EP0571524A4 - Peroxyacid bleach precursor compositions. - Google Patents
Peroxyacid bleach precursor compositions.Info
- Publication number
- EP0571524A4 EP0571524A4 EP19920906781 EP92906781A EP0571524A4 EP 0571524 A4 EP0571524 A4 EP 0571524A4 EP 19920906781 EP19920906781 EP 19920906781 EP 92906781 A EP92906781 A EP 92906781A EP 0571524 A4 EP0571524 A4 EP 0571524A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- bleach precursor
- composition according
- peroxyacid bleach
- particulate
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 157
- 239000007844 bleaching agent Substances 0.000 title claims abstract description 102
- 239000002243 precursor Substances 0.000 title claims abstract description 96
- 150000004965 peroxy acids Chemical class 0.000 title claims abstract description 64
- 239000000463 material Substances 0.000 claims abstract description 84
- -1 organic acid compound Chemical class 0.000 claims abstract description 78
- 239000003599 detergent Substances 0.000 claims abstract description 46
- 239000007787 solid Substances 0.000 claims abstract description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000002253 acid Substances 0.000 claims abstract description 18
- 238000012360 testing method Methods 0.000 claims abstract description 12
- 239000004094 surface-active agent Substances 0.000 claims description 32
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid group Chemical class C(CC(O)(C(=O)O)CC(=O)O)(=O)O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 27
- 150000001875 compounds Chemical class 0.000 claims description 21
- 239000007921 spray Substances 0.000 claims description 20
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 18
- FRPJTGXMTIIFIT-UHFFFAOYSA-N tetraacetylethylenediamine Chemical group CC(=O)C(N)(C(C)=O)C(N)(C(C)=O)C(C)=O FRPJTGXMTIIFIT-UHFFFAOYSA-N 0.000 claims description 16
- 238000004061 bleaching Methods 0.000 claims description 11
- 235000015165 citric acid Nutrition 0.000 claims description 11
- 239000008187 granular material Substances 0.000 claims description 11
- 150000007942 carboxylates Chemical class 0.000 claims description 10
- 239000006185 dispersion Substances 0.000 claims description 8
- 229920001223 polyethylene glycol Chemical class 0.000 claims description 8
- 239000003945 anionic surfactant Substances 0.000 claims description 7
- 239000002736 nonionic surfactant Substances 0.000 claims description 6
- 125000000129 anionic group Chemical group 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 claims description 4
- 229940045872 sodium percarbonate Drugs 0.000 claims description 4
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 claims description 3
- 125000002091 cationic group Chemical group 0.000 claims description 3
- 239000003093 cationic surfactant Substances 0.000 claims description 3
- 229920002678 cellulose Chemical class 0.000 claims description 3
- 239000001913 cellulose Chemical class 0.000 claims description 3
- 150000002191 fatty alcohols Chemical class 0.000 claims description 2
- 229960001922 sodium perborate Drugs 0.000 claims description 2
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 claims description 2
- 125000005263 alkylenediamine group Chemical group 0.000 claims 1
- 239000002563 ionic surfactant Substances 0.000 claims 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 abstract description 17
- 150000007513 acids Chemical class 0.000 abstract description 8
- 125000001931 aliphatic group Chemical group 0.000 abstract description 4
- 239000004744 fabric Substances 0.000 description 28
- 239000000047 product Substances 0.000 description 26
- 239000004615 ingredient Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 23
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 22
- 238000005406 washing Methods 0.000 description 22
- 150000003839 salts Chemical class 0.000 description 21
- 239000000843 powder Substances 0.000 description 20
- 239000012190 activator Substances 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 229910000323 aluminium silicate Inorganic materials 0.000 description 17
- 238000009472 formulation Methods 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 238000005342 ion exchange Methods 0.000 description 13
- 229920005646 polycarboxylate Polymers 0.000 description 13
- 239000011734 sodium Substances 0.000 description 13
- 229920001577 copolymer Polymers 0.000 description 12
- 235000014113 dietary fatty acids Nutrition 0.000 description 12
- 238000004090 dissolution Methods 0.000 description 12
- 239000000194 fatty acid Substances 0.000 description 12
- 229930195729 fatty acid Natural products 0.000 description 12
- 229920001296 polysiloxane Polymers 0.000 description 12
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 12
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 11
- 229910021653 sulphate ion Inorganic materials 0.000 description 11
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 10
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 10
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 10
- 229910052708 sodium Inorganic materials 0.000 description 10
- 125000000217 alkyl group Chemical group 0.000 description 9
- 229960004106 citric acid Drugs 0.000 description 9
- 150000004665 fatty acids Chemical class 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000004381 surface treatment Methods 0.000 description 9
- 239000010457 zeolite Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical class CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 8
- 229910021536 Zeolite Inorganic materials 0.000 description 8
- 229910052783 alkali metal Inorganic materials 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000011575 calcium Substances 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 238000010348 incorporation Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 150000004760 silicates Chemical class 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 6
- 238000001694 spray drying Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical group [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 5
- 239000004902 Softening Agent Substances 0.000 description 5
- 238000005054 agglomeration Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 229910001424 calcium ion Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 210000003918 fraction a Anatomy 0.000 description 5
- 229910001385 heavy metal Inorganic materials 0.000 description 5
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 5
- 150000003138 primary alcohols Chemical class 0.000 description 5
- 238000004448 titration Methods 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 4
- 239000004115 Sodium Silicate Substances 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 150000004996 alkyl benzenes Chemical class 0.000 description 4
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000007580 dry-mixing Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 4
- 239000000429 sodium aluminium silicate Substances 0.000 description 4
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- SCKXCAADGDQQCS-UHFFFAOYSA-N Performic acid Chemical compound OOC=O SCKXCAADGDQQCS-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 3
- 150000008041 alkali metal carbonates Chemical class 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 150000001860 citric acid derivatives Chemical class 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 210000003141 lower extremity Anatomy 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000003352 sequestering agent Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000003760 tallow Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- ROBFUDYVXSDBQM-UHFFFAOYSA-N hydroxymalonic acid Chemical compound OC(=O)C(O)C(O)=O ROBFUDYVXSDBQM-UHFFFAOYSA-N 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 235000012149 noodles Nutrition 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000011236 particulate material Substances 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229910021647 smectite Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 235000019351 sodium silicates Nutrition 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000002195 soluble material Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 150000003751 zinc Chemical class 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical class OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- UURYKQHCLJWXEU-UHFFFAOYSA-N 2-(2-hydroxypropanoyloxy)butanedioic acid Chemical class CC(O)C(=O)OC(C(O)=O)CC(O)=O UURYKQHCLJWXEU-UHFFFAOYSA-N 0.000 description 1
- CQWXKASOCUAEOW-UHFFFAOYSA-N 2-[2-(carboxymethoxy)ethoxy]acetic acid Chemical compound OC(=O)COCCOCC(O)=O CQWXKASOCUAEOW-UHFFFAOYSA-N 0.000 description 1
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N Aspartic acid Chemical class OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- QEVGZEDELICMKH-UHFFFAOYSA-N Diglycolic acid Chemical compound OC(=O)COCC(O)=O QEVGZEDELICMKH-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 108091005507 Neutral proteases Proteins 0.000 description 1
- 101150020891 PRKCA gene Proteins 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical group CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000004965 Silica aerogel Substances 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 239000004133 Sodium thiosulphate Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- UAOKXEHOENRFMP-ZJIFWQFVSA-N [(2r,3r,4s,5r)-2,3,4,5-tetraacetyloxy-6-oxohexyl] acetate Chemical compound CC(=O)OC[C@@H](OC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)C=O UAOKXEHOENRFMP-ZJIFWQFVSA-N 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 230000003625 amylolytic effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000010936 aqueous wash Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical class O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- XWENCHGJOCJZQO-UHFFFAOYSA-N ethane-1,1,2,2-tetracarboxylic acid Chemical class OC(=O)C(C(O)=O)C(C(O)=O)C(O)=O XWENCHGJOCJZQO-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006081 fluorescent whitening agent Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- HKZVDXUEAWCPIQ-UHFFFAOYSA-N hexane-1,2,3,4,5,6-hexacarboxylic acid Chemical class OC(=O)CC(C(O)=O)C(C(O)=O)C(C(O)=O)C(C(O)=O)CC(O)=O HKZVDXUEAWCPIQ-UHFFFAOYSA-N 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Chemical group 0.000 description 1
- 229910052739 hydrogen Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 230000007775 late Effects 0.000 description 1
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 229920003087 methylethyl cellulose Polymers 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910021527 natrosilite Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- 125000005342 perphosphate group Chemical group 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- NJKRDXUWFBJCDI-UHFFFAOYSA-N propane-1,1,2,3-tetracarboxylic acid Chemical class OC(=O)CC(C(O)=O)C(C(O)=O)C(O)=O NJKRDXUWFBJCDI-UHFFFAOYSA-N 0.000 description 1
- NJEVMKZODGWUQT-UHFFFAOYSA-N propane-1,1,3,3-tetracarboxylic acid Chemical class OC(=O)C(C(O)=O)CC(C(O)=O)C(O)=O NJEVMKZODGWUQT-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003900 succinic acid esters Chemical class 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- JXVGWAIUCIHLLC-UHFFFAOYSA-K trisodium 2-hydroxypropane-1,2,3-tricarboxylate 2-hydroxypropane-1,2,3-tricarboxylic acid dihydrate Chemical compound O.O.[Na+].[Na+].[Na+].OC(=O)CC(O)(CC(O)=O)C(O)=O.OC(CC([O-])=O)(CC([O-])=O)C([O-])=O JXVGWAIUCIHLLC-UHFFFAOYSA-K 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3905—Bleach activators or bleach catalysts
- C11D3/3935—Bleach activators or bleach catalysts granulated, coated or protected
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/70—Sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/12—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/08—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/06—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3905—Bleach activators or bleach catalysts
- C11D3/3907—Organic compounds
Definitions
- This invention relates to solid peroxy acid bleach precursor compositions and especially to paniculate detergent compositions incorporating inorganic perhydrate bleaches together with N- or O- acyl group - containing peroxycarboxylic acid bleach precursors (so- called bleach activators).
