EP0546359B1 - Thermal spray coating process with cooling - Google Patents
Thermal spray coating process with cooling Download PDFInfo
- Publication number
- EP0546359B1 EP0546359B1 EP92119729A EP92119729A EP0546359B1 EP 0546359 B1 EP0546359 B1 EP 0546359B1 EP 92119729 A EP92119729 A EP 92119729A EP 92119729 A EP92119729 A EP 92119729A EP 0546359 B1 EP0546359 B1 EP 0546359B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- jet
- carbon dioxide
- expansion
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000005507 spraying Methods 0.000 title claims 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 144
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 72
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 72
- 239000007789 gas Substances 0.000 claims abstract description 31
- 239000002245 particle Substances 0.000 claims abstract description 13
- 239000011248 coating agent Substances 0.000 claims abstract description 5
- 238000000576 coating method Methods 0.000 claims abstract description 5
- 238000007751 thermal spraying Methods 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 3
- 239000000112 cooling gas Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 238000005485 electric heating Methods 0.000 claims 1
- 239000007921 spray Substances 0.000 abstract description 21
- 239000007788 liquid Substances 0.000 abstract description 11
- 239000012768 molten material Substances 0.000 abstract description 2
- 239000012159 carrier gas Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 7
- 239000002826 coolant Substances 0.000 description 6
- 238000010285 flame spraying Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 206010016352 Feeling of relaxation Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000010283 detonation spraying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
Definitions
- the invention relates to a method for coating a surface by means of a thermal spray method, for example flame or high-speed flame spraying, arc or plasma spraying or detonation spraying, a jet of hot transport gas and molten material particles being directed onto the surface in question and in the process adjacent to the spray jet is cooled with a cooling jet consisting essentially of carbon dioxide containing cold gas and snow particles.
- a thermal spray method for example flame or high-speed flame spraying, arc or plasma spraying or detonation spraying
- a jet of hot transport gas and molten material particles being directed onto the surface in question and in the process adjacent to the spray jet is cooled with a cooling jet consisting essentially of carbon dioxide containing cold gas and snow particles.
- Such a method is known from DE-PS 26 15 022.
- pure carbon dioxide (CO2) is used as a coolant, which is supplied to the nozzle generating the cooling jet in a liquid state.
- CO2 carbon dioxide
- a mixture of gaseous and solid CO2, ie CO2 snow particles is formed, which achieves a particularly high cooling performance when it hits a workpiece and is particularly advantageous in connection with the thermal application of layers.
- gaseous instead of liquid carbonic acid (CO2) so there would be a significant reduced cooling effect, since the resulting cooling jet would have a lower coldness and in particular a considerably lower proportion of CO2 snow particles.
- liquid carbon dioxide with CO2 being at ambient temperature and under the condensing pressure
- a special form of CO2 supply must be guaranteed, namely one in which the carbon dioxide from the respective storage containers is in the liquid phase is applied.
- the carbon dioxide which is in standard storage at 20 ° C with about 57 bar pressure in the associated storage tanks, can be discharged from them by means of a riser pipe or in another special way, ie the storage tanks must be provided with a liquid phase extraction.
- the object of the present invention was therefore to provide a thermal spray process with CO2 cooling which avoids or eliminates the disadvantages described and in particular also enables the use of gaseous carbon dioxide.
- the carbon dioxide fraction in the cooling jet is obtained from gaseous carbon dioxide which is at least under 45 bar pressure, and in such a way that the carbon dioxide gas is initially largely closed via a narrow slot nozzle or another slot-like opening in an expansion slot arranged around this expansion slot Expansion volume is expanded into it and, based on this expansion volume and its outlet opening, the cooling jet is formed and directed onto the surface to be cooled.
- any special equipment of the CO2 storage container can be omitted.
- a slight limitation arises from the fact that the CO2 pressure in these containers for carrying out the invention must not drop below 45 bar, since the cold for the cooling jet alone from the Expansion cooling of the CO2 gas is obtained and on the other hand no contribution from the "latent cold" of the liquid carbon dioxide is available. For this reason, the cold yield is too low below pressure values of 45 bar, which can easily occur under unfavorable conditions - e.g. when the storage bottles are stored outdoors and at low outside temperatures. However, if the standard pressure values of approx. 57 bar, as they occur at room temperature, are available, this results in an excellent function.
- the type of expansion of the carbon dioxide gas according to the invention via a slot nozzle or the like into a closed expansion volume is essential for the function and effectiveness of the invention.
- the slot nozzle with its elongated and, on the other hand, narrow cross-sectional opening namely generates an expansion gas jet with a surface which is substantially enlarged in comparison to an expansion gas jet originating from a round nozzle.
- This enlarged surface area results in an increased interaction of the expansion gas jet with its surroundings, which - according to the further essential feature of the invention - is formed by an expansion volume in which, during operation, cold carbon dioxide gas is almost exclusively already expanded. Warmer ambient air therefore has no direct access to the expanded carbon dioxide.
- DE-PS 36 24 787 shows a cooling and freezing probe for local cooling of human or animal body areas and - in a secondary aspect - also of electronic components, which is based on the principle described, but the cooling of the respective area from close proximity takes place and no long-range cooling gas jet, but a suitably guided cooling gas flow is formed.
- the transfer, adaptation and modified application according to the present invention is not obvious.
- a cooling jet following and / or preceding the spray jet primarily protects temperature-sensitive spray material or heat-sensitive workpieces from overheating. With thermal spray processes cooled in the manner described, however, an increase in performance is generally possible compared to uncooled spray processes.
- the method according to the invention is advantageously carried out with an expansion nozzle, which has a connectable to a CO2 gas source inner tube 6 with a final slot nozzle, and has an outer tube 9 enveloping the inner tube at the end of the slot nozzle, projecting significantly beyond and forming the expansion volume.
- an expansion nozzle With this expansion nozzle, a diameter to length ratio of 1 to 3 to 1 to 10, preferably 1 to 5, is maintained with regard to the cylindrical expansion volume formed with the outer tube.
- a distance from the workpiece of at least approximately 3 cm is advantageously maintained in process operation in order to obtain a favorable process function.
