[go: up one dir, main page]

EP0530072B1 - Method and device for control and regulation - Google Patents

Method and device for control and regulation Download PDF

Info

Publication number
EP0530072B1
EP0530072B1 EP92402262A EP92402262A EP0530072B1 EP 0530072 B1 EP0530072 B1 EP 0530072B1 EP 92402262 A EP92402262 A EP 92402262A EP 92402262 A EP92402262 A EP 92402262A EP 0530072 B1 EP0530072 B1 EP 0530072B1
Authority
EP
European Patent Office
Prior art keywords
value
magnitude
input
output
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92402262A
Other languages
German (de)
French (fr)
Other versions
EP0530072A1 (en
Inventor
Laurent Cariou
Joel Cordier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0530072A1 publication Critical patent/EP0530072A1/en
Application granted granted Critical
Publication of EP0530072B1 publication Critical patent/EP0530072B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current 
    • G05F1/46Regulating voltage or current  wherein the variable actually regulated by the final control device is DC
    • G05F1/56Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current 
    • G05F1/46Regulating voltage or current  wherein the variable actually regulated by the final control device is DC
    • G05F1/462Regulating voltage or current  wherein the variable actually regulated by the final control device is DC as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/907Temperature compensation of semiconductor

Definitions

  • the invention relates to methods and devices intended to control using a first quantity y a second quantity x, this second quantity being itself for each of the values of the quantity x a known function of a parameter h that we don't control.
  • the method and the device according to the invention are applicable whenever a point of abscissa h of the curve representing a second value y 2 (h) can be deduced from the point of the same abscissa h of the curve representing a first value y 1 (h) by adding a value which is a linear function of h.
  • the invention can be extended to an initial control quantity Y one-to-one function of the quantity y, controlling a value X one-to-one function of the variable x.
  • the functions Y (y) , X (x) and Y (X) are not necessarily linear.
  • the invention relates in particular, but not exclusively, to a voltage control intended to bias a diode with an intrinsic zone in current.
  • the first quantity y is a control voltage U
  • the controlled value x is the bias current I of the intrinsic zone diode
  • the parameter h influencing the value of the current is the temperature T of the diode.
  • the embodiments according to the known art do not make it possible to obtain commands for the bias current I of the intrinsically-zone diode that are well regulated in temperature and having switching times between two very short command values.
  • the embodiments according to the prior art either the order is well temperature regulated but then the switching times are long, or the temperature regulation is ineffective.
  • Another object of the invention is to be able to supply this command and this regulation over a wide range of values of the quantity x and over a wide range of variations of the parameter h.
  • Another object of the invention is to allow this command between a minimum value x m and a maximum value x M with a large number of control steps.
  • a zero value will be applied to the other input if the value of the parameter h is effectively equal to h i and which will otherwise be equal to a value which is a function of the difference between the real value of the parameter h r and the reference value h i .
  • the value applied to the other input will be equal to H (hr-hi) , H (hr-hi) being the value of the correction to be applied to U i to obtain the value x i when h is not equal to h i but at h r .
  • H (hr-hi) being the value of the correction to be applied to U i to obtain the value x i when h is not equal to h i but at h r .
  • the method and the device according to the invention are particularly well suited when the change in the control voltage U i results in self-regulation as a function of the parameter h of a part of the means ensuring the correction H (hr-hi) .
  • a particularly simple embodiment of the invention is obtained when the laws of variation of y as a function of the parameter h are linear.
  • the sensor of the quantity h can be a linear sensor, the slope of the output quantity of the sensor as a function of h being of equal value and of sign opposite to one of the slopes of y p as a function of h.
  • the invention is also well suited to the case where the different functions U p (h) are arbitrary but deducible from one another by linear transformation.
  • h i designating a value of the interval h m h M a point of abscissa h of a second curve representative of y p , as a function of h is deduced from the point of the same abscissa h of a first curve representative of y p as a function of h by adding a constant term and a term proportional to the difference (hh i ).
  • the coefficient of proportionality is, when the curves are straight lines, the ratio of the slopes of the second and the first line.
  • the correction voltage can be applied by means of an operational amplifier, the gain of which is made proportional to the slope of the line representing the quantity y p as a function of the parameter h, when the controlled quantity x has the value x p .
  • the gain variation is obtained by changing the value of a resistor placed in an amplifier feedback circuit.
  • the correction voltage is the sum of two voltages, a so-called large step voltage obtained by dividing the total variation y M -y m by the number u of large steps and a so-called fine step voltage obtained by dividing the worth a big step either y M -y m u by the number v of fine steps be y M -y m uv
  • This curve shows that R is a one-to-one function of I so that the control of I leads to the control of R.
  • the control quantity "y" will be represented by the voltage U which should be applied to the input of an operational amplifier to obtain the value x represented here by the bias current of a diode connected to the output of the amplifier.
  • the parameter h is represented by the temperature T of the diode. It is known that when the temperature T of a PIN diode increases the bias voltage to be applied to the diode to obtain a constant output current I decreases.
  • D p represents the value of U as a function of T when the bias current is I p
  • D i represents the value of U when the current polarization is I i (I i > I p ).
  • D 3 be the line passing through the point A of the line D p , with coordinates T i and U i , and parallel to the line D i
  • a point on the line D i is deduced from a point on the line D 3 thus constructed by addition to the value of U represented by the line D 3 for a value of T with a constant value equal to AA i ,
  • a i being the point of the line D i with abscissa T i .
  • the line D 3 thus constructed is deduced from the line D p by addition to the value U T given by the line D p for an abscissa T of a magnitude (U - U T ) proportional to the difference between T and T i , the coefficient of proportionality being in this case the ratio of the slopes of the lines D i and D p .
  • a point of a second straight line representing U as a function of T for a constant value I is deduced well from a point of abscissa T of a first straight line by addition to the ordinate of the point of abscissa T on the first line of a constant term, here AA i and of a term proportional to the value of the abscissa difference (T - T i ), T i designating a value between the minimum temperature T m and the maximum temperature T M.
  • FIG. 4 represents a set of three curves C 1 , C 2 , C 3 , each of the curves representing the value to be given to the quantity y to keep the quantity x constant when the parameter h varied.
  • This figure represents a PIN diode 1 whose resistance R is to be controlled, therefore the current by means of a control voltage U.
  • the command and control device is constituted by means 2. This means applies to the input of an operational amplifier of great internal resistance 10 having two inputs a first 11, a second 12 and an output 13, the control voltage U, in the following manner.
  • the input 11 of this amplifier receives from a control circuit 200 a voltage U i which would be the voltage to be applied to obtain a value I i of the controlled current if the temperature of the diode had the reference value T i .
  • the input 12 of this amplifier is supplied by the output of a temperature sensor 30, this output being corrected by means 40 which receives the value of the command from the control circuit 200.
  • the sensor 30 is preferably located near the diode PIN 1 so that the temperature it senses is as close as possible to that of the diode.
  • the curves representing U as a function of T for constant I are straight lines (see Figure 2).
  • the corrections to be applied are shown in figure 6 in dotted lines.
  • the reference value T i is equal to 20 °, central value of the range -40 ° + 80 °.
  • FIG. 7 This figure is identical to Figure 5 but the device 40 has been detailed. It comprises an operational amplifier 41 comprising an output 12 and two inputs 43, 44. A feedback loop 47 brings the output voltage back to the input 43 by means of a variable resistor 46, the input 43 also receives the output voltage of the sensor 30, the variable resistor 46 is controlled by the command 200. The value of the resistor 46 is such that the gain of the operational amplifier 41 is proportional to the value of the slope of the correction line used for the value ordered.
  • the output 12 of the operational amplifier 41 is the second input of the operational amplifier 10.
  • the command 200 which controls the value of the voltage at the input of the amplifier 10 and the value of the resistor 46 placed in the counter loop reaction 47 has two parts 210 and 220 for performing each of these functions.
  • control part 210 in connection with the input 11 will now be described with reference to FIG. 8.
  • the arrival of the command is made in decibel, that is to say in logarithmic value, a first linearization would therefore be necessary to return to the value of linear attenuation.
  • the desired loss is a linear function of the value of the resistance entered to achieve the loss.
  • the resistance entered is the resistance of the PIN 1 diode, the variation curve of which as a function of I is shown in FIG. 1.
  • the control part 210 200 is produced in the following manner.
  • the input command 201 coded on 6 parallel bits 201a to 201 f is supplied with a clock signal. It therefore makes it possible to obtain 2 6, ie 64 attenuation steps distributed here between 0 and 64 decibels in steps of 1 decibel.
  • These signals are set to TTL 0.5 V standards by a D 202 flip-flop controlled by the clock signal.
  • the binary output word 203 of the flip-flop 202 which represents the input value according to TTL standards addresses two parallel circuits, one of these circuits whose reference numbers are simple represents the control of large pitch, the other whose Reference numbers are the same but with a prime sign represents the end pitch command.
  • the operation of the large pitch control will now be described.
  • the binary word 203 at the output of the flip-flop 202 addresses a programmable memory 204 whose boxes allow the storage of 8 bits.
  • the values stored in the memories make it possible to carry out a transposition achieving the linearization mentioned above. We understand that because of the linearization the width of the steps at the output of the memory is variable and that one may need very fine steps which can only be achieved by coding on a larger number of bits.
  • the output information of the addressed box of the memory 204 are resynchronized by a flip-flop D 205 and sent to a digital analog converter (ADC) 206.
  • ADC digital analog converter
  • the latter behaves like a resistor whose value changes according to the input values received .
  • the fine pitch command comprises the same elements having the same functions, namely a set of memory boxes 204 ′, a flip-flop 205 ′ and a digital analog converter 206 ′.
  • the output 11 of this amplifier is the input of the adder amplifier 10 of FIG. 7.
  • FIG. 9 represents a simplified diagram giving a synoptic view of the control and regulation assembly.
  • This figure shows that the attenuation control word 203 coming from the flip-flop 202 is sent not only to the transformation device represented in FIG. 8 by memories 204, flip-flops 205 (not represented in FIG. 9) and converters 206 but also towards an analog device 220 having an identical function constituted by a group of memories 221, a flip-flop 222 and a digital analog converter 46 which plays the role of variable resistance as explained during the description of FIG. 7.
  • the values displayed in the memories addressed by the control word 203 reproduce the image of a curve recorded during preliminary tests on a PIN 1 diode mounted, under the same conditions. They represent the values of resistors 206 respectively 46 to be displayed to obtain the controlled loss.
  • T T i the decibel attenuations by decibel up to 64 and the corresponding word on each of the coding wheels. This information is then entered on the keyboard of a programmer for each of the memories.
  • the programming of memories can also be computerized.
  • the output voltage of the temperature sensor 30 constitutes the reference voltage supplying the converter 46 and the input 43 of the operational amplifier 41. It is produced from a bare sensor and adapted for example by means of an amplifier operational so that its output voltage is equal to the supply voltage of the input 44 of the operational amplifier 41 when the temperature is equal to the reference temperature T i .
  • the adaptation is particularly simple since the curves U as a function of T are straight lines and there are sensors on the market giving a linear voltage as a function of temperature. This is why it is possible to be satisfied in this case with an adaptation by operational amplifier.
  • the adaptation may include a memory converter association to establish a corrected sensor output having the form of one of the functions y p (h).
  • the input quantity Y which is here a decibel loss
  • a value y which is here the value of the voltage U applied to the input of the operational amplifier 10 which, in turn, -same, conditions the value of a quantity x which is here the value of the output current I of the amplifier 10 which itself conditions a quantity X which is the value of the resistance of the diode PIN 1.
  • the attenuation obtained is almost constant when the temperature T varies from -20 ° to + 80 °.
  • the values obtained for a 16 dB and 37 dB command are shown in Figure 10.
  • the switching times between two commands are of the order of 200 nanoseconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)
  • Feedback Control In General (AREA)
  • Control Of Amplification And Gain Control (AREA)

