[go: up one dir, main page]

EP0572293B1 - Pulse compression device, particularly in high frequency transmission - Google Patents

Pulse compression device, particularly in high frequency transmission Download PDF

Info

Publication number
EP0572293B1
EP0572293B1 EP93401179A EP93401179A EP0572293B1 EP 0572293 B1 EP0572293 B1 EP 0572293B1 EP 93401179 A EP93401179 A EP 93401179A EP 93401179 A EP93401179 A EP 93401179A EP 0572293 B1 EP0572293 B1 EP 0572293B1
Authority
EP
European Patent Office
Prior art keywords
frequency
line
cut
pulses
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93401179A
Other languages
German (de)
French (fr)
Other versions
EP0572293A1 (en
Inventor
Gérard Kantorowicz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0572293A1 publication Critical patent/EP0572293A1/en
Application granted granted Critical
Publication of EP0572293B1 publication Critical patent/EP0572293B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P9/00Delay lines of the waveguide type
    • H01P9/003Delay equalizers

Definitions

  • the present invention relates to a pulse compression device, in particular for microwave transmission.
  • Analog compression of frequency modulated pulses is a well known technique in reception. Compression at transmission and at high power level has already been achieved.
  • One embodiment is described in particular in the article "SLED: A METHOD OF DOUBLING SLAC'S ENERGY" by Z.D. Farkas, H.A. Hogg, G.A. Loew and P.B. Wilson, Stanford Linear Accelerator Center, Stanford University, 1974.
  • the device described uses the filling time of a resonant cavity as a delay at the front edge of the pulse relative to the back edge. This method is limited by overvoltages due to resonance, by losses in the cavity and by strong electric fields proportional to the overvoltage in the cavity.
  • the invention aims to overcome the aforementioned drawbacks, in particular by making it possible to compress pulses significantly with high possible peak powers.
  • the subject of the invention is a pulse compression device, as described by claim 1.
  • the main advantages of the invention are that it is compact, that it is simple to implement and that it allows significant compression rates.
  • FIG. 1b An exemplary embodiment of this type of line with periodic structure called a folded guide line is illustrated in FIG. 1b.
  • a microwave waveguide for example, of rectangular section, are arranged metal plates 4 parallel to the section of the line, that is to say perpendicular to its axis of propagation.
  • These metal plates 4 are fixed alternately on one side 311 and on the other opposite side 312 of the line 3, leaving a space between their end and the side of the line to which they are not fixed. Similarly, these metal plates 4 are fixed to one and the other sides 314, 315 adjacent to the two preceding sides 311, 312.
  • the period p of the structure of the line 3 is for example defined by the distance between two successive metal plates 4 fixed in the same way on line 3.
  • the device according to the invention uses the property of reflection of the waves which a periodic structure has, for certain frequencies, of the type for example of that of FIG. 1b.
  • This reflection defined in particular by the laws of Bragg or Brillouin, occurs when the reflection, on each cell, the metal plates 4 for example, of the structure, becomes cumulative in a certain frequency band.
  • FIG. 1c illustrates by a diagram the relation between the frequency transmitted f through such a line with periodic structure and the wave number ⁇ , equal to 2 ⁇ / ⁇ , of propagation in the structure, ⁇ being the guided wavelength in the structure.
  • the diagram in Figure 1c defines the bandwidth of the line.
  • this passband is bounded to the low frequencies by a frequency fc constituting a line cutoff frequency, when ⁇ is a multiple of 2 ⁇ / L where L is equal to the aforementioned period p.
  • the frequency of the signal 1 is lower than the frequency fc at the input of the device of FIG. 1a, the pulse is reflected at the input 5 of the line 3 with periodic structure.
  • the frequency of the signal f is greater than the cutoff frequency fc, and less than the maximum cutoff frequency in the case of a diagram of the type of FIG. 1c for example
  • the line with periodic structure 3 propagates the signal 1 as this is represented by dotted lines 7 in FIG. 1a.
  • the line with periodic structure 3 being for example open at the end opposite to that connected to the first line 2, the signal 1 is reflected at this end.
  • FIG. 1a The basic diagram of a device according to the invention presented in FIG. 1a in fact corresponds to a single transmission line whose cutoff frequency varies in the direction of its axis of propagation.
  • this cut-off frequency takes only two values, it is for example very low over the length l 1 , so as to allow all the signals involved to pass, and it takes the value fc at the level from the entry of the periodic structure.
  • the line has at its output means, not shown, for separating an incident wave and a reflected wave, a microwave circulator for example, it is possible to recover at the output of this line a pulse whose width T 2 is reduced relative to the length T 1 of the incoming pulse.
  • FIG. 3a represents the block diagram of a possible embodiment of a device according to the invention.
  • the pulse to be compressed arrives via a line 31 at the input 32 of means 33 for separating an incident wave and a reflected wave, a microwave circulator for example.
  • the separation means 33 are loaded by a transmission line 34 of structure similar to the line with periodic structure 3 of FIG. 1a.
  • the separation means 33 can be loaded by line 34 via a transmission line 35 or have an opening directly closed by line 34.
  • the pulses to be compressed can for example have a radar recurrence frequency between a few kilohertz and a few hundred kilohertz. These pulses are modulated, for example, by a microwave signal.
  • the structure of the line 34 and the modulation of the pulses are for example adapted to compress the latter.
  • Line 34 connected to the separation means 33 has a structure similar to line 3 in Figure la but without this structure being necessarily periodic.
  • the line 34 has a structure such that its cut-off frequency, low for example, varies along its axis of propagation. In this sense, it is analogous to the global line of FIG. 1 consisting of two lines 2, 3 where the variation in cutoff frequency is made at the transition of the two lines. In the case of the device of FIG. 3a, this variation is adapted to the modulation of the pulses to be compressed. In particular, if this modulation is linear, the variation in the cutoff frequency along the axis of propagation of line 34 is also linear.
  • FIG. 3b illustrates a pulse of duration T1 whose modulation is linear.
  • the frequency of the signal contained in the pulse is equal to a value f 1 , the frequency of the following signals varying linearly up to the frequency of the end of pulse signal having a value f 2 , f 2 being less than f 1 .
  • the low cut-off frequency along line 34 can therefore vary for example linearly from the value f 2 at its input end to the value f 1 at its other end.
  • the length of line 34 is for example calculated so that all successive signals constituting the pulse to be compressed are superimposed on the last signal of frequency f 2 at the output of line 34.
  • FIG. 3c illustrates a pulse compressed of duration T 2 obtained for example by the compression of the pulse of duration T 1 of FIG. 3b.
  • This compressed pulse consists of the mixture of signals of different frequencies delayed with respect to each other.
  • the cut-off frequencies used are low cut-off frequencies of the passband evolving along the axis of propagation of the line 34. It is possible to use the high cut-off frequencies of this bandwidth, in this case, the signal to be compressed is modulated in such a way that the frequency of the signals it contains increases from the start of the pulse instead of decreasing as in the exemplary embodiment described.
  • the frequency modulation of the pulse to be compressed need not be linear. However, such modulation facilitates the production of a device according to the invention.
  • the variation of the cutoff frequency along the axis of line 34 can be obtained in several ways.
  • a line with periodic structure such as that of FIG. 1b
  • the cutoff frequency depending on the period or the pitch p between two groups of consecutive and identical metal plates one solution to vary this cutoff frequency consists in varying this not p.
  • the line then no longer has a properly periodic structure but nevertheless retains its reflection properties, the bandwidth evolving with the step p.
  • Another solution consists, for example, in varying the height or the width of the transmission line 34. Still in the case of a line of the type of FIG. 1b, it is possible to vary the geometry of the metal plates 4 while retaining their periodic arrangement. It is also possible to vary both this arrangement and the geometry of the metal plates 4.
  • FIG. 4 shows the embodiment of the transmission line 34 with variable cut-off frequency known from the prior art.
  • Metal plates or valves 41 are arranged along line 34, a guide of rectangular section for example, perpendicular to its axis of propagation.
  • the valves 41 are all fixed on the same side 341 of the line and centered for example on the middle of this side.
  • the variation of the cutoff frequency along this line can be achieved by varying the pitch between the valves 41 or by varying their height.
  • this line 34 can in particular be made of dielectric material whose geometry varies as a function of the axis of propagation of the line.
  • FIG. 5 shows another possible embodiment of a device according to the invention.
  • This consists of a 3dB coupler 51 having an input 52 through which the pulses to be compressed enter, an output 53 delivering the compressed pulses and two branches 54, 55 through which the signals entering via input 52 pass, the signals passing through each of the branches having the same amplitude, equal to 1 / 2 times half that of the input signals, hence the name of 3dB coupler, and being in quadrature.
  • the branches 54, 55 of the coupler 51 are each loaded by a line 56, 57 whose cutoff frequency varies along the axis of propagation. These lines 56, 57 are for example analogous to that of FIG.
  • the branches 54, 55 of the coupler 51 have terminations 59, 60 which make it possible to adapt them to the input of lines 56, 57, because the input section of the latter is reduced by the presence of the metal plates 58.
  • the operation of the device in FIG. 5 uses the properties of the coupler 51 and of the lines 56, 57 which are associated with it, the coupler playing in particular the role of the means for separating a incident wave and a reflected wave.
  • One pulse to be compressed enters via input 52 of coupler 51 and then divides into two quadrature pulses of equal amplitude, equal to 1 / 2 half the amplitude of the incoming pulse, one of the pulses thus created is propagating in one branch 54 and the other impulse in the other branch 55. Then they enter the lines 56, 57 via the terminations 59, 60. These impulses propagate and are reflected inside the lines 56 , 57 as described above in line 34 of the device in FIG. 3a.
  • the pulse to be compressed is linearly frequency modulated, the cut-off frequency varies linearly along the lines 56, 57 according to methods previously described.
  • the structures of the lines 56, 57 are preferably identical.
  • the two pulses being beforehand of equal amplitude and in quadrature, the pulses propagating towards the input 52 are found in phase opposition and of the same amplitude therefore cancel out while the pulses propagating towards the output 53 of the coupler, in phase, recombine to form the initial compressed pulse.
  • the device of FIG. 5 makes it possible, in particular thanks to the coupler, to compress high power pulses and can therefore be advantageously used for the compression of pulses in microwave transmission, for radar applications for example.