- Such compositions have come into widespread use in recent years as heavy duty fabric cleaning products, particularly in automatic washing machines.
- the growth in usage of bleach activators has mirrored a decrease in fabric wash temperatures which itself has accompanied an increase in the proportion of fabrics that are coloured.
- the prior art contains numerous examples of bleach activators coated or agglomerated so as to increase their stability on storage in detergent compositions and/or to influence their solution behaviour.
- EP-A-0070474 discloses granulate bleach activators prepared by spray drying an aqueous pumpable dispersion containing an N-acyl or O-acyl compound together with at least one water soluble cellulose ether, starch or starch derivative in a weight ratio of activator to coating of from 98:2 to 90:10.
- GB-A-1507312 discloses the coating of bleach activators with a mixture of alkali metal Cg - C22 fatty acid salts in admixture with the corresponding fatty acids.
- GB-A-1381121 employs a molten coating of inter alia C14 - Cig fatty acid mixtures to protect solid bleach activators.
- GB-A-1441416 discloses a similar process employing a mixture of C 12 - C 14 fatty acids and C ⁇ o - C20 aliphatic alcohols.
- EP-A-0375241 describes stabilised bleach activator extrudates in which C5- Ci8 alkyl peroxy carboxylic acid precursors are mixed with a binder selected from anionic and nonionic surfactants, film forming polymers fatty acids or mixtures of such binders.
- EP-A-0356700 discloses compositions comprising a bleach activator, a water soluble film forming polymer and 2-15% of a C3-C6 polyvalent carboxylic acid or hydroxycarboxylic acid for enhanced stability and ease of dispersion/solubility.
- the carboxylic acid of which a preferred example is citric acid, is dry mixed with the bleach activator and then granulated with the film forming polymer.
- the citric acid is asserted to provide an enhanced rate of dissolution of the bleach activator granules.
- EP-A-0382464 concerns a process for coating or encapsulation of solid particles including bleaching compounds and bleach activators in which a melt is formed of coating material in which the particles form a disperse phase, the melt is destabilised and then caused to crumble to a particulate material in which the disperse phase particles are embedded in the continuous (coating) phase.
- coating materials are disclosed and certain materials such as polyacrylic acid and cellulose acetate phthalate are taught as being useful where release of the coated material is dependent on pH.
- the Applicant has now surprisingly found that acidic materials having certain specified characteristics can be used to provide a surface treatment to particulate peroxy acid bleach precursors, that delays the onset of perhydrolysis during dissolution of the product under the constrained agitation conditions of a loaded washing machine drum without adversely hindering perhydrolysis when it occurs.
- a solid peroxyacid bleach precursor composition comprising a particulate peroxyacid bleach precursor material, said precursor containing one or more N- or O- acyl groups and having a Mpt> 30°C, the external surfaces of said particulate peroxy acid bleach precursor material being treated with an organic acid compound so as to adhere said compound to said external surfaces, said compound being present in an amount of from 2% to 20% by weight of the treated particulate, said organic acid compound having an aqueous solubility of at least 5g/100g of water at 20°C and a Mpt > 30°C , wherein said treated particulate bleach precursor material produces, after 3 minutes in a Beaker Perhydrolysis Test at 20°C, at least 90% of the peroxy acid that is produced under the same conditions by said particulate bleach precursor material in untreated form.
- the organic acid compound is a monomeric or oligomeric carboxylate that has an aqueous solubility of at least 20g/100g of water at 20 °C.
- the compound is a monomeric aliphatic carboxylic acid of very high solubility and Mpt > 40° C.
- the external surfaces of the peroxy bleach precursor particulate are treated so that the organic acid compound is adhered thereto.
- the treatment can be such as to provide the compound in the form of a continuous or discontinuous coating or as masses of the acid compound dispersed on the particulate surface or as individual particles disposed at random on the surface.
- the requirement is that the surface treatment material be immediately available, on exposure to an aqueous medium, to dissolve rapidly and provide an acid pH environment around the exterior of the bleach precursor particulate. For this reason, incorporation of the organic acid compound as an agglomerating agent dispersed within the peroxyacid bleach precursor particle does not provide the benefit of the invention.
- the solid peroxyacid bleach precursor compositions of the present invention incorporate precursors containing one or more N- or O- acyl groups, which precursors can be selected from a wide range of classes.
- Suitable classes include anhydrides, esters, imides and acylated derivatives of imidazoles and oximes, and examples of useful materials within these classes are disclosed in GB-A-1586789.
- the most preferred classes are esters such as are disclosed in GB-A-836988, 864,798, 1147871 and 2143231 and imides such as are disclosed in GB-A-855735 & 1246338.
- O-acylated precursor compounds include 2,3,3-tri-methyl hexanoyl oxybenzene sulfonates, benzyl oxybenzene sulfonates and penta acetyl glucose.
- Particularly preferred precursor compounds are the N-,N,N1N1 tetra acetylated compounds of formula
- TAMD tetra acetyl methylene diamine
- TAED tetra acetyl ethylene diamine
- TAHD tetraacetyl hexylene diamine
- Solid peroxyacid bleach precursors useful in the present invention have a Mpt>30°C and preferably >40°C. Such precursors will normally be in fine powder or crystalline form in which at least 90% by weight of the powder has a particle size > 150 micrometers.
- This powder can be surface treated directly but is more usually agglomerated, prior to surface treatment, to form particulate material, at least 85% of which has a particle size between 400 and 1700 micrometers.
- Suitable agglomerating agents include Ci2-C ⁇ g fatty acids, C12-C18 aliphatic alcohols condensed with from 10 to 80 moles of ethylene oxide per mole of alcohol, cellulose derivatives such as methyl, carboxymethyl and hydroxyethyl cellulose, polyethylene glycols of MWt 4,000 - 10,000 and polymeric materials such as polyvinyl pyrrolidone.
- Agglomerated particulate precursor material does not itself provide the benefits of the invention but is a preferred form of the precursor to which the organic acid compound is applied as a surface treatment.
- the organic acid compound must satisfy several criteria. Firstly it must be a solid at ambient temperatures and so must have a Melting Point of at least 30°C and preferably of at least 40°C. Preferred organic acid compounds will have a Melting Point in excess of 50 °C.
- the organic acid compound must be highly soluble in water at ambient temperatures, highly soluble being defined for the purposes of the present invention as at least 5g of the acid dissolving in lOOg of distilled water at 20°C.
