[go: up one dir, main page]

EP0562920A1 - Process for coating the notch of a nickel substrate with laser - Google Patents

Process for coating the notch of a nickel substrate with laser Download PDF

Info

Publication number
EP0562920A1
EP0562920A1 EP93400697A EP93400697A EP0562920A1 EP 0562920 A1 EP0562920 A1 EP 0562920A1 EP 93400697 A EP93400697 A EP 93400697A EP 93400697 A EP93400697 A EP 93400697A EP 0562920 A1 EP0562920 A1 EP 0562920A1
Authority
EP
European Patent Office
Prior art keywords
notch
angle
laser beam
normal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93400697A
Other languages
German (de)
French (fr)
Other versions
EP0562920B1 (en
Inventor
Emmanuel Kerrand
Frederic Cariou
Didier Boucachard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
European Gas Turbines SA
Original Assignee
European Gas Turbines SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Gas Turbines SA filed Critical European Gas Turbines SA
Publication of EP0562920A1 publication Critical patent/EP0562920A1/en
Application granted granted Critical
Publication of EP0562920B1 publication Critical patent/EP0562920B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate

Definitions

  • the present invention relates to a method of coating an inverted Z-shaped notch of nickel alloy parts having a flat wall preceded by a rounded one. These parts are in particular fins of gas turbine made of nickel alloy which are difficult to weld.
  • the method according to the invention making it possible to obtain a non-cracking anti-wear metallic coating having a good metallic bond with the substrate in the contact areas of complex shapes is characterized in that a laser beam is orientable and relatively displaceable by relative to the plane wall of the notch and making a fixed angle ⁇ 2 with respect to a powder beam, the laser beam making an angle ⁇ with respect to the normal N to the plane wall of the notch and, the direction of the beam powder an angle ⁇ + ⁇ 2 with said normal N, in that during the preparation of the various layers, several longitudinal passes are made at constant speed starting from the bottom of the notch towards the edge, the meeting point 0 between the laser beam and the direction of projection of the powder remaining stationary for a few tenths of a second on the rounding of the notch at the start of each longitudinal pass and in that during the preparation of the first layer the aryl ⁇ remains constant and equal to an angle ⁇ 1 less than 30 ° while during the preparation of the following layers the angle ⁇ at the start of each first takes a
  • the contact point 0 at the start of the passes is positioned in the rounding inside the material.
  • Figure 1 shows the part provided with its coating before and after machining.
  • FIG. 2 represents the deposition of the first layer on the rounding of the notch.
  • FIG. 3 represents the deposition of the first layer on the flat face of the notch.
  • FIG. 4 represents the first phase of the deposition of a subsequent layer on the rounding of the notch.
  • FIG. 5 represents the second phase of the deposit of FIG. 4.
  • Figure 6 shows the deposition of the layer of Figures 4 and 5 on the flat face of the notch.
  • FIG. 7 represents the section of FIG. 1.
  • the raw profile 1 of the nickel alloy blade is shown in dotted lines in FIG. 1.
  • This profile is in the form of an "inverted Z" and comprises in the intermediate part of the "inverted Z" a notch 2 consisting of a part rounded 3 followed by a flat part 4 corresponding to the intermediate part of the "inverted Z".
  • the notch 2 is coated with several layers 5, 5 ′, planes parallel to the planar part 4 using a CO2 laser in the beam of which a metallic powder is sprayed.
  • Each layer 5 is made up of several adjacent beads 6 deposited during successive passes (see FIG. 7).
