[go: up one dir, main page]

EP0549381B1 - Current mirror with low reproduction error - Google Patents

Current mirror with low reproduction error Download PDF

Info

Publication number
EP0549381B1
EP0549381B1 EP92403026A EP92403026A EP0549381B1 EP 0549381 B1 EP0549381 B1 EP 0549381B1 EP 92403026 A EP92403026 A EP 92403026A EP 92403026 A EP92403026 A EP 92403026A EP 0549381 B1 EP0549381 B1 EP 0549381B1
Authority
EP
European Patent Office
Prior art keywords
branch
transistors
current mirror
mirror
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92403026A
Other languages
German (de)
French (fr)
Other versions
EP0549381A1 (en
Inventor
Jean-Charles Grasset
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teledyne e2v Semiconductors SAS
Original Assignee
Thomson SCF Semiconducteurs Specifiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson SCF Semiconducteurs Specifiques filed Critical Thomson SCF Semiconducteurs Specifiques
Publication of EP0549381A1 publication Critical patent/EP0549381A1/en
Application granted granted Critical
Publication of EP0549381B1 publication Critical patent/EP0549381B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is DC
    • G05F3/10Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/265Current mirrors using bipolar transistors only

Definitions

  • the present invention relates to a current mirror with bipolar transistors, operating with good precision even if the transistors are at very low gain.
  • bipolar transistors have characteristics that change with the conditions of use, or even during manufacture.
  • the gain in current decreases when the temperature decreases, or under the effect of light or particulate radiation.
  • the loss of gain leads to an intrinsic error of copying in the current mirrors.
  • a current mirror is an assembly, as shown in FIG. 1, which makes it possible to force through a second branch a current I0 which is, apart from errors, identical to the current I1 which flows through a first branch.
  • the first branch comprises a current source 1, a transistors 2, the collector of which is joined to the base, and a resistance 3 for feedback.
  • the second branch comprises a transistor 5 and a resistance 6 against feedback. The bases of the two transistors 2 and 5 are combined, so that the current I1 which flows in the first branch controls the current I0 forced through a load of use 7 in the second branch.
  • the relative recopy error is equal to -2 / ( ⁇ + 2) and, in most applications, with transistors whose gain is much greater than 1, this error is not the main cause of imprecision observed and it remains masked by the offset voltage of the pair of transistors or the mismatch of the feedback resistors 3 and 6. But as soon as the gain of the transistors decreases, for whatever reasons, the error due to the low gain ( ⁇ ⁇ 1) becomes predominant. Indeed, we see that the gain ⁇ occurs in the first degree and in the denominator of the equation, so that, when the gain tends towards zero, the error tends towards - 100%.
  • Wilson mirror represented in FIG. 2. It is the equivalent of a conventional mirror, in which an amplifier transistor 8 is counter-reacted by the mirror constituted by the transistors 2 and 5. On this figure as in the following figures the load 7 is no longer shown, since it does not intervene in the understanding of the invention.
  • a second known solution resides in the buffered mirror, shown in FIG. 3.
  • the transistors of the master and copy branches, respectively 2 and 5 have their base currents not taken directly from the source I1 as in the case of FIG. 1 but through an amplifier transistor 9 whose base is connected to the source I1 and the emitter at the two bases of the transistors 2 and 5, the collector of this transistor 9 is supplied by a return voltage V R.
  • the error is given by: I0 ⁇ I1 [1-2 / ( ⁇ 2 + ⁇ + 2)]
  • Some amplifiers may have a structure which is close to that of a current mirror, but which in fact is not.
  • patent US-A-4 237 414 relates to a current source with high output impedance, comprising a Darlington and a Wilson mirror, but the assembly is such that the Darlington, not feedbacked, does nothing but increase the impedance of the output branch of the Wilson mirror.
  • the patent US-A-3 843 933 in which an amplifier comprises two balanced Darlingtons, but in which there is no mirror.
  • the invention provides a solution to the problem of low gain by proposing an arrangement such that the equation of the feedback current I0 includes a term which is canceled out in the numerator, so that the error is canceled out for a low value of gain of transistors.
  • a current mirror with low feedback error is characterized in that its output (Ic) is constituted by the collectors joined together of two transistors mounted in current amplifier of type "Darlington", its input (I1) is constituted by the base of the same amplifier, this amplifier being polarized thanks to a feedback of current type -parallel operated between its transmitter and its base by a buffered type mirror fitted with feedback resistors.
  • the invention relates to a current mirror with low feedback error comprising an input branch and an output branch, as well as a "buffered" type current mirror itself constituted by a first branch.
  • this current mirror with low feedback error being characterized in that it comprises in its output branch a first Darlington type current amplifier whose collector constitutes the output of the mirror, and the base of which is joined to the input branch, this amplifier being counter-reacted in parallel-current mode by the buffered type current mirror whose master branch, connected in series with the output branch of the current mirror with low feedback error, is joined to the Darlington transmitter, and whose feedback branch, connected in series with the input branch of the current mirror with low feedback error, is assembled at the base Darlington.
  • the bases of the two transistors 2 and 5 are combined and a transistor 4 supplied with a return voltage V R is mounted as an amplifier between the collector and the base of 2.
  • the advantage of the current mirror structure according to the invention lies in the existence of a root of the numerator, which cancels the error, in the function of the error due to the gain, a function which is written: I0 ⁇ I1 [1 + (2 ⁇ - 2) / ( ⁇ 4 + 3 ⁇ 3 + 4 ⁇ 2 + 2 ⁇ +2)]
  • the gain ⁇ at low values (0-14) is given on the abscissa
  • curve 14 relates to a Wilson structure.
  • a typical curve is represented at 15 in FIG. 6, which makes it possible to compare it with the curve 14 of a Wilson mirror.
  • the positive error bump observed for gains slightly greater than 1 is only worth + 2 to + 3% and it remains negligible in this zone for which a conventional mirror is affected by an error of the order of - 40%.
  • FIG. 6 has been drawn a dotted line at the level of a gain error of the mirror equal to -10%, which is an example of a practically acceptable error.
  • This line shows that the mirror according to the invention tolerates transistors whose gain is approximately 0.75, ie 5 times lower than the gain 3.5 of the transistors necessary for a Wilson mirror, with the same loss of -10%. .
  • the interest of the transfer function which comprises an area in which ⁇ ⁇ 1, is affected neither by problems of gain matching of the transistors used nor by problems of matching the counter resistances reaction 3 and 6.
  • the curves 15, 16, 17 illustrate the influence (minimum, typical, maximum) of a mismatch of the feedback resistances of ⁇ 2% when the degeneracy voltage is set to a value approximately 250 mV.
  • the current mirror according to the invention has the advantage of having a very high output impedance at low frequency. Compared to the Wilson mirror, known to have a high output impedance, the improvement typically involves a factor of 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)