Description

L'invention concerne les procédés et dispositifs destinés à commander à l'aide d'une première grandeur y une seconde grandeur x, cette seconde grandeur étant elle-même pour chacune des valeurs de la grandeur x une fonction connue d'un paramètre h que l'on ne contrôle pas. Le procédé suppose que la grandeur y est une fonction biunivoque de x : y = f(x) et que pour chacune des valeurs de la grandeur x telle que xp , xp est une fonction biunivoque d'un paramètre h tel que (xp ) = fp(h). Il s'ensuit également que pour une valeur de xp, y est une fonction de h, yp = gp(h).The invention relates to methods and devices intended to control using a first quantity y a second quantity x, this second quantity being itself for each of the values of the quantity x a known function of a parameter h that we don't control. The method assumes that the quantity y is a one-to-one function of x: y = f (x) and that for each of the values of the quantity x such that x p , x p is a one-to-one function of a parameter h such that (x p ) = f p (h). It also follows that for a value of x p , y is a function of h, y p = g p (h).

Le procédé et le dispositif selon l'invention sont applicables chaque fois qu'un point d'abscisse h de la courbe représentant une seconde valeur y2(h) peut se déduire du point de même abscisse h de la courbe représentant une première valeur y1(h) par addition d'une valeur qui est une fonction linéaire de h. L'invention est extensible à une grandeur de commande initiale Y fonction biunivoque de la grandeur y, commandant une valeur X fonction biunivoque de la variable x. Les fonctions Y(y), X(x) et Y(X) n'étant pas nécessairement linéaires.The method and the device according to the invention are applicable whenever a point of abscissa h of the curve representing a second value y 2 (h) can be deduced from the point of the same abscissa h of the curve representing a first value y 1 (h) by adding a value which is a linear function of h. The invention can be extended to an initial control quantity Y one-to-one function of the quantity y, controlling a value X one-to-one function of the variable x. The functions Y (y) , X (x) and Y (X) are not necessarily linear.

L'invention concerne en particulier mais non pas exclusivement une commande en tension destinée à polariser en courant une diode à zone intrinsèque. Dans cette application la première grandeur y est une tension de commande U, la valeur commandée x est le courant de polarisation I de la diode à zone intrinsèque et le paramètre h influant sur la valeur du courant est la température T de la diode. La nécessité de contrôler strictement la valeur du courant I de polarisation directe d'une diode à zone intrinsèque PIN ou NIP se rencontre chaque fois que dans un circuit on veut contrôler la valeur de la résistance R de cette diode et en particulier chaque fois que la diode a une fonction d'atténuateur commandable.The invention relates in particular, but not exclusively, to a voltage control intended to bias a diode with an intrinsic zone in current. In this application the first quantity y is a control voltage U, the controlled value x is the bias current I of the intrinsic zone diode and the parameter h influencing the value of the current is the temperature T of the diode. The need to strictly control the value of the direct bias current I of a diode with an intrinsic zone PIN or NIP is encountered each time in a circuit we want to control the value of the resistance R of this diode and in particular each time the diode has a controllable attenuator function.

Les réalisations selon l'art connu ne permettent pas d'obtenir des commandes du courant I de polarisation de la diode à zone intrinsèque bien régulées en température et ayant des temps de commutation entre deux valeurs de commande très courts. Dans les réalisations selon l'art antérieur, soit la commande est bien régulée en température mais alors les temps de commutation sont longs, soit la régulation en température est inefficace.The embodiments according to the known art do not make it possible to obtain commands for the bias current I of the intrinsically-zone diode that are well regulated in temperature and having switching times between two very short command values. In the embodiments according to the prior art, either the order is well temperature regulated but then the switching times are long, or the temperature regulation is ineffective.

Le but de la présente invention est donc de permettre la commande rapide à l'aide d'une grandeur y et la régulation efficace d'une grandeur x qui pour chacune de ses valeurs xp est une fonction connue fp(h) d'un paramètre h, ce qui implique que pour chaque valeur xp la grandeur y est une fonction yp= gp(h), lorsque les différentes fonctions gp(h) ont la propriété que la valeur d'une seconde fonction gp′(h) peut se déduire d'une valeur d'une première fonction gp(h) pour la même valeur h par addition d'un terme constant et d'un terme proportionnel à l'écart entre la valeur réelle de h, hr et une valeur de références hi.The object of the present invention is therefore to allow rapid control using a quantity y and effective regulation of a quantity x which for each of its values x p is a known function f p (h) d ' a parameter h, which implies that for each value x p the quantity y is a function y p = g p (h), when the different functions g p (h) have the property that the value of a second function g p ′ (H) can be deduced from a value of a first function g p (h) for the same value h by adding a constant term and a term proportional to the difference between the real value of h, h r and a reference value h i .

Un autre but de l'invention est de pouvoir fournir cette commande et cette régulation sur une large gamme de valeur de la grandeur x et sur une large gamme de variations du paramètre h.Another object of the invention is to be able to supply this command and this regulation over a wide range of values of the quantity x and over a wide range of variations of the parameter h.

Un autre but de l'invention est de permettre cette commande entre une valeur minimum xm et une valeur maximum xM avec un grand nombre de pas de commande.Another object of the invention is to allow this command between a minimum value x m and a maximum value x M with a large number of control steps.