  • the deposit consists of a non-cracking anti-wear metallic coating having a good metallic bond with the Nickel alloy substrate.
  • the laser beam 8 is orientable and movable relative to the planar wall 4 of the notch 2.
  • the direction of the laser beam and the direction 9 of projection of the powder form a constant angle ⁇ 2 (see FIG. 2).
  • the laser beam 8 is inclined relative to the normal N to the plane wall 4 of the notch 2 at an angle ⁇ of a few tens of degrees. This angle depends on the blade profile.
  • the beam 8 makes an angle ⁇ with the normal N and the direction 9 of projection of the powder an angle ⁇ + ⁇ 2.
  • the angle of inclination of the laser beam 8 is fixed at ⁇ 1 and it will not be modified during the entire production of the first layer 5; in the specific example ⁇ 1 has been taken equal to 25 ° and is substantially parallel to the first branch 10 of the "inverted Z".
  • the intersection point 0 is positioned between the laser beam 8 and the powder beam 9 inside the material (a few tenths of a mm), which allows on the one hand to make up for the difference in altitude with the flat part 4 of the area to be coated and thus avoid any subsequent modification of its positioning when carrying out the pass in progress and on the other hand to maintain the powder beam 9 downstream from the laser beam / part contact point in order to ensure better fusion of the powder and to minimize the projection of particles towards the bottom of the notch 2 (FIG. 2).
  • the point of intersection 0 is also maintained for a few tenths of a second inside the material without displacement in order to increase the laser / material interaction time and ensure a substrate melting.
  • the laser beam 8 / powder beam 9 assembly (angle ⁇ 2 contant) is then moved at constant speed to the edge 11 of the "inverted Z", the beam / powder intersection point being on the surface of the substrate (figure 3).
  • the operation is repeated until the first layer 5 is deposited.
  • the angle ⁇ 3 is therefore variable from layer to layer.
  • the point of intersection 0 beam / powder is inside the rounding material.
  • a rotation of the laser beam, powder 8, 9 assembly is then carried out at this point in a few tenths of a second ( ⁇ 1 s) in order to increase the interaction time and to replace the laser beam 8 in position to build the new pass.
  • the laser beam 8 then makes the angle ⁇ 1 with the normal N and it is displaced as during the deposition of the first layer 5 with ⁇ 1 and ⁇ 2 constant from the bottom 3 of the notch 2 towards the edge 11 while remaining on the surface of the layer previously deposited (see Figure 6).
  • the coating deposited has the appearance shown in FIG. 7 with the various layers 5, 5 ′ made up of beads 12 produced during each pass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Process for coating a notch (2) of a component in the shape of an "inverted Z" made of nickel alloy, the said notch (2) consisting of a rounded bottom (3) in the hollow of the "inverted Z" followed by a planar wall (4) corresponding to the intermediate part of the "inverted Z" in which a number of layers (5, 5') of antiwear metallic material are deposited on the planar wall (4) of the notch (2). The deposition is performed by a laser whose beam (8) forms a constant angle with the powder beam (9). During the deposition of the first layer (5) the laser beam 8 forms an angle alpha 1 of several tens of degrees with the normal to the planar wall. During the deposition of the subsequent layers (5) the laser beam (8) forms an angle alpha 3 close to the normal to the rounded part (3) before rising again until it forms the angle alpha 1 which it maintains during the remainder of the run. <IMAGE>