- the organic acid compound has a solubility of at least 20g/100g of water at 20°C and most preferably the organic acid compound will dissolve in its own weight of water at 20 °C .
- the organic acid compound should have no more than a minor effect, and preferably substantially no effect, on the rate of perhydrolysis of the peroxyacid bleach precursor under well agitated unconstrained conditions.
- Unconstrained, well agitated conditions are defined for the purposes of the present invention as those existing in the Beaker Perhydrolysis Test described in detail hereinafter.
- a treatment material that has 'no more than a minor effect' on the rate of perhydrolysis of the precursor is defined, for the purposes of the present invention, as that which after 3 minutes in the Beaker Perhydrolysis Test at 20 °C, permits the production of at least 90% of the peroxyacid that is produced under the same conditions by the untreated bleach precursor material.
- the rates of perhydrolysis of treated and untreated material are substantially identical.
- Organic acid compounds suitable as treating agents for the purposes of the present invention comprise aliphatic or aromatic monomeric or oligomeric carboxylates and preferably comprise monomeric aliphatic carboxylic acids.
- aliphatic acid compounds are glycolic, glutamic, citraconic, succinic, 1-lactic and citric acids.
- the acids are applied at levels of from 2% to 20% by weight of the treated particulate, more preferably from 2% to 15% and most preferably from 3% to 10% by weight of the treated particulate .
- Glycolic acid at a level of approximately 5% by weight of the treated particulate is a particularly preferred surface treating agent.
- the surface treatment of the bleach precursor particulate with the organic acid compound can be carried out in several ways and the process itself is not critical to the present invention.
- the organic acid compound may be sprayed on as a molten material or as a solution or dispersion in a solvent/carrier liquid which is subsequently removed by evaporation.
- the organic acid compound can also be applied as a powder coating e.g. by electrostatic techniques although this is less preferred as the adherence of powdered coating material is more difficult to achieve and can be more expensive.
- Molten coating is a preferred technique for organic acid compounds of Mpt ⁇ 80°C such as glycolic and 1-lactic acids but is less convenient for higher Melting Point acids (i.e. > 100°C) such as citric acid.
- Melting Point acids i.e. > 100°C
- spray on as a solution or dispersion is preferred.
- Organic solvents such as ethyl and isopropyl alcohol can be used to form the solutions or dispersions, although this will necessitate a solvent recovery stage in order to make their use economic.
- the use of organic solvents also gives rise to safety problems such as flammability and operator safety and thus aqueous solutions or dispersions are preferred.
- Aqueous solutions are particularly advantageous where the organic acid compound has a high aqueous solubility (e.g. citric acid) and the solution has a sufficiently low viscosity to enable it to be handled.
- a concentration of at least 25% by weight of the organic acid compound in the solvent is used in order to reduce the drying/evaporation load after surface treatment has taken place.
- the treatment apparatus can be any of those normally used for this purpose, such as inclined rotary pans, rotary drums and fluidised beds.
- Solid peroxyacid bleach precursor compositions in accordance with the invention can take a variety of physical forms.
- the surface treated peroxyacid bleach precursor particles may themselves be incorporated into other solid compositions such as tablets, extrudates and agglomerates.
- the particulates can also be suspended in nonaqueous liquid compositions in which the organic acid surface treating material is insoluble and inert.
- the preferred application for the solid peroxybleach precursor compositions of the invention is as particulate components of granular detergent compositions, particularly the so-called concentrated detergent compositions that are added to a washing machine by means of a dosing device placed in the machine drum with the soiled fabric load.
- Concentrated granular detergent compositions dispensed into the wash liquor via a dosing device are more subject to dissolution problems than compositions added via the dispensing compartment of a washing machine because, in the initial stages of a wash cycle, the agitation in the immediate environment of the product is inhibited by the presence of the fabric load. Whilst this can constitute a benefit in permitting the development of high transient concentrations of builder and surfactant, the development of high transient peroxyacid concentrations can, as noted previously, lead to fabric and colour damage.
- the coated peroxyacid bleach precursor particulates of the present invention when incorporated into concentrated detergent products delivered to the wash liquor via a dispensing device, mitigate if not eliminate this problem.
- Detergent compositions incorporating the surface treated peroxy acid bleach precursor particulates will normally contain from 0.5% to 10% of the precursor, more frequently from 1% to 8% and most preferably from 2% to 6%, on a composition weight basis.
- Such detergent compositions will, of course, contain a source of alkaline hydrogen peroxide necessary to form a peroxyacid bleaching species in the wash solution and preferably will also contain other components conventional in detergent compositions.
- preferred detergent compositions will incorporate one of more of surfactants, organic and inorganic builders, soil suspending and anti-redeposition agents, suds suppressors, enzymes, fluorescent whitening agents photo activated bleaches, perfumes and colours.
- Detergent compositions incorporating the surface treated particulate peroxyacid precursors of the present invention will include an inorganic perhydrate bleach, normally in the form of the sodium salt, as the source of alkaline hydrogen peroxide in the wash liquor.
- This perhydrate is normally incorporated at a level of from 3 % to 22% by weight, more preferably from 5% to 20% by weight and most preferably from 8% to 18% by weight of the composition.
- the perhydrate may be any of the inorganic salts such as perborate percarbonate, perphosphate and persilicate salts but is conventionally an alkali metal perborate or percarbonate. Whilst fabric colour damage arising from compositions in accordance with the invention is low, irrespective of whether a perborate or percarbonate salt is employed, the improvement in comparison with uncoated precursor particulates is more noticeable with percarbonate bleach as this causes greater fabric colour damage in the absence of any coating on the bleach precursor.
- Sodium percarbonate which is the preferred perhydrate, is an addition compound having a formula corresponding to 2Na2C ⁇ 3.3H2 ⁇ 2, and is available commercially as a crystalline solid. Most commercially available material includes a low level of a heavy metal sequestrant such as EDTA, 1-hydroxyethylidene 1, 1- diphosphonic acid (HEDP) or an amino-phosphonate, that is incorporated during the manufacturing process.
- a heavy metal sequestrant such as EDTA, 1-hydroxyethylidene 1, 1- diphosphonic acid (HEDP) or an amino-phosphonate
- the percarbonate can be incorporated into detergent compositions without additional protection, but preferred executions of such compositions utilise a coated form of the material.
- sodium silicate of Si ⁇ 2:Na2 ⁇ ratio from 1.6:1 to 3.4:1, preferably 2.8:1, applied as an aqueous solution to give a level of from 2% to 10%, (normally from 3% to 5%) of silicate solids by weight of the percarbonate.
- Magnesium silicate can also be included in the coating.
- the particle size range of the crystalline percarbonate is from 350 micrometers to 450 micrometers with a mean of approximately 400 micrometers. When coated, the crystals have a size in the range from 400 to 600 micrometers.
- the percarbonate Whilst heavy metals present in the sodium carbonate used to manufacture the percarbonate can be controlled by the inclusion of sequestrants in the reaction mixture, the percarbonate still requires protection from heavy metals present as impurities in other ingredients of the product. Accordingly, in detergent compositions utilising percarbonate as the perhydrate salt, the total level of Iron, Copper and Manganese ions in the product should not exceed 25 ppm and preferably should be less than 20 ppm in order to avoid an unacceptably adverse effect on percarbonate stability. Detergent compositions in which alkali metal percarbonate bleach has enhanced stability are disclosed in the Applicants copending British Patent Application No. 9021761.3 (Attorney's Docket No. CM343).
- a wide range of surfactants can be used in the detergent compositions.
- a list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31, 1981.
- Mixtures of anionic surfactants are suitable herein, particularly blends of sulphate, sulphonate and/or carboxylate surfactants.
- Mixtures of sulphonate and sulphate surfactants are normally employed in a sulphonate to sulphate weight ratio of from 5:1 to 1:2, preferably from 3:1 to 2:3, more preferably from 3:1 to 1:1.
- Preferred sulphonates include alkyl benzene sulphonates having from 9 to 15, especially 11 to 13 carbon atoms in the alkyl radical, and alpha-sulphonated methyl fatty acid esters in which the fatty acid is derived from a Ci2-C ⁇ g fatty source, preferably from a Ci6-C ⁇ fatty source.
- the cation is an alkali metal, preferably sodium.
- Preferred sulphate surfactants in such sulphonate sulphate mixtures are alkyl sulphates having from 12 to 22, preferably 16 to 18 carbon atoms in the alkyl radical.
