EP0566867A1 - Verfahren und Anordnung zur Herstellung gasarmer und porenfreier Aluminium-Gusslegierungen - Google Patents
Verfahren und Anordnung zur Herstellung gasarmer und porenfreier Aluminium-Gusslegierungen Download PDFInfo
- Publication number
- EP0566867A1 EP0566867A1 EP93104326A EP93104326A EP0566867A1 EP 0566867 A1 EP0566867 A1 EP 0566867A1 EP 93104326 A EP93104326 A EP 93104326A EP 93104326 A EP93104326 A EP 93104326A EP 0566867 A1 EP0566867 A1 EP 0566867A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vacuum
- continuous casting
- melt
- furnace
- melting furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/15—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
- B22D11/113—Treating the molten metal by vacuum treating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B21/00—Obtaining aluminium
- C22B21/06—Obtaining aluminium refining
- C22B21/068—Obtaining aluminium refining handling in vacuum
Definitions
- the invention relates to a method and an arrangement for producing low-gas and non-porous cast aluminum alloys.
- Crucible or trough furnaces are usually used to produce cast alloys. Either liquid electrolysis metal is filled in or solid metal is melted. The intended alloy composition is adjusted by adding alloy components such as silicon, magnesium, copper, titanium, nickel. The molten bath is heated to dissolve and alloy the components. It absorbs more hydrogen because aluminum has a high solubility for hydrogen in the liquid state. This occurs when liquid aluminum is converted to water vapor and is immediately absorbed by the melt. The water vapor comes into contact with the liquid aluminum via the feed materials, the furnace and crucible linings, the tools, the melting and fluxing agents, the combustion of gaseous and liquid fuels and the air humidity.
- the amount of dissolved hydrogen depends on the metal temperature, the alloy composition and the hydrogen partial pressure.
- the hydrogen uptake is promoted by open burner flames or violent bath movements in induction furnaces.
- alkali and alkaline earth metals such as strontium, sodium and calcium
- the hydrogen content of the melt increases significantly again to values of over 0.3 ml of hydrogen in 100 g of metal, since the water vapor decomposition takes place even faster through these metals.
- the melt should be cleaned as soon as possible, as a treatment that was carried out at an early stage by subsequent technological steps, such as. B. by pouring for the purpose of transporting the melt, in turn can lead to contamination.
- the vacuum degassing of the melt is a particularly environmentally friendly and effective method.
- the success of this method is particularly due to the complex transportation of the melt, interim cooling and remelting after the required alloying, refining and vacuum degassing processes up to continuous casting and the inevitable contact with the air humidity is not carried out optimally, so that as a result of the alloying and refining process and after the continuous casting, there are no low-gas and non-porous aluminum casting alloys.
- the invention has for its object to provide a method and an arrangement for the production of low-gas and non-porous aluminum casting alloys, with which it is possible to keep the contact of the aluminum melt with the air humidity from the alloying process through the refinement to the continuous casting of the cast ingot extremely low , to use the environmentally friendly and effective vacuum degassing and to prevent the formation of large gas pores by a high cooling rate.
- this object is achieved in that after the alloying of the molten metal in a melting furnace, the melt is fed directly to a vacuum furnace via a channel system, that finishing components are added in the vacuum furnace and the casting temperature required for the continuous casting is set so that the vacuum in the vacuum furnace is periodic Measurement of the metal density is held for a further 5 to 240 minutes and that the metal melt is then fed directly to the continuous casting system via the channel system, the metal melt being filtered before entering the continuous casting system.
- the melt is fed from the melting furnace alternately or simultaneously into two vacuum furnaces, so that the continuous casting installation, which is preferably designed as a horizontal continuous casting installation, can be fed with melt continuously.
- the metal density is measured while holding in a vacuum oven. This makes it possible to control the residence time of the melt under vacuum conditions. It is expedient for the size of the vacuum to be between 100 and 1 mbar while the vacuum is being maintained. The regulation of the duration of the vacuum essentially depends on the measured values of the metal density. It may well be necessary that its size be kept constant or varied while the vacuum is being held. For example, it is expedient for the vacuum to be as large as possible with increasing metal density while holding, so that the expulsion of the hydrogen is possible by further reducing its partial pressure despite increasing metal density.