Description

La présente invention concerne un procédé de revêtement d'une encoche en forme de Z inversé de pièces en alliage de Nickel ayant une paroi plane précédée d'un arrondi. Ces pièces sont notamment des ailettes de turbine à gaz en alliage de Nickel difficilement soudables.The present invention relates to a method of coating an inverted Z-shaped notch of nickel alloy parts having a flat wall preceded by a rounded one. These parts are in particular fins of gas turbine made of nickel alloy which are difficult to weld.

Les procédés TIG manuel et mini-plasma sont beaucoup plus longs à employer et dépendent trop de l'opérateur.Manual TIG and mini-plasma processes take much longer to use and depend too much on the operator.

On pourrait penser à utiliser un procédé laser à puissance très élévée pour permettre un bon ancrage des couches dans le fond de l'encoche mais les essais effectués ont montré qu'on ne pourrait pas tenir les prescriptions de la spécification concernant les fissurations.One could think of using a laser method with very high power to allow a good anchoring of the layers in the bottom of the notch but the tests carried out showed that one could not hold the prescriptions of the specification concerning the cracks.

Le procédé selon l'invention permettant d'obtenir un revêtement métallique anti-usure sans fissuration ayant une bonne liaison métallique avec le substrat dans les zones de contact de formes complexes est caractérisé en ce qu'on utilise un faisceau laser orientable et déplaçable relativement par rapport à la paroi plane de l'encoche et faisant un angle fixe α₂ par rapport à un faisceau de poudre, le faisceau laser faisant un angle α par rapport à la normale N à la paroi plane de l'encoche et, la direction du faisceau de poudre un angle α + α₂ avec ladite normale N, en ce que lors de l'élaboration des diverses couches on réalise plusieurs passes longitudinales à vitesse constante partant du fond de l'encoche vers le bord, le point de rencontre 0 entre faisceau laser et la direction de projection de la poudre restant immobile quelques dizièmes de secondes sur l'arrondi de l'encoche au début de chaque passe longitudinale et en ce que lors de l'élaboration de la première couche l'aryle α reste constant et égal à un angle α₁ inférieur à 30° tandis que lors de l'élaboration des couches suivantes l'angle α au début de chaque prend d'abord une valeur supérieure à α₁ qui peut être aussi proche que possible de la normale à l'arrondi, puis le faisceau laser et le faisceau de poudre tournent autour du point de rencontre 0 qui reste immobile jusqu'à ce que le faisceau laser prenne l'angle 1 avant de commencer à se déplacer pour réaliser ladite passe.The method according to the invention making it possible to obtain a non-cracking anti-wear metallic coating having a good metallic bond with the substrate in the contact areas of complex shapes is characterized in that a laser beam is orientable and relatively displaceable by relative to the plane wall of the notch and making a fixed angle α₂ with respect to a powder beam, the laser beam making an angle α with respect to the normal N to the plane wall of the notch and, the direction of the beam powder an angle α + α₂ with said normal N, in that during the preparation of the various layers, several longitudinal passes are made at constant speed starting from the bottom of the notch towards the edge, the meeting point 0 between the laser beam and the direction of projection of the powder remaining stationary for a few tenths of a second on the rounding of the notch at the start of each longitudinal pass and in that during the preparation of the first layer the aryl α remains constant and equal to an angle α₁ less than 30 ° while during the preparation of the following layers the angle α at the start of each first takes a value greater than α₁ which can be as close as possible to the normal to rounding, then the laser beam and the powder beam rotate around the meeting point 0 which remains stationary until the laser beam takes the angle 1 before starting to move to perform said pass.

De préférence, le point de contact 0 au début des passes est positionné dans l'arrondi à l'intérieur du matériau.Preferably, the contact point 0 at the start of the passes is positioned in the rounding inside the material.

L'invention va maintenant être décrite plus en détail en se référant à un mode de réalisation particulier cité à titre d'exemple non limitatif et représenté par des dessins annexés.The invention will now be described in more detail with reference to a particular embodiment cited by way of nonlimiting example and shown in the accompanying drawings.

La figure 1 représente la pièce munie de son revêtement avant et après usinage.Figure 1 shows the part provided with its coating before and after machining.

La figure 2 représente le dépôt de la première couche sur l'arrondi de l'encoche.FIG. 2 represents the deposition of the first layer on the rounding of the notch.

La figure 3 représente le dépôt de la première couche sur la face plane de l'encoche.FIG. 3 represents the deposition of the first layer on the flat face of the notch.

La figure 4 représente la première phase du dépôt d'une couche ultérieure sur l'arrondi de l'encoche.FIG. 4 represents the first phase of the deposition of a subsequent layer on the rounding of the notch.

La figure 5 représente la seconde phase du dépôt de la figure 4.FIG. 5 represents the second phase of the deposit of FIG. 4.

La figure 6 représente le dépôt de la couche des figures 4 et 5 sur la face plane de l'encoche.Figure 6 shows the deposition of the layer of Figures 4 and 5 on the flat face of the notch.

La figure 7 représente la coupe de la figure 1.FIG. 7 represents the section of FIG. 1.

Le profil brut 1 de l'aube en alliage de nickel est représenté en pointillé sur la figure 1. Ce profil est en forme de "Z inversé" et comporte dans la partie intermédiaire du "Z inversé" une encoche 2 constituée d'une partie arrondie 3 suivie d'une partie plane 4 correspondant à la partie intermédiaire du "Z inversé".The raw profile 1 of the nickel alloy blade is shown in dotted lines in FIG. 1. This profile is in the form of an "inverted Z" and comprises in the intermediate part of the "inverted Z" a notch 2 consisting of a part rounded 3 followed by a flat part 4 corresponding to the intermediate part of the "inverted Z".

On revêt l'encoche 2 de plusieurs couches 5, 5', planes parallèles à la partie plane 4 à l'aide d'un laser CO₂ dans le faisceau duquel on projette une poudre métallique.The notch 2 is coated with several layers 5, 5 ′, planes parallel to the planar part 4 using a CO₂ laser in the beam of which a metallic powder is sprayed.

Chaque couche 5 est constituée de plusieurs cordons 6 adjacents déposés au cours de passes successives (voir figure 7).Each layer 5 is made up of several adjacent beads 6 deposited during successive passes (see FIG. 7).

Le dépôt est constitué d'un revêtement métallique anti-usure sans fissuration ayant une bonne liaison métallique avec le substrat en alliage de Nickel.The deposit consists of a non-cracking anti-wear metallic coating having a good metallic bond with the Nickel alloy substrate.