- Another useful surfactant system comprises a mixture of two alkyl sulphate materials whose respective mean chain lengths differ from each other.
- One such system comprises a mixture of C14-C15 alkyl sulphate and
- the alkyl sulphates may also be combined with alkyl ethoxy sulphates having from 10 to 20, preferably 10 to 16 carbon atoms in the alkyl radical and an average degree of ethoxylation of 1 to 6.
- the cation in each instance is again an alkali metal, preferably sodium.
- alkali metal sarcosinates of formula R-CON (R) CH2 COOM wherin R is a C9-C17 linear or branched alkyl or alkenyl group, R' is a C1-C4 alkyl group and M is an alkali metal ion.
- R is a C9-C17 linear or branched alkyl or alkenyl group
- R' is a C1-C4 alkyl group
- M is an alkali metal ion.
- Preferred examples are the lauroyl, Cocoyl (C12-C14), myristyl and oleyl methyl sarcosinates in the form of their sodium salts.
- One class of nonionic surfactants useful in the present invention comprises condensates of ethylene oxide with a hydrophobic moiety, providing surfactants having an average hydrophilic-Iipophilic balance (HLB) in the range from 8 to 17, preferably from 9.5 to 13.5, more preferably from 10 to 12.5.
- HLB hydrophilic-Iipophilic balance
- the hydrophobic (lipophilic) moiety may be aliphatic or aromatic in nature and the length of the polyoxyethylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
- Especially preferred nonionic surfactants of this type are the C9-C15 primary alcohol ethoxylates containing 3-8 moles of ethylene oxide per mole of alcohol, particularly the C14-C15 primary alcohols containing 6-8 moles of ethylene oxide per mole of alcohol and the C12-C14 primary alcohols containing 3-5 moles of ethylene oxide per mole of alcohol.
- Another class of nonionic surfactants comprises alkyl polyglucoside compounds of general formula
- RO (C n H 2n O)tZ x wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 12 to 18 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.3 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides.
- Compounds of this type and their use in detergent compositions are disclosed in EP-B 0070074, 0070077, 0075996 and 0094118.
- a further class of surfactants are the semi-polar surfactants such as amine oxides.
- Suitable amine oxides are selected from mono Cg-C20 > preferably C ⁇ )-Cl4 N-alkyl or alkenyl amine oxides and propylene-l,3-diamine dioxides wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxpropyl groups.
- Cationic surfactants can also be used in the detergent compositions herein and suitable quaternary ammonium surfactants are selected from mono C -Ci6, preferably C10-C14 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
- the detergent compositions comprise from 5% to 20% of surfactant but more usually comprise from 7% to 20%, more preferably from 10% to 15% surfactant by weight of the compositions.
- Combinations of surfactant types are preferred, more especially anionic-nonionic and also anionic-nonionic-cationic blends. Particularly preferred combinations are described in GB-A-2040987 and EP-A-0087914.
- the surfactants can be incorporated into the compositions as mixtures, it is preferable to control the point of addition of each surfactant in order to optimise the physical characteristics of the composition and avoid processing problems. Preferred modes and orders of surfactant addition are described hereinafter.
- a detergent builder system comprising one or more non- phosphate detergent builders.
- non- phosphate detergent builders can include, but are not restricted to alkali metal carbonates, bicarbonates, silicates, aluminosilicates, monomeric polycarboxylates, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more than two carbon atoms, organic phosphonates and aminoalkylene poly (alkylene phosphonates) and mixtures of any of the foregoing.
- the builder system is present in an amount of from 25% to 60% by weight of the composition, more preferably from 30% to 60% by weight.
- Preferred builder systems are free of boron compounds and any polymeric organic materials are preferably biodegradable.
- Suitable silicates are those having an Si ⁇ 2:Na2 ⁇ ratio in the range from 1.6 to 3.4, the so-called amorphous silicates of Si ⁇ 2 : Na2 ⁇ ratios from 2.0 to 2.8 being preferred.
- These materials can be added at various points of the manufacturing process, such as in a slurry of components that are spray dried or in the form of an aqueous solution serving as an agglomerating agent for other solid components, or, where the silicates are themselves in particulate form, as solids to the other particulate components of the compositon.
- the percentage of spray dried components is low i.e. 30%, it is preferred to include the amorphous silicate in the spray-dried components.
- NaMSi x ⁇ 2 ⁇ + ⁇ .yH2 ⁇ wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20.
- Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043.
- x in the general formula above has a value of 2, 3 or 4 and is preferably 2. More preferably M is sodium and y is 0 and preferred examples of this formula comprise the $ and forms of Na2Si2 ⁇ 5.
- These materials are available from Hoechst AG FRG as respectively NaSKS-11 and NaSKS-6. The most preferred material is -Na2Si2 ⁇ 5, (NaSKS-6).
- Crystalline layered silicates are incorporated either as dry mixed solids, or as solid components of agglomerates with other components.
- preferred sodium aluminosilicate zeolites have the unit cell formula
- aluminosilicate materials are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
- aluminosilicate ion exchange materials are further characterised by a particle size diameter of from 0.1 to 10 micrometers, preferably from 0.2 to 4 micrometers.
- particle size diameter herein represents the average particle size diameter of a given ion exchange material as determined by conventional analytical techniques such as, for example, microscopic deter ⁇ -ination utilizing a scanning electron microscope or by means of a laser granulometer.
- the aluminosilicate ion exchange materials are further characterised by their calcium ion exchange capacity, which is at least 200 mg equivalent of CaC ⁇ 3 water hardness/g of aluminosilicate, calculated on an anhydrous basis, and which generally is in the range of from 300 mg eq./g to 352 mg eq./g.
- aluminosilicate ion exchange materials herein are still further characterised by their calcium ion exchange rate which is at least 130 mg equivalent of CAC03/litre/minute/(g/litre) [2 grains Ca + +/ gallon/minute/gram/gallon)] of aluminosilicate (anhydrous basis), and which generally lies within the range of from 130 mg equivalent of CaC03/litre/minute/(gram/litre) [2 grai-ns/galio-n/minute/
- Optimum aluminosilicates for builder purposes exhibit a calcium ion exchange rate of at least 260 mg equivalent of CaC03/litre/ minute/
- Aluminosilicate ion exchange materials useful in the practice of this invention are commercially available and can be naturally occurring materials, but are preferably synthetically derived. A method for producing aluminosilicate ion exchange materials is discussed in US Patent No. 3,985,669.
- Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite B, Zeolite X, Zeolite HS and mixtures thereof.
- the crystalline aluminosilicate ion exchange material is Zeolite A and has the formula
- Suitable water-soluble monomeric or oligomeric carboxylate builders can be selected from a wide range of compounds but such compounds preferably have a first carboxyl logarithmic acidity/constant (pKj) of less than 9, preferably of between 2 and
- the logarithmic acidity constant is defined by reference to the equilibrium
- acidity constants are defined at 25 °C and at zero ionic strength.
- Literature values are taken where possible (see Stability Constants of Metal-Ion Complexex, Special Publication No. 25, The Chemical Society, London): where doubt arises they are determined by potentiometric titration using a glass electrode.
- Preferred carboxylates can also be defined in terms of their calcium ion stability constant (pKca+ +) defined, analogously to pKj, by the equations
- the poly carboxylate has a pK Ca+ + m tne range from about 2 to about 7 especially from about 3 to about 6.
- stability constant is defined at 25°C and at zero ionic strength using a glass electrode method of measurement as described in Complexation in Analytical Chemistry by Anders Ringbom (1963).
- the carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
- Monomeric and oligomeric builders can be selected from acyclic, alicyclic, heterocyclic and aromatic carboxylates having the general formulae
- Ri represents H,C ⁇ _30 alkyl or alkenyl optionally substituted by hydroxy, carboxy, sulfo or phosphono groups or attached to a polyethylenoxy moiety containing up to 20 ethyleneoxy groups
- R2 represents H,C ⁇ - alkyl, alkenyl or hydroxy alkyl, or alkaryl, sulfo, or phosphono groups
- X represents a single bond; O; S; SO; SO2; or NRi;
- Y represents H; carboxy;hydroxy; carboxymethyloxy; or
- Z represents H; or carboxy; m is an integer from 1 to 10; n is an integer from 3 to 6; p, q are integers from 0 to 6, p + q being from 1 to 6; and wherein,
- X, Y, and Z each have the same or different representations when repeated in a given molecular formula, and wherein at least one Y or
- Z in a molecule contain a carboxyl group.