- the arrangement of the melting furnace, at least one vacuum melting furnace and the continuous casting plant, which are directly connected to one another via a channel system, make it possible to keep the metal in the melt at all times during the treatment process. Energy-consuming solidification and remelting processes are eliminated due to the optimal transport of the melt via the channel system.
- a gradient is provided, which is realized by different levels of the furnaces and the continuous casting system or by a height-adjustable channel system.
- the gutter system according to the invention is an open system, so that a control of the Melt flow is guaranteed at all times. Due to the short distances, the contact of the melt with the air humidity is minimal.
- the melting furnace 1 in FIG. 1 is usually designed as a crucible or trough furnace. It is used to make alloys. Here the alloy components, such as silicon, magnesium, copper, titanium, nickel, etc., are lined up, a refining treatment with reaction and / or inert gases is carried out, and the metal temperature necessary for transferring the melt into the vacuum furnaces 2 is set. Following the gravity, the melt flows through the channel system 4 into the two vacuum furnaces 2. The capacity of the melting furnace 1 is so large that both vacuum furnaces 2 can be charged alternately.
- the refinement components such as strontium, sodium, calcium are alloyed in here and the necessary treatment temperature with regard to the specified casting temperature set.
- the alloy melt is subjected to a vacuum treatment, which is controlled according to the results of the metal density test.
- the melt in the two vacuum furnaces 2 is fed in succession via the channel system 4 with the interposition of a ceramic shape filter 5 to the water-cooled horizontal continuous casting plant 3 and cast into format bars.
- the low-gas, non-porous casting alloys produced in this way enable ductile, non-porous castings to be produced if they are melted properly again.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Continuous Casting (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur Herstellung gasarmer und porenfreier Aluminium-Gußlegierungen durch Vakuumbehandlung der Schmelze. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Anordnung zur Herstellung gasarmer und porenfreier Aluminium-Gußlegierungen zu schaffen, mit denen es möglich ist den Kontakt der Aluminiumschmelze mit der Luftfeuchtigkeit vom Legierungsprozeß über die Veredelung bis zum Stranggießen der Gußbarren extrem gering zu halten, dabei die umweltfreundliche und effektive Vakuumentgasung zu nutzen und durch eine hohe Abkühlungsgeschwindigkeit die Ausbildung von Gasporen zu verhindern. Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß nach dem Legieren der Metallschmelze in einem Schmelzofen die Schmelze über ein Rinnensystem unmittelbar einem Vakuumofen zugeführt wird, daß im Vakuumofen Veredlungskomponenten zugesetzt werden und die für den Strangguß erforderliche Gießtemperatur eingestellt wird, daß das Vakuum im Vakuumofen durch periodische Messungen der Metalldichte weitere 5 bis 240 Minuten gehalten wird und daß danach die Metallschmelze über das Rinnensystem unmittelbar der Stranggußanlage zugeführt wird.