L'ensemble du "Z" est réusiné pour obtenir le profil final 7 en trait plein sur la figure 1.The entire "Z" is remanufactured to obtain the final profile 7 in solid lines in FIG. 1.

Le faisceau laser 8 est orientable et déplaçable par rapport à la paroi plane 4 de l'encoche 2. La direction du faisceau laser et la direction 9 de projection de la poudre font un angle constant α₂ (voir figure 2).The laser beam 8 is orientable and movable relative to the planar wall 4 of the notch 2. The direction of the laser beam and the direction 9 of projection of the powder form a constant angle α₂ (see FIG. 2).

Etant donné la forme complexe de la pièce et le confinement de la zone à traiter on incline le faisceau laser 8 par rapport à la normale N à la paroi plane 4 de l'encoche 2 d'un angle α de quelques dizaines de degré. Cet angle dépend du profil d'aube.Given the complex shape of the part and the confinement of the area to be treated, the laser beam 8 is inclined relative to the normal N to the plane wall 4 of the notch 2 at an angle α of a few tens of degrees. This angle depends on the blade profile.

On le choisit pour qu'il soit aussi petit que possible c'est-à-dire pratiquement pour que le faisceau 8 soit confondu ou voisin de la parallèle au plan de la première branche 10 du "Z inversé".It is chosen so that it is as small as possible, that is to say practically so that the beam 8 is coincident or close to the parallel to the plane of the first branch 10 of the "inverted Z".

Ainsi le faisceau 8 fait-il un angle α avec la normale N et la direction 9 de projection de la poudre un angle α + α₂.Thus the beam 8 makes an angle α with the normal N and the direction 9 of projection of the powder an angle α + α₂.

Réalisation de la première couche (voir figures 2 et 3). L'angle d'inclinaison du faisceau laser 8 est fixé à α₁ et il ne sera pas modifié pendant toute la réalisation de la première couche 5; dans l'exemple précis α₁ a été pris égal à 25° et est sensiblement parallèle à la première branche 10 du "Z inversé".Creation of the first layer (see Figures 2 and 3). The angle of inclination of the laser beam 8 is fixed at α₁ and it will not be modified during the entire production of the first layer 5; in the specific example α₁ has been taken equal to 25 ° and is substantially parallel to the first branch 10 of the "inverted Z".

Sur le fond arrondi 3 de l'encoche 2, on positionne le point d'intersection 0 entre le faisceau laser 8 et le faisceau poudre 9 à l'intérieur du matériau (quelques dizièmes de mm), ce qui permet d'une part de rattraper l'écart d'altitude avec la partie plane 4 de la zone à revêtir et d'éviter ainsi toute modification ultérieure de son positionnement lors de la réalisation de la passe en cours et d'autre part de maintenir le faisceau poudre 9 en aval du point de contact faisceau laser/pièce afin d'assurer une meilleure fusion de la poudre et minimiser les projections de particules vers le fond d'encoche 2 (figure 2).On the rounded bottom 3 of the notch 2, the intersection point 0 is positioned between the laser beam 8 and the powder beam 9 inside the material (a few tenths of a mm), which allows on the one hand to make up for the difference in altitude with the flat part 4 of the area to be coated and thus avoid any subsequent modification of its positioning when carrying out the pass in progress and on the other hand to maintain the powder beam 9 downstream from the laser beam / part contact point in order to ensure better fusion of the powder and to minimize the projection of particles towards the bottom of the notch 2 (FIG. 2).

Le point d'intersection 0 est par ailleurs, maintenu quelques dizièmes de seconde à l'intérieur du matériau sans déplacement afin d'augmenter le temps d'intéraction laser/matière et assurer une fusion du substrat.
L'ensemble faisceau laser 8/faisceau poudre 9 (angle α 2 contant) est ensuite déplacé à vitesse constante jusqu'au bord 11 du "Z inversé", le point d'intersection faisceau/poudre se trouvant à la surface du substrat (figure 3).
The point of intersection 0 is also maintained for a few tenths of a second inside the material without displacement in order to increase the laser / material interaction time and ensure a substrate melting.
The laser beam 8 / powder beam 9 assembly (angle α 2 contant) is then moved at constant speed to the edge 11 of the "inverted Z", the beam / powder intersection point being on the surface of the substrate (figure 3).

On recommence l'opération jusqu'à ce que la première couche 5 soit déposée.The operation is repeated until the first layer 5 is deposited.