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Description

La présente invention concerne un dispositif de compression d'impulsions, notamment en émission hyperfréquence.The present invention relates to a pulse compression device, in particular for microwave transmission.

Elle s'applique notamment à des radars de détection de cibles furtives. Plus généralement, elle s'applique à tous les radars dont la fonction nécessite l'émission de fortes puissances crête pendant des impulsions de très courte durée.It applies in particular to stealth target detection radars. More generally, it applies to all radars whose function requires the emission of high peak powers during very short duration pulses.

Pour lutter par exemple contre des cibles furtives, il est nécessaire d'émettre des impulsions de durée plus courte que les temps de réaction, eux-mêmes très courts, de ces cibles furtives. Il faut alors par exemple comprimer les impulsions émises dans un rapport 10 environ, à puissance émise moyenne constante. Cela peut conduire à comprimer par exemple des impulsions d'une durée de 100 ns à 1 MW de puissance crête en impulsions d'une durée de 10 ns environ à 10 MW de puissance crête.To fight for example against stealth targets, it is necessary to emit pulses of shorter duration than the reaction times, themselves very short, of these stealth targets. It is then necessary, for example, to compress the pulses transmitted in a ratio approximately 10, at constant average transmitted power. This can lead to compressing, for example, pulses with a duration of 100 ns to 1 MW of peak power into pulses with a duration of around 10 ns at 10 MW of peak power.