- the applicant has determined that an even higher and more advantageous cooling effect of the cooling jet formed as described can be obtained by starting from a carbon dioxide gas with a pressure of more than 65 bar, preferably 70 to 80 bar.
- a carbon dioxide gas with a pressure of more than 65 bar, preferably 70 to 80 bar.
- special precautions have to be taken, since - as described above - CO2 is only available at around 57 bar in standard storage tanks.
- said higher pressures are produced by heating the gas storage device together with its contents and thus by generating a higher vapor pressure of the liquid CO2 or that the pressure increase is generated by a pump connected downstream of the storage device.
- a storage container is particularly advantageously heated, for example, by arranging an electrical heating conductor in it.
- Containers equipped with heating conductors are also available, since such heating devices are provided in any case when large amounts of CO2 gas are provided in the associated storage containers.
- This circumstance therefore accommodates the "high-pressure variant" of the invention, and a suitably equipped storage tank with, for example, pressure-sensitive heating control can easily supply the pressures above 65 bar.
- a particularly effective cooling jet is formed with this method variant, the effect of which lies in the relatively high proportion of snow in the jet.
- FIG. 1 now shows a thermal spraying process, for example a flame spraying or high-speed flame spraying process operated with fuel gas and transport gas. Shown is a spray nozzle 1, as well as an expansion nozzle 2 and a workpiece 3. To apply the surface layer, the workpiece shown, namely a shaft 3, is rotated according to arrow 4 and the spray jet of the spray nozzle 1 is directed approximately perpendicularly onto its surface. For example, a wear-resistant layer containing tungsten carbide can be applied, the flame spray nozzle 1 and the coolant nozzle 2 being coupled, aligned in parallel, and advanced according to arrow 5 along a parallel to the workpiece surface.
- the expansion nozzle follows the spray nozzle at a constant distance of approx.
- the coolant used here is, in particular, pure carbon dioxide or - if a particularly high cooling capacity is required - mixtures of carbon dioxide together with helium and / or hydrogen according to EP-PS 0 263 469, the admixing gases preferably only directly in the area of impact of the coolant jet 2 ' be mixed on the workpiece.
- FIG. 2 shows one of the possible expansion nozzles for carrying out the method according to the invention in section. This is composed of an inner tube 6 with a closing slot nozzle 7, and an outer tube 9 enveloping the end of the inner tube and forming the expansion volume 8, which is open at its end facing away from the expansion nozzle 7.
- FIG. 3 shows a front view of the expansion nozzle shown in FIG. 2, likewise in a sectional view along the section line S in FIG Expansion channel 8 relaxed into it.
- the relaxation process arise in particular due to a negative pressure formation behind the slot nozzle 7 CO2 cold gas and snow particles, and there is thus a mixture of cold gas and snow in the expansion volume 8, which leaves the expansion nozzle through the outlet opening 10 of the outer tube 9 and directed onto the workpiece becomes.
- Such an expansion nozzle is to be dimensioned according to the desired throughput.
- a coolant nozzle of the type shown which is suitable for common flame spraying processes, has e.g. an inner diameter D (see Figure 2) with respect to the outer tube 9 of 3 mm and thus - according to the length dimension to be maintained - a protruding length L of e.g. 15 mm.
- Another size that is important in relation to the invention is the opening width of the slot nozzle of the inner tube. As a rule, this is advantageously between 0.1 and 0.4 mm. This opening width is based on the selection of the basic size of the expansion nozzle, i.e. after selection of the diameter for the inner or outer tube, in the narrower sense determining for the flow of CO2 gas.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nozzles (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Beschichten einer Oberfläche mittels einer thermischen Spritzmethode, beispielsweise dem Flamm- oder Hochgeschwindigkeitsflammspritzen, dem Lichtbogen- oder Plasmaspritzen oder dem Detonationsspritzen, wobei ein Strahl aus heißem Transportgas und geschmolzenen Materialpartikeln auf die betreffende Oberfläche gerichtet wird und dabei benachbart zum Spritzstrahl mit einem zu wesentlichen Teilen aus Kohlendioxid bestehenden Kühlstrahl enthaltend Kaltgas und Schneepartikel gekühlt wird.The invention relates to a method for coating a surface by means of a thermal spray method, for example flame or high-speed flame spraying, arc or plasma spraying or detonation spraying, a jet of hot transport gas and molten material particles being directed onto the surface in question and in the process adjacent to the spray jet is cooled with a cooling jet consisting essentially of carbon dioxide containing cold gas and snow particles.