Description

La présente invention concerne un miroir de courant à transistors bipolaires, fonctionnant avec une bonne précision même si les transistors sont à très faible gain.The present invention relates to a current mirror with bipolar transistors, operating with good precision even if the transistors are at very low gain.

On sait que les transistors bipolaires ont des caractéristiques qui évoluent avec les conditions d'utilisation, ou même en cours de fabrication. En particulier, le gain, en courant, décroît lorsque la température diminue, ou sous l'effet d'un rayonnement lumineux ou particulaire. La perte de gain entraîne une erreur intrinsèque de recopie dans les miroirs de courant.We know that bipolar transistors have characteristics that change with the conditions of use, or even during manufacture. In particular, the gain in current decreases when the temperature decreases, or under the effect of light or particulate radiation. The loss of gain leads to an intrinsic error of copying in the current mirrors.

Un miroir de courant est un montage, tel que représenté en figure 1, qui permet de forcer à travers une seconde branche un courant I₀ qui est, aux erreurs près, identique au courant I₁ qui circule à travers une première branche. La première branche comprend une source en courant 1, un transistors 2, dont le collecteur est réuni à la base, et une résistance 3 de contre-réaction. La seconde branche comprend un transistor 5 et une résistance 6 de contre-réaction. Les bases des deux transistors 2 et 5 sont réunies, de sorte que le courant I₁ qui circule dans la première branche commande le courant I₀ forcé à travers une charge d'utilisation 7 dans la seconde branche.A current mirror is an assembly, as shown in FIG. 1, which makes it possible to force through a second branch a current I₀ which is, apart from errors, identical to the current I₁ which flows through a first branch. The first branch comprises a current source 1, a transistors 2, the collector of which is joined to the base, and a resistance 3 for feedback. The second branch comprises a transistor 5 and a resistance 6 against feedback. The bases of the two transistors 2 and 5 are combined, so that the current I₁ which flows in the first branch controls the current I₀ forced through a load of use 7 in the second branch.