Réalisations des couches ultérieures (figure 4 à 6). Pour attaquer la nouvelle couche 5' (la cinquième sur la figure 4), le faisceau laser 8 est incliné par rapport à la normale N d'un angle α₃ qui se rapproche le plus possible de la normale N à l'arrondi 3, ce qui permet une meilleure absorption du faisceau laser 8 pour la matière : il faut évidemment que le faisceau de poudre 9 (incliné de α₂ avec α₂ constant et 10° ≦ α₂≦ 20°) soit au-dessus de la paroi plane 4, ce qui empêche d'avoir un angle α₃ trop important.Realizations of subsequent layers (Figure 4 to 6). To attack the new layer 5 ′ (the fifth in FIG. 4), the laser beam 8 is inclined relative to the normal N by an angle α₃ which is as close as possible to the normal N at the flare 3, this which allows better absorption of the laser beam 8 for the material: it is obviously necessary that the powder beam 9 (inclined by α₂ with constant α₂ and 10 ° ≦ α₂ ≦ 20 °) is above the plane wall 4, which prevents having too large an angle α₃.

L'angle α₃ est donc variable de couche à couche.The angle α₃ is therefore variable from layer to layer.

Comme pour la première couche 5 le point d'intersection 0 faisceau/poudre se trouve à l'intérieur du matériau de l'arrondi. Une rotation de l'ensemble faisceaux laser, poudre 8, 9 est alors effectuée en ce point en quelques dizièmes de seconde (<1 s) afin d'augmenter le temps d'intéraction et de replacer le faisceau laser 8 en position pour construire la nouvelle passe.As for the first layer 5, the point of intersection 0 beam / powder is inside the rounding material. A rotation of the laser beam, powder 8, 9 assembly is then carried out at this point in a few tenths of a second (<1 s) in order to increase the interaction time and to replace the laser beam 8 in position to build the new pass.

Le faisceau laser 8 fait alors l'angle α₁ avec le normale N et il est déplacé comme lors du dépôt de la première couche 5 avec α₁ et α₂ constants du fond 3 de l'encoche 2 vers le bord 11 en restant en surface de la couche déposée antérieurement (voir figure 6). Pour chaque passe on repart du fond 3 avec un faisceau laser 8 faisant un angle α₃ (le même pour une couche déterminée) avant de redresser le faisceau 8 qui fait un angle α₁ puis à le déplacer vers le bord avec le faisceau laser 8 restant incliné avec α₁ constant.The laser beam 8 then makes the angle α₁ with the normal N and it is displaced as during the deposition of the first layer 5 with α₁ and α₂ constant from the bottom 3 of the notch 2 towards the edge 11 while remaining on the surface of the layer previously deposited (see Figure 6). For each pass, we start from the bottom 3 with a laser beam 8 making an angle α₃ (the same for a determined layer) before straightening the beam 8 which makes an angle α₁ and then moving it towards the edge with the laser beam 8 remaining inclined with constant α₁.

Le revêtement déposé a l'aspect représenté à la figure 7 avec les diverses couches 5, 5' constituées de cordons 12 réalisées au cours de chaque passe.The coating deposited has the appearance shown in FIG. 7 with the various layers 5, 5 ′ made up of beads 12 produced during each pass.

Claims (2)