Ein solches Verfahren ist aus der DE-PS 26 15 022 bekannt. Bei diesem wird reine Kohlensäure (CO₂) als Kühlmittel angewandt, wobei diese der den Kühlstrahl erzeugenden Düse in flüssigem Zustand zugeführt wird. Dabei bildet sich beim Austritt aus dieser ein Gemisch aus gasförmigem und festem CO₂, d.h. CO₂-Schneepartikeln, welches beim Auftreffen auf ein Werkstück eine besonders hohe und in Verbindung mit dem thermischen Auftragen von Schichten besonders vorteilhafte Kühlleistung erzielt. Würde bei der, in der DE-PS 26 15 022 gezeigten Weise, gasförmige statt flüssige Kohlensäure (CO₂) eingesetzt, so ergäbe sich eine erheblich verringerte Kühlwirkung, da der entstehende Kühlstrahl eine geringere Kälte und insbesondere einen erheblich niedrigeren Anteil an CO₂-Schneepartikeln aufweisen würde. Dies kommt erstens dadurch zustande, daß diejenige Kältemenge, die für den Phasenübergang flüssig gasförmig dem CO₂ zuzuführen ist, bei der reinen Gasexpansion nicht mehr vorhanden ist, und zum zweiten dadurch, daß bei der in der obengenannten DE-PS gezeigten Düse und anderen gängigen Runddüsen das CO₂ sofort nach dem Verlassen der Düse umgebende Luft ansaugt, folglich ein inniger Wärmeaustausch mit dieser stattfindet und sich in der Folge deutlich weniger Schnee als bei der Flüssig-CO₂- Expansion bildet. Dieser CO₂-Schnee trägt jedoch wesentlich zur bekannten Kühlwirkung bei und bildet quasi einen Latentkälte-Speicher, der das Werkstück unmittelbar kühlt. Die Folge wäre eine im Vergleich zum Verfahren gemäß der DE-PS erheblich verringerte Kühlwirkung auf einem beaufschlagten Werkstück.Such a method is known from DE-PS 26 15 022. In this pure carbon dioxide (CO₂) is used as a coolant, which is supplied to the nozzle generating the cooling jet in a liquid state. When it emerges from this, a mixture of gaseous and solid CO₂, ie CO₂ snow particles is formed, which achieves a particularly high cooling performance when it hits a workpiece and is particularly advantageous in connection with the thermal application of layers. Would be used in the manner shown in DE-PS 26 15 022, gaseous instead of liquid carbonic acid (CO₂), so there would be a significant reduced cooling effect, since the resulting cooling jet would have a lower coldness and in particular a considerably lower proportion of CO₂ snow particles. This is due firstly to the fact that the amount of cold that is to be supplied to the CO₂ in liquid gaseous form for the phase transition is no longer present in the pure gas expansion, and secondly to the fact that in the nozzle shown in the aforementioned DE-PS and other common round nozzles the CO₂ sucks in surrounding air immediately after leaving the nozzle, consequently an intimate heat exchange takes place with it and as a result significantly less snow forms than with the liquid CO₂ expansion. However, this CO₂ snow contributes significantly to the known cooling effect and forms a latent cold storage, which cools the workpiece directly. The result would be a significantly reduced cooling effect on a loaded workpiece compared to the method according to DE-PS.
Gleiches gilt auch für die aus der EP-PS 0 263 469 bekannten Verfahren, bei denen ebenfalls ein aus Flüssig-CO₂ erzeugter, jedoch gemischter Kühlstrahl bestehend aus CO₂-Gas, CO₂-Schnee und weiteren Gasen, beispielsweise Helium und/oder Wasserstoff, zur Kühlung der thermisch gespritzten Oberflächen angewandt wird.The same applies to the processes known from EP-PS 0 263 469, in which also a cooling jet generated from liquid CO₂, but mixed, consisting of CO₂ gas, CO₂ snow and other gases, for example helium and / or hydrogen, for Cooling of the thermally sprayed surfaces is applied.
Die Anwendung flüssigen Kohlendioxids, wobei jeweils auf Umgebungstemperatur befindliches, unter dem Verflüssigungsdruck stehendes CO₂ angesprochen ist, bedeutet allerdings, daß eine spezielle Form der CO₂-Versorgung zu gewährleisten ist, nämlich eine solche, in der das Kohlendioxid aus den jeweiligen Speicherbehältern in der flüssigen Phase ausgebracht wird. Das heißt, daß das Kohlendioxid, das sich gemäß Standardspeicherung bei 20 °C mit etwa 57 bar Druck in den zugehörigen Speicherbehältern befindet, aus diesen mittels Steigrohr oder auf andere spezielle Weise auszubringen ist, d.h. daß die Speicherbehälter mit einer Flüssigphasenentnahme versehen sein müssen.However, the use of liquid carbon dioxide, with CO₂ being at ambient temperature and under the condensing pressure, means that a special form of CO₂ supply must be guaranteed, namely one in which the carbon dioxide from the respective storage containers is in the liquid phase is applied. This means that the carbon dioxide, which is in standard storage at 20 ° C with about 57 bar pressure in the associated storage tanks, can be discharged from them by means of a riser pipe or in another special way, ie the storage tanks must be provided with a liquid phase extraction.
Eine weitere Schwierigkeit bei der Anwendung von Kohlendioxid zu Kühlzwecken in Verbindung mit thermischen Spritzmethoden besteht darin, daß sich mit einem aus einer konventionellen Runddüse austretenden Kohlendioxidstrahl ein turbulenter, breit gefächerter Schnee-Gas-Mischstrahl ausbildet, der keine gezielte Einwirkung auf einen geeignet begrenzten Oberflächenbereich zuläßt. Bei der Anwendung eines solchen turbulenten und divergenten Kohlendioxidstrahls benachbart zu einem Spritzstrahl kann zudem eine nachteilige gegenseitige Beeinflussung des Spritzstrahls und des Kühlstrahls erfolgen.Another difficulty with the use of carbon dioxide for cooling purposes in connection with thermal spraying methods is that with a carbon dioxide jet emerging from a conventional round nozzle, a turbulent, widely diversified snow-gas mixed jet is formed which does not allow targeted action on a suitably limited surface area . When such a turbulent and divergent carbon dioxide jet is used adjacent to a spray jet, the spray jet and the cooling jet can also be adversely affected.
Die Aufgabenstellung der vorliegenden Erfindung bestand daher darin, ein thermisches Spritzverfahren mit CO₂-Kühlung anzugeben, das die beschriebenen Nachteile vermeidet oder beseitigt und insbesondere auch die Anwendung von gasförmigen Kohlendioxid ermöglicht.The object of the present invention was therefore to provide a thermal spray process with CO₂ cooling which avoids or eliminates the disadvantages described and in particular also enables the use of gaseous carbon dioxide.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Kohlendioxidanteil im Kühlstrahl aus gasförmigem, wenigstens unter 45 bar Druck stehendem Kohlendioxid gewonnen wird und zwar derart, daß das Kohlendioxidgas über eine enge Schlitzdüse oder eine sonstige schlitzartige Öffnung zunächst in ein um diesen Expansionsschlitz angeordnetes, weitgehend abgeschlossenes Expansionsvolumen hinein expandiert wird und ausgehend von diesem Expansionsvolumen und dessen Austrittsöffnung der Kühlstrahl gebildet und auf die zu kühlende Fläche gerichtet wird.This object is achieved in that the carbon dioxide fraction in the cooling jet is obtained from gaseous carbon dioxide which is at least under 45 bar pressure, and in such a way that the carbon dioxide gas is initially largely closed via a narrow slot nozzle or another slot-like opening in an expansion slot arranged around this expansion slot Expansion volume is expanded into it and, based on this expansion volume and its outlet opening, the cooling jet is formed and directed onto the surface to be cooled.