La compression analogique d'impulsions modulées en fréquence est une technique bien connue en réception. La compression à l'émission et à fort niveau de puissance a déjà été réalisée. Une réalisation est notamment décrite dans l'article "SLED: A METHOD OF DOUBLING SLAC'S ENERGY" de Z.D. Farkas, H.A. Hogg, G.A. Loew et P.B. Wilson, Stanford Linear Accelerator Center, Stanford University, 1974. Le dispositif décrit utilise le temps de remplissage d'une cavité résonante comme retard au front avant de l'impulsion par rapport au front arrière. Cette méthode est limitée par les surtensions dues à la résonance, par les pertes dans la cavité et par les forts champs électriques proportionnels à la surtension de la cavité.Analog compression of frequency modulated pulses is a well known technique in reception. Compression at transmission and at high power level has already been achieved. One embodiment is described in particular in the article "SLED: A METHOD OF DOUBLING SLAC'S ENERGY" by Z.D. Farkas, H.A. Hogg, G.A. Loew and P.B. Wilson, Stanford Linear Accelerator Center, Stanford University, 1974. The device described uses the filling time of a resonant cavity as a delay at the front edge of the pulse relative to the back edge. This method is limited by overvoltages due to resonance, by losses in the cavity and by strong electric fields proportional to the overvoltage in the cavity.

En raison du gain limité de cette structure, un autre dispositif appelé "Binary Power Compressor", a été étudié. Il est décrit dans l'article "Binary Peak Power Multiplier and its application to Linear Accelerator Design" de Z. Farkas - IEEE Trans MTT 34 - 1986, page 1036 . Il utilise deux voies d'amplification en parallèle, l'une des voies est retardée par rapport à l'autre avant recombinaison en phase et réduction par deux de la durée d'impulsion.Due to the limited gain of this structure, another device called "Binary Power Compressor" was studied. It is described in the article "Binary Peak Power Multiplier and its application to Linear Accelerator Design" by Z. Farkas - IEEE Trans MTT 34 - 1986, page 1036. He uses two amplification channels in parallel, one of the channels is delayed compared to the other before phase recombination and reduction by two of the pulse duration.

Pour réduire de façon importante la durée des impulsions, il est donc nécessaire d'utiliser un nombre important de tronçons de ce type, ce qui complique le dispositif et le rend encombrant et coûteux.To significantly reduce the duration of the pulses, it is therefore necessary to use a large number of sections of this type, which complicates the device and makes it bulky and expensive.

Un document : "REVIEW OF THE ELECTRICAL COMMUNICATION LABORATORIES vol. 18, n° 3/4, Avril 1970, Tokyo JP, pages 245-258, F. ISHIHARA et Al. (Comb type 4 GHz delay equalizer for millimeter wave communication)" décrit une ligne produisant un signal retardé.A document: "REVIEW OF THE ELECTRICAL COMMUNICATION LABORATORIES vol. 18, n ° 3/4, April 1970, Tokyo JP, pages 245-258, F. ISHIHARA et Al. (Comb type 4 GHz delay equalizer for millimeter wave communication)" describes a line producing a delayed signal.

L'invention a pour but de pallier les inconvénients précités, notamment en permettant de comprimer des impulsions de façon importante avec de fortes puissances crête possibles.The invention aims to overcome the aforementioned drawbacks, in particular by making it possible to compress pulses significantly with high possible peak powers.

A cet effet, l'invention a pour objet un dispositif de compression d'impulsions, tel que décrit par la revendication 1.To this end, the subject of the invention is a pulse compression device, as described by claim 1.

L'invention a pour principaux avantages qu'elle est peu encombrante, qu'elle est simple à mettre en oeuvre et qu'elle permet des taux de compression importants.The main advantages of the invention are that it is compact, that it is simple to implement and that it allows significant compression rates.

D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard des dessins annexés qui représentent :

  • la figure 1a, un schéma de base explicitant le fonctionnement d'un dispositif selon l'invention ;
  • la figure 1b, un exemple de réalisation de ligne à structure périodique ;
  • la figure 1c, un diagramme de fréquence de la ligne précitée ;
  • la figure 2a, un exemple théorique d'impulsion à comprimer;
  • la figure 2b, l'impulsion précédente comprimée ;
  • la figure 3a, le synoptique d'un premier mode de réalisation possible d'un dispositif selon l'invention ;
  • la figure 3b, un exemple d'impulsion à comprimer ;
  • la figure 3c, l'impulsion précédente comprimée ;
  • la figure 4, une structure possible pour une ligne utilisée dans un dispositif selon l'invention ;
  • la figure 5, un deuxième mode de réalisation possible d'un dispositif selon l'invention.
Other characteristics and advantages of the invention will become apparent from the following description given with reference to the appended drawings which represent:
  • FIG. 1a, a basic diagram explaining the operation of a device according to the invention;
  • FIG. 1b, an exemplary embodiment of a line with periodic structure;
  • Figure 1c, a frequency diagram of the above line;
  • FIG. 2a, a theoretical example of a pulse to be compressed;
  • Figure 2b, the previous compressed pulse;
  • FIG. 3a, the block diagram of a first possible embodiment of a device according to the invention;
  • FIG. 3b, an example of pulse to be compressed;
  • Figure 3c, the previous compressed pulse;
  • FIG. 4, a possible structure for a line used in a device according to the invention;
  • Figure 5, a second possible embodiment of a device according to the invention.

La figure la représente un schéma de base explicitant le fonctionnement d'un dispositif selon l'invention. Un signal 1 impulsionnel, par exemple hyperfréquence, pénètre dans une première ligne de propagation 2 de longueur l1. En sortie de cette première ligne de propagation est placée une deuxième ligne de propagation 3 de longueur I2, à structure périodique, de période p. Un exemple de réalisation de ce type de ligne à structure périodique appelé ligne en guide replié est illustré par la figure 1b. Dans une ligne de propagation, un guide d'onde hyperfréquence par exemple, de section rectangulaire, sont disposées des plaques métalliques 4 parallèlement à la section de la ligne, c'est-à-dire perpendiculairement à son axe de propagation. Ces plaques métalliques 4 sont fixées alternativement d'un côté 311 et de l'autre côté opposé 312 de la ligne 3 en laissant un espace entre leur extrémité et le côté de la ligne auquel elles ne sont pas fixées. De même, ces plaques métalliques 4 sont fixées à l'un et à l'autre côtés 314, 315 adjacents aux deux côtés précédents 311, 312. La période p de la structure de la ligne 3 est par exemple définie par la distance entre deux plaques métalliques 4 successives fixées de la même façon sur la ligne 3.Figure la represents a basic diagram explaining the operation of a device according to the invention. A pulse signal 1, for example microwave, enters a first propagation line 2 of length l 1 . At the output of this first propagation line is placed a second propagation line 3 of length I 2 , with periodic structure, of period p. An exemplary embodiment of this type of line with periodic structure called a folded guide line is illustrated in FIG. 1b. In a propagation line, a microwave waveguide for example, of rectangular section, are arranged metal plates 4 parallel to the section of the line, that is to say perpendicular to its axis of propagation. These metal plates 4 are fixed alternately on one side 311 and on the other opposite side 312 of the line 3, leaving a space between their end and the side of the line to which they are not fixed. Similarly, these metal plates 4 are fixed to one and the other sides 314, 315 adjacent to the two preceding sides 311, 312. The period p of the structure of the line 3 is for example defined by the distance between two successive metal plates 4 fixed in the same way on line 3.