Ce type de miroir de courant, simple, souffre d'une erreur intrinsèque de recopie, qui dépend du gain des transistors. En effet, pour un miroir de gain unité, dont les transistors 2 et 5 sont appairés en VBE (tension base-émetteur) et les résistances 3 et 6 de contre réaction sont appairées, l'erreur sur le gain du miroir s'exprime à travers l'équation : I₀ = I₁ [1 - 2 /(β+2)]

Figure imgb0001

β étant le gain des transistors, le même pour les deux transistors puisqu'ils sont supposés identiques et dans les mêmes conditions de polarisation. L'erreur relative de recopie est égale à -2/(β+2) et, dans la plupart des applications, avec des transistors dont le gain est de beaucoup supérieur à 1, cette erreur n'est pas la cause principale d'imprécision observée et elle reste masquée par la tension d'offset de la paire de transistors ou le désappariement des résistances de contre-réaction 3 et 6. Mais dès que le gain des transistors décroît, pour des raisons quelconques, l'erreur due au gain faible (β<1) devient prédominante. En effet, on voit que le gain β intervient au premier degré et au dénominateur de l'équation, de sorte que, lorsque le gain tend vers zéro, l'erreur tend vers - 100 %.This type of current mirror, simple, suffers from an intrinsic feedback error, which depends on the gain of the transistors. Indeed, for a unity gain mirror, whose transistors 2 and 5 are paired in V BE (base-emitter voltage) and the feedback resistors 3 and 6 are paired, the error on the gain of the mirror is expressed through the equation: I₀ = I₁ [1 - 2 / (β + 2)]
Figure imgb0001

β being the gain of the transistors, the same for the two transistors since they are assumed to be identical and under the same polarization conditions. The relative recopy error is equal to -2 / (β + 2) and, in most applications, with transistors whose gain is much greater than 1, this error is not the main cause of imprecision observed and it remains masked by the offset voltage of the pair of transistors or the mismatch of the feedback resistors 3 and 6. But as soon as the gain of the transistors decreases, for whatever reasons, the error due to the low gain (β <1) becomes predominant. Indeed, we see that the gain β occurs in the first degree and in the denominator of the equation, so that, when the gain tends towards zero, the error tends towards - 100%.

Les applications actuelles de l'électronique nécessitent cependant des précisions de recopie de miroir supérieures à 10 % que l'on peut atteindre avec des transistors ayant subi des contraintes, et dont le gain est faible, par exemple compris entre 1 et 10.Current applications of electronics, however, require mirror feedback precision greater than 10% which can be achieved with transistors having undergone stresses, and whose gain is low, for example between 1 and 10.

Une première solution connue est présentée par le miroir Wilson, représenté en figure 2. C'est l'équivalent d'un miroir classique, dans lequel un transistor amplificateur 8 est contre-réactionné par le miroir constitué par les transistors 2 et 5. Sur cette figure comme sur les figures suivantes la charge 7 n'est plus représentée, puisqu'elle n'intervient pas dans la compréhension de l'invention.A first known solution is presented by the Wilson mirror, represented in FIG. 2. It is the equivalent of a conventional mirror, in which an amplifier transistor 8 is counter-reacted by the mirror constituted by the transistors 2 and 5. On this figure as in the following figures the load 7 is no longer shown, since it does not intervene in the understanding of the invention.

En supposant que les trois transistors ont le même gain β , l'erreur de gain du miroir Wilson s'exprime par une relation quadratique : I₀ =I₁ [ 1 - 2/(β² + 2β +2)]

Figure imgb0002
Assuming that the three transistors have the same gain β, the gain error of the Wilson mirror is expressed by a quadratic relation: I₀ = I₁ [1 - 2 / (β² + 2β +2)]
Figure imgb0002

Une deuxième solution connue réside dans le miroir bufférisé, représenté en figure 3. Dans ce montage, les transistors des branches maitresses et de recopie, respectivement 2 et 5, ont leurs courants de bases non pas prélevés directement sur la source I₁ comme dans le cas de la figure 1 mais au travers d'un transistor amplificateur 9 dont la base est connectée à la source I₁ et l'émetteur aux deux bases des transistors 2 et 5, le collecteur de ce transistor 9 est alimenté par une tension de rappel VR. L'erreur est donnée par : I₀≃I₁ [1-2/(β² + β+2)]

Figure imgb0003
A second known solution resides in the buffered mirror, shown in FIG. 3. In this arrangement, the transistors of the master and copy branches, respectively 2 and 5, have their base currents not taken directly from the source I₁ as in the case of FIG. 1 but through an amplifier transistor 9 whose base is connected to the source I₁ and the emitter at the two bases of the transistors 2 and 5, the collector of this transistor 9 is supplied by a return voltage V R. The error is given by: I₀≃I₁ [1-2 / (β² + β + 2)]
Figure imgb0003

Pour des gains de transistors très supérieurs à 1, l'erreur introduite par ces miroirs de Wilson et bufférisé est de la forme -2/β² et procure une amélioration très sensible du miroir simple : pour β = 100, l'erreur passe de - 2% à - 0,02 %, qui devient négligeable. Mais l'effet de la loi quadratique diminue lorsque le gain des transistors devient proche ou inférieur à 1 : par exemple, le miroir de Wilson a une erreur de l'ordre de - 8% pour un gain des transistors β = 4.For transistor gains much greater than 1, the error introduced by these buffered Wilson mirrors is of the form -2 / β² and provides a very significant improvement in the simple mirror: for β = 100, the error goes from - 2% to - 0.02%, which becomes negligible. But the effect of the quadratic law decreases when the gain of the transistors becomes close to or less than 1: for example, the Wilson mirror has an error of the order of - 8% for a gain of the transistors β = 4.