Aufgrund der Tatsache, daß erfindungsgemäß von gasförmigem und nicht flüssigem Kohlendioxid ausgegangen wird, kann zunächst jegliche Sonderausstattung der CO₂-Speicherbehälter entfallen. Eine geringfügige Einschränkung entsteht hierbei dadurch, daß der CO₂-Druck in diesen Behältern zur Durchführung der Erfindung nicht unter 45 bar abfallen darf,da die Kälte für den Kühlstrahl allein aus der Expansionsabkühlung des CO₂-Gases gewonnen wird und andererseits kein Beitrag aus der "latenten Kälte" des flüssigen Kohlendioxids mehr verfügbar ist. Aus diesem Grund ist unterhalb von Druckwerten von 45 bar, die bei ungünstigen Bedingungen - z.B. bei Lagerung der Speicherflaschen im Freien und tiefen Außentemperaturen - ohne weiteres auftreten können, die Kälteausbeute zu gering. Sind jedoch die Standarddruckwerte von ca. 57 bar, wie sie sich bei Raumtemperatur einstellen, verfügbar, so ergibt sich eine ausgezeichnete Funktion.Due to the fact that the invention is based on gaseous and non-liquid carbon dioxide, any special equipment of the CO₂ storage container can be omitted. A slight limitation arises from the fact that the CO₂ pressure in these containers for carrying out the invention must not drop below 45 bar, since the cold for the cooling jet alone from the Expansion cooling of the CO₂ gas is obtained and on the other hand no contribution from the "latent cold" of the liquid carbon dioxide is available. For this reason, the cold yield is too low below pressure values of 45 bar, which can easily occur under unfavorable conditions - e.g. when the storage bottles are stored outdoors and at low outside temperatures. However, if the standard pressure values of approx. 57 bar, as they occur at room temperature, are available, this results in an excellent function.
Dabei ist vor allem die erfindungsgemäße Art der Entspannung des Kohlendioxidgases über eine Schlitzdüse oder dergleichen in ein abgeschlossenes Expansionsvolumen hinein für die Funktion und Effektivität der Erfindung wesentlich. Die Schlitzdüse mit ihrer länglichen und andererseits schmalen Querschnittsöffnung erzeugt nämlich einen Expansionsgasstrahl mit einer im Vergleich zu einem aus einer Runddüse stammenden Expansionsgasstrahl wesentlich vergrößerten Oberfläche. Diese vergrößerte Oberfläche resultiert in einer verstärkten Wechselwirkung des Expansionsgasstrahls mit seiner Umgebung, die - nach dem weiteren wesentlichen Merkmal der Erfindung - von einem Expansionsvolumen gebildet wird, in dem sich im Betrieb fast ausschließlich bereits expandiertes, kaltes Kohlendioxidgas befindet. Wärmere Umgebungsluft besitzt also keinen unmittelbaren Zutritt zum expandierten Kohlendioxid. Daraus ergibt sich, daß zunächst nur wenig Wärme aus der Umgebung dem Kohlendioxid zufließen kann und deshalb im Expansionsvolumen - durch das dort quasi vorhandene Wärmedefizit - eine verstärkte Bildung von Kohlendioxid-Schneepartikeln stattfindet. Im Vergleich zu einer unabgeschirmten Expansion gasförmigen Kohlendioxids wird also ein deutlich erhöhter Anteil an Schneepartikeln erzeugt, welche vor allem den bei der Kühlung thermisch gespritzter Schichten erwünschten, starken Kühleffekt bewirken. Die im Expansionsraum entstandene Gas-Schnee-Mischung wird nun über den weiteren Verlauf des Expansionsvolumens zu einem Kühlstrahl ausgebildet und durch die Austrittsöffnung auf das Werkstück gelenkt. Mit einem auf diese Weise erzeugten Kühlstrahl ergibt sich eine effektive Kühlung des Werkstücks in seinem Anströmbereich, wobei bei Bedarf dem Kühlstrahl noch weitere, die Kühlwirkung erhöhende Gase zugemischt werden können.Above all, the type of expansion of the carbon dioxide gas according to the invention via a slot nozzle or the like into a closed expansion volume is essential for the function and effectiveness of the invention. The slot nozzle with its elongated and, on the other hand, narrow cross-sectional opening namely generates an expansion gas jet with a surface which is substantially enlarged in comparison to an expansion gas jet originating from a round nozzle. This enlarged surface area results in an increased interaction of the expansion gas jet with its surroundings, which - according to the further essential feature of the invention - is formed by an expansion volume in which, during operation, cold carbon dioxide gas is almost exclusively already expanded. Warmer ambient air therefore has no direct access to the expanded carbon dioxide. This means that initially only a little heat can flow from the environment to the carbon dioxide and therefore there is an increased formation of carbon dioxide snow particles in the expansion volume - due to the heat deficit there. Compared to an unshielded expansion of gaseous carbon dioxide, a significantly increased proportion of snow particles is generated, which above all provides the strong cooling effect desired when cooling thermally sprayed layers cause. The gas-snow mixture created in the expansion space is then formed into a cooling jet over the further course of the expansion volume and directed onto the workpiece through the outlet opening. With a cooling jet generated in this way, there is effective cooling of the workpiece in its inflow region, and if necessary, other gases which increase the cooling effect can be added to the cooling jet.