Le dispositif selon l'invention utilise la propriété de réflexion des ondes que possède pour certaines fréquences une structure périodique, du type par exemple de celle de la figure 1b. Cette réflexion, définie notamment par les lois de Bragg ou de Brillouin, se produit lorsque la réflexion, sur chaque cellule, les plaques métalliques 4 par exemple, de la structure, devient cumulative dans une certaine bande de fréquence.The device according to the invention uses the property of reflection of the waves which a periodic structure has, for certain frequencies, of the type for example of that of FIG. 1b. This reflection, defined in particular by the laws of Bragg or Brillouin, occurs when the reflection, on each cell, the metal plates 4 for example, of the structure, becomes cumulative in a certain frequency band.

La figure 1c illustre par un diagramme la relation entre la fréquence transmise f à travers une telle ligne à structure périodique et le nombre d'onde β , égal à 2π/λ , de propagation dans la structure, λ étant la longueur d'onde guidée dans la structure. Le diagramme de la figure 1c définit la bande passante de la ligne. En particulier, cette bande passante est bornée vers les fréquences basses par une fréquence fc constituant une fréquence de coupure de la ligne, lorsque β est un multiple de 2π/L où L est égal à la période p précitée. Lorsque la fréquence du signal 1 est inférieure à la fréquence fc à l'entrée du dispositif de la figure 1a, l'impulsion se réfléchit à l'entrée 5 de la ligne 3 à structure périodique. A la sortie de la première ligne 2, l'impulsion réfléchie 6 est retardée de τ=2 l 1 v 1

Figure imgb0001
par rapport à son instant d'entrée dans cette première ligne, où l1 est la longueur de la première ligne de transmission 2, à structure non périodique par exemple, et v1 la vitesse de propagation de l'énergie du signal 1 dans cette première ligne. Lorsque la fréquence du signal f est supérieure à la fréquence de coupure fc, et inférieure à la fréquence de coupure maximale dans le cas d'un diagramme du type de la figure 1c par exemple, la ligne à structure périodique 3 propage le signal 1 comme cela est représenté par des pointillés 7 sur la figure 1a. La ligne à structure périodique 3 étant par exemple ouverte à l'extrémité opposée à celle reliée à la première ligne 2, le signal 1 se réfléchit à cette extrémité. A la sortie de la première ligne 2, le signal 1 se trouve alors retardé de τ=2 l 1 v 1
Figure imgb0002
+ 2 l 2 v 2
Figure imgb0003
où l1 et v1 représentent les mêmes grandeurs que précédemment et l2 et v2 représentent respectivement la longueur de la ligne à structure périodique 3 et la vitesse de propagation de l'énergie du signal 1 dans cette ligne.FIG. 1c illustrates by a diagram the relation between the frequency transmitted f through such a line with periodic structure and the wave number β, equal to 2π / λ, of propagation in the structure, λ being the guided wavelength in the structure. The diagram in Figure 1c defines the bandwidth of the line. In particular, this passband is bounded to the low frequencies by a frequency fc constituting a line cutoff frequency, when β is a multiple of 2π / L where L is equal to the aforementioned period p. When the frequency of the signal 1 is lower than the frequency fc at the input of the device of FIG. 1a, the pulse is reflected at the input 5 of the line 3 with periodic structure. At the exit of the first line 2, the reflected pulse 6 is delayed by τ = 2 l 1 v 1
Figure imgb0001
with respect to its instant of entry into this first line, where l 1 is the length of the first transmission line 2, with non-periodic structure for example, and v 1 the speed of propagation of the energy of signal 1 in this First line. When the frequency of the signal f is greater than the cutoff frequency fc, and less than the maximum cutoff frequency in the case of a diagram of the type of FIG. 1c for example, the line with periodic structure 3 propagates the signal 1 as this is represented by dotted lines 7 in FIG. 1a. The line with periodic structure 3 being for example open at the end opposite to that connected to the first line 2, the signal 1 is reflected at this end. At the exit of the first line 2, the signal 1 is then delayed by τ = 2 l 1 v 1
Figure imgb0002
+ 2 l 2 v 2
Figure imgb0003
where l 1 and v 1 represent the same quantities as previously and l 2 and v 2 respectively represent the length of the line with periodic structure 3 and the speed of propagation of the energy of signal 1 in this line.

Il est donc possible de créer ainsi un retard différent selon la fréquence du signal appliqué.It is therefore possible to thus create a different delay depending on the frequency of the signal applied.