L'étude des gains en courant dans les amplificateurs à miroir de courant a été faite par J. S Radovsky dans un article publié dans RCA Technical Notes, N° 949, 31 décembre 1973, pages 1 à 7.The study of current gains in current mirror amplifiers was done by J. S Radovsky in an article published in RCA Technical Notes, No. 949, December 31, 1973, pages 1 to 7.

Certains amplificateurs peuvent avoir une structure qui est proche de celle d'un miroir de courant, mais qui en fait n'en sont pas. Par exemple, le brevet US-A- 4 237 414 concerne une source de courant à haute impédance de sortie, comprenant un Darlington et un miroir de Wilson, mais le montage est tel que le Darlington, non contre-réactionné, ne fait qu'augmenter l'impédance de la branche de sortie du miroir de Wilson. Ou encore le brevet US-A- 3 843 933 dans lequel un amplificateur comporte deux Darlingtons équilibrés, mais dans lequel il n'y a pas de miroir.Some amplifiers may have a structure which is close to that of a current mirror, but which in fact is not. For example, patent US-A-4 237 414 relates to a current source with high output impedance, comprising a Darlington and a Wilson mirror, but the assembly is such that the Darlington, not feedbacked, does nothing but increase the impedance of the output branch of the Wilson mirror. Or the patent US-A-3 843 933 in which an amplifier comprises two balanced Darlingtons, but in which there is no mirror.

L'invention apporte une solution au problème du faible gain en proposant un montage tel que l'équation du courant de recopie I₀ comprend un terme qui s'annule au numérateur, de telle façon que l'erreur s'annule pour une valeur faible de gain des transistors. Selon l'invention, un miroir de courant à faible erreur de recopie est caractérisé en ce que sa sortie (Ic) est constituée par les collecteurs réunis de deux transistors montés en amplificateur de courant de type "Darlington", son entrée (I₁) est constituée par la base du même amplificateur, cet amplificateur étant polarisé grâce à une contre-réaction de type courant-parallèle opérée entre son émetteur et sa base par un miroir de type bufférisé muni de résistances de contre-réaction.The invention provides a solution to the problem of low gain by proposing an arrangement such that the equation of the feedback current I₀ includes a term which is canceled out in the numerator, so that the error is canceled out for a low value of gain of transistors. According to the invention, a current mirror with low feedback error is characterized in that its output (Ic) is constituted by the collectors joined together of two transistors mounted in current amplifier of type "Darlington", its input (I₁) is constituted by the base of the same amplifier, this amplifier being polarized thanks to a feedback of current type -parallel operated between its transmitter and its base by a buffered type mirror fitted with feedback resistors.

De façon plus précise, l'invention concerne un miroir de courant à faible erreur de recopie comportant une branche d'entrée et une branche de sortie, ainsi qu'un miroir de courant de type "bufférisé" constitué lui-même par une permière branche maitresse et par une deuxième branche de recopie, ce miroir de courant à faible erreur de recopie étant caractérisé en ce qu'il comporte dans sa branche de sortie un premier amplificateur de courant de type Darlington dont le collecteur constitue la sortie du miroir, et dont la base est réunie à la branche d'entrée, cet amplificateur étant contre-réactionné en mode de courant-parallèle par le miroir de courant de type bufférisé dont la branche maitresse, connectée en série avec la branche de sortie du miroir de courant à faible erreur de recopie, est réunie à l'émetteur du Darlington, et dont la branche de recopie, connectée en série avec la branche d'entrée du miroir de courant à faible erreur de recopie, est réunie à la base du Darlington.More specifically, the invention relates to a current mirror with low feedback error comprising an input branch and an output branch, as well as a "buffered" type current mirror itself constituted by a first branch. master and by a second feedback branch, this current mirror with low feedback error being characterized in that it comprises in its output branch a first Darlington type current amplifier whose collector constitutes the output of the mirror, and the base of which is joined to the input branch, this amplifier being counter-reacted in parallel-current mode by the buffered type current mirror whose master branch, connected in series with the output branch of the current mirror with low feedback error, is joined to the Darlington transmitter, and whose feedback branch, connected in series with the input branch of the current mirror with low feedback error, is assembled at the base Darlington.