- Suitable carboxylates containing one carboxy group include lactic acid, glycolic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 831,368, 821,369 and 821,370.
- Polycarboxylates containing two carboxy groups include the water- soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenlegenschrift 2,446,686, and 2,446,687 and U.S. Patent No. 3,935,257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623.
- Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-l,l,3-propane tricarboxylates described in British Patent No. 1,387,447.
- Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
- Alicyclic and heterocyclic polycarboxylates include cyclopentane- cis , cis , cis-tetracarboxylates , cy clopentadienide pentacarboxy lates , 2,3,4,5-tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5- tetrahydrofuran - cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane - hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol.
- Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343. Of the above, the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
- the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts e.g. citric acid or citrate/citric acid mixtures are also contemplated as components of builder systems of detergent compositions in accordance with the present invention.
- Suitable water soluble organic salts are the homo- or co ⁇ polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
- Polymers of the latter type are disclosed in GB-A-1, 596,756.
- Examples of such salts are polyacrylates of MWt 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000. These materials are normally used at levels of from 0.5% to 10% by weight more preferably from 0.75% to 8%, most preferably from 1% to 6% by weight of the composition.
- Organic phosphonates and amino alkylene poly (alkylene phosphonates) include alkali metal ethane 1-hydroxy diphosphonates, nitrilo trimethylene phosphonates, ethylene diamine tetra methylene phosphonates and diethylene triamine penta methylene phosphonates, although these materials are less preferred where the minimisation of phosphorus compounds in the compositions is desired.
- the non- phosphate builder ingredient will comprise from 25% to 60% by weight of the compositions, more preferably from 30% to 60% by weight.
- sodium aluminosilicate such as Zeolite A will comprise from 20% to 60% by weight of the total amount of builder, a monomeric or oligomeric carboxylate will comprise from 10% to 30% by weight of the total amount of builder and a crystalline layered silicate will comprise from 10% to 65% by weight of the total amount of builder.
- the builder ingredient preferably also incorporates a combination of auxiliary inorganic and organic builders such as sodium carbonate and maleic anhydride/acrylic acid copolymers in amounts of up to 35% by weight of the total builder.
- Anti-redeposition and soil-suspension agents suitable herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethycellulose, and homo-or co-polymeric polycarboxylic acids or their salts.
- Polymers of this type include copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the copolymer. These materials are normally used at levels of from 0.5% to 10% by weight, more preferably from 0.75% to 8%, most preferably from 1% to 6% by weight of the composition.
- polyethylene glycols particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000. These are used at levels of from 0.20% to 5% more preferably from 0.25% to 2.5% by weight. These polymers and the previously mentioned homo- or co-polymeric polycarboxylate salts are valuable for improving whiteness maintenance, fabric ash deposition, and cleaning performance on clay, proteinaceous and oxidizable soils in the presence of transition metal impurities.
- Preferred optical brighteners are anionic in character, examples of which are disodium 4,4l-bis-(2-diethanolamino-4-anilino -s- triazin- 6- ylamino)stilbene-2:2l disulphonate, disodium 4,4l-bis-(2- morpholino -4-amlino-2-triazin-6-ylaminostilbene-2:2l- disulphonate,di " sodium 4, 4l-bis-(2,4-dianilino-s-triazin-6- ylamino)stilbene-2:2l - disulphonate, monosodium 4l.4H-bis-(2,4- dianilino-s-triazin-6 ylamino)stilbene-2- sulphonate, disodium 4,4 ⁇ - bis-(2--u-_-lino-4-(N-methyI-N-2-hydroxyethylamino)-2-triazin-6- yIamino)stil
- Soil-release agents useful in compositions of the present invention are conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene glycol units in various arrangements. Examples of such polymers are disclosed in the commonly assigned US Patent Nos. 4116885 and 4711730 and European Published Patent Application No. 0272033. A particular preferred polymer in accordance with EP-A-0272033 has the formula
- Certain polymeric materials such as polyvinyl pyrrolidones typically of MWt 5000-20000, preferably 10000-15000, also form useful agents in preventing the transfer of labile dyestuffs between fabrics during the washing process.
- Another optional detergent composition ingredient is a suds suppressor, exemplified by silicones, and silica-silicone mixtures.
- Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms, exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particulates in which the suds suppressor is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent-impermeable carrier.
- the suds suppressor can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.
- useful silicone suds controlling agents can comprise a mixture of an alkylated siloxane, of the type referred to hereinbefore, and solid silica. Such mixtures are prepared by affixing the silicone to the surface of the solid silica.
- a preferred silicone suds controlling agent is represented by a hydrophobic silanated (most preferably trimethyl-silanated) silica having a particle size in the range from 10 nanometers to 20 nanometers and a specific surface area above 50 m ⁇ /g, intimately admixed with dimethyl silicone fluid having a molecular weight in the range from about 500 to about 200,000 at a weight ratio of silicone to silanated silica of from about 1:1 to about 1:2.
- a preferred silicone suds controlling agent is disclosed in Bartollota et al. US Patent 3,933,672.
- Other particularly useful suds suppressors are the self-emulsifying silicone suds suppressors, described in German Patent Application DTOS 2,646,126 published April 28, 1977.
- An example of such a compound is DC0544, commercially available from Dow Corning, which is a siloxane/glycol copolymer.
- the suds suppressors described above are normally employed at levels of from 0.001% to 0.5% by weight of the composition, preferably from 0.01 % to 0.1 % by weight.
- the preferred methods of incorporation comprise either application of the suds suppressors in liquid form by spray-on to one or more of the major components of the composition or alternatively the formation of the suds suppressors into separate particulates that can then be mixed with the other solid components of the composition.
- the incorporation of the suds modifiers as separate particulates also permits the inclusion therein of other suds controlling materials such as C20-C24 fatty acids, microcrystalline waxes and high MWt copolymers of ethylene oxide and propylene oxide which would otherwise adversely affect the dispersibility of the matrix. Techniques for forming such suds modifying particulates are disclosed in the previously mentioned Bartolotta et al US Patent No. 3,933,672.
- Another optional ingredient useful in the present invention is one or more enzymes.
- Preferred enzymatic materials include the commercially available amylases, neutral and alkaline proteases, lipases, esterases and cellulases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
- Fabric softening agents can also be incorporated into detergent compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents are examplified by the smectite clays disclosed in GB-A-1, 400,898. Organic fabric softening agents include the water insoluble tertiary amines as disclosed in GB-A-1514276 and EP-B-0011340.
- Levels of smectite clay are normally in the range from 5% to 15%, more preferably from 8% to 12% by weight, with the material being added as a dry mixed component to the remainder of the formulation.
- Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5% to 5% by weight, normally from 1% to 3% by weight, whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1 % to 2%, normally from 0.15% to 1.5% by weight.
- these materials can be added to the aqueous slurry fed to the spray drying tower, although in some instances it may be more convenient to add them as a dry mixed particulate, or spray them as a molten liquid on to other solid components of the composition.
- the surface treated peroxyacid bleach precursor particulates of the present invention are particularly useful in concentrated granular detergent compositions that are characterised by a relatively high density in comparison with conventional laundry detergent compositions.
- Such high density compositions have a bulk density of at least 650 g/litre, more usually at least 700 g/litre and more preferably in excess of 800 g/litre.
- Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrical cup disposed below the funnel.
- the funnel is 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base.
- the cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
- the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup.
- the filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement e.g. a knife, across its upper edge.
- the filled cup is then weighed and the value obtained for the weight of powder doubled to provide the bulk density in g/litre. Replicate measurements are made as required.
- Concentrated detergent compositions also normally incorporate at least one multi-ingredient component i.e. they do not comprise compositions formed merely by dry-mixing individual ingredients. Compositions in which each individual ingredient is dry-mixed are generally dusty, slow to dissolve and also tend to cake and develop poor particle flow characteristics in storage.
- compositions of the invention can be made via a variety of methods including dry mixing, spray drying, agglomeration and granulation and preferred methods involve combinations of these techniques.
- a preferred method of making the compositions involves a combination of spray drying, agglomeration in a high speed mixer and dry mixing.