Grundsätzlich ist hinsichtlich der vorgeschlagenen Expansionsweise darauf hinzuweisen, daß diese bereits aus einem anderen technischen Fachgebiet, nämlich der Medizintechnik bekannt ist. Beispielsweise zeigt die DE-PS 36 24 787 eine Kühl- und Gefriersonde zum lokalen Abkühlen von menschlichen oder tierischen Körperbereichen und - in einem Nebenaspekt - auch von elektronischen Bauteilen, die auf dem beschriebene Prinzip beruht, wobei jedoch die Kühlung des jeweiligen Bereichs aus unmittelbarer Nähe erfolgt und kein weitreichender Kühlgasstrahl, sondern ein geeignet geführter Kühlgasstrom gebildet wird. Die Übertragung, Anpassung und abgewandelte Anwendung gemäß der vorliegenden Erfindung liegt jedoch nicht nahe.With regard to the proposed mode of expansion, it should be pointed out that it is already known from another technical field, namely medical technology. For example, DE-PS 36 24 787 shows a cooling and freezing probe for local cooling of human or animal body areas and - in a secondary aspect - also of electronic components, which is based on the principle described, but the cooling of the respective area from close proximity takes place and no long-range cooling gas jet, but a suitably guided cooling gas flow is formed. However, the transfer, adaptation and modified application according to the present invention is not obvious.
Bevorzugte Ausführungsvarianten der vorliegenden Erfindung sind nun in den Unteransprüchen 2 bis 5 angegeben.Preferred embodiments of the present invention are now specified in
Dabei ist zu bemerken, daß ein nachfolgend und/oder vorausgehend zum Spritzstrahl geführter Kühlstrahl vor allem temperaturempfindliches Spritzmaterial oder hitzeempfindliche Werkstücke insgesamt vor Überhitzung schützt. Mit in der beschriebenen Weise gekühlten thermischen Spritzvorgängen ist allerdings generell eine Leistungssteigerung gegenüber ungekühlten Spritzvorgängen möglich.It should be noted that a cooling jet following and / or preceding the spray jet primarily protects temperature-sensitive spray material or heat-sensitive workpieces from overheating. With thermal spray processes cooled in the manner described, however, an increase in performance is generally possible compared to uncooled spray processes.
Das erfindungsgemäße Verfahren wird schließlich in vorteilhafter Weise mit einer Expansionsdüse durchgeführt, welche ein an eine CO₂-Gasquelle anschließbares Innenrohr 6 mit abschließender Schlitzdüse besitzt, sowie ein das Innenrohr am Schlitzdüsenende umhüllendes, deutlich darüber hinaus ragendes und das Expansionsvolumen bildendes Außenrohr 9 aufweist. Bei dieser Expansionsdüse wird hinsichtlich des mit dem Außenrohr gebildeten, zylinderförmigen Expansionsvolumens ein Durchmesser zu Längenverhältnis von 1 zu 3 bis 1 zu 10, vorzugsweise 1 zu 5, eingehalten.Finally, the method according to the invention is advantageously carried out with an expansion nozzle, which has a connectable to a CO₂ gas source inner tube 6 with a final slot nozzle, and has an outer tube 9 enveloping the inner tube at the end of the slot nozzle, projecting significantly beyond and forming the expansion volume. With this expansion nozzle, a diameter to length ratio of 1 to 3 to 1 to 10, preferably 1 to 5, is maintained with regard to the cylindrical expansion volume formed with the outer tube.
Mit der erfindungsgemäßen Expansionsdüse wird im Verfahrensbetrieb mit Vorteil ein Abstand zum Werkstück von wenigstens ca. 3 cm eingehalten, um eine günstige Verfahrensfunktion zu erhalten.With the expansion nozzle according to the invention, a distance from the workpiece of at least approximately 3 cm is advantageously maintained in process operation in order to obtain a favorable process function.
Prinzipiell besteht mit dem erfindungsgemäßen Kühlstrahlen auch die Möglichkeit, aus dem Spritzbereich zurückprallende Spritzpartikel vom Werkstück weg zu befördern und so Beschichtungfehler zu vermeiden.In principle, with the cooling jets according to the invention there is also the possibility of conveying spray particles rebounding from the spray area away from the workpiece and thus avoiding coating errors.
Im folgenden wird anhand der Zeichnungen das erfindungsgemäße Verfahren sowie eine entsprechende Expansionsdüse beispielhaft näher erläutert. Es zeigt:
Figur 1- einen autogenen Flammspritzvorgang in schematischer Darstellung;
Figur 2- eine erfindungsgemäße CO₂-Expansionsdüse in Seitenansicht im Schnitt;
- Figur 3
- eine erfindungsgemäße CO₂-Expansionsdüse in Vorderansicht;
- Figure 1
- an autogenous flame spraying process in a schematic representation;
- Figure 2
- a CO₂ expansion nozzle according to the invention in side view in section;
- Figure 3
- a CO₂ expansion nozzle according to the invention in front view;
Durch weitere Versuche hat die Anmelderin festgestellt, daß eine noch höhere und vorteilhaftere Kühlwirkung des wie geschildert gebildeten Kühlstrahls dadurch erhalten werden kann, daß von einem Kohlendioxidgas mit mehr als 65 bar Druck, vorzugsweise 70 bis 80 bar, ausgegangen wird. Dazu sind jedoch besondere Vorkehrungen zu treffen, da - wie oben beschrieben - CO₂ in Standardspeichern nur mit etwa 57 bar zur Verfügung steht. Erfindungsgemäß wird zur Lösung dieses Problems vorgeschlagen, daß die besagten höheren Drucke durch Aufheizen des Gasspeichers samt Inhalt und somit durch Erzeugen eines höheren Dampfdrucks des flüssigen CO₂'s hergestellt werden oder daß die Druckerhöhung durch eine dem Speicher nachgeschaltete Pumpe erzeugt wird. Besonders vorteilhaft wird ein Speicherbehälter z.B. dadurch beheizt, daß ein elektrischer Heizleiter in diesem angeordnet wird. Mit Heizleitern ausgestattete Behälter sind im übrigen verfügbar, da bei der Bereitstellung großer CO2-Gasmengen in den zugehörigen Speicherbehältern solche Heizeinrichtungen ohnehin vorgesehen sind. Dieser Umstand kommt also der "Hochdruckvariante" der Erfindung entgegen und ein entsprechend ausgerüsteter Speichertank mit z.B. drucksensitiver Heizungsregelung kann die besagten Drucke über 65 bar problemlos liefern. In jedem Falle jedoch, wird mit dieser Verfahrensvariante ein besonders effektiver Kühlstrahl ausgebildet, dessen Wirkung in dem relativ hohen Schneeanteil im Strahl begründet liegt.Through further tests, the applicant has determined that an even higher and more advantageous cooling effect of the cooling jet formed as described can be obtained by starting from a carbon dioxide gas with a pressure of more than 65 bar, preferably 70 to 80 bar. However, special precautions have to be taken, since - as described above - CO₂ is only available at around 57 bar in standard storage tanks. According to the invention it is proposed to solve this problem that said higher pressures are produced by heating the gas storage device together with its contents and thus by generating a higher vapor pressure of the liquid CO₂ or that the pressure increase is generated by a pump connected downstream of the storage device. A storage container is particularly advantageously heated, for example, by arranging an electrical heating conductor in it. Containers equipped with heating conductors are also available, since such heating devices are provided in any case when large amounts of CO2 gas are provided in the associated storage containers. This circumstance therefore accommodates the "high-pressure variant" of the invention, and a suitably equipped storage tank with, for example, pressure-sensitive heating control can easily supply the pressures above 65 bar. In any case, however, a particularly effective cooling jet is formed with this method variant, the effect of which lies in the relatively high proportion of snow in the jet.