Le schéma de base d'un dispositif selon l'invention présenté par la figure 1a correspond en fait à une ligne de transmission unique dont la fréquence de coupure varie dans le sens de son axe de propagation. Dans le cas de la figure 1a, cette fréquence de coupure ne prend que deux valeurs, elle est par exemple très faible sur la longueur l1, de façon à laisser passer tous les signaux mis en jeu, et elle prend la valeur fc au niveau de l'entrée de la structure périodique. Ainsi, dans un cas théorique illustré par la figure 2a, où une impulsion est modulée de façon à contenir deux signaux successifs S1 et S2 représentés en fonction du temps t, le signal S1 ayant une fréquence supérieure à celle du signal S2, il est possible de définir une période de la ligne à structure périodique 3 de façon à obtenir une fréquence de coupure f1 inférieure à la fréquence du signal S1 mais supérieure à celle du signal S2. Ensuite, compte tenu des vitesses de propagation v1 et v2 précitées, il est possible de définir les longueurs l1 et l2, elles aussi précitées, pour retarder le signal S1 par rapport au signal S2 de façon à ce qu'il soit superposé au signal S2 en sortie de la ligne globale constituée des lignes 2, 3 à fréquences de coupure différentes comme le montre la figure 2b où le mélange des deux signaux n'a pas été représenté mais uniquement leurs dispositions temporelles. A condition que la ligne possède en sortie des moyens, non représentés, de séparation d'une onde incidente et d'une onde réfléchie, un circulateur hyperfréquence par exemple, il est possible de récupérer en sortie de cette ligne une impulsion dont la largeur T2 est réduite par rapport à la longueur T1 de l'impulsion entrante.The basic diagram of a device according to the invention presented in FIG. 1a in fact corresponds to a single transmission line whose cutoff frequency varies in the direction of its axis of propagation. In the case of FIG. 1a, this cut-off frequency takes only two values, it is for example very low over the length l 1 , so as to allow all the signals involved to pass, and it takes the value fc at the level from the entry of the periodic structure. Thus, in a theoretical case illustrated by FIG. 2a, where a pulse is modulated so as to contain two successive signals S 1 and S 2 represented as a function of time t, the signal S 1 having a frequency higher than that of the signal S 2 , it is possible to define a period of the line with periodic structure 3 so as to obtain a cut-off frequency f 1 less than the frequency of the signal S 1 but greater than that of the signal S 2 . Then, taking into account the propagation speeds v 1 and v 2 above, it is possible to define the lengths l 1 and l 2 , also mentioned above, to delay the signal S 1 with respect to the signal S 2 so that it is superimposed on the signal S 2 at the output of the global line consisting of lines 2, 3 with different cutoff frequencies as shown in FIG. 2b where the mixture of the two signals has not been shown but only their temporal arrangements. Provided that the line has at its output means, not shown, for separating an incident wave and a reflected wave, a microwave circulator for example, it is possible to recover at the output of this line a pulse whose width T 2 is reduced relative to the length T 1 of the incoming pulse.

La figure 3a représente le synoptique d'une réalisation possible d'un dispositif selon l'invention. L'impulsion à comprimer arrive par une ligne 31 à l'entrée 32 de moyens 33 de séparation d'une onde incidente et d'une onde réfléchie, un circulateur hyperfréquence par exemple. Les moyens de séparation 33 sont chargés par une ligne de transmission 34 de structure analogue à la ligne à structure périodique 3 de la figure 1a. Les moyens de séparation 33 peuvent être chargés par la ligne 34 par l'intermédiaire d'une ligne de transmission 35 ou bien avoir une ouverture directement fermée par la ligne 34. Les impulsions à comprimer peuvent avoir par exemple une fréquence de récurrence radar comprise entre quelques kilohertz et quelques centaines de kilohertz. Ces impulsions sont modulées, par exemple, par un signal hyperfréquence. Pour la réalisation du dispositif selon l'invention, la structure de la ligne 34 et la modulation des impulsions sont par exemple adaptées pour comprimer ces dernières. La ligne 34 reliée aux moyens de séparation 33 a une structure analogue à la ligne 3 de la figure la mais sans que cette structure soit nécessairement périodique. Selon l'invention, la ligne 34 a une structure telle que sa fréquence de coupure, basse par exemple, varie le long de son axe de propagation. Dans ce sens, elle est analogue à la ligne globale de la figure la constituée des deux lignes 2, 3 où la variation de fréquence de coupure se fait à la transition des deux lignes. Dans le cas du dispositif de la figure 3a, cette variation est adaptée à la modulation des impulsions à comprimer. En particulier, si cette modulation est linéaire, la variation de la fréquence de coupure le long de l'axe de propagation de la ligne 34 est elle aussi linéaire.FIG. 3a represents the block diagram of a possible embodiment of a device according to the invention. The pulse to be compressed arrives via a line 31 at the input 32 of means 33 for separating an incident wave and a reflected wave, a microwave circulator for example. The separation means 33 are loaded by a transmission line 34 of structure similar to the line with periodic structure 3 of FIG. 1a. The separation means 33 can be loaded by line 34 via a transmission line 35 or have an opening directly closed by line 34. The pulses to be compressed can for example have a radar recurrence frequency between a few kilohertz and a few hundred kilohertz. These pulses are modulated, for example, by a microwave signal. For the production of the device according to the invention, the structure of the line 34 and the modulation of the pulses are for example adapted to compress the latter. Line 34 connected to the separation means 33 has a structure similar to line 3 in Figure la but without this structure being necessarily periodic. According to the invention, the line 34 has a structure such that its cut-off frequency, low for example, varies along its axis of propagation. In this sense, it is analogous to the global line of FIG. 1 consisting of two lines 2, 3 where the variation in cutoff frequency is made at the transition of the two lines. In the case of the device of FIG. 3a, this variation is adapted to the modulation of the pulses to be compressed. In particular, if this modulation is linear, the variation in the cutoff frequency along the axis of propagation of line 34 is also linear.

La figure 3b illustre une impulsion de durée T1 dont la modulation est linéaire. En début d'impulsion la fréquence du signal contenu dans l'impulsion est égale à une valeur f1, la fréquence des signaux suivants variant linéairement jusqu'à la fréquence du signal de fin d'impulsion ayant une valeur f2, f2 étant inférieure à f1. La fréquence de coupure basse le long de la ligne 34 peut donc varier par exemple linéairement de la valeur f2 à son extrémité d'entrée à la valeur f1 à son autre extrémité. La longueur de la ligne 34 est par exemple calculée de façon à ce que tous signaux successifs constituant l'impulsion à comprimer se superposent au dernier signal de fréquence f2 en sortie de la ligne 34. La loi de variation de la fréquence de coupure, basse par exemple, le long de l'axe de propagation de la ligne 34 et la loi de modulation de fréquence de l'impulsion à comprimer sont donc accordées de façon que tous les signaux successifs constituant l'impulsion se retrouvent, après réflexion, en synchronisme du côté du port d'entrée de la ligne 34. Les impulsions comprimées sont alors obtenues en sortie 36 des moyens de séparation 33. La figure 3c illustre une impulsion comprimée de durée T2 obtenue par exemple par la compression de l'impulsion de durée T1 de la figure 3b. Cette impulsion comprimée est constituée du mélange des signaux de fréquences différentes retardés les uns par rapport aux autres.FIG. 3b illustrates a pulse of duration T1 whose modulation is linear. At the start of the pulse the frequency of the signal contained in the pulse is equal to a value f 1 , the frequency of the following signals varying linearly up to the frequency of the end of pulse signal having a value f 2 , f 2 being less than f 1 . The low cut-off frequency along line 34 can therefore vary for example linearly from the value f 2 at its input end to the value f 1 at its other end. The length of line 34 is for example calculated so that all successive signals constituting the pulse to be compressed are superimposed on the last signal of frequency f 2 at the output of line 34. The law of variation of the cut-off frequency, bass for example, along the axis of propagation of line 34 and the frequency modulation law of the pulse to be compressed are therefore tuned so that all the successive signals constituting the pulse are found, after reflection, in synchronism on the side of the input port of line 34. The compressed pulses are then obtained at output 36 of the separation means 33. FIG. 3c illustrates a pulse compressed of duration T 2 obtained for example by the compression of the pulse of duration T 1 of FIG. 3b. This compressed pulse consists of the mixture of signals of different frequencies delayed with respect to each other.