Description
- Die Erfindung betrifft ein Verfahren und eine Anordnung zur Herstellung gasarmer und porenfreier Aluminiumgußlegierungen. Zur Herstellung von Gußlegierungen werden üblicherweise Tiegel- oder Wannenöfen eingesetzt. Es wird entweder flüssiges Elektrolysemetall eingefüllt oder Festmetall aufgeschmolzen. Durch Zugabe von Legierungskomponenten, wie Silicium, Magnesium, Kupfer, Titan, Nickel wird die vorgesehene Legierungszusammensetzung eingestellt. Zum Lösen und Legieren der Komponenten wird das Schmelzebad aufgeheizt. Es nimmt dabei vermehrt Wasserstoff auf, da Aluminium im flüssigen Zustand ein hohes Lösungsvermögen für Wasserstoff besitzt. Dieser entsteht bei der Umsetzung von flüssigem Aluminium mit Wasserdampf und wird sofort von der Schmelze atomar aufgenommen. Der Wasserdampf kommt über die Einsatzmaterialien, die Ofen- und Tiegelauskleidungen, die Werkzeuge, die Schmelz- und Flußmittel, die Verbrennung gasförmiger und flüssiger Brennstoffe und die Luftfeuchtigkeit mit dem flüssigen Aluminium in Kontakt. Die Menge des gelösten Wasserstoffs ist von der Metalltemperatur, der Legierungszusammensetzung und dem Wasserstoffpartialdruck abhängig. Die Wasserstoffaufnahme wird durch offene Brennerflammen oder heftige Badbewegungen bei Induktionsöfen begünstigt. Bei der Veredelung von Gußlegierungen mit Alkali- und Erdalkalimetallen wie Strontium, Natrium und Calcium steigt der Wasserstoffgehalt der Schmelze nochmal erheblich auf Werte von über 0,3 ml Wasserstoff in 100 g Metall an, da die Wasserdampfzersetzung durch diese Metalle noch schneller erfolgt. Die Schmelzereinigung sollte möglichst unmittelbar vor dem Gießen vorgenommen werden, da eine zu einem zu frühen Zeitpunkt vorgenommene Behandlung durch nachfolgende technologische Schritte, wie z. B. durch Umgießen zum Zwecke des Transports der Schmelze, wiederum zu Verunreinigungen führen kann. Insbesondere der Kontakt der Schmelze mit der Luftfeuchtigkeit führt zu einer Zunahme des Wassestoffgehaltes und der damit verbundenen unerwünschten Vergrößerung der Porosität der Aluminiumformkörper. bliche Reinigungsverfahren werden mit inerten aber auch mit chemisch aktiven Gasen durchgeführt. Beim Spülen mit inerten Gasen (z. B. Argon oder Stickstoff) wird der Wasserstoff durch die Erniedrigung seines Partialdruckes praktisch physikalisch entfernt. Diese Art der Wasserstoffentfernung ist technologisch aufwendig und birgt die Gefahr, daß Wasserdampf während der Behandlung mit der Schmelze Kontakt bekommt. Hinzu kommt, daß beim Einsatz von Stickstoff mit bestimmten Legierungsbestandteilen eine unerwünschte Nitridbildung stattfinden kann. Beim Einsatz des chemisch aktiven Chlorgases wird Aluminiumchlorid gebildet, das an die Oberfläche steigt und dabei aufgrund seiner feinen Verteilung in der Schmelze eine wirksame Spülung bewirkt. Chlorgas ist jedoch eine schweres Umweltgift und auch teuer in der Herstellung. Die erforderlichen Schutzmaßnahmen zur Verhinderung des Austretens des giftigen Gases und seiner Reaktionsprodukte erfordern umfangreiche Investitionen. Im Gegensatz zur Verwendung chemischer Mittel stellt die Vakuumentgasung der Schmelze eine besonders umweltfreundliche und wirkungsvolle Methode dar. Allerdings wird der Erfolg dieser Methode insbesondere durch aufwendige Transporte der Schmelze, zwischenzeitliches Abkühlen und Wiederaufschmelzen nach den erforderlichen Legierungs- , Veredelungs- und Vakuumentgasungsprozessen bis zum Stranggießen und das damit zwangsläufige Inkontaktbringen mit der Luftfeuchtigkeit nicht optimal durchgeführt, so daß im Ergebnis des Legierungs- und Veredelungsverfahrens und nach dem Strangguß keine gasarmen und porenfreie Aluminium-Gußlegierungen vorliegen.
- Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde ein Verfahren und eine Anordnung zur Herstellung gasarmer und porenfreier Aluminium-Gußlegierungen zu schaffen, mit denen es möglich ist den Kontakt der Aluminiumschmelze mit der Luftfeuchtigkeit vom Legierungsprozeß über die Veredelung bis zum Stranggießen der Gußbarren extrem gering zu halten, dabei die umweltfreundliche und effektive Vakuumentgasung zu nutzen und durch eine hohe Abkühlungsgeschwindigkeit die Ausbildung großer Gasporen zu verhindern.
- Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß nach dem Legieren der Metallschmelze in einem Schmelzofen die Schmelze über ein Rinnensystem unmittelbar einem Vakuumofen zugeführt wird, daß im Vakuumofen Veredlungskomponenten zugesetzt werden und die für den Strangguß erforderliche Gießtemperatur eingestellt wird, daß das Vakuum im Vakuumofen bei periodischer Messung der Metalldichte weitere 5 bis 240 Minuten gehalten wird und daß danach die Metallschmelze über das Rinnensystem unmittelbar der Stranggußanlage zugeführt wird, wobei die Metallschmelze vor Eintritt in die Stranggußanlage filtriert wird. Erfindungsgemäß wird die Schmelze vom Schelzofen über das Rinnensystem abwechselnd oder gleichzeitig in zwei Vakuumöfen geführt, so daß die Stranggußanlage, die bevorzugt als Horizontal-Stranggußanlage ausgebildet ist, kontinuierlich mit Schmelze beschickt werden kann. Für die optimale qualitative und quantitative Durchführung des Verfahrens ist es wichtig, daß während des Haltens im Vakuumofen die Metalldichte gemessen wird. Dadurch ist es möglich die Verweildauer der Schmelze unter Vakuumbedingungen zu steuern. Zweckmäßig ist es, daß während des Haltens des Vakuums die Größe des Vakuums zwischen 100 und 1 mbar liegt. Die Regelung der Dauer des Vakuums hängt im wesentlichen von den Meßwerten der Metalldichte ab. So kann es durchaus notwendig sein, daß während des Haltens des Vakuums seine Größe konstant gehalten oder variiert wird. Beispielsweise ist es zweckmäßig, daß während des Haltens eine möglichst hohe Größe des Vakuums mit zunehmender Metalldichte eingestellt wird, damit die Austreibung des Wasserstoffs durch weitere Verringerung seines Partialdruckes trotz steigender Metalldichte möglich wird.
- Durch Verwendung einer wassergekühlten Horizontal-Stranggußanlage, die schnell und mit relativ kurzem Weg mit der Schmelze aus dem Vakuumofen beschickt wird, ist auch eine hohe Abkühlungsgeschwindigkeit gegeben, die eine Ausbildung großer Poren verhindert. Die Anordnung des Schmelzofens, mindestens eines Vakuumschmelzofens und der Stranggußanlage, die über ein Rinnensystem unmittelbar miteinander verbunden sind, ermöglichen es, das Metall während des Behandlungsprozesses immer in der Schmelze zu halten. Energieaufwendige Erstarrungs- und Wiederaufschmelzvorgänge entfallen aufgrund des optimalen Transportes der Schmelze über das Rinnensystem. Um das Fließen der Schmelze durch das Rinnensystem unter Ausnutzung der Schwerkraft zu erleichtern, ist ein Gefälle vorgesehen, das durch unterschiedliche Standebenen der Öfen und der Stranggußanlage oder durch ein höhenverstellbares Rinnensystem realisiert wird. Das Rinnensystem ist gemäß der Erfindung ein offenes System, damit eine Kontrolle des Schmelzflusses jederzeit gewährleistet ist. Aufgrund der insgesamt kurzen Wege ist der Kontakt der Schmelze mit der Luftfeuchtigkeit minimal.
- In der Zeichnung ist ein Ausführungsbeispiel der erfindungsgemäßen Anordnung dargestellt. Es zeigen die
- Fig. 1
- eine Anordnung eines Schmelzofens, zweier Vakuumschmelzöfen, einer Horizontal-Stranggußanlage mit Keramik-Form-Filter, die durch ein Rinnensystem miteinander verbunden sind;
- Fig. 2
- Porengehalt eines Masselquerschnittes einer Hüttenlegierung auf einer wassergekühlten Masselgießmaschine vergossen;
- Fig. 3
- Querschnitt eines Stranggußbarrens, der nach dem erfindungsgemäßen Verfahren und der Anordnung vergossen wurde.
