAMIC POWDERS | |
EP0771316B1 (en) | Process for producing sinterable green bodies using nanoscalar non-oxidic powders | |
EP0256218B1 (en) | Sinterable silicon nitride powder and method of manufacturing the same | |
DE3617488A1 (en) | SINTERABLE SI (DOWN ARROW) 3 (DOWN ARROW) N (DOWN ARROW) 4 (DOWN ARROW) POWDER WITH SINTER ADDITIVES AND METHOD FOR THEIR PRODUCTION | |
EP0441268A1 (en) | Process for the production of shaped bodies of superconductive oxide ceramic material | |
EP0610848A2 (en) | Method of making dense sintered ceramic parts of silicon nitride having high mechanical strength | |
EP0797554B1 (en) | Method of preparing a sintered material containing aluminium oxide | |
DE19520614C1 (en) | Microcrystalline sintered abrasive grains based on a-AI¶2¶O¶3¶ with high wear resistance, process for its production and its use | |
DE69122339T2 (en) | Process for producing a powder molding | |
DE19733698C1 (en) | Producing ceramic component using interface active substance-modified sintering additive and low viscosity thermoplastic binder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE DE ES FR GB IT SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE DE ES FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19940823 |
|
17Q | First examination report despatched |
Effective date: 19950721 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR GB IT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19960515 Ref country code: BE Effective date: 19960515 |
|
REF | Corresponds to: |
Ref document number: 138055 Country of ref document: AT Date of ref document: 19960615 Kind code of ref document: T |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19960603 |
|
REF | Corresponds to: |
Ref document number: 59302569 Country of ref document: DE Date of ref document: 19960620 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960815 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010515 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010618 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010619 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050603 |