Pour réaliser l'invention on utilise les propriétés des amplificateurs opérationnels.To carry out the invention, the properties of the operational amplifiers are used.

On sait que la tension de sortie d'un amplificateur opérationnel est proportionnelle à la différence des tensions appliquées sur chacune de ses deux bornes d'entrée. C'est cette propriété qui va être utilisée dans le procédé selon l'invention. Pour cela on appliquera à l'une des bornes d'entrée une tension Ui égale à la tension qu'il faudrait appliquer pour obtenir, si le paramètre h avait une valeur de référence hi, la valeur xi que l'on veut obtenir.We know that the output voltage of an operational amplifier is proportional to the difference of the voltages applied to each of its two input terminals. It is this property which will be used in the method according to the invention. For this we will apply to one of the input terminals a voltage U i equal to the voltage that should be applied to obtain, if the parameter h had a reference value h i , the value x i that we want get.

On appliquera à l'autre entrée une valeur nulle si la valeur du paramètre h est effectivement égale à hi et qui sera égale dans le cas contraire à une valeur fonction de la différence entre la valeur réelle du paramètre hr et la valeur de référence hi. La valeur appliquée à l'autre entrée sera égale à H(hr-hi), H(hr-hi) étant la valeur de la correction à appliquer à Ui pour obtenir la valeur xi lorsque h n'est pas égal à hi mais à hr. Pour appliquer le procédé il convient donc de mesurer le paramètre h à l'endroit où ce paramètre influe sur la grandeur x et de créer par calcul ou par tout autre moyen la correction nécessaire pour tenir compte de la valeur réelle hr du paramètre h.A zero value will be applied to the other input if the value of the parameter h is effectively equal to h i and which will otherwise be equal to a value which is a function of the difference between the real value of the parameter h r and the reference value h i . The value applied to the other input will be equal to H (hr-hi) , H (hr-hi) being the value of the correction to be applied to U i to obtain the value x i when h is not equal to h i but at h r . To apply the process, it is therefore necessary to measure the parameter h at the place where this parameter influences the quantity x and to create by calculation or by any other means the correction necessary to take account of the real value h r of the parameter h.

Le procédé et le dispositif selon l'invention sont particulièrement bien adaptés lorsque le changement de la tension de commande Ui a pour conséquence une autorégulation en fonction du paramètre h d'une partie des moyens assurant la correction H(hr-hi).The method and the device according to the invention are particularly well suited when the change in the control voltage U i results in self-regulation as a function of the parameter h of a part of the means ensuring the correction H (hr-hi) .

L'invention concerne donc un procédé de commande d'une grandeur x entre deux valeurs xm et xM, par action sur une grandeur de commande y avec laquelle la grandeur x est en relation biunivoque lorsque la valeur d'un paramètre h auquel est sensible la grandeur x reste constante, la grandeur y devant varier entre deux valeurs ym et yM pour faire varier la grandeur x de xm à xM lorsque le paramètre h a une valeur de référence hi, la grandeur x étant elle-même pour chacune des valeurs xp commandées une fonction biunivoque du paramètre h, le paramètre h étant susceptible de varier dans un intervalle prédéterminé hm,hM incluant la valeur de référence hi, en sorte que l'on sait définir pour chacune des valeurs xp de la variable x une fonction yp = gp(h), yp étant la valeur à donner à la grandeur y pour obtenir la valeur xp lorsque le paramètre a la valeur h, les différentes fonctions gp(h) ayant la propriété que la valeur d'une seconde fonction gp(h) peut pour toute valeur de h comprise dans l'intervalle hm,hM se déduire de la valeur d'une première fonction gp(h) pour la même valeur du paramètre h, par addition d'un terme connu en fonction de la différence entre la valeur réelle mesurée hr du paramètre h et la valeur de référence hi, procédé caractérisé en ce que la grandeur x est représentée par la grandeur de sortie d'un amplificateur opérationnel ayant deux entrées : une première et une seconde, en ce qu'on applique à la première entrée une tension Ui représentative de la grandeur de commande yi à appliquer pour obtenir la grandeur de sortie de valeur xi lorsque h a la valeur de référence hi, la tension Ui variant de Um à UM lorsque xi varie de xm à xM, et en ce qu'on applique à la seconde entrée une tension Vc qui est la grandeur de sortie corrigée d'un capteur du paramètre h, la sortie du capteur étant corrigée de telle sorte que la tension corrigée Vc soit égale à 0 lorsque h est égal à hi et dans le cas contraire égale a H(hr-hi), la fonction H(hr-hi) représentant la valeur de la correction à appliquer à la grandeur de commande Ui pour obtenir la valeur commandée xi lorsque le paramètre h passe de la valeur de référence hi à la valeur mesurée hr.The invention therefore relates to a method for controlling a quantity x between two values x m and x M , by action on a control quantity y with which the quantity x is in one-to-one relation when the value of a parameter h at which is sensitive the quantity x remains constant, the quantity y having to vary between two values y m and y M in order to vary the quantity x from x m to x M when the parameter ha has a reference value h i , the quantity x being itself for each of the values x p ordered a one-to-one function of the parameter h, the parameter h being capable of varying within a predetermined interval h m , h M including the reference value h i , so that we know how to define for each of the values x p of the variable x a function y p = g p (h), y p being the value to be given to the quantity y to obtain the value x p when the parameter has the value h, the different functions g p (h) having the property that the value of a second function g p (h) can for any value of h included in the interval h m , h M be deduced from the value of a first function g p (h) for the same value of the parameter h, by addition of a known term as a function of the difference between the actual measured value h r of the parameter h and the reference value h i , process characterized in that the quantity x is represented by the output quantity of an operational amplifier having two inputs: a first and a second, in that one applies to the first input a voltage U i representative of the control quantity y i to be applied to obtain the output quantity of value x i when ha the reference value h i , the voltage U i varying from U m to U M when x i varies from x m to x M , and in that a voltage V c is applied to the second input which is the corrected output quantity of a sensor of the parameter h, the output of the sensor being corrected so that the corrected voltage V c is equal at 0 when h is equal to h i and otherwise equal to H (hr-hi), the function H (hr-hi) representing the value of the correction to be applied to the control quantity U i to obtain the value commanded x i when the parameter h changes from the reference value h i to the measured value h r .

Un cas particulièrement simple de réalisation de l'invention est obtenu lorsque les lois de variation de y en fonction du paramètre h sont linéaires. Dans ce cas le capteur de la grandeur h peut être un capteur linéaire, la pente de la grandeur de sortie du capteur en fonction de h étant de valeur égale et de signe opposé à l'une des pentes de yp en fonction de h.A particularly simple embodiment of the invention is obtained when the laws of variation of y as a function of the parameter h are linear. In this case, the sensor of the quantity h can be a linear sensor, the slope of the output quantity of the sensor as a function of h being of equal value and of sign opposite to one of the slopes of y p as a function of h.

L'invention est aussi bien adaptée au cas où les différentes fonctions Up(h) sont quelconques mais déductibles l'une de l'autre par transformation linéaire.The invention is also well suited to the case where the different functions U p (h) are arbitrary but deducible from one another by linear transformation.

Dans ces deux cas hi désignant une valeur de l'intervalle hm hM un point d'abscisse h d'une seconde courbe représentative de yp, en fonction de h se déduit du point de même abscisse h d'une première courbe représentative de yp en fonction de h par addition d'un terme constant et d'un terme proportionnel à l'écart (h-hi). Le coefficient de proportionnalité est, lorsque les courbes sont des droites, le rapport des pentes de la seconde et de la première droite.In these two cases h i designating a value of the interval h m h M a point of abscissa h of a second curve representative of y p , as a function of h is deduced from the point of the same abscissa h of a first curve representative of y p as a function of h by adding a constant term and a term proportional to the difference (hh i ). The coefficient of proportionality is, when the curves are straight lines, the ratio of the slopes of the second and the first line.