1) Procédé de revêtement d'une encoche (2) d'une pièce en forme de Z en alliage de Nickel ladite encoche (2) étant constitué d'un fond arrondi (3) dans le creux du "Z inversé" suivi d'une paroi plane (4) correspondantes à la partie intermédiaire du "Z inversé", dans lequel on dépose plusieurs couches (5, 5') en matériau métallique anti-usure sur la paroi plane (4) de l'encoche (2), caractérisé en ce qu'on utilise un faisceau laser (8) orientable et déplacable relativement par rapport à la paroi plane (4) de l'encoche (2) et faisant un angle fixe α₂ par rapport à un faisceau de poudre (9), le faisceau laser (8) faisant un angle α par rapport à la normale N à la paroi plane (4) de l'encoche (2) et, la direction du faisceau de poudre (9) un angle α + α₂ avec ladite normale N
   en ce que lors de l'élaboration des diverses couche (5, 5') on réalise plusieurs passes longitudinales à vitesse constante partant du fond (4) de l'encoche (2) vers le bord (11), le point de rencontre 0 entre faisceau laser (8) et le faisceau de poudre (9) restant immobile quelques dizièmes de secondes sur l'arrondi (3) de l'encoche (2) au début de chaque passe longitudinale,
et en ce que lors de l'élaboration de la première couche (5) l'angle α reste constant et égal à un angle α₁ inférieur à 30° tandis que lors de l'élaboration des couches suivantes (5') l'angle α au début de chaque prend d'abord une valeur supérieure à α₁ pour que le faisceau laser soit aussi proche que possible de la normale à l'arrondi (3), puis le faisceau laser (8) et le faisceau de poudre (9) tournent autour du point de rencontre 0 qui reste immobile jusqu'à ce que le faisceau laser (8) prenne l'angle α₁ avant de commencer à se déplacer pour réaliser ladite passe.
1) Method of coating a notch (2) of a Z-shaped part made of nickel alloy, said notch (2) consisting of a rounded bottom (3) in the hollow of the "inverted Z" followed by a flat wall (4) corresponding to the intermediate part of the "inverted Z", in which several layers (5, 5 ') of anti-wear metallic material are deposited on the flat wall (4) of the notch (2), characterized in that a laser beam (8) is used which is orientable and displaceable relatively with respect to the planar wall (4) of the notch (2) and making a fixed angle α₂ with respect to a powder beam (9), the laser beam (8) making an angle α with respect to the normal N to the plane wall (4) of the notch (2) and, the direction of the powder beam (9) an angle α + α₂ with said normal N
in that during the preparation of the various layers (5, 5 ′) several longitudinal passes are made at constant speed starting from the bottom (4) of the notch (2) towards the edge (11), the meeting point 0 between the laser beam (8) and the powder beam (9) remaining stationary for a few tenths of a second on the flare (3) of the notch (2) at the start of each longitudinal pass,
and in that during the preparation of the first layer (5) the angle α remains constant and equal to an angle α₁ less than 30 ° while during the preparation of the following layers (5 ') the angle α at the start of each first takes a value greater than α₁ so that the laser beam is as close as possible to the normal to the rounding (3), then the laser beam (8) and the powder beam (9) rotate around the meeting point 0 which remains stationary until the laser beam (8) takes the angle α₁ before starting to move to achieve said pass.
2) Procédé selon la revendication 1, caractérisé en ce que le point de rencontre 0 au début des passes est positionné dans l'arrondi (3) à l'intérieur du matériau. 2) Method according to claim 1, characterized in that the meeting point 0 at the start of the passes is positioned in the rounding (3) inside the material.
EP93400697A 1992-03-23 1993-03-18 Process for coating the notch of a nickel substrate with laser Expired - Lifetime EP0562920B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9203459A FR2688803B1 (en) 1992-03-23 1992-03-23 METHOD FOR COATING A NOTCH OF A NICKEL ALLOY PIECE BY LASER.
FR9203459 1992-03-23

Publications (2)

Publication Number Publication Date
EP0562920A1 true EP0562920A1 (en) 1993-09-29
EP0562920B1 EP0562920B1 (en) 1995-09-20

Family

ID=9427960

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93400697A Expired - Lifetime EP0562920B1 (en) 1992-03-23 1993-03-18 Process for coating the notch of a nickel substrate with laser

Country Status (4)

Country Link
US (1) US5372861A (en)
EP (1) EP0562920B1 (en)
DE (1) DE69300501T2 (en)
FR (1) FR2688803B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015672A1 (en) * 1995-10-05 1998-04-16 Blz Bayerisches Laserzentrum Gemeinnützige Forsch Ungsgesellschaft Mbh Process and device for manufacturing a cutting tool
WO2006094935A1 (en) * 2005-03-05 2006-09-14 Alstom Technology Ltd Turbine blades and methods for depositing an erosion resistant coating on the same
EP2292371A1 (en) * 2009-09-04 2011-03-09 Rolls-Royce plc Method of depositing material