- Preferred detergent compositions in accordance with the invention comprise at least two particulate multi-ingredient components.
- the first component comprises at least 15%, conventionally from 25% to 50%, but more preferably no more than 35% by weight of the composition and the second component from 1% to 50%, more preferably 10% to 40% by weight of the composition.
- the first component comprises a particulate incorporating an anionic surfactant in an amount of from 0.75% to 40% by weight of the powder and one or more inorganic and/or organic salts in an amount of from 99.25% to 60% by weight of the powder.
- the particulate can have any suitable form such as granules, flakes, prills, marumes or noodles but is preferably granular.
- the granules themselves may be agglomerates formed by pan or drum agglomeration or by in-line mixers but are customarily spray dried particles produced by a atomising an aqueous slurry of the ingredients in a hot air stream which removes most of the water.
- the spray dried granules are then subjected to densification steps, e.g. by high speed cutter mixers and/or compacting mills, to increase density before being reagglomerated.
- densification steps e.g. by high speed cutter mixers and/or compacting mills
- the first component is described hereinafter as a spray dried powder.
- Suitable anionic surfactants for the purposes of the first component have been found to be slowly dissolving linear alkyl sulfate salts in which the alkyl group has an average of from 16 to 22 carbon atoms, and linear alkyl carboxylate salts in which the alkyl group has an average of from 16 to 24 carbon atoms.
- the alkyl groups for both types of surfactant are preferably derived from natural sources such as tallow fat and marine oils.
- the level of anionic surfactant in the spray dried powder forming the first component is from 0.75% to 40% by weight, more usually 2.5% to 25% preferably from 3% to 20% and most preferably from 5% to 15% by weight.
- Water-soluble surfactants such as linear alkyl benzene sulphonates or C 4-C15 alkyl sulphates can be included or alternatively may be applied subsequently to the spray dried powder by spray on.
- the other major ingredient of the spray dried powder is one or more inorganic or organic salts that provide the crystalline structure for the granules.
- the inorganic and/or orgamc salts may be water- soluble or water-insoluble, the latter type being comprised by the, or the major part of the, water-insoluble builders where these form part of the builder ingredient.
- Suitable water soluble inorganic salts include the alkali metal carbonates and bicarbonates.
- Alkali metal silicates other than crystalline layered silicates can also be present in the spray dried granule provided that aluminosilicate does not form part of the spray dried component.
- water-soluble sulphate particularly sodium sulphate
- water-soluble sulphate should not be present at a level of more than 2.5% by weight of the composition.
- no sodium sulphate is added as a separate ingredient and its incorporation as a by-product e.g. with sulph(on)ated surfactants, should be minimised.
- an aluminosilicate zeolite forms the, or part of the, builder ingredient, it is preferred that it is not added directly by dry-mixing to the other components, but is incorporated into the multi-ingredient component(s).
- any silicate present should not form part of the spray-dried granule.
- incorporation of the silicate can be achieved in several ways, e.g. by producing a separate silicate-containing spray-dried particulate, by incorporating the silicate into an agglomerate of other ingredients, or more preferably by adding the silicate as a dry mixed solid ingredient.
- the first component can also include up to 15% by weight of miscellaneous ingredients such as brighteners, anti-redeposition agents, photoactivated bleaches (such as tetrasulfonated zinc phthalocyanine) and heavy metal sequestering agents.
- miscellaneous ingredients such as brighteners, anti-redeposition agents, photoactivated bleaches (such as tetrasulfonated zinc phthalocyanine) and heavy metal sequestering agents.
- miscellaneous ingredients such as brighteners, anti-redeposition agents, photoactivated bleaches (such as tetrasulfonated zinc phthalocyanine) and heavy metal sequestering agents.
- miscellaneous ingredients such as brighteners, anti-redeposition agents, photoactivated bleaches (such as tetrasulfonated zinc phthalocyanine) and heavy metal sequestering agents.
- the first component is a spray dried powder it will normally be dried to a moisture content of from 7% to 11%
- the particle size of the first component is conventional and preferably not more than 5% by weight should be above 1.4mm, while not more than 10% by weight should be less than 0.15 mm in maximum dimension.
- the bulk density of the particles from the spray drying tower is conventionally in the range from 540 to 600 g/litre and this is then enhanced by further processing steps such as size reduction in a high speed cutter/mixer followed by compaction.
- processes other than spray drying may be used to form a high density particulate directly.
- a second component of a preferred composition in accordance with the invention is another multi-ingredient particulate containing a water soluble surfactant.
- surfactants are listed hereinbefore but preferred surfactants are C14-C15 alkyl sulphates, linear Cn-
- the second component may have any suitable physical form, i.e. it may take the form of flakes, prills, marumes, noodles, ribbons, or granules which may be spray-dried or non spray-dried agglomerates.
- the second component could in theory comprise the water soluble surfactant on its own, in practice at least one organic or inorganic salt is included to facilitate processing. This provides a degree of crystallinity, and hence acceptable flow characteristics, to the particulate and may be any one or more of the orgamc or inorganic salts present in the first component.
- the particle size range of the second component should be such as to obviate segregation from the particles of the first component when blended therewith. Thus not more than 5% by weight should be above 1.4 mm while not more than 10% should be less than 0.15 mm in maximum dimension.
- the bulk density of the second component will be a function of its mode of preparation.
- the preferred form of the second component is a mechanically mixed agglomerate which may be made by adding the ingredients dry or with an agglomerating agent to a pan agglomerator, Z blade mixer or more preferably an in-line mixer such as those manufactured by Schugi (Holland) BV, 29 Chroomstraat 8211 AS, Lelystad, Netherlands and Gebruder Lodige Maschinenbau GmbH, D-4790 Paderborn 1, Elsenerstrasse 7-9, Postfach 2050 F.R.G.
- the second component can be given a bulk density in the range from 650 g/litre to 1190 g/litre more preferably from 750 g/litre to 850 g/litre.
- compositions include a level of alkali metal carbonate in the second component corresponding to an amount of from 3 % to 15% by weight of the composition, more preferably from 5% to 12% by weight. This will provide a level of carbonate in the second component of from 20% to 40% by weight.
- a highly preferred ingredient of the second component is also a hydrated water insoluble aluminosilicate ion exchange material of the synthetic zeolite type, described hereinbefore, present at from 10% to 35% by weight of the second component.
- the amount of water insoluble aluminosilicate material incorporated in this way is from 1 % to 10% by weight of the composition, more preferably from 2% to 8% by weight.
- the surfactant salt is formed in situ in an inline mixer.
- the liquid acid form of the surfactant is added to a mixture of particulate anhydrous sodium carbonate and hydrated sodium aluminosilicate in a continuous high speed blender, such as a Lodige KM mixer, and neutralised to form the surfactant salt whilst maintaining the particulate nature of the mixture.
- the resultant agglomerated mixture forms the second component which is then added to other components of the product.
- the surfactant salt is pre-neutralised and added as a viscous paste to the mixture of the other ingredients.
- the mixer serves merely to agglomerate the ingredients to form the second component.
- part of the spray dried product comprising the first granular component is diverted and subjected to a low level of nonionic surfactant spray on before being reblended with the remainder.
- the second granular component is made using the preferred process described above.
- the first and second components together with the coated bleach precursor particulate and the perhydrate bleach, other dry mix ingredients such as any carboxylate chelating agent, soil-release polymer, silicate of conventional or crystalline layered type, and enzyme are then fed to a conveyor belt, from which they are transferred to a horizontally rotating drum in which perfume and silicone suds suppressor are sprayed on to the product.
- a further drum mixing step is employed in which a low (approx. 2% by weight) level of finely divided crystalline material is introduced to increase density and improve granular flow characteristics.
- a low (approx. 2% by weight) level of finely divided crystalline material is introduced to increase density and improve granular flow characteristics.
- an alkali metal percarbonate as the perhydrate salt it has been found necessary to control several aspects of the product such as its heavy metal ion content and its equilibrium relative humidity.
- Sodium percarbonate- containing compositions of this type having enhanced stability are disclosed in the commonly assigned British Application No. 9021761.3 filed October 6 1990 Attorney's Docket No. CM343.
- compositions in accordance with the invention can also benefit from delivery systems that provide transient localised high concentrations of product in the drum of an automatic washing machine at the start of the wash cycle, thereby also avoiding problems associated with loss of product in the pipework or sump of the machine.