De préférence la valeur hi de référence est choisie au milieu de la plage de variation de h en sorte que h i = h m + h M 2

Figure imgb0001
Preferably the reference value h i is chosen in the middle of the variation range of h so that h i = h m + h M 2
Figure imgb0001

De préférence la fonction de référence ypr = gpr(h) à partir de laquelle sont déduites les autres fonctions gp(h) est choisie de telle sorte qu'elle corresponde à la fonction pour laquelle la grandeur xp commandée se situe au centre de la plage de variation de la grandeur x en sorte que cette valeur xpr soit égale à : x pr = x m +x M 2

Figure imgb0002
Preferably the reference function y pr = g pr (h) from which the other functions g p (h) are deduced is chosen so that it corresponds to the function for which the quantity x p ordered is located at center of the range of variation of the quantity x so that this value x pr is equal to: x pr = x m + x M 2
Figure imgb0002

Dans le cas particulièrement simple où les lois de variation de y en fonction du paramètre h sont linéaires, la tension de correction peut être appliquée par l'intermédiaire d'un amplificateur opérationnel dont le gain est rendu proportionnel à la pente de la droite représentant la grandeur yp en fonction du paramètre h, lorsque la grandeur commandée x à la valeur xp. La variation de gain est obtenue par changement de la valeur d'une résistance placée dans un circuit de contre réaction de l'amplificateur.In the particularly simple case where the laws of variation of y as a function of the parameter h are linear, the correction voltage can be applied by means of an operational amplifier, the gain of which is made proportional to the slope of the line representing the quantity y p as a function of the parameter h, when the controlled quantity x has the value x p . The gain variation is obtained by changing the value of a resistor placed in an amplifier feedback circuit.

Si nécessaire la tension de correction est la somme de deux tensions, une tension dite de pas gros obtenue par division de la variation totale yM-ym par le nombre u de pas gros et une tension dite de pas fin obtenue par division de la valeur d'un pas gros soit y M -y m u

Figure imgb0003
par le nombre v de pas fins soit y M -y m uv
Figure imgb0004
If necessary, the correction voltage is the sum of two voltages, a so-called large step voltage obtained by dividing the total variation y M -y m by the number u of large steps and a so-called fine step voltage obtained by dividing the worth a big step either y M -y m u
Figure imgb0003
by the number v of fine steps be y M -y m uv
Figure imgb0004

Le procédé et le dispositif selon l'invention seront ci-après décrits dans le cas d'application à la commande en courant d'une diode PIN.The method and the device according to the invention will be described below in the case of application to the current control of a PIN diode.

Un mode général de réalisation, un exemple particulier de réalisation du procédé et un dispositif destiné à appliquer le procédé pour cet exemple particulier de réalisation seront ci-après décrits en référence aux dessins annexés dans lesquels :

  • la figure 1 représente la variation de la résistance R d'une diode à zone intrinsèque PIN ou NIP lorsqu'elle est polarisée en direct par un courant I ;
  • la figure 2 représente la valeur de la tension U à appliquer à une diode ayant un courant de sortie constant lorsque la température varie pour différentes valeurs de courant ;
  • la figure 3 représente un grossissement à des fins explicatives de courbes de la figure 2 ;
  • la figure 4 représente des courbes de valeurs que doit prendre une grandeur de commande y pour garder constante une grandeur commandée x lorsqu'un paramètre auquel est sensible la grandeur x, varie ;
  • la figure 5 représente un schéma de l'invention sous sa forme la plus générale ;
  • la figure 6 représente des droites dites de correction de la valeur de la tension de commande en fonction du paramètre h ;
  • la figure 7 représente la forme de réalisation de l'invention lorsque les fonctions yp = gp(h) sont linéaires ;
  • la figure 8 représente une manière de réaliser l'invention lorsque la grandeur y est elle-même commandée par une grandeur Y et que la variable commandée en finale n'est pas la variable x mais une variable X fonction biunivoque de x ;
  • la figure 9 représente le schéma synoptique d'ensemble de la réalisation particulière.
  • la figure 10 illustre les résultats obtenus.
A general embodiment, a particular embodiment of the method and a device intended to apply the method for this particular embodiment will be described below with reference to the accompanying drawings in which:
  • FIG. 1 represents the variation of the resistance R of a PIN or NIP intrinsic zone diode when it is forward biased by a current I;
  • FIG. 2 represents the value of the voltage U to be applied to a diode having a constant output current when the temperature varies for different current values;
  • Figure 3 shows a magnification for explanatory purposes of the curves of Figure 2;
  • FIG. 4 represents curves of values which a control quantity y must take to keep a controlled quantity x constant when a parameter to which the quantity x is sensitive varies;
  • FIG. 5 represents a diagram of the invention in its most general form;
  • FIG. 6 represents so-called straight lines for correcting the value of the control voltage as a function of the parameter h;
  • FIG. 7 represents the embodiment of the invention when the functions y p = g p (h) are linear;
  • FIG. 8 represents a way of implementing the invention when the quantity y is itself controlled by a quantity Y and the variable ordered in the end is not the variable x but a variable X one-to-one function of x;
  • FIG. 9 represents the overall block diagram of the particular embodiment.
  • FIG. 10 illustrates the results obtained.

L'exemple particulier d'application de l'invention qui va suivre est relatif à la commande d'un courant de polarisation d'une diode PIN.The particular example of application of the invention which follows relates to the control of a bias current of a PIN diode.

Comme expliqué plus haut on sait que la résistance de la diode est déterminée par l'intensité I du courant de polarisation. La courbe représentant la valeur de R en fonction de I est représentée figure 1.As explained above, it is known that the resistance of the diode is determined by the intensity I of the bias current. The curve representing the value of R as a function of I is shown in Figure 1.

Cette courbe montre que R est une fonction biunivoque de I en sorte que le contrôle de I entraîne le contrôle de R. Dans cet exemple de réalisation la grandeur de contrôle "y" sera représentée par la tension U qu'il convient d'appliquer à l'entrée d'un amplificateur opérationnel pour obtenir la valeur x représentée ici par le courant de polarisation d'une diode branchée en sortie de l'amplificateur.This curve shows that R is a one-to-one function of I so that the control of I leads to the control of R. In this example embodiment the control quantity "y" will be represented by the voltage U which should be applied to the input of an operational amplifier to obtain the value x represented here by the bias current of a diode connected to the output of the amplifier.

Le paramètre h est représenté par la température T de la diode. On sait que lorsque la température T d'une diode PIN augmente la tension de polarisation à appliquer à la diode pour obtenir un courant de sortie I constant diminue.The parameter h is represented by the temperature T of the diode. It is known that when the temperature T of a PIN diode increases the bias voltage to be applied to the diode to obtain a constant output current I decreases.

Les courbes représentant la tension U qu'il est nécessaire d'appliquer à l'entrée de l'amplificateur pour obtenir un courant constant lorsque la température T varie sont représentées figure 2 pour des valeurs de I de 1uA, 1mA et 10mA.The curves representing the voltage U which it is necessary to apply to the input of the amplifier to obtain a constant current when the temperature T varies are shown in FIG. 2 for values of I of 1uA, 1mA and 10mA.

Il s'agit de droites ayant des pentes différentes.These are straight lines with different slopes.

Deux de ces droites ont été représentées figure 3, l'une de ces droites, Dp, représente la valeur de U en fonction de T lorsque le courant de polarisation est Ip, la seconde Di représente la valeur de U lorsque le courant de polarisation est Ii (Ii >Ip).Two of these lines have been shown in FIG. 3, one of these lines, D p, represents the value of U as a function of T when the bias current is I p , the second D i represents the value of U when the current polarization is I i (I i > I p ).

On voit sur cette figure que la droite Di peut se déduire de la droite Dp de la façon suivante.We see in this figure that the line D i can be deduced from the line D p in the following way.

Soit D3 la droite passant par le point A de la droite Dp, de coordonnées Ti et Ui, et parallèle à la droite Di Un point de la droite Di se déduit d'un point de la droite D3 ainsi construite par addition à la valeur de U représentée par la droite D3 pour une valeur de T d'une valeur constante égale à AAi, Ai étant le point de la droite Di d'abscisse Ti.Let D 3 be the line passing through the point A of the line D p , with coordinates T i and U i , and parallel to the line D i A point on the line D i is deduced from a point on the line D 3 thus constructed by addition to the value of U represented by the line D 3 for a value of T with a constant value equal to AA i , A i being the point of the line D i with abscissa T i .

La droite D3 ainsi construite se déduit de la droite Dp par addition à la valeur UT donnée par la droite Dp pour une abscisse T d'une grandeur (U - UT) proportionnelle à l'écart entre T et Ti, le coefficient de proportionnalité étant dans ce cas le rapport des pentes des droites Di et Dp.The line D 3 thus constructed is deduced from the line D p by addition to the value U T given by the line D p for an abscissa T of a magnitude (U - U T ) proportional to the difference between T and T i , the coefficient of proportionality being in this case the ratio of the slopes of the lines D i and D p .