L'invention sera mieux comprise par la description qui suit maintenant d'un exemple d'application, en liaison avec les figures jointes en annexe, qui représentent :

  • figures 1,2 et 3 : schémas de miroirs de courant selon l'art connu, précédemment exposés,
  • figure 4 : schéma d'un miroir de courant selon l'invention
  • figure 5 : schéma d'une version du miroir précédent, dans le cas d'une technologie haute tension,
  • figure 6 : courbes d'erreur sur le gain, comparées entre l'art connu et l'invention.
The invention will be better understood from the following description of an example of application, in conjunction with the appended figures, which represent:
  • Figures 1,2 and 3: diagrams of current mirrors according to known art, previously exposed,
  • Figure 4: diagram of a current mirror according to the invention
  • FIG. 5: diagram of a version of the previous mirror, in the case of a high voltage technology,
  • Figure 6: error curves on the gain, compared between the known art and the invention.

Pour simplifier, l'invention sera décrite en s'appuyant sur des transistors NPN, ce qui ne limite nullement la portée de l'invention.To simplify, the invention will be described by relying on NPN transistors, which in no way limits the scope of the invention.

La figure 4 représente un miroir de courant à transistors faible gain selon l'invention. Ce miroir selon l'invention comporte entre autres les éléments d'un miroir bufférisé selon l'art connu, dans lequel :

  • une première branche maitresse insérée en série dans la branche de sortie du miroir de l'invention, et qui comprend un transistor 2 et une résistance de contre-réaction 3.
  • une deuxième branche de recopie insérée en série dans la branche d'entrée du miroir de l'invention et qui comprend un transistor 5 et une résistance de contre réaction 6.
FIG. 4 represents a current mirror with low gain transistors according to the invention. This mirror according to the invention comprises inter alia the elements of a buffered mirror according to the known art, in which:
  • a first master branch inserted in series in the output branch of the mirror of the invention, and which comprises a transistor 2 and a feedback resistance 3.
  • a second feedback branch inserted in series in the input branch of the mirror of the invention and which comprises a transistor 5 and a feedback resistance 6.

Les bases des deux transistors 2 et 5 sont réunies et un transistor 4 alimenté par une tension de rappel VR est monté en amplificateur entre le collecteur et la base de 2.The bases of the two transistors 2 and 5 are combined and a transistor 4 supplied with a return voltage V R is mounted as an amplifier between the collector and the base of 2.

L'invention consiste à utiliser ce miroir bufférisé pour contre-réactionner en mode courant-parallèle un amplificateur de courant de type Darlington dont la sortie (ou le collecteur) constitue la sortie du miroir selon l'invention, et l'entrée (la base) constitue l'entrée du miroir selon l'invention. Ce "Darlington" comprend :

  • un transistor 10 dont le collecteur est réuni à la source de tension VCC et dont l'émetteur est réuni au collecteur de 2
  • un transistor 11 dont le collecteur est réuni à la source de tension VCC et dont la base est commandée par la branche d'entrée du miroir selon l'invention (source I₁).
The invention consists in using this buffered mirror to counter-react in current-parallel mode a Darlington type current amplifier whose output (or collector) constitutes the output of the mirror according to the invention, and the entrance (the base) constitutes the entrance to the mirror according to the invention. This "Darlington" includes:
  • a transistor 10 whose collector is joined to the voltage source VCC and whose emitter is joined to the collector of 2
  • a transistor 11 whose collector is joined to the voltage source VCC and whose base is controlled by the input branch of the mirror according to the invention (source I₁).

Comme dans les miroirs classiques, des résistances de contre-réaction d'émetteur 3 et 6 permettent de s'affranchir de l'erreur d'offset des transistors à concurrence de leur appariemment si la dégénérescence - c'est à dire le produit de la valeur de la résistance de contre-réaction par le courant qui la traverse - vaut quelques kT/q ≃ 26 mV à 300 ° K , avec k = constante de Boltzmann, T = température absolue, q = charge de l'électron.As in conventional mirrors, emitter feedback resistors 3 and 6 allow to overcome the offset error of the transistors up to their matching if the degeneration - i.e. the product of the value of the feedback resistance by the current flowing through it - worth a few kT / q ≃ 26 mV at 300 ° K, with k = Boltzmann constant, T = absolute temperature, q = electron charge.