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2707677B1 (en) * 1993-07-13 1995-08-25 Technogenia Plate for defibering or refining paper pulp, and process for its production.
SE9303245L (en) * 1993-10-05 1995-04-06 Johan Lennart Olofsson Procedure for improving certain properties of railway wheels
US5889254A (en) * 1995-11-22 1999-03-30 General Electric Company Method and apparatus for Nd: YAG hardsurfacing
JP4346684B2 (en) * 1996-04-17 2009-10-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for manufacturing sintered body on substrate
JP3591147B2 (en) * 1996-07-19 2004-11-17 日産自動車株式会社 Method of overlaying with laser beam
CA2207579A1 (en) 1997-05-28 1998-11-28 Paul Caron A sintered part with an abrasion-resistant surface and the process for producing it
US6203861B1 (en) * 1998-01-12 2001-03-20 University Of Central Florida One-step rapid manufacturing of metal and composite parts
US20040086635A1 (en) * 2002-10-30 2004-05-06 Grossklaus Warren Davis Method of repairing a stationary shroud of a gas turbine engine using laser cladding
US7458765B2 (en) * 2005-09-23 2008-12-02 Fraunhofer Usa Diamond hard coating of ferrous substrates
EP2240293A1 (en) * 2008-02-13 2010-10-20 Siemens Aktiengesellschaft Method for fusing curved surfaces, and a device
FR3001758B1 (en) * 2013-02-01 2016-07-15 Snecma TURBOMACHINE ROTOR BLADE
US9358643B2 (en) * 2014-08-15 2016-06-07 Siemens Energy, Inc. Method for building a gas turbine engine component
US9359897B2 (en) * 2014-08-15 2016-06-07 Siemens Energy, Inc. Method for building a gas turbine engine component
EP3498383A3 (en) 2017-12-15 2019-09-25 Eloxalwerk Ludwigsburg Helmut Zerrer GmbH Device for coating workpieces with at least one high performance polymer; coating method
DE102017011842A1 (en) 2017-12-15 2019-06-19 ELOXALWERK Ludwigsburg Helmut Zerrer GmbH Coating dispersion; Production process of a coating dispersion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1574984A (en) * 1978-05-15 1980-09-17 Atomic Energy Authority Uk Laser powder metallurgy
US4299860A (en) * 1980-09-08 1981-11-10 The United States Of America As Represented By The Secretary Of The Navy Surface hardening by particle injection into laser melted surface
DE3509582C1 (en) * 1985-03-16 1986-02-20 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Metal wheel, in particular a railway wheel
US4832982A (en) * 1986-12-08 1989-05-23 Toyota Jidosha Kabushiki Kaisha Laser process for forming dispersion alloy layer from powder on metallic base
FR2642690A1 (en) * 1989-02-08 1990-08-10 Gen Electric METHOD FOR MANUFACTURING COMPONENTS BY DEPOSITING LAYERS AND COMPONENT OBTAINED

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291448A (en) * 1977-12-12 1981-09-29 Turbine Components Corporation Method of restoring the shrouds of turbine blades
IT1172891B (en) * 1978-07-04 1987-06-18 Fiat Spa PROCEDURE FOR COATING A METALLIC SURFACE WITH ANTI-WEAR MATERIAL
US4275124A (en) * 1978-10-10 1981-06-23 United Technologies Corporation Carbon bearing MCrAlY coating
GB2052566B (en) * 1979-03-30 1982-12-15 Rolls Royce Laser aplication of hard surface alloy
IT1179061B (en) * 1984-08-20 1987-09-16 Fiat Auto Spa PROCEDURE FOR CARRYING OUT A TREATMENT ON METAL PIECES WITH THE ADDITION OF A VALUE MATERIAL AND WITH THE USE OF A POWER LASER
US4743733A (en) * 1984-10-01 1988-05-10 General Electric Company Method and apparatus for repairing metal in an article
US4710102A (en) * 1984-11-05 1987-12-01 Ortolano Ralph J Connected turbine shrouding
FR2612106B1 (en) * 1987-03-09 1989-05-19 Alsthom METHOD OF LAYING A PROTECTIVE COATING ON A TITANIUM ALLOY BLADE AND A COATED BLADE
EP0435818B1 (en) * 1989-12-27 1994-06-15 Sulzer Innotec Ag Device for welding and/or coating workpieces, nozzle for such device as well as manipulator for such device nozzle
DE4015206C1 (en) * 1990-05-11 1991-10-17 Mtu Muenchen Gmbh
US5120197A (en) * 1990-07-16 1992-06-09 General Electric Company Tip-shrouded blades and method of manufacture
US5083903A (en) * 1990-07-31 1992-01-28 General Electric Company Shroud insert for turbomachinery blade

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1574984A (en) * 1978-05-15 1980-09-17 Atomic Energy Authority Uk Laser powder metallurgy
US4299860A (en) * 1980-09-08 1981-11-10 The United States Of America As Represented By The Secretary Of The Navy Surface hardening by particle injection into laser melted surface
DE3509582C1 (en) * 1985-03-16 1986-02-20 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Metal wheel, in particular a railway wheel
US4832982A (en) * 1986-12-08 1989-05-23 Toyota Jidosha Kabushiki Kaisha Laser process for forming dispersion alloy layer from powder on metallic base
FR2642690A1 (en) * 1989-02-08 1990-08-10 Gen Electric METHOD FOR MANUFACTURING COMPONENTS BY DEPOSITING LAYERS AND COMPONENT OBTAINED