Figur 1 zeigt nun einen thermischen Spritzvorgang,beispielsweise einen mit Brenngas und Transportgas betriebenen Flammspritz- oder Hochgeschwindigkeitsflammspritzvorgang. Gezeigt ist eine Spritzdüse 1, sowie eine Expansionsdüse 2 und ein Werkstück 3. Zum Auftrag der Oberflächenschicht wird das gezeigte Werkstück, nämlich eine Welle 3, gemäß Pfeil 4 in Rotation versetzt und der Spritzstrahl der Spritzdüse 1 etwa senkrecht auf deren Oberfläche gerichtet. Beispielsweise kann eine verschleißfeste, Wolframcarbid enthaltende Schicht aufgetragen werden, wobei die Flammspritzdüse 1 sowie die Kühlmitteldüse 2 gekoppelt, parallel ausgerichtet und gemäß Pfeil 5 entlang einer Parallele zur Werkstückoberfläche vorgeschoben werden. Die Expansionsdüse folgt der Spritzdüse in gleichbleibendem Abstand von ca. 5 bis 15 cm (Abstand bezüglich der beiden Düsenachsen). Es ist zu erkennen, daß die neu aufgebrachten Schichtbereiche nach Verlassen des Spritzbereichs unter den Einfluß des von der Expansionsdüse 2 ausgehenden Kühlmittelstrahls 2' gelangen und somit dieser Oberflächenbereich mit frisch aufgetragener Beschichtung abgekühlt und zudem auch die Ausbreitung der Wärme von der Spritzzone weg in bereits beschichtete Werkstückbereiche verhindert wird. Als Kühlmittel kommen hierbei insbesondere reines Kohlendioxid oder - bei Notwendigkeit einer besonders hohen Kühlleistung - auch Mischungen von Kohlendioxid zusammen mit Helium und/oder Wasserstoff gemäß EP-PS 0 263 469 zur Anwendung, wobei die Zumischgase mit Vorzug erst unmittelbar im Auftreffbereich des Kühlmittelstrahls 2'auf dem Werkstück zugemischt werden.FIG. 1 now shows a thermal spraying process, for example a flame spraying or high-speed flame spraying process operated with fuel gas and transport gas. Shown is a
In Figur 2 ist eine der möglichen Expansionsdüsen für die Ausführung des erfindungsgemäßen Verfahrens im Schnitt gezeigt. Diese setzt sich zusammen aus einem Innenrohr 6 mit abschließender Schlitzdüse 7, sowie einem das Innenrohr endseitig umhüllenden, das Expansionsvolumen 8 bildenden Außenrohr 9, das an seinem der Expansionsdüse 7 abgewandten Ende offen ist.FIG. 2 shows one of the possible expansion nozzles for carrying out the method according to the invention in section. This is composed of an inner tube 6 with a
Die Figur 3 zeigt hierzu eine Vorderansicht der in Figur 2 gezeigten Expansionsdüse ebenfalls in einer Schnittansicht gemäß der Schnittlinie S in Figur 2. Erfindungsgemäß wird nun dieser Düse und insbesondere dem darin befindlichen Innenrohr 6 gasförmiges Kohlendioxid mit vorzugsweise mehr als 65 bar Druck zugeführt und in den Expansionskanal 8 hinein entspannt. Beim Entspannungsprozeß entstehen insbesondere aufgrund einer Unterdruckbildung hinter der Schlitzdüse 7 CO₂-Kaltgas und anteilig Schneepartikel, und es ergibt sich so im Expansionsvolumen 8 ein Gemisch aus kaltem Gas und Schnee, das durch die Austrittsöffnung 10 des Außenrohres 9 die Expansionsdüse verläßt und auf das Werkstück gelenkt wird.3 shows a front view of the expansion nozzle shown in FIG. 2, likewise in a sectional view along the section line S in FIG Expansion channel 8 relaxed into it. In the relaxation process arise in particular due to a negative pressure formation behind the
Eine solche Expansionsdüse ist je nach gewünschtem Mengendurchsatz zu dimensionieren. Eine für gängige Flammspritzvorgänge geeignete Kühlmitteldüse der gezeigten Art weist z.B. einen Innendurchmesser D (siehe Figur 2) bezüglich des Außenrohres 9 von 3 mm und somit - gemäß der einzuhaltenden Längendimensionierung - eine überstehende Länge L von z.B. 15 mm auf. Eine weitere, erfindungsbezogen wichtige Größe stellt die Öffnungsweite der Schlitzdüse des Innenrohres dar. Diese beträgt im Regelfall und mit Vorteil zwischen 0,1 und 0,4 mm. Diese Öffnungsweite ist nach Auswahl der Grundgröße der Expansionsdüse, d.h. nach Auswahl des Durchmessers für das Innen- bzw.das Außenrohr, im engeren Sinne bestimmend für den Durchfluß an CO₂-Gas.Such an expansion nozzle is to be dimensioned according to the desired throughput. A coolant nozzle of the type shown, which is suitable for common flame spraying processes, has e.g. an inner diameter D (see Figure 2) with respect to the outer tube 9 of 3 mm and thus - according to the length dimension to be maintained - a protruding length L of e.g. 15 mm. Another size that is important in relation to the invention is the opening width of the slot nozzle of the inner tube. As a rule, this is advantageously between 0.1 and 0.4 mm. This opening width is based on the selection of the basic size of the expansion nozzle, i.e. after selection of the diameter for the inner or outer tube, in the narrower sense determining for the flow of CO₂ gas.