Dans l'exemple de réalisation décrit par les figures 3a, 3b et 3c, les fréquences de coupure utilisées sont des fréquences de coupure basse de la bande passante évoluant le long de l'axe de propagation de la ligne 34. Il est possible d'utiliser les fréquences de coupure haute de cette bande passante, dans ce cas, le signal à comprimer est modulé de telle façon que la fréquence des signaux qu'il contient croisse à partir du début de l'impulsion au lieu de décroître comme dans l'exemple de réalisation décrit.In the exemplary embodiment described by FIGS. 3a, 3b and 3c, the cut-off frequencies used are low cut-off frequencies of the passband evolving along the axis of propagation of the line 34. It is possible to use the high cut-off frequencies of this bandwidth, in this case, the signal to be compressed is modulated in such a way that the frequency of the signals it contains increases from the start of the pulse instead of decreasing as in the exemplary embodiment described.

Il n'est pas nécessaire que la modulation de fréquence de l'impulsion à comprimer soit linéaire. Néanmoins, une telle modulation facilite la réalisation d'un dispositif selon l'invention.The frequency modulation of the pulse to be compressed need not be linear. However, such modulation facilitates the production of a device according to the invention.

La variation de la fréquence de coupure le long de l'axe de la ligne 34 peut être obtenue de plusieurs manières. Dans une ligne à structure périodique telle que celle de la figure 1b, la fréquence de coupure dépendant de la période ou du pas p entre deux groupes de plaques métalliques consécutifs et identiques, une solution pour faire varier cette fréquence de coupure consiste à faire varier ce pas p. La ligne ne présente alors plus une structure proprement périodique mais conserve néanmoins ses propriétés de réflexion, la bande passante évoluant avec le pas p. Une autre solution consiste par exemple à faire varier la hauteur ou la largeur de la ligne de transmission 34. Toujours dans le cas d'une ligne du type de la figure 1b, il est possible de faire varier la géométrie des plaques métalliques 4 tout en conservant leur disposition périodique. Il est aussi possible de faire varier à la fois cette disposition et la géométrie des plaques métalliques 4.The variation of the cutoff frequency along the axis of line 34 can be obtained in several ways. In a line with periodic structure such as that of FIG. 1b, the cutoff frequency depending on the period or the pitch p between two groups of consecutive and identical metal plates, one solution to vary this cutoff frequency consists in varying this not p. The line then no longer has a properly periodic structure but nevertheless retains its reflection properties, the bandwidth evolving with the step p. Another solution consists, for example, in varying the height or the width of the transmission line 34. Still in the case of a line of the type of FIG. 1b, it is possible to vary the geometry of the metal plates 4 while retaining their periodic arrangement. It is also possible to vary both this arrangement and the geometry of the metal plates 4.

La figure 4 présente le mode de réalisation de la ligne 34 de transmission à fréquence de coupure variable connu de l'art antérieur. Des plaques métalliques ou vannes 41 sont disposées le long de la ligne 34, un guide de section rectangulaire par exemple, perpendiculairement à son axe de propagation. Les vannes 41 sont toutes fixées sur un même côté 341 de la ligne et centrées par exemple sur le milieu de ce côté. La variation de la fréquence de coupure le long de cette ligne peut être réalisée en faisant varier le pas entre les vannes 41 ou en faisant varier leur hauteur. D'autres modes de réalisation sont possibles pour cette ligne 34, cette ligne peut notamment être réalisée en matériau diélectrique dont la géométrie varie en fonction de l'axe de propagation de la ligne.FIG. 4 shows the embodiment of the transmission line 34 with variable cut-off frequency known from the prior art. Metal plates or valves 41 are arranged along line 34, a guide of rectangular section for example, perpendicular to its axis of propagation. The valves 41 are all fixed on the same side 341 of the line and centered for example on the middle of this side. The variation of the cutoff frequency along this line can be achieved by varying the pitch between the valves 41 or by varying their height. Other embodiments are possible for this line 34, this line can in particular be made of dielectric material whose geometry varies as a function of the axis of propagation of the line.

La figure 5 présente un autre mode de réalisation possible d'un dispositif selon l'invention. Celui-ci est constitué d'un coupleur 3dB 51 ayant une entrée 52 par laquelle entrent les impulsions à comprimer, une sortie 53 délivrant les impulsions comprimées et deux branches 54, 55 dans lesquelles passent les signaux entrant par l'entrée 52, les signaux passant dans chacune des branches ayant une même amplitude, égale à 1/ 2