Il en résulte que la droite Di représentant U en fonction de T lorsque I à la valeur Ii se déduit de la droite Dp représentant la valeur de U lorsque I a la valeur Ip, à une constante additive près qui est ici A Ai par addition à l'ordonnée U(T) obtenue sur la droite Dp pour la valeur T d'une grandeur Kip (T - Ti) , le coefficient de proportionnalité Kip étant dans ce cas égal au rapport des pentes des droites Di et Dp.It follows that the line D i representing U as a function of T when I at the value I i is deduced from the line D p representing the value of U when I has the value I p , except for an additive constant which is here AA i by addition to the ordinate U (T) obtained on the line D p for the value T of a quantity K ip (T - T i ), the coefficient of proportionality K ip being in this case equal to the ratio of the slopes of the lines D i and D p .

Il s'ensuit qu'un point d'une seconde droite représentant U en fonction de T pour une valeur I constante se déduit bien d'un point d'abscisse T d'une première droite par addition à l'ordonnée du point d'abcisse T sur la première droite d'un terme constant, ici A Ai et d'un terme proportionnel à la valeur de la différence d'abscisse (T - Ti), Ti désignant une valeur comprise entre la température minimum Tm et la température maximum TM.It follows that a point of a second straight line representing U as a function of T for a constant value I is deduced well from a point of abscissa T of a first straight line by addition to the ordinate of the point of abscissa T on the first line of a constant term, here AA i and of a term proportional to the value of the abscissa difference (T - T i ), T i designating a value between the minimum temperature T m and the maximum temperature T M.

Les différentes courbes ne sont pas nécessairement des droites ainsi la figure 4 représente un ensemble de trois courbes C1, C2, C3, chacune des courbes représentant la valeur à donner à la grandeur y pour conserver constante la grandeur x lorsque le paramètre h varie.The different curves are not necessarily straight lines, thus FIG. 4 represents a set of three curves C 1 , C 2 , C 3 , each of the curves representing the value to be given to the quantity y to keep the quantity x constant when the parameter h varied.

Elle représente également un point A sur la courbe C1 de coordonnées hi yi et un point Ai sur la courbe C3 d'abscisse hi. Le procédé est applicable si un point quelconque B de la courbe C3 d'abscisse h se déduit du point C d'abscisse h de la courbe C1 par addition à l'ordonnée de C de la valeur A Ai et d'un terme proportionnel à y(h-hi), le coefficient de proportionnalité étant le même pour tous les points C et B des courbes C1 et C3, ou des courbes C1' C3' obtenues par une première transformation de C1 et C3.It also represents a point A on the curve C 1 with coordinates h i y i and a point A i on the curve C 3 of abscissa h i . The method is applicable if any point B of the curve C 3 of abscissa h is deduced from the point C of abscissa h of the curve C 1 by addition to the ordinate of C of the value AA i and of a term proportional to y (h-hi) , the proportionality coefficient being the same for all points C and B of curves C 1 and C 3 , or of curves C 1 'C 3 ' obtained by a first transformation of C 1 and C 3 .

Un dispositif permettant de réaliser l'invention sous sa forme la plus générale sera maintenant décrit en référence à la figure 5.A device making it possible to carry out the invention in its most general form will now be described with reference to FIG. 5.

Cette figure représente une diode PIN 1 dont on souhaite commander la résistance R donc le courant au moyen d'une tension de commande U. Le dispositif de commande et de contrôle est constitué par un moyen 2. Ce moyen applique à l'entrée d'un amplificateur opérationnel de grande résistance interne 10 ayant deux entrées une première 11, une seconde 12 et une sortie 13, la tension de commande U, de la façon suivante. L'entrée 11 de cet amplificateur reçoit d'un circuit de commande 200 une tension Ui qui serait la tension à appliquer pour obtenir une valeur Ii du courant commandé si la température de la diode avait la valeur de référence Ti.This figure represents a PIN diode 1 whose resistance R is to be controlled, therefore the current by means of a control voltage U. The command and control device is constituted by means 2. This means applies to the input of an operational amplifier of great internal resistance 10 having two inputs a first 11, a second 12 and an output 13, the control voltage U, in the following manner. The input 11 of this amplifier receives from a control circuit 200 a voltage U i which would be the voltage to be applied to obtain a value I i of the controlled current if the temperature of the diode had the reference value T i .

L'entrée 12 de cet amplificateur est alimentée par la sortie d'un capteur de température 30, cette sortie étant corrigée par un moyen 40 qui reçoit la valeur de la commande en provenance du circuit de commande 200. Le capteur 30 est de préférence situé près de la diode PIN 1 en sorte que la température qu'il capte soit aussi proche que possible de celle de la diode.The input 12 of this amplifier is supplied by the output of a temperature sensor 30, this output being corrected by means 40 which receives the value of the command from the control circuit 200. The sensor 30 is preferably located near the diode PIN 1 so that the temperature it senses is as close as possible to that of the diode.

Comme expliqué plus haut le procédé et le dispositif selon l'invention sont particulièrement intéressants lorsque le dispositif de correction de la tension délivrée par le capteur 30 est autorégulé. Il a été vu plus haut que lorsque les fonctions yp = gp(h) sont déductibles l'une de l'autre par transformation linéaire il est possible d'obtenir ce résultat en employant un amplificateur opérationnel. Les courbes représentant U en fonction de T pour I constant sont des droites (cf figure 2). Les corrections à appliquer sont représentées figure 6 en pointillé.As explained above, the method and the device according to the invention are particularly advantageous when the device for correcting the voltage delivered by the sensor 30 is self-regulating. It has been seen above that when the functions y p = g p (h) are deductible from one another by linear transformation it is possible to obtain this result by using an operational amplifier. The curves representing U as a function of T for constant I are straight lines (see Figure 2). The corrections to be applied are shown in figure 6 in dotted lines.

Sur cette figure, la valeur de référence Ti est égale à 20°, valeur centrale de la plage -40° + 80°.In this figure, the reference value T i is equal to 20 °, central value of the range -40 ° + 80 °.

La droite B1 de correction 1 est de pente opposée à la droite I1 représentant U en fonction T pour I égal à une première constante 1. Il en est de même pour les droites B2, B3 de correction 2 et 3 et les droites I2 et I3 ,I= constante 2, I = constante 3.The line B 1 of correction 1 is of slope opposite to the line I 1 representing U as a function T for I equal to a first constant 1. The same is true for the lines B 2 , B 3 of correction 2 and 3 and the lines I 2 and I 3 , I = constant 2, I = constant 3.

La droite de correction B1 croise la droite I1 en un point d'abscisse Ti = 20°. Il en est de même pour les droites de correction 2 et 3 et les droites I = constante 2 et I = constante 3. Cela signifie que pour T = 20°, la valeur à appliquer à la borne 12 est égale à 0.The correction line B 1 crosses the line I 1 at a point on the abscissa T i = 20 °. It is the same for the correction lines 2 and 3 and the lines I = constant 2 and I = constant 3. This means that for T = 20 °, the value to be applied to terminal 12 is equal to 0.

Lorsque T est différent de 20° il convient d'appliquer une correction, qui par exemple si I = constante 1 est la valeur désirée, doit être proportionnelle à la différence d'ordonnée entre la droite I = constante 1 et la droite B1 de correction 1 pour l'abscisse T considérée.When T is different from 20 ° a correction should be applied, which for example if I = constant 1 is the desired value, must be proportional to the difference of ordinate between the line I = constant 1 and the line B 1 of correction 1 for the abscissa T considered.

Il a été vu qu'il est possible de réaliser un dispositif utilisant un amplificateur opérationnel. Un tel dispositif est représenté figure 7. Cette figure est identique à la figure 5 mais le dispositif 40 a été détaillé. Il comporte un amplificateur opérationnel 41 comportant une sortie 12 et deux entrées 43, 44. Une boucle de retour 47 ramène la tension de sortie vers l'entrée 43 par l'intermédiaire d'une résistance variable 46, l'entrée 43 reçoit également la tension de sortie du capteur 30, la résistance variable 46 est commandée par la commande 200. La valeur de la résistance 46 est telle que le gain de l'amplificateur opérationnel 41 est proportionnel à la valeur de la pente de la droite de correction utilisée pour la valeur commandée.It has been seen that it is possible to produce a device using an operational amplifier. Such a device is shown in Figure 7. This figure is identical to Figure 5 but the device 40 has been detailed. It comprises an operational amplifier 41 comprising an output 12 and two inputs 43, 44. A feedback loop 47 brings the output voltage back to the input 43 by means of a variable resistor 46, the input 43 also receives the output voltage of the sensor 30, the variable resistor 46 is controlled by the command 200. The value of the resistor 46 is such that the gain of the operational amplifier 41 is proportional to the value of the slope of the correction line used for the value ordered.