- Delivery to the drum can most easily be achieved by incorporation of the composition in a bag or container from which it is rapidly releasable at the start of the wash cycle in response to agitation, a rise in temperature or immersion in the wash water in the drum.
- the washing machine itself may be adapted to permit direct addition of the composition to the drum e.g. by a dispensing arrangement in the access door.
- Products comprising a detergent composition enclosed in a bag or container are usually designed in such a way that container integrity is maintained in the dry state to prevent egress of the contents when dry, but are adapted for release of the container contents on exposure to a washing environment, normally on immersion in an aqueous solution.
- the container will be flexible, such as a bag or pouch.
- the bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678.
- it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 0011500, 0011501, 0011502, and 0011968.
- a convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
- laminated sheet products can be employed in which a central flexible layer is impregnated and/or coated with a composition and then one or more outer layers are applied to produce a fabric-like aesthetic effect.
- the layers may be sealed together so as to remain attached during use or may separate on contact with water to facilitate the release of the coated or impregnated material.
- An alternative laminate form comprises one layer embossed or deformed to provide a series of pouch-like containers into each of which the detergent components are deposited in measured amounts, with a second layer overlying the first layer and sealed thereto in those areas beteen the pouch-like containers where the two layers are in contact.
- the components may be deposited in particulate, paste or molten form and the laminate layers should prevent egress of the contents of the pouch-like containers prior to their addition to water.
- the layers may separate or may remain attached together on contact with water, the only requirement being that the structure should permit rapid release of the contents of the pouch-like containers into solution.
- the number of pouch-like containers per unit area of substrate is a matter of choice but will normally vary between 500 and 25,000 per square metre.
- Suitable materials which can be used for the flexible laminate layers in this aspect of the invention include, among others, sponges, paper and woven and non-woven fabrics.
- the preferred means of carrying out the process of the invention is to introduce the composition into the liquid surrounding the fabrics that are in the drum via a reusable dispensing device having walls that are permeable to liquid but impermeable to the solid composition.
- Devices of this kind are disclosed in European Patent Application Publication Nos. 0343069 & 0343070.
- the latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficent product for one washing cycle in a washing cycle. A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium.
- the support ring is provided with a masking arrangement to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
- C-1AEE6.5 A C12-C13 primary alcohol condensed with 6.5 moles of ethylene oxide.
- Silicate Amorphous Sodium Silicate Si ⁇ 2'.Na2 ⁇ ratio normally follows
- TAED in fine powder form was agglomerated with TAE25 to give particles in which 85% by weight was between 400 micrometers and 1700 micrometers.
- This material was divided into five fractions identified as A-F, of which fraction A was untreated and the remainder were treated as follows
- the treatments were all applied by hand spraying into a small coating drum.
- the octanoic acid was applied as a melt at 60 °C whilst the remainder were applied as aqueous solutions at ambient temperature (20 °C).
- the citric acid solution was 50% by weight, the glycolic acid solution was 66% by weight and the polyacrylic acid solution was 50% by weight.
- MA/AA Copolymer of 1:4 maleic/acrylic acid average molecular weight about 80,000.
- MVEMA Maleic anhydride/vinyl methyl ether copolymer believed to have an average molecular weight of 240,000. This material was prehydrolysed with NaOH before addition.
- DETPMP Diethylene triamine penta (Methylene phosphonic acid), marketed by Monsanto under the Trade name Dequest 2060
- unrestrained dissolution conditions are defined as those existing in the Beaker Perhydrolysis Test as carried out using a Sotax Dissolution Tester Model AT6 supplied by Sotax AG CH-4008 BASEL Switzerland.
- This Apparatus comprises an array of polycarbonate beakers, each capable of holding 1 litre of water, supported in a thermostatically controlled water bath. Each beaker is provided with a paddle stirrer whose speed can be controlled.
- the formulations containg TAED fractions A & D of Example 1 were subjected to a full scale washing machine test using Miele automatic washing machines (Model W754) set to the Short Wash cycle at 40 °C. Each machine was loaded with four cotton bedsheets (3.3 kg) and lOOg of the formulation was added to the fabrics in the machine drum via an Arielator (RTM) dispensing device. 12 litres of water of 150 ppm hardness (expressed as CaC03) with a Ca:Mg ratio of 3:1 was fed to each machine.
- the product containing fraction D (the glycolic acid-surface treated TAED), perhydrolyses more slowly than the product containing fraction A (the untreated material), during the initial stages of the wash cycle.
- the glycolic acid surface treatment of the TAED inhibits perhydrolysis during the period of high localised product concentration existing at the start of the wash cycle, where the high aqueous solubility of the acid is believed to create a low pH environment around the TAED particles.
- the yield of peroxy acid from the treated TAED is better than from the untreated material, indicating that delayed release of the TAED results in its more effective conversion into peroxy acid.
- a full scale washing machine test was carried out comparing three formulations containing fractions B, C & D of the surface treated precursor of Example 1.
- the fractions were added respectively to a modified form of the detergent formulation of Example 1 in which the sodium percarbonate was replaced by the same weight of sodium perborate monohydrate.
- the washing machine comparison employed the same technique as that used in Example 2, save that the wash temperature was 20 °C. This temperature is typical of that found during the initial cold fill stage of European wash cycles. Results are shown below in Table in
- a washing machine comparison of formulations similar to that carried out in Example in and incorporating precursor fractions A,B, C & E was carried out to include bleach-sensitive coloured fabric swatches in the fabric load. These swatches were made of 100% lambswool woven fabric with purple 48 dye (Design No. W3970) supplied by Borval Fabrics, Albert Street, Huddersfield, West Yorkshire, England. 24 replicates of each treatment were performed and the swatches were then graded visually for fabric colour damage by an expert panel using the following grading system.
- Example IV The washing machine comparison of Example IV was repeated using formulations containing TAED fractions A & D of Example 1 , as well as an additional TAED fraction F comprising fraction A further agglomerated with 10% by weight of glycolic acid (on total agglomerate weight basis).
- the formulations were subjected to a coloured swatch degradation test as described in Example IV and gave the following results
- fraction D incorporating 5% glycolic acid surface treated precursor particulates in accordance with the invention, has a markedly lower overall damage grade than the untreated fraction A.