Dans le cas d'une technologie rapide, dans laquelle le gain dépend fortement de la tension VCE il est avantageux de compléter le miroir selon l'invention par deux transistors 12 et 13, montés en symétrique du Darlington 10 + 11, les bases des transistors 13 sur la branche d'entrée et 11 sur la branche de sortie étant interconnectées et reliées aux collecteurs des transistors 12 et 13. Les transistors 12 et 13 ont un rôle d'équilibrage des tensions VCE des transistors 2 et 5 du miroir bufférisé, afin d'éliminer l'erreur due à l'effet Early des transistors. Toujours dans ce cas de faible tension, la tension de rappel VR du collecteur du transistor 9 est choisie de façon à apparier les VCE, de telle sorte que VCE9 ≃ VCE11.In the case of a fast technology, in which the gain strongly depends on the voltage V CE, it is advantageous to complete the mirror according to the invention by two transistors 12 and 13, mounted symmetrically with the Darlington 10 + 11, the bases of the transistors 13 on the input branch and 11 on the output branch being interconnected and connected to the collectors of transistors 12 and 13. Transistors 12 and 13 have a role of balancing the voltages V CE of transistors 2 and 5 of the buffered mirror , in order to eliminate the error due to the Early effect of the transistors. Still in this case of low voltage, the return voltage V R of the collector of transistor 9 is chosen so as to match the V CE , so that V CE9 ≃ V CE11 .

Dans le cas d'une technologie haute tension, soit quelques centaines de volts, l'effet Early est plus négligeable que dans le cas d'une technologie rapide, l'équilibrage des tensions VCE du miroir bufférisé peut être supprimé, et par voie de conséquence les transistors 12 et 13 sont supprimés, comme le montre la figure 5, qui est la simplification de la figure 4.In the case of a high voltage technology, that is to say a few hundred volts, the Early effect is more negligible than in the case of a fast technology, the balancing of the voltages V CE of the buffered mirror can be eliminated, and by way consequently the transistors 12 and 13 are eliminated, as shown in FIG. 5, which is the simplification of FIG. 4.

L'intérêt de la structure de miroir de courant selon l'invention réside dans l'existence d'une racine du numérateur, qui annule l'erreur, dans la fonction de l'erreur due au gain, fonction qui s'écrit : I₀ ≃ I₁ [1 + (2β - 2)/(β⁴ + 3β³ + 4β² + 2β +2)]

Figure imgb0004
The advantage of the current mirror structure according to the invention lies in the existence of a root of the numerator, which cancels the error, in the function of the error due to the gain, a function which is written: I₀ ≃ I₁ [1 + (2β - 2) / (β⁴ + 3β³ + 4β² + 2β +2)]
Figure imgb0004

Dans cette équation, on a supposé que tous les transistors du miroir ont le même gain, ce qui justifie le signe ≃ .In this equation, we have assumed that all the transistors of the mirror have the same gain, which justifies the sign ≃.

Dans les miroirs de courant selon l'art connu, l'erreur est de signe constant, toujours négatif, et elle croît en valeur absolue lorsque le gain β des transistors diminue : elle vaut entre - 40 % et - 70 % lorsque β = 1 , comme le montre la courbe 14 sur la figure 6. Sur cette figure, le gain β aux faibles valeurs (0-14) est donné en abscisse, l'erreur correspondante ε = (I₀ - I₁)/I₁ est donnée en ordonnées, et la courbe 14 est relative à une structure Wilson.In current mirrors according to the known art, the error is of constant sign, always negative, and it increases in absolute value when the gain β of the transistors decreases: it is between - 40% and - 70% when β = 1 , as shown by curve 14 in FIG. 6. In this figure, the gain β at low values (0-14) is given on the abscissa, the corresponding error ε = (I₀ - I₁) / I₁ is given on the ordinate, and curve 14 relates to a Wilson structure.

Au contraire, dans le miroir selon l'invention, l'erreur s'annule pour (2β -2) = 0, soit β = 1, et elle change de signe selon que le gain est supérieur ou inférieur à 1. Une courbe type est représentée en 15 sur la figure 6, ce qui permet de la comparer avec la courbe 14 d'un miroir Wilson. La bosse d'erreur positive observée pour les gains faiblement supérieurs à 1 ne vaut que + 2 à + 3% et elle reste négligeable dans cette zone pour laquelle un miroir classique est affecté d'une erreur de l'ordre de - 40 %. Pour β = 1, l'erreur est strictement nulle (2β- 2 = 0) et pour β <1 l'erreur observée reste moins importante que celle atteinte avec un miroir connu.On the contrary, in the mirror according to the invention, the error is canceled for (2β -2) = 0, that is to say β = 1, and it changes sign depending on whether the gain is greater or less than 1. A typical curve is represented at 15 in FIG. 6, which makes it possible to compare it with the curve 14 of a Wilson mirror. The positive error bump observed for gains slightly greater than 1 is only worth + 2 to + 3% and it remains negligible in this zone for which a conventional mirror is affected by an error of the order of - 40%. For β = 1, the error is strictly zero (2β- 2 = 0) and for β <1 the observed error remains less significant than that reached with a known mirror.