Le fonctionnement est le suivant :The operation is as follows:

Lorsque T = Ti la tension de sortie de l'amplificateur 41 est nulle. Elle varie ensuite proportionnellement à l'écart entre T et Ti, la valeur de la pente de variation étant fixée par la valeur du gain de l'amplificateur opérationnel lui-même commandé par la valeur affichée pour le courant I par la commande 200.When T = T i the output voltage of the amplifier 41 is zero. It then varies in proportion to the difference between T and T i , the value of the variation slope being fixed by the value of the gain of the operational amplifier itself controlled by the value displayed for the current I by the command 200.

La sortie 12 de l'amplificateur opérationnel 41 est la seconde entrée de l'amplificateur opérationnel 10.The output 12 of the operational amplifier 41 is the second input of the operational amplifier 10.

La commande 200 qui commande la valeur de la tension à l'entrée de l'amplificateur 10 et la valeur de la résistance 46 placée dans la boucle de contre réaction 47 comporte deux parties 210 et 220 pour réaliser chacune de ces fonctions.The command 200 which controls the value of the voltage at the input of the amplifier 10 and the value of the resistor 46 placed in the counter loop reaction 47 has two parts 210 and 220 for performing each of these functions.

Un mode de réalisation de la partie 210 de commande 200 en liaison avec l'entrée 11 sera maintenant décrit en référence à la figure 8.An embodiment of the control part 210 in connection with the input 11 will now be described with reference to FIG. 8.

Dans ce mode de réalisation l'arrivée de commande est faite en décibel, c'est à dire en valeur logarithmique, une première linéarisation serait donc nécessaire pour revenir en valeur d'affaiblissement linéaire. L'affaiblissement souhaité est une fonction linéaire de la valeur de la résistance introduite pour réaliser l'affaiblissement. La résistance introduite est la résistance de la diode PIN 1 dont la courbe de variation en fonction de I est représentée figure 1.In this embodiment the arrival of the command is made in decibel, that is to say in logarithmic value, a first linearization would therefore be necessary to return to the value of linear attenuation. The desired loss is a linear function of the value of the resistance entered to achieve the loss. The resistance entered is the resistance of the PIN 1 diode, the variation curve of which as a function of I is shown in FIG. 1.

Cette courbe n'étant pas une droite, il serait nécessaire d'introduire une deuxième transformation de linéarisation de telle sorte que le moyen 40 fonctionne bien de façon linéaire comme indiqué plus haut en référence à la description de la figure 7. Ces deux linéarisations sont introduites en une seule. Enfin dans cette réalisation, étant donné la précision recherchée, il fallait un pas très fin. Cela est obtenu en scindant la tension de commande en deux pas, un pas gros et un pas fin, les deux tensions étant ajoutées.Since this curve is not a straight line, it would be necessary to introduce a second linearization transformation so that the means 40 works well in a linear fashion as indicated above with reference to the description of FIG. 7. These two linearizations are introduced in one. Finally in this realization, given the precision sought, a very fine step was required. This is achieved by splitting the control voltage into two steps, a large step and a fine step, the two voltages being added.

La partie 210 de commande 200 est réalisée de la façon suivante. La commande d'entrée 201 codée sur 6 bits parallèles 201a à 201 f est fournie avec un signal d'horloge. Elle permet donc d'obtenir 26 soit 64 pas d'atténuation répartis ici entre 0 et 64 décibels par pas de 1 décibel.The control part 210 200 is produced in the following manner. The input command 201 coded on 6 parallel bits 201a to 201 f is supplied with a clock signal. It therefore makes it possible to obtain 2 6, ie 64 attenuation steps distributed here between 0 and 64 decibels in steps of 1 decibel.

Ces signaux sont mis aux normes TTL 0.5 V par une bascule D 202 commandée par le signal d'horloge.These signals are set to TTL 0.5 V standards by a D 202 flip-flop controlled by the clock signal.

Le mot binaire de sortie 203 de la bascule 202 qui représente la valeur d'entrée aux normes TTL adresse deux circuits parallèles, l'un de ces circuits dont les numéros de référence sont simples représente la commande de pas gros, l'autre dont les numéros de référence sont les mêmes mais avec un signe prime représente la commande de pas fin. Le fonctionnement de la commande de pas gros sera maintenant décrit. Le mot binaire 203 en sortie de la bascule 202 adresse une mémoire programmable 204 dont les cases permettent le stockage de 8 bits. Les valeurs stockées dans les mémoires permettent d'effectuer une transposition réalisant la linéarisation évoquée plus haut. On comprend que du fait de la linéarisation la largeur des pas en sortie de la mémoire est variable et que l'on peut avoir besoin de pas très fins qui ne peuvent être atteints que par un codage sur un nombre de bits plus importants.The binary output word 203 of the flip-flop 202 which represents the input value according to TTL standards addresses two parallel circuits, one of these circuits whose reference numbers are simple represents the control of large pitch, the other whose Reference numbers are the same but with a prime sign represents the end pitch command. The operation of the large pitch control will now be described. The binary word 203 at the output of the flip-flop 202 addresses a programmable memory 204 whose boxes allow the storage of 8 bits. The values stored in the memories make it possible to carry out a transposition achieving the linearization mentioned above. We understand that because of the linearization the width of the steps at the output of the memory is variable and that one may need very fine steps which can only be achieved by coding on a larger number of bits.

On comprend également qu'un tel procédé de transposition permet de linéariser les relations de deux grandeurs en correspondance biunivoque l'une avec l'autre.It is also understood that such a transposition method makes it possible to linearize the relations of two quantities in one-to-one correspondence with one another.

Les informations de sortie de la case adressée de la mémoire 204 sont resynchronisées par une bascule D 205 et envoyées vers un convertisseur numérique analogique (CAN) 206. Ce dernier se comporte comme une résistance dont la valeur change en fonction des valeurs d'entrée reçues.The output information of the addressed box of the memory 204 are resynchronized by a flip-flop D 205 and sent to a digital analog converter (ADC) 206. The latter behaves like a resistor whose value changes according to the input values received .

La commande de pas fin comporte les mêmes éléments ayant les mêmes fonctions soit un ensemble de cases mémoires 204', une bascule 205' et un convertisseur numérique analogique 206'. Les deux résistances constituées par les deux convertisseurs 206 et 206' sont branchées en parallèle entre un générateur de tension de référence non représenté et l'entrée 207 d'un amplificateur opérationnel 208.The fine pitch command comprises the same elements having the same functions, namely a set of memory boxes 204 ′, a flip-flop 205 ′ and a digital analog converter 206 ′. The two resistors constituted by the two converters 206 and 206 'are connected in parallel between a reference voltage generator not shown and the input 207 of an operational amplifier 208.

La sortie 11 de cet amplificateur est l'entrée de l'amplificateur additionneur 10 de la figure 7.The output 11 of this amplifier is the input of the adder amplifier 10 of FIG. 7.

Le reste 220 de la commande 200 sera maintenant décrit en référence à la figure 9 qui représente un schéma simplifié donnant une vision synoptique de l'ensemble de commande et de régulation.The remainder 220 of the control 200 will now be described with reference to FIG. 9 which represents a simplified diagram giving a synoptic view of the control and regulation assembly.

Cette figure montre que le mot de commande d'affaiblissement 203 en provenance de la bascule 202 est envoyé non seulement vers le dispositif de transformation représenté figure 8 par des mémoires 204, des bascules 205 (non représenté figure 9) et des convertisseurs 206 mais aussi vers un dispositif analogue 220 ayant une fonction identique constitué par un groupe de mémoires 221, une bascule 222 et un convertisseur numérique analogique 46 qui joue le rôle de résistance variable comme expliqué lors de la description de la figure 7. Les valeurs affichées dans les mémoires adressées par le mot de commande 203 reproduisent l'image d'une courbe relevée lors d'essais préliminaires sur une diode PIN 1 montée, dans les mêmes conditions. Elles représentent les valeurs des résistances 206 respectivement 46 à afficher pour obtenir l'affaiblissement commandé.This figure shows that the attenuation control word 203 coming from the flip-flop 202 is sent not only to the transformation device represented in FIG. 8 by memories 204, flip-flops 205 (not represented in FIG. 9) and converters 206 but also towards an analog device 220 having an identical function constituted by a group of memories 221, a flip-flop 222 and a digital analog converter 46 which plays the role of variable resistance as explained during the description of FIG. 7. The values displayed in the memories addressed by the control word 203 reproduce the image of a curve recorded during preliminary tests on a PIN 1 diode mounted, under the same conditions. They represent the values of resistors 206 respectively 46 to be displayed to obtain the controlled loss.