Figure imgb0004
fois moitié de celle des signaux d'entrée, d'où l'appellation de coupleur 3dB, et étant en quadrature. Les branches 54, 55 du coupleur 51 sont chacune chargées par une ligne 56, 57 dont la fréquence de coupure varie le long de l'axe de propagation. Ces lignes 56, 57 sont par exemple analogues à celle de la figure 1b, mais avec un pas variable entre les plaques métalliques 58 ou avec une dimension variable de ces plaques, ces variations étant adaptées à la modulation de fréquence des impulsions à comprimer. Ces lignes pourront aussi être analogues à celle présentée par la figure 4. Les branches 54, 55 du coupleur 51 possèdent des terminaisons 59, 60 qui permettent de les adapter à l'entrée des lignes 56, 57, car la section d'entrée de ces dernières est réduite par la présence des plaques métalliques 58. Le fonctionnement du dispositif de la figure 5 utilise les propriétés du coupleur 51 et des lignes 56, 57 qui lui sont associées, le coupleur jouant notamment le rôle des moyens de séparation d'une onde incidente et d'une onde réfléchie. Une impulsion à comprimer entre par l'entrée 52 du coupleur 51 puis se divise en deux impulsions en quadrature et d'égale amplitude, égale à 1/ 2
Figure imgb0005
fois moitié de l'amplitude de l'impulsion entrante, une des impulsions ainsi créées se propageant dans une branche 54 et l'autre impulsion dans l'autre branche 55. Puis elles pénètrent dans les lignes 56, 57 par l'intermédiaire des terminaisons 59, 60. Ces impulsions se propagent et se réfléchissent à l'intérieur des lignes 56, 57 comme cela a été décrit précédemment dans la ligne 34 du dispositif de la figure 3a. En particulier, si l'impulsion à comprimer est modulée linéairement en fréquence, la fréquence de coupure varie linéairement le long des lignes 56, 57 selon des méthodes précédemment décrites. Dans le cas du dispositif de la figure 5, les structures des lignes 56, 57 sont de préférence identiques. Après réflexion dans ces lignes 56, 57, leur structure ayant été adaptée à la modulation de fréquence de l'impulsion entrant dans le coupleur 51 dans le but de comprimer celle-ci de façon analogue par exemple à la ligne 34 du dispositif de la figure 3a, les deux impulsions présentes à la sortie des branches sont comprimées. L'impulsion venant d'une branche 54 se divise en deux impulsions en quadrature et d'égale amplitude, l'une retournant vers l'entrée 52 du coupleur et l'autre se propageant vers la sortie 53 du coupleur. De même l'impulsion venant de l'autre branche 55 se divise de la même façon. Les deux impulsions étant préalablement d'égale amplitude et en quadrature, les impulsions se propageant vers l'entrée 52 se retrouvent en opposition de phase et de même amplitude donc s'annulent alors que les impulsions se propageant vers la sortie 53 du coupleur, en phase, se recombinent pour constituer l'impulsion initiale comprimée.FIG. 5 shows another possible embodiment of a device according to the invention. This consists of a 3dB coupler 51 having an input 52 through which the pulses to be compressed enter, an output 53 delivering the compressed pulses and two branches 54, 55 through which the signals entering via input 52 pass, the signals passing through each of the branches having the same amplitude, equal to 1 / 2
Figure imgb0004
times half that of the input signals, hence the name of 3dB coupler, and being in quadrature. The branches 54, 55 of the coupler 51 are each loaded by a line 56, 57 whose cutoff frequency varies along the axis of propagation. These lines 56, 57 are for example analogous to that of FIG. 1b, but with a variable pitch between the metal plates 58 or with a variable dimension of these plates, these variations being adapted to the frequency modulation of the pulses to be compressed. These lines could also be similar to that presented in FIG. 4. The branches 54, 55 of the coupler 51 have terminations 59, 60 which make it possible to adapt them to the input of lines 56, 57, because the input section of the latter is reduced by the presence of the metal plates 58. The operation of the device in FIG. 5 uses the properties of the coupler 51 and of the lines 56, 57 which are associated with it, the coupler playing in particular the role of the means for separating a incident wave and a reflected wave. One pulse to be compressed enters via input 52 of coupler 51 and then divides into two quadrature pulses of equal amplitude, equal to 1 / 2
Figure imgb0005
half the amplitude of the incoming pulse, one of the pulses thus created is propagating in one branch 54 and the other impulse in the other branch 55. Then they enter the lines 56, 57 via the terminations 59, 60. These impulses propagate and are reflected inside the lines 56 , 57 as described above in line 34 of the device in FIG. 3a. In particular, if the pulse to be compressed is linearly frequency modulated, the cut-off frequency varies linearly along the lines 56, 57 according to methods previously described. In the case of the device of FIG. 5, the structures of the lines 56, 57 are preferably identical. After reflection in these lines 56, 57, their structure having been adapted to the frequency modulation of the pulse entering the coupler 51 in order to compress it in a similar manner for example to line 34 of the device in Figure 3a, the two pulses present at the outlet of the branches are compressed. The pulse from a branch 54 is divided into two quadrature pulses of equal amplitude, one returning to the input 52 of the coupler and the other propagating to the output 53 of the coupler. Likewise the impulse coming from the other branch 55 divides in the same way. The two pulses being beforehand of equal amplitude and in quadrature, the pulses propagating towards the input 52 are found in phase opposition and of the same amplitude therefore cancel out while the pulses propagating towards the output 53 of the coupler, in phase, recombine to form the initial compressed pulse.

Le dispositif de la figure 5 permet, notamment grâce au coupleur, de comprimer des impulsions de forte puissance et peut donc être avantageusement utilisé pour la compression d'impulsions en émission hyperfréquence, pour des applications radar par exemple.The device of FIG. 5 makes it possible, in particular thanks to the coupler, to compress high power pulses and can therefore be advantageously used for the compression of pulses in microwave transmission, for radar applications for example.

Les exemples de dispositifs présentés s'appliquent à des ondes électromagnétiques hyperfréquence mais leur principe peut s'appliquer à d'autres types d'ondes.The examples of devices presented apply to microwave electromagnetic waves but their principle can apply to other types of waves.