- the use of 10%, i.e. double the level, of glycolic acid as an agglomerating agent results in little decrease in damage grade relative to the untreated material. This confirms the importance of surface treatment of the bleach precursor particulates in obtaining the fabric damage reduction benefit of the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Detergent Compositions (AREA)
- Pyridine Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB919102507A GB9102507D0 (en) | 1991-02-06 | 1991-02-06 | Peroxyacid bleach precursor compositions |
GB9102507 | 1991-02-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0571524A4 true EP0571524A4 (en) | 1993-09-23 |
EP0571524A1 EP0571524A1 (en) | 1993-12-01 |
Family
ID=10689607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19920906781 Ceased EP0571524A1 (en) | 1991-02-06 | 1992-01-28 | Peroxyacid bleach precursor compositions |
Country Status (16)
Country | Link |
---|---|
EP (1) | EP0571524A1 (en) |
JP (1) | JP2657114B2 (en) |
CN (1) | CN1064701A (en) |
AR (1) | AR244798A1 (en) |
AU (1) | AU661681B2 (en) |
CA (1) | CA2101448A1 (en) |
CZ (1) | CZ159393A3 (en) |
GB (1) | GB9102507D0 (en) |
HU (1) | HU9302289D0 (en) |
IE (1) | IE920384A1 (en) |
MX (1) | MX9200518A (en) |
MY (1) | MY107914A (en) |
NZ (1) | NZ241533A (en) |
PT (1) | PT100101A (en) |
SK (1) | SK83693A3 (en) |
WO (1) | WO1992013798A1 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SK144695A3 (en) † | 1993-05-26 | 1996-04-03 | Unilever Nv | Partical detergent composition |
US5780410A (en) * | 1993-07-14 | 1998-07-14 | The Procter & Gamble Company | Detergent compositions containing percarbonate and making processes thereof |
US5534195A (en) * | 1993-12-23 | 1996-07-09 | The Procter & Gamble Co. | Process for making particles comprising lactam bleach activators |
US5534196A (en) * | 1993-12-23 | 1996-07-09 | The Procter & Gamble Co. | Process for making lactam bleach activator containing particles |
EP0659876A3 (en) * | 1993-12-24 | 1996-12-04 | Procter & Gamble | Detergent additive composition. |
WO1995033038A1 (en) * | 1994-06-01 | 1995-12-07 | The Procter & Gamble Company | Sarcosinate with clay softeners in laundry compositions |
CN1200758A (en) * | 1994-06-01 | 1998-12-02 | 普罗格特-甘布尔公司 | Bleaching compositions containing oleoyl sarcosinate surfactant |
EP0763084A1 (en) * | 1994-06-01 | 1997-03-19 | The Procter & Gamble Company | Dye transfer inhibiting compositions containing oleoyl sarcosinate |
DE4424005A1 (en) * | 1994-07-07 | 1996-01-11 | Henkel Kgaa | Powdery bleach and detergent |
DE4439039A1 (en) | 1994-11-02 | 1996-05-09 | Hoechst Ag | Granulated bleach activators and their manufacture |
GB9423374D0 (en) * | 1994-11-19 | 1995-01-11 | Procter & Gamble | Peroxyacid bleach precursor compositions |
FR2728171B1 (en) | 1994-12-14 | 1997-01-24 | Chemoxal Sa | PRODUCTION OF BIOCIDAL DISINFECTANT FORMULATIONS BASED ON PERACETIC IONS |
US5925609A (en) * | 1995-03-11 | 1999-07-20 | Procter & Gamble Company | Detergent composition comprising source of hydrogen peroxide and protease enzyme |
CA2214397A1 (en) * | 1995-03-11 | 1996-09-19 | The Procter & Gamble Company | Detergent composition comprising source of hydrogen peroxide and protease enzyme |
CA2258531A1 (en) * | 1996-06-28 | 1998-01-08 | Wayne Edward Beimesch | Coated particle-containing, non-aqueous liquid cleaning compositions |
DE19641708A1 (en) * | 1996-10-10 | 1998-04-16 | Clariant Gmbh | Process for the preparation of a coated bleach activator granulate |
DE19740669A1 (en) * | 1997-09-16 | 1999-03-18 | Clariant Gmbh | Coated ammonium nitrile bleach activator granules used in e.g. detergents |
DE19740671A1 (en) * | 1997-09-16 | 1999-03-18 | Clariant Gmbh | Bleach activator granulate containing ammonium nitrile and layered silicate |
DE19740668A1 (en) | 1997-09-16 | 1999-03-18 | Clariant Gmbh | Storage-stable bleach activator granulate obtained using acid-modified layered silicate as binder |
US6017867A (en) * | 1998-06-05 | 2000-01-25 | The Procter & Gamble Company | Detergent compositions containing percarbonate and making processes thereof |
EP3662046B1 (en) * | 2017-07-31 | 2024-08-14 | Dow Global Technologies LLC | Detergent additive |
WO2019186457A1 (en) * | 2018-03-29 | 2019-10-03 | Pilon, Randall Andrew | Antimicrobial compositions containing a peroxygen compound and an alkyl sarcosine anionic surfactant |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IE51848B1 (en) * | 1980-11-06 | 1987-04-15 | Procter & Gamble | Bleach activator compositions,preparation thereof and use in granular detergent compositions |
ATE12517T1 (en) * | 1980-12-09 | 1985-04-15 | Unilever Nv | BLEACH ACTIVATOR GRANULATE. |
US4486327A (en) * | 1983-12-22 | 1984-12-04 | The Procter & Gamble Company | Bodies containing stabilized bleach activators |
DE3504628A1 (en) * | 1985-02-11 | 1986-08-14 | Henkel KGaA, 4000 Düsseldorf | METHOD FOR PRODUCING GRANULATE GRANULATE |
US4678594A (en) * | 1985-07-19 | 1987-07-07 | Colgate-Palmolive Company | Method of encapsulating a bleach and activator therefor in a binder |
US4657784A (en) * | 1986-03-10 | 1987-04-14 | Ecolab Inc. | Process for encapsulating particles with at least two coating layers having different melting points |
DE3639115A1 (en) * | 1986-11-15 | 1988-05-19 | Henkel Kgaa | STORAGE BLENDER MIXTURE WITH IMPROVED SOLUTION |
US4853143A (en) * | 1987-03-17 | 1989-08-01 | The Procter & Gamble Company | Bleach activator compositions containing an antioxidant |
DE3812693A1 (en) * | 1988-03-19 | 1989-09-28 | Reckitt Gmbh | CLEANING TABLET FOR DENTAL PROSTHESIS |
-
1991
- 1991-02-06 GB GB919102507A patent/GB9102507D0/en active Pending
-
1992
- 1992-01-28 HU HU9302289A patent/HU9302289D0/en unknown
- 1992-01-28 CZ CS931593A patent/CZ159393A3/en unknown
- 1992-01-28 EP EP19920906781 patent/EP0571524A1/en not_active Ceased
- 1992-01-28 SK SK836-93A patent/SK83693A3/en unknown
- 1992-01-28 CA CA002101448A patent/CA2101448A1/en not_active Abandoned
- 1992-01-28 AU AU14199/92A patent/AU661681B2/en not_active Ceased
- 1992-01-28 WO PCT/US1992/000664 patent/WO1992013798A1/en not_active Application Discontinuation
- 1992-02-05 IE IE038492A patent/IE920384A1/en unknown
- 1992-02-05 NZ NZ241533A patent/NZ241533A/en unknown
- 1992-02-06 PT PT100101A patent/PT100101A/en not_active Application Discontinuation
- 1992-02-06 AR AR92321749A patent/AR244798A1/en active
- 1992-02-06 MY MYPI92000178A patent/MY107914A/en unknown
- 1992-02-06 MX MX9200518A patent/MX9200518A/en not_active IP Right Cessation
- 1992-02-07 CN CN92101630A patent/CN1064701A/en active Pending
- 1992-10-01 JP JP5506608A patent/JP2657114B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
AU1419992A (en) | 1992-09-07 |
WO1992013798A1 (en) | 1992-08-20 |
AU661681B2 (en) | 1995-08-03 |
HU9302289D0 (en) | 1993-11-29 |
CN1064701A (en) | 1992-09-23 |
JPH06505691A (en) | 1994-06-30 |
EP0571524A1 (en) | 1993-12-01 |
SK83693A3 (en) | 1994-04-06 |
AR244798A1 (en) | 1993-11-30 |
JP2657114B2 (en) | 1997-09-24 |
GB9102507D0 (en) | 1991-03-27 |
NZ241533A (en) | 1995-01-27 |
IE920384A1 (en) | 1992-08-12 |
CZ159393A3 (en) | 1994-03-16 |
MX9200518A (en) | 1992-12-01 |
CA2101448A1 (en) | 1992-08-07 |
PT100101A (en) | 1993-03-31 |
MY107914A (en) | 1996-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5411673A (en) | Peroxyacid bleach precursor compositions | |
EP0591203B1 (en) | Detergent compositions | |
EP0581895B1 (en) | Particulate detergent compositions | |
AU661681B2 (en) | Peroxyacid bleach precursor compositions | |
US5540855A (en) | Particulate detergent compositions | |
WO1994003395A1 (en) | Peroxyacid bleach precursor compositions | |
EP0634481B1 (en) | Detergent compositions | |
US5792738A (en) | Granular laundry detergent compositions containing stabilised percarbonate bleach particles | |
EP0650518B1 (en) | Process of dispensing a high bulk density percarbonate-containing laundry detergent | |
CA2141584C (en) | Coated peroxyacid bleach precursor compositions | |
WO1995018206A1 (en) | Peroxyacid bleach precursor particle coated with a water soluble organic acid in particulate form | |
EP0634482B1 (en) | Stabilized detergent compositions | |
AU4779793A (en) | Detergent bleach compositions containing layered silicate builder and percarbonate stabilized by edds | |
EP0633922B1 (en) | Concentrated laundry detergent containing stable amide peroxyacid bleach | |
CA2167160C (en) | Stabilised bleaching compositions | |
EP0652848A1 (en) | Peroxyacid bleach precursor compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930730 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: FRASER, DOUGLAS, GILBERT Inventor name: AGAR, JOSEPH THOMAS HENRY |
|
17Q | First examination report despatched |
Effective date: 19950808 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19970310 |