Mit der gezeigten Expansionsdüse und der dargestellten Erzeugung eines Kohlendioxid-Kühlstrahles aus gasförmigem Kohlendioxid wird also eine vorteilhafte Möglichkeit zum Kühlen bei thermischen Spritzmethoden zur Verfügung gestellt, wobei die wesentlichen Elemente in der Expansionsweise des CO₂'s und der zugehörigen Expansionsdüse zu finden sind.With the expansion nozzle shown and the generation of a carbon dioxide cooling jet from gaseous carbon dioxide shown, an advantageous possibility is provided for cooling in thermal spraying methods, the essential elements being found in the way of expansion of the CO₂ and the associated expansion nozzle.
Claims (12)
- Process for coating a surface by means of a thermal spraying method, in which a spraying jet of hot transporting gas and melted material particles is directed on to the surface concerned and cooling is effected in the vicinity of the spraying jet with a cooling jet consisting essentially of carbon dioxide and containing cold gas and snow particles, characterised in that the proportion of carbon dioxide in the cooling jet is obtained from gaseous carbon dioxide at a pressure of at least 45 bar in that the carbon dioxide gas is first expanded through a slotted nozzle or other slotted opening into an expansion volume disposed around this expansion slot and largely sealed from the environment, and the cooling jet is formed from this expansion volume and its outlet opening and directed on to the area to be cooled.
- Process according to claim 1, characterised in that the proportion of carbon dioxide in the cooling jet is formed of gaseous carbon dioxide at a pressure of at least 65 bar, preferably 70 to 80 bar.
- Process according to claim 2, characterised in that the raised pressure level of the carbon dioxide is produced by supplying heat to the associated storage container, producing temperatures of 25 to 35°C, preferably 30 to 32°C.
- Process according to claim 3, characterised in that the supply of heat to the storage container is effected with an electric heating conductor housed in the storage container.
- Process according to claim 2, characterised in that the raised pressure level is produced by means of or through the use of a compressor connected after the storage container.
- Process according to one of claims 1 to 5, characterised in that the expansion volume with its outlet opening forming the cooling jet is guided at a distance of 2 to 15 cm, preferably 3 to 8 cm, from the workpiece.
- Process according to one of claims 1 to 6, characterised in that the cooling with the cooling jet is effected in that the cooling jet is guided following the spraying jet.
- Process according to one of claims 1 to 7, characterised in that a cooling jet is guided preceding the spraying jet.
- Process according to one of claims 1 to 8, characterised in that more than one cooling jet is provided.
- Process according to one of claims 1 to 6, characterised in that the spraying jet is surrounded on all sides by a plurality of cooling jets or by one enveloping stream of cooling gas.
- Expansion nozzle for implementing the process according to one or more of claims 1 to 10, characterised by an inner pipe 6 provided with a terminating slotted nozzle 7 and connectable to a carbon dioxide source, and an outer pipe 9 surrounding the inner pipe at the slotted nozzle end and projecting beyond it and forming the expansion volume 8 and which at its end remote from the slotted nozzle 7 exhibits an outlet opening 10.
- Expansion nozzle according to claim 10, characterised in that a diameter to length ratio of 1 to 3 to 1 to 10, preferably approximately 1 to 5, is maintained as regards the cylindrical expansion volume 8 formed with the outer pipe.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4141020 | 1991-12-12 | ||
DE4141020A DE4141020A1 (en) | 1991-12-12 | 1991-12-12 | METHOD FOR COATING A SURFACE BY MEANS OF A THERMAL SPRAYING METHOD WITH A FOLLOWING COOLING |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0546359A1 EP0546359A1 (en) | 1993-06-16 |
EP0546359B1 true EP0546359B1 (en) | 1995-06-21 |
Family
ID=6446903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92119729A Expired - Lifetime EP0546359B1 (en) | 1991-12-12 | 1992-11-19 | Thermal spray coating process with cooling |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0546359B1 (en) |
AT (1) | ATE124095T1 (en) |
CZ (1) | CZ282673B6 (en) |
DE (2) | DE4141020A1 (en) |
SK (1) | SK282340B6 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008043869A (en) * | 2006-08-14 | 2008-02-28 | Nakayama Steel Works Ltd | Thermal spraying device for forming supercooled liquid phase metal film |
JP2008174784A (en) * | 2007-01-17 | 2008-07-31 | Nakayama Steel Works Ltd | Method for forming amorphous film by thermal spraying |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4204896C2 (en) * | 1992-02-19 | 1995-07-06 | Tridelta Gmbh | Process for producing a layered composite body |
DE4326518A1 (en) * | 1993-08-06 | 1995-02-09 | Linde Ag | Process for machining workpieces of plastic by chip removal |
DE69510025T2 (en) * | 1994-12-15 | 1999-12-09 | He Holdings Inc., Los Angeles | CO2 spray nozzle with multiple openings |
DE19611735A1 (en) * | 1996-03-25 | 1997-10-02 | Air Liquide Gmbh | Thermal treatment of substrates |
FR2762667B1 (en) * | 1997-04-28 | 1999-05-28 | Air Liquide | HEAT TREATMENT DEVICE AND METHOD |
DE19947823A1 (en) | 1999-10-05 | 2001-04-12 | Linde Gas Ag | Expansion cooling nozzle |
FR2808808A1 (en) * | 2000-05-10 | 2001-11-16 | Air Liquide | Thermal spraying of titanium on a medical prosthesis involves cooling at least part of the prosthesis with carbon dioxide or argon during the coating process |
ES2441596T3 (en) * | 2006-08-14 | 2014-02-05 | Nakayama Amorphous Co., Ltd. | Procedure and apparatus for forming an amorphous coating film |
DE102007012084A1 (en) | 2007-03-13 | 2008-09-18 | Linde Ag | Method for thermal separation and joining |