Claims (8)

  1. Pulse compression device, for frequency-modulated pulses, which includes at least one transmission line (34, 56, 57) having at least one cut-off frequency (fc), a non-transmitted signal being reflected, and means (33, 51) for separating an incident wave from a reflected wave, this means being loaded by the transmission line (34, 56, 57) routing the pulses to be compressed to the transmission line and receiving the pulses reflected by the said line, the transmission line (34) consisting of a waveguide of rectangular section in which metal plates (4, 41, 58) are arranged parallel to the section of the guide, characterized in that, since the variation in the cut-off frequency (fc) and the frequency modulation of the pulses to be compressed are matched, the metal plates (4, 58) are fixed alternately on one side (311) and on the opposite other side (312) of the guide and alternately to one (314) and to the other (315) of the two sides adjacent to the previous sides (311, 312), leaving a space between a non-fixed end of a plate (4, 58) and a side.
  2. Device according to Claim 1, characterized in that the frequency modulation is linear.
  3. Device according to any one of the preceding claims, characterized in that a variation in the cut-off frequency (fc) along the propagation axis of the line (34, 56, 57) is obtained by varying the distance spacing between the metal plates (4, 41, 58).
  4. Device according to any one of the preceding claims, characterized in that a variation in the cut-off frequency (fc) along the propagation axis of the line is obtained by varying the geometry of the metal plates (4, 41, 58).
  5. Device according to any one of the preceding claims, characterized in that a variation in the cut-off frequency (fc) along the propagation axis of the line is obtained by varying the waveguide section.
  6. Device according to any one of the preceding claims, characterized in that the separating means (33) consist of an ultrahigh-frequency circulator.
  7. Device according to one of Claims 1 to 5, characterized in that the separating means consist of a coupler (51), the coupler (51) having two branches (54, 55) each loaded by a transmission line (56, 57) whose cut-off frequency (fc) varies along the propagation axis.
  8. Device according to any one of the preceding claims, characterized in that the variation in the cut-off frequency (fc) of the transmission line is linear.
EP93401179A 1992-05-26 1993-05-07 Pulse compression device, particularly in high frequency transmission Expired - Lifetime EP0572293B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9206431 1992-05-26
FR9206431A FR2691840B1 (en) 1992-05-26 1992-05-26 Pulse compression device, particularly in microwave transmission.

Publications (2)

Publication Number Publication Date
EP0572293A1 EP0572293A1 (en) 1993-12-01
EP0572293B1 true EP0572293B1 (en) 1997-08-27

Family

ID=9430195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93401179A Expired - Lifetime EP0572293B1 (en) 1992-05-26 1993-05-07 Pulse compression device, particularly in high frequency transmission

Country Status (6)

Country Link
US (1) US5376903A (en)
EP (1) EP0572293B1 (en)
JP (1) JPH0774504A (en)
CA (1) CA2096915A1 (en)
DE (1) DE69313353T2 (en)
FR (1) FR2691840B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181221B1 (en) * 1998-10-06 2001-01-30 Hughes Electronics Corporation Reflective waveguide variable power divider/combiner
JP3652531B2 (en) * 1998-11-26 2005-05-25 日立電線株式会社 Slot antenna

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL90090C (en) * 1950-06-23
NL95591C (en) * 1953-12-31
NL261165A (en) * 1960-04-01
US3277403A (en) * 1964-01-16 1966-10-04 Emerson Electric Co Microwave dual mode resonator apparatus for equalizing and compensating for non-linear phase angle or time delay characteristics of other components
US3982215A (en) * 1973-03-08 1976-09-21 Rca Corporation Metal plated body composed of graphite fibre epoxy composite
US4864258A (en) * 1988-05-02 1989-09-05 The United States Of America As Represented By The Secretary Of The Army RF envelope generator

Also Published As

Publication number Publication date
DE69313353T2 (en) 1998-01-02
EP0572293A1 (en) 1993-12-01
CA2096915A1 (en) 1993-11-27
US5376903A (en) 1994-12-27
JPH0774504A (en) 1995-03-17
DE69313353D1 (en) 1997-10-02
FR2691840B1 (en) 1994-08-26
FR2691840A1 (en) 1993-12-03

Similar Documents

Publication Publication Date Title
EP0014115B1 (en) Tunable high frequency magnetostatic wave oscillator
EP0872954B1 (en) Surface acoustic wave device with proximity coupling and with differential inputs and outputs
EP0309350B1 (en) Measuring device for the intermodulation products of a receiver system
EP0511914B1 (en) Echo distance measurement system with calibration device
CH623182A5 (en)
EP0626740A1 (en) Optical dispersive delay line and its use for laser pulse compression/expansion
FR2601824A1 (en) SURFACE ELASTIC WAVE FILTER
EP1216493B1 (en) Power splitter for plasma device
EP0185585B1 (en) Low-frequency noise suppression device for a transmission system, especially for l/f noise in a homodyne radar receiver
EP1815492A2 (en) Microwave generating device with oscillating virtual cathode
EP0572293B1 (en) Pulse compression device, particularly in high frequency transmission
EP0002642A1 (en) High resolution antenna system
EP0078188B1 (en) Wide-band, high-frequency device for generating even order harmonics of an input signal, and its use in a hyperfrequency system
EP0005403A1 (en) Single mode hyperfrequency oscillator tunable by varying a magnetic field
FR2522225A1 (en) UNIMODAL OPTICAL FIBER TELECOMMUNICATION DEVICE
EP0322062A1 (en) Pulse compression radar and its use in cartography or in meteorology
FR2902932A1 (en) NON-LINEAR DISPERSION TRANSMISSION LINE ASSEMBLY
EP0475802A1 (en) Klystron with broad instantaneous band
FR2889358A1 (en) MICROWAVE BAND REMOVAL FILTER FOR OUTPUT MULTIPLEXER
FR2694447A1 (en) Electron gun to supply electrons grouped in short pulses.
FR2502394A1 (en) PROGRESSIVE WAVE TUBE
EP0016674B1 (en) Frequency discriminator for oscillator and hyperfrequency oscillator stabilized thereby
FR2599854A1 (en) AMBIGUE DISTANCE MEASUREMENT METHOD AND PULSE DOPPLER RADAR USING SUCH A METHOD
FR2653632A1 (en) UNIDIRECTIONAL SURFACE WAVE TRANSDUCER.
FR2691287A1 (en) New extended interaction output circuit for a broadband relativistic klystron.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17P Request for examination filed

Effective date: 19940117

17Q First examination report despatched

Effective date: 19951205

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 69313353

Country of ref document: DE

Date of ref document: 19971002

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050504

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050506

Year of fee payment: 13

Ref country code: DE

Payment date: 20050506

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050511

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

Ref country code: FR

Ref legal event code: AU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060531

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061201

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060507

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070507