Sur la figure 6 a été tracée une droite en pointillés au niveau d'une erreur de gain du miroir égale à - 10 %, ce qui est un exemple d'erreur pratiquement acceptable . Cette droite montre que le miroir selon l'invention tolère des transistors dont le gain est d'environ 0,75, soit 5 fois plus faible que le gain 3,5 des transistors nécessaire pour un miroir Wilson, à même perte de -10 %.In FIG. 6 has been drawn a dotted line at the level of a gain error of the mirror equal to -10%, which is an example of a practically acceptable error. This line shows that the mirror according to the invention tolerates transistors whose gain is approximately 0.75, ie 5 times lower than the gain 3.5 of the transistors necessary for a Wilson mirror, with the same loss of -10%. .

Par ailleurs, l'intérêt de la fonction de transfert, qui comporte une zone dans laquelle β <1, n'est affecté ni par des problèmes d'appariement de gains des transistors utilisés ni par des problèmes d'appariement des résistances de contre-réaction 3 et 6.Furthermore, the interest of the transfer function, which comprises an area in which β <1, is affected neither by problems of gain matching of the transistors used nor by problems of matching the counter resistances reaction 3 and 6.

Par exemple, sur la figure 6, les courbes 15,16,17 illustrent l'influence (minimum, typique, maximum) d'un désappariement des résistances de contre-réaction de ± 2 % lorsque la tension de dégénérescence est fixée à une valeur pratique d'environ 250 mV.La courbe supérieure 16 correspond à un désappariement Δ (R₁ / R₂) R₁/R₂ = + 2 %

Figure imgb0005

et la courbe inférieure 17 correspond à - 2 %. Les variations de la courbe d'erreur autour de sa position nominale sont très acceptables.For example, in FIG. 6, the curves 15, 16, 17 illustrate the influence (minimum, typical, maximum) of a mismatch of the feedback resistances of ± 2% when the degeneracy voltage is set to a value approximately 250 mV. The upper curve 16 corresponds to a mismatch Δ (R₁ / R₂) R₁ / R₂ = + 2%
Figure imgb0005

and the lower curve 17 corresponds to -2%. Variations in the error curve around its nominal position are very acceptable.

Outre l'intérêt de pouvoir travailler avec des gains de transistors très faibles, le miroir de courant selon l'invention à l'avantage d'avoir une très haute impédance de sortie en basse fréquence. Par rapport au miroir de Wilson, réputé pour avoir une impédance de sortie élevée, l'amélioration porte typiquement sur un facteur 100.In addition to the advantage of being able to work with very low transistor gains, the current mirror according to the invention has the advantage of having a very high output impedance at low frequency. Compared to the Wilson mirror, known to have a high output impedance, the improvement typically involves a factor of 100.

L'invention est précisée par les revendications suivantes.The invention is specified by the following claims.

Claims (5)

  1. Current mirror with low tracking error, including an input branch (I₁) and an output branch (I₀), as well as a current mirror of "buffered" type, itself consisting of a first master branch (2, 3, 4) and of a second tracking branch (5, 6), this current mirror with low tracking error being characterized in that, in its output branch (I₀), it includes a first Darlington-type current amplifier (10+11), the collector of which constitutes the output of the mirror, and the base of which is joined to the input branch (I₁), this Darlington-type current amplifier (10+11) being in current-shunt negative-feed-back mode via the buffered-type current mirror, the master branch (2, 3) of which, connected in series with the output branch (I₀) of the current mirror with low tracking error, is joined to the emitter of the Darlington pair (10), the tracking branch (5, 6) of which, connected in series with the input branch (I₁) of the current mirror with low tracking error is joined to the base of the Darlington pair (11).
  2. Current mirror according to Claim 1, characterized in that a second Darlington-type current amplifier (12+13), the base and the collector of which are short-circuited, is mounted on the input branch symmetrically with the first Darlington pair (10+11), so as to balance out the VCE collector-emitter voltages of the transistors (2, 5) of the " buffered" mirror.
  3. Current mirror according to either of Claims 1 and 2, characterized in that it is produced with low-gain (β) bipolar transistors.
  4. Current mirror according to either of Claims 1 and 2, characterized in that the error in tracking the input branch (I₁) by the output branch (I₀) depends little on the gain (β) of the transistors for low gains (β < 2) and is zero for a gain of the transistors β = 1.
  5. Current mirror according to either of Claims 1 and 2, characterized in that the error in tracking the input branch (I₁) by the output branch (I₀) depends little on the matching of the feedback resistors (3, 6) and on the matching of the gain (β) of the transistors (2, 4, 5, 10, 11).
EP92403026A 1991-11-22 1992-11-10 Current mirror with low reproduction error Expired - Lifetime EP0549381B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9114405 1991-11-22
FR9114405A FR2684205A1 (en) 1991-11-22 1991-11-22 CURRENT MIRROR WITH LOW RECOPY ERROR.