La programmation des mémoires peut se faire manuellement à l'aide de roues codeuses se substituant aux mémoires. On relève, dans un tableau pour T = Ti les atténuations décibel par décibel jusqu'à 64 et le mot correspondant sur chacune des roues codeuses. On rentre ensuite ces informations au clavier d'un programmateur pour chacune des mémoires.Programming of memories can be done manually using coding wheels replacing the memories. One notes, in a table for T = T i the decibel attenuations by decibel up to 64 and the corresponding word on each of the coding wheels. This information is then entered on the keyboard of a programmer for each of the memories.

La programmation des mémoires peut également être informatisée .The programming of memories can also be computerized.

La tension de sortie du capteur de température 30 constitue la tension de référence alimentant le convertisseur 46 et l'entrée 43 de l'amplificateur opérationnel 41. Il est réalisé à partir d'un capteur nu et adapté par exemple au moyen d'un amplificateur opérationnel pour que sa tension de sortie soit égale à la tension d'alimentation de l'entrée 44 de l'amplificateur opérationnel 41 lorsque la température est égale à la température de référence Ti.The output voltage of the temperature sensor 30 constitutes the reference voltage supplying the converter 46 and the input 43 of the operational amplifier 41. It is produced from a bare sensor and adapted for example by means of an amplifier operational so that its output voltage is equal to the supply voltage of the input 44 of the operational amplifier 41 when the temperature is equal to the reference temperature T i .

Dans le cas de la réalisation, l'adaptation est particulièrement simple car les courbes U en fonction de T sont des droites et qu'il existe sur le marché des capteurs donnant une tension linéaire en fonction de la température. C'est pourquoi il est possible de se contenter dans ce cas d'une adaptation par amplificateur opérationnel. Dans le cas plus général où les courbes de variation de la grandeur y en fonction de h sont quelconques mais déductibles l'une de l'autre par transformation linéaire, l'adaptation peut comprendre une association mémoire convertisseur pour établir une sortie corrigée de capteur ayant la forme de l'une des fonctions yp(h).In the case of production, the adaptation is particularly simple since the curves U as a function of T are straight lines and there are sensors on the market giving a linear voltage as a function of temperature. This is why it is possible to be satisfied in this case with an adaptation by operational amplifier. In the more general case where the variation curves of the quantity y as a function of h are arbitrary but deducible from one another by linear transformation, the adaptation may include a memory converter association to establish a corrected sensor output having the form of one of the functions y p (h).

On voit donc que dans ce mode de réalisation la grandeur d'entrée Y qui est ici un affaiblissement en décibel, commande une valeur y qui est ici la valeur de la tension U appliquée à l'entrée de l'amplificateur opérationnel 10 qui, elle-même, conditionne la valeur d'une grandeur x qui est ici la valeur du courant I de sortie de l'amplificateur 10 qui lui-même conditionne une grandeur X qui est la valeur de la résistance de la diode PIN 1.We therefore see that in this embodiment the input quantity Y which is here a decibel loss, controls a value y which is here the value of the voltage U applied to the input of the operational amplifier 10 which, in turn, -same, conditions the value of a quantity x which is here the value of the output current I of the amplifier 10 which itself conditions a quantity X which is the value of the resistance of the diode PIN 1.

L'affaiblissement obtenu est quasiment constant lorsque la température T varie de -20° à + 80°. Les valeurs obtenues pour une commande de 16 dB et 37 dB sont représentées Figure 10.The attenuation obtained is almost constant when the temperature T varies from -20 ° to + 80 °. The values obtained for a 16 dB and 37 dB command are shown in Figure 10.

Les temps de commutation entre deux commandes sont de l'ordre de 200 nanosecondes.The switching times between two commands are of the order of 200 nanoseconds.

Claims (15)

  1. Method for the control of a magnitude x between two values xm and xM by action on a control magnitude y with which the magnitude x is in a one-to-one relationship when the value of a parameter h to which the magnitude x is sensitive remains constant, the magnitude y having to vary between two values ym and yM to make the magnitude x vary from xm to xM when the parameter h has a reference value hi, the magnitude x itself being, for each of the controlled values xp, a one-to-one function of the parameter h, the parameter h being capable of varying in a determined interval hm,hM including the reference value hi, so that, for each of the values xp(h) of the variable x, it is possible to define a function yp = gp(h), yp being the value to be given to the magnitude y to obtain the value xp when the parameter has the value h, the different functions gp(h) having the property that the value of a second function gp(h) may be deduced, for any value of h included in the interval, from the value of a first function gp(h) for the same value of the parameter h by the addition of a known term depending on the difference between the real measured value hr of the parameter h and the reference value hi; the method being characterized in that the magnitude x is represented by the output magnitude of an operational amplifier (10) having two inputs: a first input (11) and a second input (12), in that, to the first input (11), there is applied a voltage Ui representing the control magnitude yi to be applied to obtain the output magnitude with the value xi when h has the reference value hi, the voltage Ui varying from Um to UM when xi varies from xm to xM, and in that, to the second input (12), there is applied a corrected voltage Vc which represents the output magnitude corrected by a sensor (30) of the parameter h, the output of the sensor (30) being corrected in such a way that the corrected voltage Vc is zero when h is equal to hi and, if the opposite is the case, equal to H(hr-hi), the function H(hr-hi) representing the value of the correction to be applied to the control magnitude Ui to obtain the controlled value xi when the parameter h goes from the reference value hi to the measured value hr.
  2. Method according to Claim 1, applicable when the functions yp = gp(h) are linear functions of h defined by their slopes ap and when the sensor used (30) gives a linear voltage as a function of h, characterized in that the correction voltage applied to the second input (12) of the operational amplifier (10) is the output voltage of another operational amplifier (41) that has two inputs, a first input (44) and a second input (43), and an output (12), and that receives a reference voltage at the first of its inputs (44) and the output voltage from the sensor (30) at the second of its inputs (43), the gain of the other amplifier (41) being made proportional to ap by the action of the magnitude y on a resistor (46) placed in a feedback loop placed between the output (12) and the second input (43) of the other operational amplifier (41).
  3. Method according to Claim 1, applicable to the case where the functions yp = gp(h) are any functions that can be deduced from each other by linear transformations, characterized in that the sensor used (30) is suitable for reproducing one of the curves yp = gp(h).
  4. Method according to Claim 1, characterized in that the reference value of the parameter hi is at the centre of the range of variation of the parameter h.
  5. Method according to one of Claims 1 or 2, characterized in that the reference function ypr = gpr(h) from which the functions gp(h) will be created is the one that gives the magnitude x its mean value: x m + x M 2
    Figure imgb0006
  6. Method according to Claim 2, applicable when the magnitude y is itself a one-to-one function of another control magnitude Y and when the variable x acts directly on the value of another variable X which is preferably controlled by Y, Y and X being in a one-to-one relationship under these conditions, characterized in that the magnitude Y is made to undergo a transformation so that, to each value of the magnitude Y, there corresponds a value y which will finally give the desired value to the magnitude X.
  7. Device for the control of a magnitude x between two values xm and xM by action on a control magnitude y with which the magnitude x is in a one-to-one relationship when the value of a parameter h to which the magnitude x is sensitive remains constant, the magnitude y having to vary between two values ym and yM to make the magnitude x vary from xm to xM when the parameter h has a reference value hi, the magnitude x itself being, for each of the controlled values xp, a one-to-one function of the parameter h, the parameter h being capable of varying in a predetermined interval hm,hM including the reference value hi, so that, for each of the values xp, it is possible to define a function yp = gp(h), yp being the value to be given to the magnitude y to obtain the value xp when the parameter has the value h, the different functions gp(h) having the property wherein the value of a second function gp(h) may be deduced, for any value of h included in the interval hm,hM, from the value of a first function gp(h) for the same value of the parameter h, by the addition of a known term depending on the difference between the real measured value hr of the parameter h and the reference value hi; the device is characterized in that the magnitude x is represented by the output magnitude of an operational amplifier (10) having two inputs, a first input (11) and a second input (12), in that, to the first input (11), by means of a control (200), there is applied a voltage Ui representing the control magnitude yi to be applied to obtain the output magnitude with the value xi when h has the reference value hi, the voltage Ui varying from Um to UM when xi varies from xm to xM, and in that, to the second input (12), there is applied a voltage Vc which is the output magnitude corrected by a correction device (40) of a sensor (30) of the parameter h, the output of the sensor (30) being corrected by the device (40) in such a way that the corrected voltage Vc is equal to 0 when h = hi and, if the opposite is the case, equal to H(hr-hi), the function H(hr-hi) representing the value of the correction to be applied to the control magnitude Ui to obtain the controlled value xi when the parameter h goes from the reference value hi to the measured value hr.
  8. Device according to Claim 7, characterized in that the control (200) comprises a first part (210) which controls the voltage Ui applied to the input (11) of the operational amplifier (10) and a second part (220) which controls the correction device (40).
  9. Device according to Claim 8, usable when the functions yp = gp(h) are linear functions of h defined by their slope ap, characterized in that the sensor (30) is a linear sensor and in that the correction device (40) is constituted by another operational amplifier (41) having two inputs, a first input (44) and a second input (43), and an output (12), the first input (44) receiving a reference voltage and the second input (43) receiving the output voltage from the sensor (30), the gain of the other amplifier (41) being made proportional to ap by a resistor (46) placed in a feedback loop (47) between the output (12) and the second input (43) of the other amplifier (41), the value of the resistor (46) being controlled by the part (220) of the control (200).
  10. Device according to Claim 8, characterized in that the control part (210) is constituted by a D-type flip-flop (202) having an input (201) and an output (203), the input (201) receiving the control word and the output (202) addressing a memory (204), the output of the memory (204) controlling an analog-digital converter (206) constituting a variable resistor connected to one of the inputs (207) of a third operational amplifier (208), the output (11) of which constitutes one of the inputs of the operational amplifier (10).
  11. Device according to Claim 10, characterized in that a D-type flip-flop (205) is interposed between the memory (204) and the converter (206).
  12. Device according to Claim 8, characterized in that the control part (210) is constituted by a D-type flip-flop (202) having an input (201) and an output (203), the input (201) receiving the control word and the output (203) addressing two parallel lines: a first line and a second line, the first of these lines constituting a coarse-step control and the second a fine-step control, characterized in that each of the parallel lines comprises a memory (204, 204') addressed by the word output by the D-type flip-flop (203) controlling an analog-digital converter (206-206') constituting a variable resistor connected to one of the inputs of the third operational amplifier (208), the output (11) of which constitutes one of the inputs of the operational amplifier (10).
  13. Device according to Claim 12, characterized in that D-type flip-flops (205, 205') are interposed between the memories (204, 204') and the converters (206, 206').
  14. Device according to Claim 9, characterized in that the control part (220) comprises a memory (221) addressed by the control word (203), the value contained in the addressed memory controlling the resistor (46) constituted by a digital-analog converter.
  15. Device according to Claim 14, characterized in that a D-type flip-flop (222) is interposed between the memory (221) and the converter (46).
EP92402262A 1991-08-23 1992-08-11 Method and device for control and regulation Expired - Lifetime EP0530072B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9110569A FR2680587B1 (en) 1991-08-23 1991-08-23 CONTROL AND REGULATION METHOD AND DEVICE.
FR9110569 1991-08-23