- Der Schmelzofen 1 in der Fig.1 ist üblicherweise als Tiegel- oder Wannenofen ausgebildet. Er dient der Legierungsherstellung. Hier werden die Legierungskomponenten, wie Silicium, Magnesium, Kupfer, Titan, Nickel usw. aufgattiert, eine Raffinationsbehandlung mit Reaktions- und/oder Inertgasen durchgeführt und die notwendige Metalltemperatur zur Überführung der Schmelze in die Vakuumöfen 2 eingestellt. Die Schmelze fließt der Schwerkraft folgend durch das Rinnensystem 4 in die beiden Vakuumöfen 2 . Die Kapazität des Schmelzofens 1 ist so groß, daß beide Vakuumöfen 2 im Wechselbetrieb beschickt werden können. Die Veredelungskomponenten wie Strontium, Natrium, Calcium werden hier zulegiert und die notwendige Behandlungstemperatur im Hinblick auf die vorgegebene Gießtemperatur eingestellt. Im Vakuumofen 2 wird die Legierungsschmelze einer Vakuumbehandlung unterzogen, die nach den Ergebnissen der Metalldichteprüfung gesteuert wird. Nach positiver Metalldichteprüfung wird die Schmelze in den beiden Vakuumöfen 2 nacheinander über das Rinnensystem 4 unter Zwischenschaltung eines Keramik-Form-Filters 5 der wassergekühlten Horizontal-Stranggußanlage 3 zugeführt und zu Format-Barren vergossen. Die so hergestellten, gasarmen und porenfreien Gußlegierungen ermöglichen bei sachgemäßem Wiedereinschmelzen die Herstellung duktiler, porenfreier Gußteile.
- In der Fig.2 ist ein Masselquerschnitt mit vielen großen Poren dargestellt. Dieser Formkörper ist nicht nach erfindungsgemäßem Verfahren und Anordnung hergestellt worden.
- Die Fig.3 zeigt einen porenfreien Stranggußbarren, der erfindungsgemäß hergestellt wurde.
-
- 1
- Schmelzofen
- 2
- Vakuumofen
- 3
- Horizontal-Stranggußanlage
- 4
- Rinnensystem
- 5
- Keramik-Form-Filter
Claims (15)
- Verfahren zur Herstellung gasarmer und porenfreier Aluminium-Gußlegierungen durch Vakuumbehandlung der Schmelze
dadurch gekennzeichnet,
daß nach dem Legieren der Metallschmelze in einem Schmelzofen (1) die Schmelze über ein Rinnensystem (4) unmittelbar einem Vakuumofen (2) zugeführt wird,
daß im Vakuumofen (2) Veredlungskomponenten zugesetzt werden und die für den Strangguß erforderliche Gießtemperatur eingestellt wird,
daß das Vakuum im Vakuumofen (2) bei periodischer Messung der Metalldichte weitere 5 bis 240 Minuten gehalten wird und daß danach die Metallschmelze über das Rinnensystem (4) unmittelbar der Stranggußanlage (3) zugeführt wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die Metallschmelze vor Eintritt in die Stranggußanlage (3) filtriert wird. - Verfahren nach Anspruch 1 und 2,
dadurch gekennzeichnet,
daß die Schmelze vom Schmelzofen (1) über das Rinnensystem (4) abwechselnd oder gleichzeitig in zwei Vakuumöfen (2) geführt wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß zur Messung der Metalldicke das Vakuum im Vakuumofen kurzzeitig unterbrochen wird. - Verfahren nach Anspruch 1 und 4,
dadurch gekennzeichnet,
daß während des Haltens des Vakuums die Größe des Vakuums zwischen 100 und 1 mbar liegt. - Verfahren nach den Ansprüchen 1, 4 und 5,
dadurch gekennzeichnet,