DE102008006495A1 (en) | 2008-01-29 | 2009-07-30 | Behr-Hella Thermocontrol Gmbh | Circuit carrier i.e. standard flame retardant four printed circuit board, for air-conditioning system of motor vehicle, has copper thick film increasing current feed properties and applied on copper thin film by thermal spraying of metal |
DE102008009106B4 (en) | 2008-02-14 | 2010-04-08 | Behr-Hella Thermocontrol Gmbh | Printed circuit board for electrical circuits |
US8931429B2 (en) | 2008-05-05 | 2015-01-13 | United Technologies Corporation | Impingement part cooling |
DE102013107400B4 (en) * | 2013-07-12 | 2017-08-10 | Ks Huayu Alutech Gmbh | Method for removing the overspray of a thermal spray burner |
US20160325469A1 (en) | 2015-05-04 | 2016-11-10 | Matthew Hershkowitz | Methods for improved spray cooling of plastics |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2603299A (en) * | 1952-07-15 | Electrostatic charge protected | ||
US2545951A (en) * | 1946-04-24 | 1951-03-20 | Specialties Dev Corp | Discharging fire-extinguishing media |
US3254506A (en) * | 1964-03-02 | 1966-06-07 | Johnson Co Gordon | Carbon dioxide freezing apparatus and method |
DE3844290C1 (en) * | 1988-12-30 | 1989-12-21 | Uranit Gmbh, 5170 Juelich, De |
-
1991
- 1991-12-12 DE DE4141020A patent/DE4141020A1/en not_active Withdrawn
-
1992
- 1992-11-19 EP EP92119729A patent/EP0546359B1/en not_active Expired - Lifetime
- 1992-11-19 DE DE59202611T patent/DE59202611D1/en not_active Expired - Lifetime
- 1992-11-19 AT AT92119729T patent/ATE124095T1/en not_active IP Right Cessation
- 1992-11-26 CZ CS923503A patent/CZ282673B6/en not_active IP Right Cessation
- 1992-11-26 SK SK3503-92A patent/SK282340B6/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008043869A (en) * | 2006-08-14 | 2008-02-28 | Nakayama Steel Works Ltd | Thermal spraying device for forming supercooled liquid phase metal film |
JP2008174784A (en) * | 2007-01-17 | 2008-07-31 | Nakayama Steel Works Ltd | Method for forming amorphous film by thermal spraying |
Also Published As
Publication number | Publication date |
---|---|
EP0546359A1 (en) | 1993-06-16 |
CZ282673B6 (en) | 1997-08-13 |
DE4141020A1 (en) | 1993-06-17 |
ATE124095T1 (en) | 1995-07-15 |
SK282340B6 (en) | 2002-01-07 |
DE59202611D1 (en) | 1995-07-27 |
CZ350392A3 (en) | 1993-08-11 |
SK350392A3 (en) | 1996-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0546359B1 (en) | Thermal spray coating process with cooling | |
DE2831199A1 (en) | CRYOSURGICAL DEVICE | |
DE2817356C2 (en) | Product gas cooling device on a generator for gasifying coal dust and producing synthesis gas | |
DE3728557C2 (en) | ||
DE4209162A1 (en) | METHOD AND DEVICE FOR PRODUCING HYPERFINE, FROZEN PARTICLES | |
DE1949315A1 (en) | Method and apparatus for cooling a cutting tool by mist | |
DE3430383A1 (en) | PLASMA SPRAY BURNER FOR INTERNAL COATINGS | |
DE102006047101A1 (en) | Method for feeding particles of a layer material into a thermal spraying process | |
EP1064509B1 (en) | Method and device for producing slush from liquefied gas | |
EP0509132B1 (en) | Method and device for the cleaning of surfaces, in particular delicate surfaces | |
EP0857561B1 (en) | Method and apparatus for cooling hollow extruded profiles | |
EP0263469B1 (en) | Method for thermally coating surfaces | |
DE3813931A1 (en) | Inert-gas soldering method and device for carrying out this method | |
DE2161453C3 (en) | Process for producing a friction layer on surfaces, such as brakes or clutches, using a plasma jet | |
EP1091181B1 (en) | Expansion nozzle | |
DE1501402B2 (en) | Device for quenching hot gases | |
DE1552996C3 (en) | Device for soldering side seams on can bodies | |
DE3230471A1 (en) | METHOD AND DEVICE FOR PRODUCING AN ICE SLUDGE FOR CONCRETE COOLING IN THE PUMP PIPING | |
DE683828C (en) | Spray gun | |
DE1473245A1 (en) | Device for setting or regulating the temperature of a tightly sealed container | |
AT408232B (en) | METHOD FOR GRANULATING LIQUID SLAG AND DEVICE FOR CARRYING OUT THIS METHOD | |
DE2656439A1 (en) | BURNER FOR LIQUID FUEL | |
DE1751844C3 (en) | Method and device for producing artificial snow | |
DE10351834B4 (en) | Process for the preparation of clathrates and device for carrying out the process | |
DE7821298U1 (en) | Kiyochinirgie device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI NL PT |
|
17P | Request for examination filed |
Effective date: 19930525 |
|
17Q | First examination report despatched |
Effective date: 19941206 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI NL PT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19950621 Ref country code: BE Effective date: 19950621 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19950621 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19950621 |
|
REF | Corresponds to: |
Ref document number: 124095 Country of ref document: AT Date of ref document: 19950715 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950623 |
|
REF | Corresponds to: |
Ref document number: 59202611 Country of ref document: DE Date of ref document: 19950727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Effective date: 19950921 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19991117 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: LINDE AKTIENGESELLSCHAFT TRANSFER- LINDE TECHNISCH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001119 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Free format text: LINDE TECHNISCHE GASE GMBH TRANSFER- LINDE GAS AG |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20001119 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20011113 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20011130 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051119 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20071108 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090731 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20101117 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59202611 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59202611 Country of ref document: DE |