Publications (2)

Publication Number Publication Date
EP0549381A1 EP0549381A1 (en) 1993-06-30
EP0549381B1 true EP0549381B1 (en) 1995-07-12

Family

ID=9419212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92403026A Expired - Lifetime EP0549381B1 (en) 1991-11-22 1992-11-10 Current mirror with low reproduction error

Country Status (4)

Country Link
US (1) US5307027A (en)
EP (1) EP0549381B1 (en)
DE (1) DE69203436T2 (en)
FR (1) FR2684205A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE513677C2 (en) * 1996-11-08 2000-10-23 Ericsson Telefon Ab L M Device for stabilizing final stages and final stages
US5859568A (en) * 1997-04-11 1999-01-12 Raytheon Company Temperature compensated amplifier
US5969574A (en) * 1998-06-04 1999-10-19 Analog Devices, Inc. Low voltage current sense amplifier
US6930300B1 (en) * 2002-07-30 2005-08-16 Finisar Corporation Method and apparatus for monitoring a photo-detector in an optical transceiver

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843933A (en) * 1973-04-06 1974-10-22 Rca Corp Current amplifier
JPS5326554A (en) * 1976-08-24 1978-03-11 Sony Corp Tr ansistor circuit
US4237414A (en) * 1978-12-08 1980-12-02 Motorola, Inc. High impedance output current source
GB2236444A (en) * 1989-09-27 1991-04-03 Motorola Inc Current mirror

Also Published As

Publication number Publication date
FR2684205B1 (en) 1995-02-24
US5307027A (en) 1994-04-26
FR2684205A1 (en) 1993-05-28
DE69203436T2 (en) 1995-12-14
EP0549381A1 (en) 1993-06-30
DE69203436D1 (en) 1995-08-17

Similar Documents

Publication Publication Date Title
EP0680140B1 (en) Differential amplifier with common mode control
EP0658977A1 (en) Variable gain amplifier
EP0587509B1 (en) Voltage-current converter circuit
FR2676149A1 (en) DIFFERENTIAL AMPLIFIER, PARTICULARLY OF THE CASCODE TYPE.
FR2514214A1 (en) VARIABLE GAIN CIRCUIT
EP0052040B1 (en) Cmos-integrated class ab amplifier
EP0543708B1 (en) Ultra-fast differential amplifier
EP0549381B1 (en) Current mirror with low reproduction error
EP0278534A1 (en) Broadband phase shifter
FR2527864A1 (en) COMPRESSION NOISE REDUCTION CIRCUIT AND SIGNAL EXPANSION
EP0309365B1 (en) Adjustable current source and automatic calibration digital/analog converter using such a source
EP0271938B1 (en) Automatic gain-controlled amplifier circuit
EP0613241A1 (en) Output common-mode voltage control device of a balanced amplifier
EP0230693A1 (en) High-frequency differential amplifier stage and amplifier with such a differential amplifier stage
FR2487605A1 (en) GAIN CONTROL CIRCUIT
WO1992014302A1 (en) Amplification circuit with exponential gain control
EP0533230B1 (en) Differential amplifier and mixer oscillator incorporating the same
EP0645884B1 (en) Current mode amplifier chain, operational amplifier, gain cell and corresponding amplifying elements
EP0655176B1 (en) Amplifier stage with low thermal distortion
FR2578133A1 (en) AUTODYNE RECEIVER COMPRISING AN IMPROVED TUNING DEVICE
EP0711034B1 (en) Generating means for transfer functions defined by intervals
EP0391786A1 (en) Amplification circuit with linear gain control
FR2927485A1 (en) AMPLIFIER WITH DIFFERENTIAL INPUTS
EP1102148B1 (en) Low temperature corrected voltage generating device
EP0242304B1 (en) Follower amplifier having a great slew rate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL

17P Request for examination filed

Effective date: 19930720

17Q First examination report despatched

Effective date: 19940825

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

REF Corresponds to:

Ref document number: 69203436

Country of ref document: DE

Date of ref document: 19950817

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950915

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051103

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051106

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051109

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060123

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061130

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061110

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061110

BERE Be: lapsed

Owner name: *THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071110