daß während des Haltens des Vakuums die Größe des Vakuums konstant gehalten wird. - Verfahren nach den Ansprüchen 1, 4 und 5,
dadurch gekennzeichnet,
daß während des Haltens des Vakuums die Größe des Vakuums variiert wird. - Verfahren nach einem der Ansprüche 1, 4, 5 und 7,
dadurch gekennzeichnet,
daß die Intensität der Vakuumbehandlung mit der Metalldichte korreliert. - Verfahren nach einem der Ansprüche 1, 4, 5, 7 und 8,
dadurch gekennzeichnet,
daß die Einwirkungszeit des Vakuums mit zunehmender Metalldichte erhöht wird. - Anordnung zur Durchführung des Verfahrens zur Herstellung gasarmer und porenfreier Aluminium-Gußlegierungen, bestehend aus Schmelzofen, Vakuumschmelzofen und Stranggußanlage,
dadurch gekennzeichnet,
daß der Schmelzofen (1), mindestens ein Vakuumschmelzofen (2) und die Stranggußanlage (3) über ein Rinnensystem (4) parallel und unmittelbar miteinander verbunden sind und daß vor der Stranggußanlage (3) ein Filter (5) angeordnet ist, der beim Anschluß mit mehreren Vakuumschmelzöfen etwa in der Mitte zwischen der die Öfen verbindenden Schmelzrinne positioniert ist. - Anordnung nach Anspruch 10,
dadurch gekennzeichnet,
daß die Standebene des Schmelzofens (1) sich oberhalb der Standebene des Vakuumschmelzofens (2) und der Stranggußanlage (3) befindet. - Anordnung nach einem der Ansprüche 10 und 11,
dadurch gekennzeichnet,
daß die Stranggußanlage (3) eine Horizontal-Stranggußanlage ist. - Anordnung nach einem der Ansprüch 10 bis 12,
dadurch gekennzeichnet,
daß das Rinnensystem (4) ein offenes System ist. - Anordnung nach einem der Ansprüche 10 bis 13,
dadurch gekennzeichnet,
daß Teile des zwischen den Schmelzöfen (2) angeordneten, mit einem Mehrfachanschluß 4a - c versehenen Rinnensystemes (4) höhenverstellbar sind. - Anordnung nach einem der Anspruche 10 bis 14,
dadurch gekennzeichnet,
daß der Filter (5) ein Keramik-Form-Filter ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4212936A DE4212936C2 (de) | 1992-04-18 | 1992-04-18 | Verfahren und Anordnung zur Herstellung gasarmer und porenfreier Aluminium-Gußlegierungen |
DE4212936 | 1992-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0566867A1 true EP0566867A1 (de) | 1993-10-27 |
Family
ID=6457057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93104326A Withdrawn EP0566867A1 (de) | 1992-04-18 | 1993-03-17 | Verfahren und Anordnung zur Herstellung gasarmer und porenfreier Aluminium-Gusslegierungen |
Country Status (13)
Country | Link |
---|---|
US (1) | US5330555A (de) |
EP (1) | EP0566867A1 (de) |
KR (1) | KR930021294A (de) |
AU (1) | AU3693993A (de) |
CA (1) | CA2091857A1 (de) |
CZ (1) | CZ61593A3 (de) |
DE (1) | DE4212936C2 (de) |
HU (1) | HUT65416A (de) |
NO (1) | NO931049L (de) |
SK (1) | SK34193A3 (de) |
TR (1) | TR26957A (de) |
TW (1) | TW242588B (de) |
ZA (1) | ZA931909B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112795803A (zh) * | 2020-12-27 | 2021-05-14 | 上海交通大学安徽(淮北)陶铝新材料研究院 | 一种带有粉料喷吹的原位自生铝基复合材料的系统 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1041900C (zh) * | 1994-10-20 | 1999-02-03 | 邱表来 | 一种生产高强抗震铸铝件的真空挤压及热处理的方法 |
CN103436919B (zh) * | 2013-08-22 | 2016-06-01 | 中冶东方工程技术有限公司 | 一种高温电解铝液熔铸前的预净化方法及产品 |