Publications (2)

Publication Number Publication Date
EP0530072A1 EP0530072A1 (en) 1993-03-03
EP0530072B1 true EP0530072B1 (en) 1996-09-18

Family

ID=9416365

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92402262A Expired - Lifetime EP0530072B1 (en) 1991-08-23 1992-08-11 Method and device for control and regulation

Country Status (6)

Country Link
US (1) US5341287A (en)
EP (1) EP0530072B1 (en)
JP (1) JPH06268459A (en)
CA (1) CA2076475A1 (en)
DE (1) DE69213869T2 (en)
FR (1) FR2680587B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3329077B2 (en) * 1993-07-21 2002-09-30 セイコーエプソン株式会社 Power supply device, liquid crystal display device, and power supply method
FR2801681B1 (en) 1999-11-30 2002-02-08 Thomson Csf METHOD AND DEVICE FOR MEASURING THE TEMPERATURE OF MICROWAVE COMPONENTS
ITTO20040411A1 (en) * 2004-06-21 2004-09-21 Olivetti Jet S P A DETECTION DEVICE FOR PHYSICAL SIZES, PARTICULARLY HUMIDITY, AND RELATED METHOD OF DETECTION.
CN112764448B (en) * 2019-11-05 2022-05-24 台达电子工业股份有限公司 Over-temperature compensation control circuit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701004A (en) * 1971-05-13 1972-10-24 Us Army Circuit for generating a repeatable voltage as a function of temperature
JPS49119080A (en) * 1973-03-21 1974-11-14
US4002964A (en) * 1975-10-02 1977-01-11 Gordon Engineering Company Temperature compensation technique
US4001554A (en) * 1975-10-29 1977-01-04 The United States Of America As Represented By The Secretary Of The Army Mode control computer interface
NL7907161A (en) * 1978-09-27 1980-03-31 Analog Devices Inc INTEGRATED TEMPERATURE COMPENSATED VOLTAGE REFERENCE.
EP0039215B1 (en) * 1980-04-28 1985-08-07 Fujitsu Limited Temperature compensating voltage generator circuit
US4562400A (en) * 1983-08-30 1985-12-31 Analog Devices, Incorporated Temperature-compensated zener voltage reference

Also Published As

Publication number Publication date
DE69213869T2 (en) 1997-01-30
CA2076475A1 (en) 1993-02-24
FR2680587B1 (en) 1993-10-15
JPH06268459A (en) 1994-09-22
FR2680587A1 (en) 1993-02-26
DE69213869D1 (en) 1996-10-24
EP0530072A1 (en) 1993-03-03
US5341287A (en) 1994-08-23

Similar Documents

Publication Publication Date Title
FR2630275A1 (en) ALTERNATING CURRENT AMPLIFIER AND METHOD FOR NEUTRALIZING THE INPUT CAPACITY OF A VOLTAGE AMPLIFIER CIRCUIT
EP0530072B1 (en) Method and device for control and regulation
EP1231529A1 (en) Precise reference voltage generating device
FR2498848A1 (en) METHOD FOR REDUCING DIGITAL SIGNAL AND DEVICE FOR PERFORMING SAID METHOD
FR2459531A1 (en) GENERATING CIRCUIT OF OPTIMAL TIME FUNCTIONS
EP0065901B1 (en) Potentiometric transducer system
EP0524294B1 (en) Amplification circuit with exponential gain control
EP1211888B1 (en) Infrared radiation-detecting device
EP0200255B1 (en) Darlington-type switching stage, especially for a memory word line decoder
EP2978127B1 (en) Method for digitally compensating variations, based on the temperature, of an electrical variable of an onboard spatial radio frequency telecommunications device
EP0829796B1 (en) Voltage controller with attenuated temperature sensitivity
EP0308293B1 (en) Controlled output power device for a class-c amplifier
EP2560066A1 (en) Method for adjusting a reference voltage according to a band-gap circuit
FR2639119A1 (en) APPARATUS FOR MEASURING VARIOUS ELECTRICAL OR MULTIMETER PERFECTIONAL SIZES
FR2562244A1 (en) METHOD AND DEVICE FOR CONTROLLING LIQUID LEVEL IN A RESERVOIR
EP1315061A1 (en) Power controller for an electronic circuit, component and device therefor
EP0838904A1 (en) Analogue to digital conversion device with programmable transfer characteristic
FR2699020A1 (en) Radiofrequency wave generator with variable and regulated output power.
FR2670017A1 (en) CIRCUIT DEVICE FOR THE CALIBRATION OF SIGNALS IN INDUSTRIAL INSTRUMENTATION.
EP1199798A2 (en) Integrated error amplifier
FR2745130A1 (en) AMPLIFICATION CIRCUIT AND METHOD FOR DETERMINING AND PROGRAMMING THE LEVELS OF POWER CONTROL IN THIS CIRCUIT
EP0838901B1 (en) Analogue to digital conversion device with regulated input dynamic range
FR2626420A1 (en) DEVICE FOR FREQUENCY SERVICING AN OSCILLATOR
EP0613244A1 (en) Circuit with high linearity of limitation of a characteristic of a signal and the use of the circuit in a radar-receiver
FR2563347A1 (en) IMPROVING COMPARATORS WITH LATCH CIRCUIT AND DIGITAL ANALOG CONVERTER USING SUCH COMPARATORS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19930705

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19951117

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69213869

Country of ref document: DE

Date of ref document: 19961024

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961122

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040810

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040811

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040819

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050811

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050811

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

Ref country code: FR

Ref legal event code: AU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060428