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015672A1 (en) * 1995-10-05 1998-04-16 Blz Bayerisches Laserzentrum Gemeinnützige Forsch Ungsgesellschaft Mbh Process and device for manufacturing a cutting tool
US6316065B1 (en) 1995-10-05 2001-11-13 Ble Bayerisches Laserzentrum Gemeinnutzige Forschungsgesellschaft Mbh Process and device for manufacturing a cutting tool
WO2006094935A1 (en) * 2005-03-05 2006-09-14 Alstom Technology Ltd Turbine blades and methods for depositing an erosion resistant coating on the same
EP2292371A1 (en) * 2009-09-04 2011-03-09 Rolls-Royce plc Method of depositing material
US8673203B2 (en) 2009-09-04 2014-03-18 Rolls-Royce Plc Method of depositing material

Also Published As

Publication number Publication date
DE69300501T2 (en) 1996-02-22
FR2688803A1 (en) 1993-09-24
DE69300501D1 (en) 1995-10-26
US5372861A (en) 1994-12-13
EP0562920B1 (en) 1995-09-20
FR2688803B1 (en) 1994-05-06

Similar Documents

Publication Publication Date Title
EP0562920B1 (en) Process for coating the notch of a nickel substrate with laser
EP1785650B1 (en) Manufacturing method of a labyrinth knife edge seal, thermomechanical part and turbomachine comprising such a seal
EP0626231B1 (en) Laser welding process of two workpieces
EP1630262B1 (en) Process for rebuilding a single crystal or directionally solidified metallic article
EP1215008B1 (en) Process and installation for laser cutting with a double stream and double-focus cutting head
CH640448A5 (en) PROCESS FOR DEBURRING A MECHANICAL PART AND DEVICE FOR IMPLEMENTING THE PROCESS.
FR2931714A1 (en) CONSTRUCTION OF A PART OF A METAL PIECE BY THE MIG PROCESS WITH CURRENT AND PULSED WIRE
FR2978070A1 (en) Repairing turbine engine part e.g. blade, comprises forming preform by selective melting of powder containing base material, maintaining preform in part by laser pointing, and degreasing and/or pickling a surface of preform to be brazed
FR2807683A3 (en) PROCESS FOR THE LEASH AND / OR PLASMA CUTTING OF A STRIP, PARTICULARLY METAL IN COILS AND CORRESPONDING CONTINUOUS CUTTING LINE
FR3029813B1 (en) METHOD FOR MANUFACTURING MICROSTRUCTURE COATING
EP1350861A1 (en) Process for fabrication and regeneration of sputtering targets
EP0868247A1 (en) Method for joining two parts by heterogeneous welding and use thereof
CA2449005C (en) Method for the production of metal profiles
FR2618710A1 (en) PROCESS FOR WELDING A WORN THROUGH A SOLID STEEL PIECE AND USING SAID METHOD FOR REPAIRING A CRACK ROTOR
CA1308786C (en) Narrow chamfer arc welding process and device therefor
EP3402626A1 (en) Method and facility for manufacturing a three-dimensional object
EP0954619B1 (en) Method and device for producing a coating on a substrate
EP0599737B1 (en) Build-up procedure on a work piece by plasma with transferred arc
FR2505696A1 (en) METHOD FOR MANUFACTURING METAL COATING PARTS DEPOSITED BY ARC WELDING AND PART PRODUCED USING THE SAME
WO2020229784A1 (en) Method for the additive manufacturing of a metal part
WO2018007770A2 (en) Additive manufacturing method comprising removal of material from between two layers
FR3126633A1 (en) Method of depositing molten metal wire using a laser beam scanned over the surface of the part
FR2884741A1 (en) METHOD FOR WELDING PIPELINE TYPE METAL PIPING AND ITS IMPLEMENTATION DEVICE
FR2823458A1 (en) IMPROVED DEVICE AND METHOD OF LASER WELDING SAID BI-PASS
FR2854166A1 (en) PROCESS FOR OBTAINING A FLEXO-ADAPTIVE THERMAL BARRIER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19940204

17Q First examination report despatched

Effective date: 19950217

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 69300501

Country of ref document: DE

Date of ref document: 19951026

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120406

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120327

Year of fee payment: 20

Ref country code: GB

Payment date: 20120326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120329

Year of fee payment: 20

Ref country code: DE

Payment date: 20120328

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69300501

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20130318

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130317

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130319