CN105087968A (zh) * | 2014-05-13 | 2015-11-25 | 陕西宏远航空锻造有限责任公司 | 一种真空熔炼浇注生产铝合金铸件的优化生产方法 |
CN113684402B (zh) * | 2021-09-01 | 2022-11-22 | 连云港星耀材料科技有限公司 | 具有良好韧性的稀土铝合金转向节制备方法及加工设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4049248A (en) * | 1971-07-16 | 1977-09-20 | A/S Ardal Og Sunndal Verk | Dynamic vacuum treatment |
US4258099A (en) * | 1978-10-21 | 1981-03-24 | Bridgestone Tire Company Limited | Cordierite, alumina, silica porous ceramic bodies coated with an activated alumina layer |
EP0174061A1 (de) * | 1984-05-16 | 1986-03-12 | William Lyon Sherwood | Kontinuierliches Vakuumentgasen und Giessen von Stahl |
EP0191586A1 (de) * | 1985-02-13 | 1986-08-20 | Sumitomo Light Metal Industries Limited | Horizontal-Stranggiessen mit elektromagnetischen, den Strang führenden Feldern |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2029687A1 (de) * | 1970-06-16 | 1971-12-23 | Deutsche Edelstahlwerke AG, 4150Krefeld | Verfahren zum Abgießen von Metall oder Metallegierungen in Stranggußkokillen |
JPS5967350A (ja) * | 1982-10-08 | 1984-04-17 | Toshiba Corp | アルミニウム材 |
JPH0620618B2 (ja) * | 1985-03-26 | 1994-03-23 | 日立電線株式会社 | 連続鋳造方法及びその装置 |
US4738717A (en) * | 1986-07-02 | 1988-04-19 | Union Carbide Corporation | Method for controlling the density of solidified aluminum |
-
1992
- 1992-04-18 DE DE4212936A patent/DE4212936C2/de not_active Expired - Fee Related
-
1993
- 1993-03-17 ZA ZA931909A patent/ZA931909B/xx unknown
- 1993-03-17 EP EP93104326A patent/EP0566867A1/de not_active Withdrawn
- 1993-03-17 CA CA002091857A patent/CA2091857A1/en not_active Abandoned
- 1993-03-23 NO NO93931049A patent/NO931049L/no unknown
- 1993-04-09 CZ CZ93615A patent/CZ61593A3/cs unknown
- 1993-04-13 US US08/046,766 patent/US5330555A/en not_active Expired - Fee Related
- 1993-04-13 SK SK341-93A patent/SK34193A3/sk unknown
- 1993-04-15 TR TR00311/93A patent/TR26957A/xx unknown
- 1993-04-16 HU HU9301124A patent/HUT65416A/hu unknown
- 1993-04-16 TW TW082102938A patent/TW242588B/zh active
- 1993-04-16 KR KR1019930006408A patent/KR930021294A/ko not_active Ceased
- 1993-04-16 AU AU36939/93A patent/AU3693993A/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4049248A (en) * | 1971-07-16 | 1977-09-20 | A/S Ardal Og Sunndal Verk | Dynamic vacuum treatment |
US4258099A (en) * | 1978-10-21 | 1981-03-24 | Bridgestone Tire Company Limited | Cordierite, alumina, silica porous ceramic bodies coated with an activated alumina layer |
EP0174061A1 (de) * | 1984-05-16 | 1986-03-12 | William Lyon Sherwood | Kontinuierliches Vakuumentgasen und Giessen von Stahl |
EP0191586A1 (de) * | 1985-02-13 | 1986-08-20 | Sumitomo Light Metal Industries Limited | Horizontal-Stranggiessen mit elektromagnetischen, den Strang führenden Feldern |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 8, no. 168 (C-236)3. August 1984 & JP-A-59 067 350 ( TOSHIBA KK ) 17. April 1984 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112795803A (zh) * | 2020-12-27 | 2021-05-14 | 上海交通大学安徽(淮北)陶铝新材料研究院 | 一种带有粉料喷吹的原位自生铝基复合材料的系统 |
Also Published As
Publication number | Publication date |
---|---|
TR26957A (tr) | 1994-09-12 |
HUT65416A (en) | 1994-06-28 |
ZA931909B (en) | 1994-01-19 |
DE4212936C2 (de) | 1994-11-17 |
NO931049L (no) | 1993-10-19 |
CA2091857A1 (en) | 1993-10-19 |
HU9301124D0 (en) | 1993-08-30 |
NO931049D0 (no) | 1993-03-23 |
SK34193A3 (en) | 1993-11-10 |
TW242588B (de) | 1995-03-11 |
DE4212936A1 (de) | 1993-10-21 |
AU3693993A (en) | 1993-10-21 |
CZ61593A3 (en) | 1993-12-15 |
US5330555A (en) | 1994-07-19 |
KR930021294A (ko) | 1993-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69002059T2 (de) | Induktivschmelzspinnen von reaktiven metallegierungen. | |
DE1219183B (de) | Verfahren zur Verhinderung von Kernfehlern in Gussbloecken | |
DE1941282A1 (de) | Verfahren zur Veredelung von Stahl durch Umschmelzen in einem Plasma-Lichtbogen | |
EP0479757A1 (de) | Verfahren und Vorrichtung zur Herstellung von Titan-Aluminium-Basislegierungen | |
DE2425032B2 (de) | Verfahren und Vorrichtung zur Herstellung von Gußblöcken aus hochschmelzenden Eisen- und Metallegierungen mit guter Verformbarkeit nach dem Elektroschlacke-Umschmelzverfahren | |
DE2137996A1 (de) | Verfahren zum Eintragen eines festen Metalls in eine Metallschmelze | |
DE3045030A1 (de) | Verfahren zum gewinnen von kupfer in anodenguete | |
EP0566867A1 (de) | Verfahren und Anordnung zur Herstellung gasarmer und porenfreier Aluminium-Gusslegierungen | |
DE112014003205T5 (de) | Verfahren zur Herstellung von Lithium enthaltenden Aluminiumlegierungen | |
EP0280765B1 (de) | Verfahren und Vorrichtung zur Herstellung von Gusskörpern aus druckbehandelten Schmelzen aus Stahllegierungen | |
DE3334733C2 (de) | Verfahren und Anlage zum Herstellen von hochreinen Legierungen | |
EP0659170B1 (de) | Reaktor sowie verfahren zum schmelzen von verbrennungsrückständen | |
DE3780887T2 (de) | Vorrichtung und verfahren zur herstellung einer kupferbasislegierung. | |
DE1458167A1 (de) | Verfahren und Vorrichtung zum langsamen Giessen und Formen von Metallen | |
DE1558428A1 (de) | Verfahren zur Reinigung von Legierungen auf Kupferbasis | |
DE3830540C2 (de) | Verfahren zur Entfernung von Verunreinigungen aus AlSi-Gußlegierungen | |
DE2029687A1 (de) | Verfahren zum Abgießen von Metall oder Metallegierungen in Stranggußkokillen | |
DE112023001310T5 (de) | Verfahren und vorrichtung zur herstellung von sauerstofffreiem kupfer oder sauerstofffreier kupferlegierung | |
AT215610B (de) | Verfahren und Vorrichtung zum Gießen von chemisch hoch reaktionsfähigem Schmelzgut | |
DE3148958C2 (de) | Verfahren und Einrichtung zur Roheisenbehandlung außerhalb des Ofens | |
KR970009524B1 (ko) | 쾌삭강의 제조방법 | |
DD233145A1 (de) | Verfahren zur herstellung von kaltband aus nicr21,5cu4al12,5 | |
DE2853442C3 (de) | ||
DE2640606A1 (de) | Nickel-magnesium-vorlegierung | |
DE1912936C (de) | Vorrichtung und Betriebsverfahren zum Reinigen und Vakuumentgasen von schmelz flussigen Metallen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930814 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IE IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19940803 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19941018 |